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0 Introdu
tionIn this paper we are 
on
erned with the 
lassi�
ation of entire solutions of an equation in
onformal geometry. The result is motivated by the 
lassi
al theorem of Obata [O℄ that anymetri
 
onformal to the standard metri
 on the n-sphere Sn with 
onstant s
alar 
urvature,is isometri
 to the standard metri
. As we will re
all in se
tion 1 below, the main step in theoriginal proof of Obata is the Bian
hi identity for the s
alar 
urvature: divE = (n�2)2n rR,where E denotes the tra
eless Ri

i tensor and R the s
alar 
urvature. Obata's result waslater generalized by Ca�arelli-Gidas-Spru
k [CGS℄, where instead of 
onsidering metri
s onSn, they 
onsidered metri
s u 4n�2 jdxj2 
onformal to the Eu
lidean metri
 jdxj2 on Rn with
onstant s
alar 
urvature, i.e. u > 0 satis�es the equation��u = n(n� 2)un+2n�2 ; u > 0 on Rn : (0:1)They 
lassi�ed all solutions of (0.1) via the method of moving planes. Namely, u(x) =( 2��2+jx�x0j2 ) 2n�2 for some x0 2 Rn , � > 0; or equivalently the metri
 u 4n�2 jdxj2 is isometri
to the standard metri
 on Sn, where points in Rn are identi�ed with points on Sn viastereographi
 proje
tion.In this note we will illustrate a method whi
h redu
es the proof of the above 
lassi�
ationresult of [CGS℄ to a "tail" term estimate using method of proof in [O℄. We will then indi
atethat the estimate 
an easily be veri�ed when the dimension n is equal to 3. and for n � 4under the additional (strong) assumption that the volume of the metri
 is �nite. We thenapply the same s
heme to 
lassify entire solution of a fully non-linear equation studied in ([V-1℄, [V-2℄ and [CGY-1℄, [CGY-2℄ ) whi
h 
an be viewed as a fully nonlinear generalizationof the Yamabe equation.We now des
ribe our main result:Given a Riemannian manifold (Mn; g), we denote the Weyl-S
houten tensor Aij = Rij �R2(n�1)gij, where Rij denotes the 
omponents of the Ri

i tensor. Viewed as an endomorphismon the tangent bundle, A = Ag has n real eigenvalues, and we let �2(Ag) denote the se
ondelementary symmetri
 fun
tion of the eigenvalues.Theorem 0.1 Let g = v�2jdxj2 be a 
onformal metri
 on Rn , n � 4, satisfying�2(Ag) = 18n(n� 1)(n� 2)2: (0:2)If n � 6, assume in addition thatvol(g) = ZRn v�ndx <1: (0:3)Then v = ajxj2+ bixi+ 
 for 
onstants a; bi; 
. In parti
ular, g is obtained by pulling ba
kto Rn the round metri
 on Sn.



Theorem 0.1 was proved by Via
lovsky [V-2℄ for all elementary symmetri
 fun
tions�k(A), but under the (strong) assumption that the metri
 is de�ned on Sn. This amountsto assuming that the singularity at in�nity is removable. When n = 4 and k = 2 Theorem0.1 is 
ontained in [CGY-2℄. We re
ently learned that A. Li and Y. Li have announ
ed aversion of this result whi
h holds for all k in all dimensions ([LL℄; see also the arti
le of Guanand Wang [GW℄). However, sin
e our proof (whi
h we have obtained a year ago) is quitedi�erent than the one announ
ed in [LL℄, we de
ided to publish our result. The geometri
nature of our argument also allows the possibility that it 
an be generalized to establish theuniqueness of solutions on general Einstein manifolds, like Obata's result whi
h inspired it.The note is organized as follows: In se
tion 1, we des
ribe Obata's proof and the "tail"term estimate required to modify Obata's proof to obtain the result in [CGS℄. We then provethe tail estimate for dimension n = 3. In se
tion 2, we establish a 
onservation law for the�2(A) equation that is analogous to 
lassi
al Bian
hi identity. In se
tion 3, we derive the"tail" estimate required for the �2 equation for n = 4; 5 and for n � 6 under the additionalassumption (0.3). Finally in se
tion 4, we prove the main 
lassi�
ation result Theorem 0.1.
1 Obata's proofIn this se
tion we will �rst re
all the proof a result of Obata ([O℄) that metri
s de�ned onthe n-sphere with 
onstant s
alar 
urvature and 
onformal to the standard metri
 is Einstein,hen
e isometri
 to the standard metri
 on Sn. We will then modify Obata's argument toshow that one 
an redu
e the proof of the main result in ([CGS℄, see Theorem 1.1 below) formetri
s de�ned on Rn to a "tail" term estimate. We then establish the tail term estimatefor the 
ase n = 3 and under the additional volume bound 
ondition for the 
ases n � 4.To this end, suppose g = v�2g0 is a 
onformal metri
 on Sn, where g0 is the round metri
.Assume that g has 
onstant s
alar 
urvature.To begin, we express the tra
e-free Ri

i Tensor E in terms of v;E = �(n� 2)vr2g(v�1) + (n� 2)n v�g(v�1)g: (1:1)Note that the Hessian and Lapla
ian in (1.1) are with respe
t to g, not g0. If we pair bothsides of (1.1) with v�1E and integrate over Sn we obtainZSn jEj2v�1dvolg = �(n� 2) ZSn g(E;r2g(v�1))dvolg:Note that the se
ond term vanishes be
ause E is tra
e-free. We apply the divergen
etheorem to 
on
lude ZSn jEj2v�1dvolg = (n� 2) ZSn g(ÆE; d(v�1))dvolg:



The 
ontra
ted se
ond Bian
hi identity says that divE = (n�2)2n dR, where R is the s
alar
urvature. Sin
e R is 
onstant, E is divergen
e-free. ThusZSn jEj2v�1dvolg = 0: (1:2)The uniqueness result follows, sin
e (1.2) implies that E � 0, i.e. g is Einstein.We will now modify the argument above to metri
s de�ned on Rn and prove the followingresult:Theorem 1.1. Let g = v�2jdxj2 be a 
onformal metri
 on Rn , n � 3, whose s
alar 
urvatureR equals the 
onstant n(n� 1). Assume in addition that g satis�esZA� jr0vj2v1�ndx . �2; (1:3)where r0 denotes the Eu
lidean gradient, A� denotes the annulus B(2�) � B(�), and B(�)denotes the Eu
lidean ball on Rn 
entered at 0 of radius � > 0.Then v = ajxj2+ bixi+ 
 for 
onstants a; bi; 
. In parti
ular, g is obtained by pulling ba
kto Rn the round metri
 on Sn.Proof To begin, �x � > 1 and let � denote a 
ut-o� fun
tion supported in B(2�) satisfying� � 1 on B(�), j�i�j . ��1. Following the outline of Obata's argument above, we pair bothsides of (1.1) with v�1E�2 and integrate over Rn to obtainZ g(E;E)v�1�2dvol(g) = � Z (n� 2)g(E;r2g(v�1))�2dvol(g): (1:4)Note that in (1.4) we have used the fa
t that E is tra
e-free. Applying Bian
hi identitydivE = (n�2)2n dR as before, we obtainZ g(E;E)v�1�2dvol(g) = Z (n� 2)g(ÆE; d(v�1))�2dvol(g)+ Z (n� 2)E(rg(v�1);rg(�2))dvol(g):Sin
e R = Rg is 
onstant, E is divergen
e-free. ThusZ g(E;E)v�1�2dvol(g) = Z (n� 2)E(rg(v�1);rg(�2))dvol(g). Z jEjjrg(v�1)jjrg(�2)jdvol(g)



. Z jEjjrgvjjrg�jv�2�dvol(g):Applying the S
hwartz inequality we 
on
ludeZ g(E;E)v�1�2dvol(g) . 0B� Zsuppjr�j jg(E;E)jv�1�2dvol(g)1CA12
��Z jrgvj2jrg�j2v�3dvol(g)� 12 : (1:5)We now rewrite the integral on the Rhs of (1.5) in terms of the Eu
lidean metri
, usingthe identities jrgvj2 = v2jrvj2;jrg�j2 = v2jr�j2;dvol(g) = v�ndx:Thus, Z jrgvj2jrg�j2v�3dvol(g) = Z jrvj2jr�j2v1�ndx:Sin
e jr�j2 . ��2 and supp � � A(�) = fx�Rn j� < jxj < 2�g, we 
on
lude fromassumption (1.3) Z jrgvj2jrg�j2v�3dvol(g) . ��2 ZA� jrvj2v1�ndx <1:Thus ZRn g(E;E)v�1dvol(g) <1: (1:6)In parti
ular,



Zsuppjr�j g(E;E)v�1dvol(g) = Zsuppjr�j jg(E;E)jv�1dvol(g)! 0 (1:7)as � ! 1. Now 
ombining (1.7) with (1.5) and the boundedness of the integrals in (1.6),we 
on
lude that Z g(E;E)v�1�2dvol(g)! 0 as �!1;so g(E;E) � 0 on Rn . This implies E � 0. The 
on
lusion of Theorem 1.1 that v is aquadrati
 polynomial follows easily from the expression of E as in (1.1).We will end this se
tion by remarking that the assumption (1.3) in the statement ofTheorem 1.1 
an be easily established for metri
s of 
onstant s
alar 
urvature when n = 3,but for n � 4 the same argument only establishes the inequality (1.3) under the additionalassumption that volume of g is �nite. We remark that the volume �niteness assumption isfrequently harmless when the result is applied to the limiting 
ase of a "blow up" argumentfor metri
s de�ned on a 
ompa
t manifold. We state the result in the following proposition.To simplify the notations, we will hen
e forth denote r0 by r, �0 by �, et
.Proposition 1.2 Let g = v�2dx2 be a 
onformal metri
 on Rn . Assume that there existssome positive 
onstants C0 = C0(n); C1 = C1(n), so thatwhen n = 3 Rg � C0;and when n � 4 8>><>>: 1C1 � Rg � C1ZA� v�ndx� C1where A(�) = fx�Rn ; � � jxj � 2�g, for all � >> 1. Then there is a 
onstant C2 =C2(C0; C1; n), so that ZA� jrvj2v1�ndx � C2�2 for all � >> 1:To prove the proposition, we begin with a te
hni
al Lemma whi
h is a well known result(
.f. [KMPS, Lemma 1℄). WeLemma 1.3 Suppose g = v�2ds2 is a 
onformal metri
 with R = Rg � C3 � 0, then thereis some 
onstant C4 so that v(x) � C4jxj2 for all jxj suÆ
iently large.Proof. Denote g = u 4n�2dx2; i.e. u = v�n�22 , then the s
alar 
urvature equation is of thefamiliar form



��u = n� 24(n� 1)R un+2n�2 :This equation is invariant under the Kelvin transform: let us denoteû(x) = 1jxjn�2u� xjxj2� ; R̂(x) = R� xjxj2�then û satis�es ��û = n� 24(n� 1)R̂ûn+2n�2 on Rn � f0g:Sin
e R̂ � 0, ��û � 0 on Rn�f0g implies that ��û � 0 on Rn in the distribution sense.Hen
e û is superharmoni
 near x = 0; thus û(x) � C4 for some C4 for all jxj suÆ
ientlysmall. This is equivalent to the statement that v(x) � C4jxj2 for jxj suÆ
iently large.We now prove Proposition 1.2.Proof. We �rst re
all the s
alar 
urvature equation for the metri
 g = v�2dx2:��v + n2v�1jrvj2 + 12(n� 1)Rv�1 = 0: (1:8)Choose � > 1 and � a 
ut o� fun
tion supported with � � 1 on A(�) and with � supportedon B(52�)� B(12�). Multiply the equation (1.8) by v�n+2�4 and integrate by parts, we get(n2 � n+ 2) Z jrvj2v�n+1�4dx + 12(n� 1) Z Rv�n+1�4dx = � Z rv � r�4v�n+2dx: (1:9)n=3 
ase: We haveLhs of (1:9) = 12 Z jrvj2v�2�4dx+ 14 Z Rv�2�4dxRhs of (1:9) . 1� �Z jrvj2v�2�4dx� 12 (Z �2dx) 12 ;. 1�(Z jrvj2v�2�4dx) 12� 23 ;whi
h in turn, under the assumption that R � 0, implies thatZ jrvj2v�2�4dx . � . �2as 
laimed.



n � 5 
ases: We rewrite (1.9) as(n2 � 2) Z jrvj2v�n+1�4dx = 12(n� 1) Z Rv�n+1�4dx + Z rv � r(�4)v�n+2dx: (1:10)Thus under the additional assumptions that there is a positive number that 1C1 � R � C1and RA� v�n � C1, we may apply Lemma 1.3 to obtain from (1.10) thatZ jrvj2v�n+1�4dx . �2 + (Z jrvj2v�n+1�4dx) 12�:Thus ZA� jrvj2v�n+1dx . �2as desired.n=4 
ase: The proof is slightly more 
ompli
ated. We now mutiply the equation (1.8) byv�n+��4 and integrate by parts, for n = 4 we get(�� 2) Z jrvj2v�5+��4dx+ Z rv � r�4v�4+�dx + 16 Z Rv�5+��4dx = 0: (1:11)We now 
hoose � = 1 and 
on
lude from (1.11) thatZ jrvj2v�4�4dx = 16 Z Rv�4�4dx+ Z rv � r�4v�3dx. Z Rv�4�4dx+ 1�(Z jrvj2v�4�4dx) 12 (Z v�4�4dx) 14 jsupp�j 14 : (1:12)Thus from our assumption that R � C and Rsupp� v�4dx � C, we 
on
lude from (1.12) thatZ jrvj2v�4�4dx . C:Applying Lemma 1.3, we then 
on
lude thatZ jrvj2v�3�4dx . �2 Z jrvj2v�4�4dx . �2:This �nishes the proof for the 
ase n = 4, hen
e the proof of the proposition.



2 A 
onservation lawIn this se
tion, we will derive tensor estimates for a tensor whi
h plays the same role forour �2 equation as the tra
e-free Ri

i tensor does in Obata's proof. It turns out that su
h atensor has been des
ribed in four dimensions by Gursky [Gu℄ and in general by Via
lovsky[V-3℄.Re
all that on a n-dimensional manifold (M; g), we denote the Weyl-S
houten tensor byAij = Rij � 12(n�1)Rgij, where Rij denotes the Ri

i 
urvature, and R the s
alar 
urvature ofthe metri
 g. We also denote the se
ond elementary symmetri
 fun
tion of the eigenvaluesof the tensor A by �2(Ag) = 12((Tra
eA)2 � jAj2).Proposition 2.1 Suppose (M; g) is lo
ally 
onformally 
at. De�ne the symmetri
 two-tensorL by L = 2n�2(Ag)� �1(A)A+ A2: (2:1)Then L satis�es trgL = 0; (2:2)ÆL = �n� 2n � d�2(A): (2:3)Remark Therefore, when �2(Ag) is 
onstant, L is both tra
e-free and divergen
e-free.For the proof, we will need two additional sharp inequalities involving L:Proposition 2.2 Assume �2(A) > 0. Then(i) � g(L;E) � 0; (2:4)with equality if and only if E = 0.(ii) jLj2 � �2(n� 2)n �1(A)g(L;E): (2:5)Proof (i) This follows from [Vi-1, Lemma 23℄. If we de�ne the se
ond Newton transformationby T2(A) = �2(A)g � �1(A)A+ A2;Then L = T2(A)� (trT2)g = T2(A)� (n� 2)n �2(A)g:Thus, as E is tra
e-free,



�g(L;E) = �g(L;A)= �g(T2(A)� (n� 2)n �2(A)g; A)= �g(T2(A); A) + (n� 2)n �2(A)�1(A):Now, a

ording to [Vi,Lemma 23℄, if �2(A) > 0, and �1(A) > 0g(T2(A); A) � (n� 2)n �2(A)�1(A)with equality if and only if E = 0. This implies (2.4).(ii) In terms of the tra
e-free Ri

i tensor, we haveA = E + 1n�1(A)g;A2 = E2 + 2n�1(A)E + 1n2�1(A)2g;L = � 1n jEj2g � (n� 2)n �1(A)E + E2:Therefore, jLj2 = jE2j2 � 1n jEj4 � 2(n� 2)n �1(A)trE3 + (n� 2)2n2 �1(A)2jEj2: (2:6)Similarly, �g(L;E) = (n� 2)n �1(A)jEj2 � trE3;or trE3 = g(L;E) + (n� 2)n �1(A)jEj2;where trE3 = Eki EjkEij. Substituting this into (2.6) givesjLj2 = jE2j2 � 1n jEj4 � (n� 2)2n2 �1(A)2jEj2 � 2(n� 2)n �1(A)g(L;E): (2:7)



Lemma 2.3 For an n� n (n � 3) tra
eless symmetri
 matrix E, we havejE2j2 � n2 � 3n+ 3n(n� 1) jEj4 (2:8)and equality holds if and only if E is of the formE = 0BBBBB�� � . . . � �(n� 1)�
1CCCCCAProofWe begin by observing that for n = 3, the ratio jE2j2jEj4 is a 
onstant given by 32�3:3+33(3�1) =12 � n2�3n+3n(n�1) for n > 3.In general we write, for � 2 Rn�1 ,

E� = 0BBBBBB��1 �2 . . . �n�1 � n�1�1 �k
1CCCCCCAView the fun
tion f(E) = jE2j2 as a smooth fun
tion on the hypersurfa
e f��Rn�1jjEj =1g. At the maximum value of f , we �nd a Lagrange multiplier �:�3i + (��k)3 = �(�i + ��k) (2:9)for ea
h i = 1; 2; :::n� 1, where ��k = n�1�1 �k.The general 
ase is modeled after the 
ase n = 4, whi
h we will �rst 
onsider in detail.To solve for � in (3.11) we �rst assume that�i + ��k 6= 0 for i = 1; 2; 3: (2:10)Then we �nd, using the 
ommon value of �,�2i � �i(��k) + (��k)2 = �2j � �j(��k) + (��k)2 for i 6= j:



Thus �1(�2 + �3) = �2(�1 + �3) = �3(�1 + �2):If any of the �i = 0, we �nd f(�) = 12 as in the 
ase n = 3. When none of �i is zero, we�nd �1 = �2 = �3, f(�) = 712Returning to the assumption (2.10), if for some i say i = 3, we have�3 + ��k = 0;then rewriting (2.9) for i = 1; 2, we �nd�3i � �33 = �(�i � �3):If �1 = �3, we �nd �2 = �3�3. In either 
ase E is 
onjugate to the matrixE = 0BB�� � � �3�1CCA :If �1 6= �3 and �2 6= �3, we �nd using the 
ommon value of �,�2(�2 + �3) = �1(�1 + �3)Hen
e either �1 = �2, so that �3 = ��1 and f(�) = 14 < 712 ; or �1 + �2 = ��3 = 0,f(�) = 12 � 712 . Thus we have determined the maximum and the minimum value of f(E) indimension four.For n > 4, we apply (2.9) to �nd�3i � ��i = �(��k)� (��k)3 (2:11)As the right hand side is independent of i, we 
on
lude that there are at most threevalues for �i, the roots of the 
ubi
 equation (2.11). Thus by relabeling if ne
essary, we �nd�1 = �2 : : : = �l1 = �1�l+1 = : : : = �l1+l2 = �2�l1+l2+1 = : : : = �l1+l2+l3 = �3where l1 + l2 + l3 = n� 1.



Consider on
e again the fun
tionf(E�) = l1�41 + l2�42 + l3�43 + (l1�1 + l2�2 + l3�3)4on the hypersurfa
e f� 2 R3 jkE�k = 1g. At a maximum we have a Lagrange multiplier �:�3i + (�lk�k)3 = �(�i + �lk�k) i = 1; 2; 3:Assuming that �i + �k�k 6= 0 for all i = 1; 2; 3we �nd �2i � �i(�lk�k) = �2j � �j(�lk�k) for i 6= j: (2:12)Sin
e the quadrati
 equation in �i for a given �lk�k has at most two roots, we 
on
ludethat there are only two possibly distin
t values for �i. We may without loss of generalityassume that �1 = : : : = �l1 = �1�l1+1 = : : : = �l2 = �2 (2:13)and l1 + l2 = n� 1. To determine the maximum possible value of the fun
tionf(E�) = l1�41 + l2�42 + (l1�1 + l2�2)4under the 
onstraints: l1 + l2 = n� 1l1�21 + l2�22 + (l1�1 + l2�2)2 = 1and �21 � �1(l1�1 + l2�2) = �22 � �2(l1�1 + l2�2):We noti
e that we may enlarge the 
onsideration to allow l1 = t and l2 = n � 1 � t torange over 0 � t � n� 1 and �x (�1;�2), viewing f(E�) as a fun
tion of t, we �ndddt f(E�; t) = �41 � �42 + 4(t�1 + (n� 1� t)�2)3(�1 � �2)= (�1 � �2)(�31 + �21�2 + �1�22 + �32 + 4(t�1 + (n� 1� t)�2)3):d2dt2 f(E�t) = 12(�1 � �2)2(t�1 + (n� 1� t)�2)2 � 0



Hen
e the maximum is a
hieved at t = 0 or t = n � 1. That is either l1 = 0 or l2 = 0and f(E�) = n2�3n+3n(n�2) .Finally we 
onsider the 
ase when �i + �k�k 6= 0fails to hold. There are three possibilities: In 
ase �i + �k�k = 0 for i = 1; 2; 3, we �nd�1 = �2 = �3. In 
ase �1 + �k�k = 0 for i = 1; 2 then we �nd �1 = �2, so that thereare only two 
ommon values and the previous 
onsideration shows f(E�) � n2�3n+3n(n�1) . In theremaining 
ase, say (1 + l3)�3 = �(l1�1 + l2�2);we �nd f(E�) = l1�41 + l2�42 + (1 + l3)� l1�1 + l2�21 + l3 �4 :Again we enlarge the 
onsideration for a �xed l3, allow l1 to run between 0 � l1 � n� 1� l3,and l2 = n � 1� l1 � l3. Di�erentiate twi
e f(E�; l1) with respe
t to l1, we �nd f is againstri
tly 
onvex in l1, hen
e its maximum value is attained at the end points, that is eitherl1 = 0 or l1 = n � 1 � l3 hen
e l2 = 0. Thus we are redu
ed to our previous 
onsiderationwhen there are at most two dinstin
t eigenvalues and the maximum value of f(E�) is lessthan or equal to n2�3n+3n(n�20 as desired. �Using (2.8), from (2.7) we 
on
ludejLj2 � �(n2 � 3n+ 3)n(n� 1) � (n� 1)n(n� 1)� jEj4 � (n� 2)2n2 �1(A)2jEj2�2(n� 2)n �1(A)g(L;E)= (n� 2)2n(n� 1) jEj4 � (n� 2)2n2 �1(A)2jEj2�2(n� 2)n �1(A)g(L;E)= � (n� 2)2n(n� 1) jEj2 ��jEj2 + (n� 1)n �1(A)2��2(n� 2)n �1(A)g(L;E):However, �jEj2 + (n�1)n �1(A)2 = 2�2(A), so (2.5) follows. �



3 Estimates for the tail termIn this se
tion, we will establish some te
hni
al results whi
h will be used in the proof ofthe main theorem in se
tion four.Proposition 3.1 Let g = v�2jdxj2 be a 
onformal metri
 on Rn . Assume that there existssome positive 
onstants C0 = C0(n); C1 = C1(n), so thatwhen n = 4; 5 �2(Ag) � C0;and when n � 6 8>><>>: 1C1 � �2(Ag)� C1ZA� v�n � C1where A(�) = fx�Rn ; � � jxj � 2�g, for all � >> 1.Then there is a 
onstant C2 = C2(C0; C1; n), so thatZA� Rjrvj2v1�n � C2�2 for all � >> 1:Proof. Sin
e �2(Ag) = �2((n� 2)v�1r2ijv � (n� 2)2 v�2jrvj2Æij))we have�2(Ag) = 12v4(n� 2)2�� v�2jr2vj2+ v�2(�v)2� (n� 1)v�3�vjrvj2+ 14n(n� 1)jrvj4v�4	:Using the formula 12�jrvj2 = jr2vj2+ < rv;r�v >;we rewrite the above equation in the form:2�2(Ag)v�n = (n� 2)2��12v2�n�jrvj2 + v2�n < rv;r�v >+v2�n(�v)2 � (n� 1)v1�n�vjrvj2 + 14n(n� 1)v�njrvj4� : (3:1)Fix � >> 1 and let � be a 
ut-o� fun
tion supported on B(52�) � B(�2); � � 1 onA(�) = B(2�)�B(�) and jrk�j � Ck��k on B(52�). We multiply both sides of (3.1) by �4v�and integrate over Rn . For the �rst two terms in the right hand side of (3.1), we integrateby parts and arrive at:



Z �4v2+��n�jrvj2 = Z jrvj2�(�4v2+��n)= Z fjrvj2�4�(v2+��n) + 2jrvj2r(v2+��n)r�4 + jrvj2v2+��n��4g= Z (2 + �� n)v1+��n�vjrvj2�4 + Z (2 + �� n)(1 + �� n)v��njrvj4�4+ 2(2 + �� n) Z v1+��nrv � r�4jrvj2 + Z v2+��njrvj2��4Also Z �4v2+��n < rv;r�v >= Z f�v2+��n(�v)2 � (2 + �� n)v1+��njrvj2�v�4 � v2+��nrv � r�4�vgFor the last term in the line above, we integrate by parts again to obtainZ v2+��nrvr�4�v = Z v2+��n�iv�i�4 �k�kv= � Z �k(v2+��n)�iv�i�4�kv � v2+��n�k�iv�i�4�kv � v2+��n�iv�k�i�4�kvg= �(2 + �� n) Z v1+��njrvj2rv � r�4 � Z v2+��nr2�4(rv;rv)� 12 Z v2+��n < rjrvj2;r�4 >= �12(2 + �� n) Z v1+��njrvj2rv � r�4 � Z v2+��nr2�4(rv;rv)+ 12 Z v2+��njrvj2��4Finally we substitute these identities into the left hand side of (3.1), and obtain2(n� 2)2 Z �2(Ag)v��n�4 = (�(n� 1)� 32(2 + �� n)) Z v1+��njrvj2(�v)�4+(14n(n� 1)� 12(2 + �� n)(1 + �� n)) Z v��njrvj4�4�12(2 + �� n) Z v1+��njrvj2rv � r�4 + Z v2+��nr2�4(rv;rv)� Z v2+��njrvj2��4 (3:2)



Re
all that when g = v�2jdxj2, the s
alar 
urvature of g is given by (1.8)��v + n2v�1jrvj2 + 12(n� 1)Rv�1 = 0:Equivalently, �v = n2 v�1jrvj2 + 12(n� 1)Rv�1:Finally, substituting this into (3.2) gives the identity2(n� 2)2 Z �2(Ag)v��n�4 = a�;n Z v��nRjrvj2�4 + b�;n Z v��njrvj4�4 + T1 + T2 (3:3)where a�;n = 14(n� 1)(n� 4� 3�)b�;n = n(14 + �4 )� 12(2 + �)(1 + �)T1 = �12(2 + �� n) Z v1+��njrvj2rv � r�4T2 = Z v2+��nr2�4 < rv;rv > � Z v2+��n��4jrvj2:Thus jT1j . 1� Z jrvj3�3v1+��n . 1� �Z jrvj4v��n�4� 34 0� Zsupp � v4+��n1A 14 (3:4)jT2j . 1�2 Z jrvj2v2+��n�2 . 1�2 �Z jrvj4v��n�4� 12 0� Zsupp � v4+��n1A 12 (3:5)We make the following 
hoi
e of � a

ording to the dimension n of the manifold.(a) When n = 4 or 5, we 
hoose � = 1. Noti
e that for � = 1, a1;n = n�74(n�1) ; b1;n = 12(n� 6).Thus for both n = 4; 5; a1;n < 0; b1;n < 0.n=4 
ase: Under the assumption �2(Ag) � C0 > 0, we have Rg � p24pC0 > 0; thusv(x) . �2 for x 2 supp �, and � large by Lemma 1.3. ThusjT1j . 1� �Z jrvj4v�3�4� 34 �Zsupp � v� 14



. � 12 �Z jrvj4v�3�4� 34. � Z jrvj4v�3�4 + C��2:Also jT2j . ��Z jrvj4v�3�4� 12. � Z jrvj4v�3�4 + C��2for any � > 0 and some 
onstant C� = C(�). Thus if we 
hoose � � 14(�b1;4), we obtain from(3.3) that Z Rjrvj2v�3�4 . �2Hen
e ZA(�)Rjrvj2v�3 . �2:n=5 
ase: We argue in the same way as in the 
ase of n = 4; ex
ept thatjT1j . 1� �Z jrvj4v�4�4� 34 � 54. � Z jrvj4v�4�4 + C��Similarly jT2j � 1�2 �Z jrvj4v�4�4� 12 � 52 � � Z jrvj4v�4�4 + C��:Thus ZA(�)Rjrvj2v�4 . � � �2 when � � 1:(b) n � 6 
ases. Here we 
hoose � = 0; noti
e that for n > 5a0;n = n� 44(n� 1) > 0; b0;n = 14(n� 4) > 0:



Thus for �2(Ag) � C0, we have from (3.3)2C0(n� 2)2 Z v�n�4 � a0;n Z Rjrvj2v�n�4 + b0;n Z jrvj4v�n�4 � jT1j � jT2j; (3:6)while jT1j � 1� �Z jrvj4v�n�4� 34 �Zsupp � v4�n� 14. 1� �Z jrvj4v�n�4� 34 �Zsupp � v�n�n�44n (�n) 1nThus under the additional assumption that RA(�) v�n � C1, for C1 independent of �, we getjT1j . (Z jrvj4v�n�4) 34jT2j . (Z jrvj4v�n�4) 12 :Thus it follows from (3.6) that Z Rjrvj2v�n�4 � C2for some C2 = C(C0; C1; n). We apply Lemma 1.3, to 
on
ludeZA(�)Rjrvj2v1�n � Z Rjrvj2v1�n�4 < C2�2:Thus we have �nished the proof of the proposition.As a 
onsequen
e of the 
omputation in the proof of the above proposition, we have:Corollary 3.2 When n = 4, and g = v�2ds2 is a 
onformal metri
 on R4 with �2(Ag) �C0 > 0, then vol(g) = RR4 v�4dx . 1C0 .Proof. Fix � > 0 and take � to be a 
ut o� fun
tion with � � 1 on B and � � 0 o� B2�.Let � � 0 in the formula (3.3). We observe that a0;4 = b0;4 = 0.Hen
e 12 Z �2(Ag)v�4�4 = T1 + T2; (3:7)where T1 = Z v�3jrvj2rv � r�4



T2 = Z v�2r2�4(rv;rv)� Z v�2��4jrvj2:We �rst observe that for (3.3) we have when (n = 4)16Rv�2 = v�1�v � 2v�2jrvj2;hen
e for R = Rg & pC0 > 0, we have2 Z v�2jrvj2�2 � Z v�1�v�2 � Z jrvj2v�2�2 + Z jrvjjv�1jjr�2j:Thus, Z v�2jrvj2�2 � �Z jrvj2�2v�2� 12 � 1� � �2;and hen
e R v�2jrvj2�2 . �2. We 
on
ludejT2j . 1�2 Z v�2jrvj2�2 . 
onstant. (3:8)We now 
laim that T1 � 0. To see this we integrate by parts to rewrite T1 asT1 = � Z (�vjrvj2 + 2r2v(rv;rv))v�3�4 + 3 Z jrvj4v�3�4: (3:9)We observe that when n = 4, g = v�2ds2, the 
omponents of the Ri

i tensor Ri
(g) aregiven by Rij = 2v�1rirjv + v�1�vÆij � 3v�2jrvj2Æij:Moreover, sin
e �2(Ag) > 0 on Rn , we have R > 0 (e.g. CGY-2, Lemma 3.5) it follows thatRij > 0 (see [CGY1, Lemma 1.2℄). Therefore, rewriting (3.9) in terms of Ri
 we see thatT1 = Z �Ri
(rv;rv)v�2�4 � 0: (3:10)Combine (3.7), (3.8) and (3.10) we haveZB� v�4dx � Z v�4�4 � 1C0 :Letting �!1, we obtain the volume bound of RR4 v�4 as 
laimed.Remark. In the 
ase n � 5, the result of above 
orollary does not hold. That is, thereexist metri
s g = v�2jdxj2 with Rg > 0 and �2(g) � C0 > 0, while vol(g) is not uniformlybounded. For the 
ylindri
al metri
 on Sn�1 � R, i.e. v(x) = jxj, we have �2(Ag) =18(n�1)(n�2)2(n�4). Thus, if perturb v(x) by v�(x) = (jxj2+�2) 12 , we have for g� = v�2� ds2that �2(Ag�) � Cn > 0 while vol(g�)! +1 as �! 0 for n � 5.



4 Classifying the entire solutionsIn this se
tion we prove our main result Theorem 0.1. That is; we provide a 
lassi�
ationof all 
onformal metri
s g = v�2jdxj2 on Rn whi
h satis�es the equation�2(Ag) = 18n(n� 1)(n� 2)2;when n = 4 or 5, or when n � 6 under the additional assumption that the volume of gis �nite. More pre
isely, all su
h solutions are obtained by pulling ba
k the round metri
on the sphere (and its images under the 
onformal group) by stereographi
 proje
tion. Indimension n � 5 we get the same 
on
lusion provided we assume in addition that the volumeis bounded: �2(Ag) = 18n(n� 1)(n� 2)2;vol(g) = ZRn v�ndx <1:Proof To begin, �x � > 1 and let � denote a 
ut-o� fun
tion supported in B(2�) satisfying� � 1 on B(�), j�i�j . ��1. As outlined in se
tion 1 above, we write the formula for thetra
e-free Ri

i tensor E of g in terms of v as in (1.1):E = �(n� 2)vr2g(v�1) + (n� 2)n v�g(v�1)g:Noti
e that in (1.1), that Hessian and Lapla
ian are with respe
t to g, not the Eu
lideanmetri
. Next we pair both sides with v�1�2L to getZ �g(L;E)v�1�2dvol(g) = Z (n� 2)g(L;r2g(v�1))dvol(g): (4:1)Note that in (4.1) we have used the fa
t that L is tra
e-free. Applying the divergen
etheorem we �ndZ �g(L;E)v�1�2dvol(g) = Z �(n� 2)g(ÆL; d(v�1))�2dvol(g)� Z (n� 2)L(rg(v�1);rg(�2))dvol(g):Sin
e �2(Ag) is 
onstant, (2.3) implies that L is divergen
e-free. ThusZ �g(L;E)v�1�2dvol(g) = Z �(n� 2)L(rg(v�1);rg(�2))dvol(g)



. Z jLjjrg(v�1)jjrg(�2)jdvol(g). Z jLjjrgvjjrg�jv�2�dvol(g):Using inequality (2.5) we 
on
ludeZ �g(L;E)v�1�2dvol(g) . Z R 12 jg(L;E)j 12 jrgvjjrg�jv�2�dvol(g):By the S
hwartz inequality,Z �g(L;E)v�1�2dvol(g) . 0B� Zsuppjr�j jg(L;E)jv�1�2dvol(g)1CA12
��Z Rjrgvj2jrg�j2v�3dvol(g)�12 : (4:2)By inequality (2,4), �g(L;E) � 0. Also, supp jr�j � supp �, so (4.2) implies0 � Z �g(L;E)v�1�2dvol(g) . Z Rjrgvj2jrg�j2v�3dvol(g): (4:3)We now rewrite the integral on the Rhs of (4.3) in terms of the Eu
lidean metri
, usingthe identities jrgvj2 = v2jrvj2,jrg�j2 = v2jr�j2 and dvol(g) = v�ndx as in the proof ofTheorem 1.1, we getZ Rjrgvj2jrg�j2v�3dvol(g) = Z Rjrvj2jr�j2v1�ndx:Sin
e jr�j2 . p�2 and supp � � A(�) = fx 2 Rn j� < jxj < 2�g, we 
on
ludeZ Rjrgvj2jrg�j2v�3dvol(g) . ��2 Z Rjrvj2v1�ndx; (4:4)and this will suÆ
e: By Proposition 3.1 the Rhs of (4.4) is bounded independent of �. Thisimplies via (4.3) that



ZRn �g(L;E)v�1dvol(g) <1:In parti
ular, Zsuppjr�j �g(L;E)v�1dvol(g) = Zsuppjr�j jg(L;E)jv�1dvol(g)! 0 (4:6)as � ! 1. Now 
ombining (4.6) with (4.3) and the boundedness of the integrals in (4.5),we 
on
lude that Z �g(L;E)v�1�2dvol(g)! 0 as �!1;so �g(L;E) � 0 on Rn . By (2.4) this implies E � 0. The 
on
lusion of Theorem 0.1 follows.
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