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0 Introduction

In this paper we are concerned with the classification of entire solutions of an equation in
conformal geometry. The result is motivated by the classical theorem of Obata [O] that any
metric conformal to the standard metric on the n-sphere S™ with constant scalar curvature,
is isometric to the standard metric. As we will recall in section 1 below, the main step in the

original proof of Obata is the Bianchi identity for the scalar curvature: divE = (TLZ—;Z)VR,
where E denotes the traceless Ricci tensor and R the scalar curvature. Obata’s result was
later generalized by Caffarelli-Gidas-Spruck [CGS], where instead of considering metrics on

S", they considered metrics un-?|dz|? conformal to the Euclidean metric |dz|? on R* with
constant scalar curvature, i.e. u > 0 satisfies the equation

—Au=n(n— 2)uz_ir§, u>0 on R". (0.1)

They classified all solutions of (0.1) via the method of moving planes. Namely, u(z) =
2 4

(Wiwo\?)m for some 5 € R*, A > 0; or equivalently the metric ur-2|dz|* is isometric

to the standard metric on S™, where points in R” are identified with points on S™ via

stereographic projection.

In this note we will illustrate a method which reduces the proof of the above classification
result of [CGS] to a "tail” term estimate using method of proof in [O]. We will then indicate
that the estimate can easily be verified when the dimension n is equal to 3. and for n > 4
under the additional (strong) assumption that the volume of the metric is finite. We then
apply the same scheme to classify entire solution of a fully non-linear equation studied in (
[V-1], [V-2] and [CGY-1], [CGY-2] ) which can be viewed as a fully nonlinear generalization
of the Yamabe equation.

We now describe our main result:

Given a Riemannian manifold (M", g), we denote the Weyl-Schouten tensor A;; = R;; —

2(n—R—1) gij, where R;; denotes the components of the Ricci tensor. Viewed as an endomorphism

on the tangent bundle, A = A, has n real eigenvalues, and we let 03(A4,) denote the second
elementary symmetric function of the eigenvalues.

Theorem 0.1 Let g = v=2|dz|? be a conformal metric on R*, n > 4, satisfying
1 2
02(Ay) = gn(n —1)(n—2)". (0.2)

If n > 6, assume in addition that

vol(g) = /n v "dx < o0. (0.3)

Then v = al|z|* + bt + ¢ for constants a,bt, c. In particular, g is obtained by pulling back
to R" the round metric on S™.



Theorem 0.1 was proved by Viaclovsky [V-2| for all elementary symmetric functions
o(A), but under the (strong) assumption that the metric is defined on S™. This amounts
to assuming that the singularity at infinity is removable. When n = 4 and £ = 2 Theorem
0.1 is contained in [CGY-2]. We recently learned that A. Li and Y. Li have announced a
version of this result which holds for all k in all dimensions ([LL]; see also the article of Guan
and Wang [GW]). However, since our proof (which we have obtained a year ago) is quite
different than the one announced in [LL], we decided to publish our result. The geometric
nature of our argument also allows the possibility that it can be generalized to establish the
uniqueness of solutions on general Einstein manifolds, like Obata’s result which inspired it.

The note is organized as follows: In section 1, we describe Obata’s proof and the ”tail”
term estimate required to modify Obata’s proof to obtain the result in [CGS]. We then prove
the tail estimate for dimension n = 3. In section 2, we establish a conservation law for the
02(A) equation that is analogous to classical Bianchi identity. In section 3, we derive the
"tail” estimate required for the oy equation for n = 4,5 and for n > 6 under the additional
assumption (0.3). Finally in section 4, we prove the main classification result Theorem 0.1.

1 Obata’s proof

In this section we will first recall the proof a result of Obata ([O]) that metrics defined on
the n-sphere with constant scalar curvature and conformal to the standard metric is Einstein,
hence isometric to the standard metric on S™. We will then modify Obata’s argument to
show that one can reduce the proof of the main result in (J[CGS], see Theorem 1.1 below) for
metrics defined on R” to a ”tail” term estimate. We then establish the tail term estimate
for the case n = 3 and under the additional volume bound condition for the cases n > 4.

To this end, suppose g = v 2¢q is a conformal metric on S™, where g is the round metric.
Assume that ¢ has constant scalar curvature.

To begin, we express the trace-free Ricci Tensor E in terms of v;

n—2)

E=—(n—-2uViv™")+ ( vA,(v™Y)g. (1.1)

n

Note that the Hessian and Laplacian in (1.1) are with respect to g, not go. If we pair both
sides of (1.1) with v~'F and integrate over S™ we obtain

/S |E|*v 'dvol, = —(n — 2)/ 9(E, V(v 1))dvol,.

Note that the second term vanishes because E' is trace-free. We apply the divergence
theorem to conclude

/ |E|*v 'dvol, = (n — 2)/ g(0E,d(v"))dvol,.
Sn n



(n—2)
2n

The contracted second Bianchi identity says that divE = dR, where R is the scalar

curvature. Since R is constant, E is divergence-free. Thus

s |E|*v " dvol, = 0. (1.2)

The uniqueness result follows, since (1.2) implies that £ = 0, i.e. g is Einstein.
We will now modify the argument above to metrics defined on R" and prove the following
result:

Theorem 1.1. Let g = v 2|dz|* be a conformal metric on R*, n > 3, whose scalar curvature
R equals the constant n(n — 1). Assume in addition that g satisfies

/ Vov’v! dz < p?, (1.3)
Ap
where V denotes the Euclidean gradient, A, denotes the annulus B(2p) — B(p), and B(p)

denotes the Euclidean ball on R" centered at 0 of radius p > 0.

Then v = al|z|* +bjx® + ¢ for constants a,bt, c. In particular, g is obtained by pulling back
to R" the round metric on S™.

Proof To begin, fix p > 1 and let n denote a cut-off function supported in B(2p) satisfying
n=1on B(p), |0;n] < p~'. Following the outline of Obata’s argument above, we pair both
sides of (1.1) with v™'En? and integrate over R" to obtain

/ o(B, BYo~—"fdvol(g) = — / (1 — 2)g(E, V2(u™"))iiPdvol (g). (1.4)

Note that in (1.4) we have used the fact that E is trace-free. Applying Bianchi identity
divE = %dR as before, we obtain

[ o, By dvol(o) = [ (0= 20g(6E, d™ o)
+ [0 = D BV,07), 9, dvol(g).
Since R = R, is constant, £ is divergence-free. Thus

[ ot By tdvaits) = [0 = 2B, ¥y (0)duoll)

< / B[V y(0 )|V (7 duol(g)



§/|E||ng||Vg77|v_277dvol(g).

Applying the Schwartz inequality we conclude

(NI

/ g(E, Yo~ dvol(g) < / 9(E, B) v~ dvol ()

supp|Vn|

« (/ |ng|2|Vgn|2v_3dvol(g)>é | (1.5)

We now rewrite the integral on the Rhs of (1.5) in terms of the Euclidean metric, using
the identities

Vo = v?| Vo],
IVgnl? = v*|Vn|?,

dvol(g) = v "dx.

Thus,

/|V9U|2|Vg77|2113dv0l(g) :/|VU|2|V77|2vlndx.

Since |Vn? < p72 and supp n C A(p) = {xeR"|p < |z| < 2p}, we conclude from
assumption (1.3)

V|V gnlPv3dvol(g) < p2 Vol2o' ™ dr < oo,
9 9 |

Thus
/n g(E, E)v tdvol(g) < oo. (1.6)

In particular,



/ o(E, B)o='dvol(g) = / (B, B)v="dvol(g) — 0 (1.7)

supp|Vn| supp|Vn|

as p — oo. Now combining (1.7) with (1.5) and the boundedness of the integrals in (1.6),
we conclude that

/g(E,E)Uln2dvol(g) —0 as p— o0,

so g(E,E) = 0 on R*. This implies E = 0. The conclusion of Theorem 1.1 that v is a
quadratic polynomial follows easily from the expression of E as in (1.1).

We will end this section by remarking that the assumption (1.3) in the statement of
Theorem 1.1 can be easily established for metrics of constant scalar curvature when n = 3,
but for n > 4 the same argument only establishes the inequality (1.3) under the additional
assumption that volume of ¢ is finite. We remark that the volume finiteness assumption is
frequently harmless when the result is applied to the limiting case of a "blow up” argument
for metrics defined on a compact manifold. We state the result in the following proposition.

To simplify the notations, we will hence forth denote Vi by V, Ay by A, etc.

Proposition 1.2 Let ¢ = v 2dx? be a conformal metric on R*. Assume that there exists
some positive constants Cy = Cy(n), Cy = C1(n), so that
when n =3 R, > Cy,

and
1

aSRg Scl

/ v "dx< Oy
Ap

where A(p) = {zxeR",p < |z| < 2p}, for all p >> 1. Then there is a constant Cy =
Cy(Cy, Cy,n), so that

when n > 4

/ (VulPo! "dz < Cyp? forall p>>1.
AP

To prove the proposition, we begin with a technical Lemma which is a well known result
(c.f. [KMPS, Lemma 1]). We

Lemma 1.3 Suppose g = v ?ds* is a conformal metric with R = R, > C3 > 0, then there
is some constant Cy so that v(x) < Cylx|? for all |z| sufficiently large.

Proof. Denote g = wis da?; ie. u = U_nT_Q, then the scalar curvature equation is of the

familiar form



n—2 n+2

—Au = —=R ur—2.

This equation is invariant under the Kelvin transform: let us denote

i(z) = m%u (#) , R(z)=R (#)

n — 2 ~ n+2
A== RaiE on R — {0},
4= =D Gr=2 on {0}
Since R >0, —Ad4 > 0on R* — {0} implies that —Aa > 0 on R™ in the distribution sense.
Hence @ is superharmonic near x = 0; thus a(z) > Cy for some Cy for all |z| sufficiently
small. This is equivalent to the statement that v(z) < Cy|z|? for |z| sufficiently large.

then @ satisfies

We now prove Proposition 1.2.

Proof. We first recall the scalar curvature equation for the metric g = v—2?dx?:

1

mRv_l = 0. (1.8)

—Av + gU_I|VU|2 +

Choose p > 1 and n a cut off function supported with 7 = 1 on A(p) and with n supported
on B(2p) — B(3p). Multiply the equation (1.8) by v~ "*?5* and integrate by parts, we get

1
(g —n+2) / (Voo " ptdr + 5= 1) / R "ntdr = — / Vo - Vntv " 2dr. (1.9)

n=3 case: We have

1
Lhs of (1.9) = /|VU|2 -2 4d:r+4/Rv_2174dx

1 5 ,
Rhs of (1.9) < - </ |Vv|2v2774dx> (/ n’dx)?,
/|Vv|2 pidz)zps,

which in turn, under the assumption that R > 0, implies that
/ Voo ?ntde < p S p°

as claimed.



n > 5 cases: We rewrite (1.9) as

(E —2) / (Voo™ ptde =

5 /Rv_”+1174dx +/Vv V(Yo" 2dx.  (1.10)

2(n—1)

Thus under the additional assumptions that there is a positive number that C% <R<C(C
and pr v~ < C}, we may apply Lemma 1.3 to obtain from (1.10) that

/|VU|2U_”+1174d:r <P+ (/ Vo0~ ytda) 2 p.

Thus

|VU|2U7H+1d$’ 5 p2
Ap

as desired.

n=4 case: The proof is slightly more complicated. We now mutiply the equation (1.8) by
v~"*tn* and integrate by parts, for n = 4 we get

1
(a —2) / (Vo2 ntde + / Vv - Vplo e dr + 5 /Rv5+”‘774dx =0. (1.11)

We now choose ov = 1 and conclude from (1.11) that
1
/|VU|2U_4’I74CZJL‘ = é/RU_47]4d:r+/Vv - Vntv3dx

1 1 1 1
S /Rv4774dx+ —(/ |Vv|2v4774dx)2(/ v tntdr) 1| suppn|a. (1.12)
p

Thus from our assumption that R < C and [, v~ *dz < C, we conclude from (1.12) that

suppn
/ IVu>v™"ntdz < C.
Applying Lemma 1.3, we then conclude that
/ VulPv=3ntde < p? / (VuPv~'ntde < p?.

This finishes the proof for the case n = 4, hence the proof of the proposition.



2 A conservation law

In this section, we will derive tensor estimates for a tensor which plays the same role for
our oy equation as the trace-free Ricci tensor does in Obata’s proof. It turns out that such a
tensor has been described in four dimensions by Gursky [Gu] and in general by Viaclovsky
[V-3].

Recall that on a n-dimensional manifold (M, g), we denote the Weyl-Schouten tensor by

Aijj =Ry — ngij, where R;; denotes the Ricci curvature, and R the scalar curvature of

the metric g. We also denote the second elementary symmetric function of the eigenvalues
of the tensor A by 02(A,) = L((TraceA)? — |AJ?).

Proposition 2.1 Suppose (M, g) is locally conformally flat. Define the symmetric two-tensor
L by
2

L= >o0y(4,) = o1(A) A+ A, (2.1)

Then L satisfies
troL =0, (2.2)

5L = <” - 2) do(A). (2.3)

n

Remark Therefore, when oy(A,) is constant, L is both trace-free and divergence-free.
For the proof, we will need two additional sharp inequalities involving L:
Proposition 2.2 Assume 09(A) > 0. Then
() - g(LE)=0, (2.4)

with equality iof and only if E = 0.

g —2(n — 2
iy (L < 20220 (yg(L. ). (25)
Proof (i) This follows from [Vi-1, Lemma 23]. If we define the second Newton transformation
by

T5(A) = 05(A)g — 01 (A) A + A%,
Then

(n—2)
L= TQ(A) — (t?"TQ)g = TQ(A) — 0 O'Q(A)g

Thus, as E is trace-free,



—g(L,E) = —g(L,A)

Now, according to [Vi,Lemma 23], if 05(A) > 0, and 0,(A) > 0

(n —2)

o(To(4), 4) < “—

o9(A)o1(A)

with equality if and only if £ = 0. This implies (2.4).
(ii) In terms of the trace-free Ricci tensor, we have

1
A=F+ ﬁal(A)g’

2 1
A2 = E2 + EUl(A)E + ﬁO’l(A)Zg,

1 -2
L= —Yippy =2 yE e
n n

Therefore,
1 2(n —2 —2)?
|L|? = |E?? — = |E|* - (n )UI(A)tTE?’ + Mal(/l)zuﬂz.
n n n
Similarly,
-2
oL, B) = """ () BP — B,
n
or

trk® = g(L,E) + (n ; 2)<71(A)|E|2,

where trE® = EFE]E!. Substituting this into (2.6) gives

(n —2)

oy - 202

1
L[ = [E** = —|E|" -
n

o1(A)g(L, E).

(2.7)



Lemma 2.3 For an n x n(n > 3) traceless symmetric matriz E, we have

|E2|2<”2_7
~ nn-1)

and equality holds if and only if E is of the form

A
A
FE =
A
—(n—=1)A
Proof We begin by observing that for n = 3, the ratio ||%2|L2 is a constant given by 3;33;314;3 =

1 n2-3n+3
) S m for n > 3.

In general we write, for A € R*~ !,

View the function f(E) = |E?|* as a smooth function on the hypersurface {\eR"!||E| =
1}. At the maximum value of f, we find a Lagrange multiplier pu:

A+ (B = p(A + Zg) (2.9)

n—1
foreach 1 =1, 2, ...n — 1, where X\ = ¥ .
1

The general case is modeled after the case n = 4, which we will first consider in detail.
To solve for p in (3.11) we first assume that

Ni+2M\ #0 fori=1,2,3. (2.10)
Then we find, using the common value of y,



Thus
)\1()\2 + )\3) == )\2()\1 + )\3) - )\3()\1 + )\2)

If any of the \; = 0, we find f(\) = L as in the case n = 3. When none of )\, is zero, we

2
find )\1 = )\2 = )\3, f()\) =L

12

Returning to the assumption (2.10), if for some 7 say i = 3, we have

A3+ S\, =0,

then rewriting (2.9) for i = 1,2, we find

A= A5 = (X = As).

If Ay = A3, we find \y = —3)\3. In either case E is conjugate to the matrix

A

-3\
If A\ # A3 and Ay # A3, we find using the common value of p,

)\2()\2"‘)\3) - )\1()\1+)\3)
< T or A+ Ay = —)\3 = 0,

Hence either A\; = Ay, so that \3 = —A; and f(\) = i =
f(A) =% < L. Thus we have determined the maximum and the minimum value of f(E) in
dimension four.

For n > 4, we apply (2.9) to find
AN — i = p(SA) — (BA)? (2.11)

As the right hand side is independent of i, we conclude that there are at most three
values for \;, the roots of the cubic equation (2.11). Thus by relabeling if necessary, we find

)\1:)\2...:)\11:A1
)\l+1:...:)\ll+l2 :A2

Aot = - oo = Mytlptty = A3
where l1+l2+l3:n—1



Consider once again the function
f(EA) — llAzll + ZQA% + l3A§ + (llAl + l2A2 + 13A3)4
on the hypersurface {A € R*|||Ex|| = 1}. At a maximum we have a Lagrange multiplier y:
Assuming that

Az-i-EkAk;éO for all Z:1,2,3
we find

A7 — Ai(SleAg) = A7 — Aj(SleAy)  for i # ). (2.12)

Since the quadratic equation in A; for a given X[; A, has at most two roots, we conclude
that there are only two possibly distinct values for A;. We may without loss of generality
assume that

AM=...=N =\

)‘ll+1 — ... = )\12 == A2 (213)

and [; + Iy = n — 1. To determine the maximum possible value of the function

f(E)\) — llAzll + ZQA% + (llAl + l2A2)4

under the constraints: {; +lo =n—1

l]_A% + ZQA% + (llAl + l2A2)2 - ]_

and
A? - A1 (llAl + lgAg) — Ag - A2(l1A1 + l2A2).

We notice that we may enlarge the consideration to allow [y =f and [y =n—1—1 to
range over 0 <t <n — 1 and fix (A}, Ay), viewing f(E,) as a function of ¢, we find

d
= (A — Ag) (AT + A2Ag + AJA2 + A+ 4(tA + (n — 1 —1)Ay)?).
d2

e F(BAt) = 12(A; — A)?(tAL + (n — 1 — 1) A2)? > 0



Hence the maximum is achieved at ¢t = 0 or ¢t = n — 1. That is either [ =0 or [, =0
and f(Ey) = n?—3n43

n(n—2)
Finally we consider the case when
A+ 2\ #0

fails to hold. There are three possibilities: In case A; + XA, =0 for ¢ =1,2,3, we find
Ay = Ay = A3z, In case Ay + XA, =0 for ¢ = 1,2 then we find A; = Ay, so that there

. . . 2_
are only two common values and the previous consideration shows f(E)) < ”n(n3f1+)3. In the
remaining case, say

(1+13)A3 = = (A1 + 12A»),
we find 4
LA+ 1A,
1+ 15 '

Again we enlarge the consideration for a fixed [3, allow [; to run between 0 < [} < n—1—13,
and I = n — 1 —[; — [3. Differentiate twice f(FEj\,(;) with respect to [y, we find f is again
strictly convex in [y, hence its maximum value is attained at the end points, that is either
[y =00rl; =n—1-13 hence [, = 0. Thus we are reduced to our previous consideration
when there are at most two dinstinct eigenvalues and the maximum value of f(E},) is less

2_ .
than or equal to =323 a5 desired. [ |

n(n—20

f(BL) = LAT + LA+ (1 + 1) (

Using (2.8), from (2.7) we conclude

2 (n2—3n+3)_ (n—1) 4_(” 2)20 2| 12

A (gL )

(n—2)% _ (n 2)20 2| 12

S = o (4|

22 (AL )

_ (n—2)?% >, (n—1) 2

IR iR (4)
202 (gt )

However, —|E|* + @01 (A)? = 209(A), so (2.5) follows. |



3 Estimates for the tail term

In this section, we will establish some technical results which will be used in the proof of
the main theorem in section four.

Proposition 3.1 Let g = v2|dx|? be a conformal metric on R*. Assume that there exists
some positive constants Cy = Cy(n),Cy = Ci(n), so that

whenn =4,5 o2(Ay) > C,
and
1

o < 09(Ag)< Cy

/U_n < C
AP

where A(p) = {xeR", p < |z| < 2p}, for all p >> 1.

when n > 6

Then there is a constant Cy = Cy(Cy, Cy,n), so that
/ R|Vu[*v! ™ < Cyp* forall p>>1.
AP
Proof. Since

(n—2)

02(Ay) = o2((n — 2)U_1V?jv — U_2|VU|25ij))

we have
1 1
o2(Ay) = 51)4(n —2)*{ = v V20 + v (Av)? = (n— 1)v* Av|Vol* + Zn(n —1)|Vol*'v ™}

Using the formula
1
5A|Vv|2 = |V*0|*+ < Vo, VAv >,

we rewrite the above equation in the form:

1
209(Ag)v " = (n — 2)° {—502”A|VU|2 +v*" < Vo, VAv >

+02""(Av)? — (n — D)o " Av|Vo]* + in(n — l)v_”|Vv|4} : (3.1)

Fix p >> 1 and let 7 be a cut-off function supported on B(2p) — B(5),n = 1 on
A(p) = B(2p) — B(p) and |V¥n| < Crp™ on B(2p). We multiply both sides of (3.1) by n*v®
and integrate over R”. For the first two terms in the right hand side of (3.1), we integrate
by parts and arrive at:



/774v2+a”A|Vv|2 = / (Vo2 A(pto? ™)
= /{|Vv|2n4A(U2+a”) + 2|V PV (0* TVt + Vo 2o? T " Ant}
= /(2 +a —n)o' T Av| Vo Pyt + /(2 +a—n)(1+a—n)v*"|Vol'n!
+ 2(2+a—n) /UHO‘"VU -Vt Vul? + /v2+a”|Vv|2A774
Also
/774v2+a” < Vuv,VAv >
= /{—02+”‘"(Av)2 — 2+ a — n)vr Vo PAvgt —0*TT" Ve - Vit Av}
For the last term in the line above, we integrate by parts again to obtain
/02+0‘”VUV774AU = /02+”‘"8iv8i774 0k OV
= — / O (VMO0 O — v T OLOWOM Oy — VT 00O O}
= —(24+a—-n) /Ul+a_”|Vv|2VU -Vt — /v2+"‘_nv2n4(Vv, Vo)
1

— §/v2+a_” < V|Vv|]*, Vo' >

= —%(2 +a—n) /v””‘"|Vv|2Vv -Vt - /vz+“”V2774(Vv, V)

1
+ §/U2+a_”|Vv|2An4

Finally we substitute these identities into the left hand side of (3.1), and obtain

2 arnpd — 3 Lta—n|x7, |2 4
g | A = (= 1) = S a =) [y
H(gnln=1) = 5@+ a-n)t+a=n) [v vy

—%(2 +a—n) /vl+”‘"|Vv|2Vv -Vt + /v2+a”V2n4(Vv, Vo)

— / vt e o 2Ant (3.2)



Recall that when g = v ?|dz|?, the scalar curvature of g is given by (1.8)
1

n
—Av+ —v ! (R — TV |}
vt |Vl +2(n_1) v
Equivalently,
n 1
Ay =—v! 4 — —Rv b
V=G |Vl +2(n—1) v

Finally, substituting this into (3.2) gives the identity

2
=22 /az(Ag) oyt —aan/UO‘_”R|VU|2174+ba,n/vo‘_"|VU|4n4+TI+T2 (3.3)

where
—(n—4-30)
o = oy (n—4-3a
4(n —1)
1 « 1
bam = n(=+2)—=(2 1
o=t leraata)
1
T, = —5(2+o¢—n)/v””‘"|Vv|2Vv-V774
T, = /02+°‘_nv27]4 < Vuv,Vu > —/U2+a_nAT]4|VU|2.
Thus

1
1

3
1 1 4
71| < - / |VoPrpPotten < - (/ |Vv|4v"‘_”n4> / pita-n (3.4)
p p

upp n

1 1 2
|T2| 5 ?/|VU|2U2+a—nn2 5 ; </ |VU|4Ua_n774> / U4+a—n (3'5)

upp n

We make the following choice of « according to the dimension n of the manifold.

(a) When n =4 or 5, we choose o = 1. Notice that for a =1, a;,, = 4(’;—171), bin =
Thus for both n = 4,5, a1, <0, b, <O0.

n=4 case: Under the assumption oy(Ag) > Cy > 0, we have R, > v24\/Cy > 0; thus
v(z) < p? for z € supp 7, and p large by Lemma 1.3. Thus

1 1 i
<t (/mr* -3 ) (/ )
p Suppn



3
4
< pt ( / |W|4v—3n4)

S e/ (Vo' ™3n* + C.p?.

T < p ( / |Vv|4v3n4)

< e/ (Vo|to™2n* + Cp?

Also

for any € > 0 and some constant C. = C(e). Thus if we choose € < 1(—b; 4), we obtain from
(3.3) that

[ RIVeRe S

Hence

/ R|Vv|*v™2 < p2.
Alp)

n=>5 case: We argue in the same way as in the case of n = 4; except that

1 4744%é
TS — | [ Vel ) p

p
S e/ (Vol'o *n* + Cep
Similarly

1
1 3
|T5| < 2 </ |VU|4U_4T]4> p? < e/ IVul'v~™*n* + Cep.

Thus

/ R|Vu]?v™ < p < p? whenp > 1.
Alp)

(b) n > 6 cases. Here we choose oo = 0; notice that for n > 5

n—4 1
Gn = g =y > O b= g4 >



Thus for 03(A4,) < Cy, we have from (3.3)

2C n -n —n
F(;)z/v > ao,n/R|VU|2U nt + bo,n/|Vv|4v nt = |Ti| — Ty, (3.6)
while
3 1
1 i !
7| < - </|VU|4UH774> </ U4n>
p supp n

1 4, —n 4 i A R,
S o= IVu[feTy v (p")n
p suppn

Thus under the additional assumption that [ Alp) v~ " < (Y, for ' independent of p, we get
1< ([ Vol )

7l S ([ 190l b,
Thus it follows from (3.6) that
/R|VU|2U_nT]4 < Oy

for some Cy = C(Cy, C1,n). We apply Lemma 1.3, to conclude

/ R|Vu[?ot " < /R|Vv|21)1"774 < Cyp*.
Alp)

Thus we have finished the proof of the proposition.
As a consequence of the computation in the proof of the above proposition, we have:

Corollary 3.2 When n = 4, and g = v=2ds* is a conformal metric on R* with 02(A,) >
Co > 0, then vol(g) = [pav™'dzx < &+

~ (o~

Proof. Fix p > 0 and take 7 to be a cut off function with n =1 on B and 1 = 0 off By,.
Let o = 0 in the formula (3.3). We observe that ag4 = by4 = 0.

Hence

1
i/ﬁmwﬂ¢:ﬂ+n, (3.7)

where

T, = /U3|VU|2VU -Vt



T, = /U_2V2774(V1},V1}) —/v_2A774|VU|2.

We first observe that for (3.3) we have when (n = 4)
1

6R1F2 =v 'Av — 2v ?|Vol?,

hence for R = R, 2 +/Cy > 0, we have

2 / vVl < / v Au? < / Vol2o 22 + / Vollo Y|V,
1
2z 1
[ < ([1vepre ) <2
P

and hence [ v ?|Vo|*n? < p*. We conclude

Thus,

1
T2 S —2/U2|Vv|2772 < constant. (3.8)
p

We now claim that 77 < 0. To see this we integrate by parts to rewrite 1) as

T, = /(AU|VU|2+2V2 (Vu, Vo)) 3n? +3/|Vv|4v n'. (3.9)

We observe that when n = 4, ¢ = v~2ds?, the components of the Ricci tensor Ric(g) are
given by

Rij = 2U71VZ'VJ'U + UflAU(Si]‘ — 3U72|VU|25U.
Moreover, since o3(A,) > 0 on R”, we have R > 0 (e.g. CGY-2, Lemma 3.5) it follows that
R;j > 0 (see [CGY1, Lemma 1.2]). Therefore, rewriting (3.9) in terms of Ric we see that

T = /—Ric(Vv, Vu)u 2t <0. (3.10)

Combine (3.7), (3.8) and (3.10) we have

1
U4dx</ At
fraes [t

Letting p — oo, we obtain the volume bound of [, v™* as claimed.

Remark. In the case n > 5, the result of above corollary does not hold. That is, there
exist metrics ¢ = v ?|dz|? with R, > 0 and o2(g) > Cy > 0, while vol(g) is not uniformly
bounded. For the cylindrical metric on S"™' x R, i.e. wv(z) = |z|, we have o9(A,) =
L(n—1)(n—2)*(n—4). Thus, if perturb v(z) by v.(x) = (|z|>+€)2, we have for g. = v ?ds’
that 03(A,, ) > C,, > 0 while vol(g.) = +00 as € = 0 for n > 5.



4 Classifying the entire solutions

In this section we prove our main result Theorem 0.1. That is; we provide a classification
of all conformal metrics ¢ = v—2|dz|* on R" which satisfies the equation

0s(A,) = %n(n S )(n— 2,

when n = 4 or 5, or when n > 6 under the additional assumption that the volume of ¢
is finite. More precisely, all such solutions are obtained by pulling back the round metric
on the sphere (and its images under the conformal group) by stereographic projection. In
dimension n > 5 we get the same conclusion provided we assume in addition that the volume
is bounded:

0s(A,) = én(n S )(n— 2,
vol(g) = /n v "dr < o0.

Proof To begin, fix p > 1 and let ) denote a cut-off function supported in B(2p) satisfying

n =1 on B(p), |0n] < p~t. As outlined in section 1 above, we write the formula for the
trace-free Ricci tensor E of ¢ in terms of v as in (1.1):

(n—2)

E=—(n—-2uViv™")+ -

vA,(v™h)g.

Notice that in (1.1), that Hessian and Laplacian are with respect to g, not the Euclidean
metric. Next we pair both sides with v~ 'n%L to get

/ —g(L, E)o~ndvol(g) = / (1 — 2)g(L, V2(0Y))dvol(g). (4.1)

Note that in (4.1) we have used the fact that L is trace-free. Applying the divergence
theorem we find

/ (L, B P dvol(g) = / (1 — 2)g(6L, d(v™"))idvol(g)
- / (1 — Q) L(Vy(v™Y), V(1)) dvol (g).

Since 03(A,) is constant, (2.3) implies that L is divergence-free. Thus

[ oL By ttdvoltg) = [ ~n = DLV, (07,9, 0 dvol(o)



< / LIV, (0™, () [dvol(g)
S [ 1190119l 2ndvol(s).

Using inequality (2.5) we conclude

[ ot By tipdvolto) 5 [ RHo(LB)HIT 0Vl Pndvol(s).

By the Schwartz inequality,

/—g(L,E)Ulnzdvol(g) < / lg(L, E)|v *n*dvol(g)

supp| V|

1
2

« ( / R|ng|2|Vg77|2v3dv0l(g)> | (4.2)

By inequality (2,4), —g(L, E) > 0. Also, supp |Vn| C supp n, so (4.2) implies

0< /—g(L,E)vlnzdwl(g) S /RIng|2|Vg77|2v3dv0l(g)- (4.3)

We now rewrite the integral on the Rhs of (4.3) in terms of the Euclidean metric, using

the identities |V v|* = v?|Vu|4 |V n|*> = v*|Vn]? and dvol(g) = v "dz as in the proof of
Theorem 1.1, we get

/R|ng|2|vg77|2v3dv0l(g) :/R|Vv|2|V77|21)1"dx.
Since |Vn|*> < p~2 and supp n C A(p) = {z € R"|p < |z| < 2p}, we conclude
/R|ng|2|Vg77|QU3dvol(g) §p2/R|VU|2v1”dx, (4.4)

and this will suffice: By Proposition 3.1 the Rhs of (4.4) is bounded independent of p. This
implies via (4.3) that



/n —g(L, E)v~'dvol(g) < co.

In particular,

/ (L, B)vdvol(g) = / (L, E)|v~2dvol(g) — 0 (4.6)

supp| V| supp|Vn|

as p — o0o. Now combining (4.6) with (4.3) and the boundedness of the integrals in (4.5),
we conclude that

/—g(L,E)Ulnzdvol(g) —0 as p— oo,

so —g(L, E) = 0 on R*. By (2.4) this implies E = 0. The conclusion of Theorem 0.1 follows.

References

[CGS]

[CGY-1]

[CGY-2]

[GW]

G

[KMPS]

L. Caffarelli, B. Gidas and J. Spruck; “ Asymptotic symmetry and local behavior
of semi-liner equations with critical Sobolev growth” Comm. Pure Appl. Math.
42 (1989), pp 271-289.

S.-Y. A. Chang, M. Gursky and P.Yang; “An equation of Monge-Ampere type in
conformal geometry and 4-manifolds of positive Ricci curvature”, preprint 1999,
to apear in the Annals.

S.-Y. A. Chang, M. Gursky and P.Yang; “An a priori estimate for a fully nonlinear
equation on 4-manifolds”, preprint, 2001.

P. F. Guan and G. Wang; “ A fully nonlinear conformal flow on locally confor-
mally flat manifolds”, preprint 2001.

M. Gursky; “The principal eigenvalue of a conformally invariant differential op-
erator , with an application to semilinear elliptic PDE”, preprint 1998, to appear
in Comm. Math. Phys.

Korevaar, N, Mazzeo, R, Pacard, F, and Schoen, R: “ Refined asymptotics for
constant scalar curvature metrics with isolated singularities”, Invent. Math. 135
(1999), no. 2, 233-272.



[LL]

A. Li and Yanyan Li; “ On some conformally invariant fully nonlinear equations”,
research announcment, 2001, to appear in C.R. Acad. Sci. Paris.

M. Obata; “Certain conditions for a Riemannian manifold to be isometric with
a sphere”, Jour. Math. Soc. Japan,14, (1962), pp333-340.

J. Viaclovsky; “Conformal geometry, contact geometry and the calculus of vari-
ations”, Duke Math. J., 101 (2000), no. 2, 283-316.

J. Viaclovsky; “Estimates and existence results for some fully nonlinear elliptic
equations on Riemannian manifolds”, preprint 1999.

J. Viaclovsky, “Conformally invariant Monge-Ampere equations: global solu-
tions”, Trans. AMS, 352 (2000), no. 9, 4371-4379.



