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Abstract

Let Ω be a bounded piecewise C2 simply-connected domain. In this
article, we give necessary and sufficient conditions for the existence of
maximizer of

J8π(φ) = log

(

∫

−Ωeφdx

)

− 1

16π

∫

Ω
| 5 φ|2dx

for φ ∈ H1
0 (Ω). We prove among other things that the maximizer

exists provided that the regular part γ(x) of the Green function for
the Dirichlet problem has more than one maximum points in Ω.

1 Introduction

Let Ω be a bounded domain in R2 and ρ be a constant of real numbers.
In this paper, we consider the following nonlinear elliptic equation

{

∆u+ ρ eu
∫

Ω
eudx

= 0 in Ω,

u = 0 on ∂Ω,
(1.1)

where ∆ =
∑2
i=1

∂2

∂x2
i

stands for the Laplacian operator of R2. Throughout

the paper, the domain Ω is assumed to be piecewisely C2. A domain Ω is
called picewisely C2 if its boundary is C2 except at a finite vertex points
{Q1, . . . , QN} such that two conditions holds at each vertex Qj.

(i) At each Qj, the inner angle θj of ∂Ω at Qj satisfies 0 < θj 6= π < 2π,

1



(ii) At each Qj, there is a 1-1 conformal map form Bδ0(Qj) ∩ Ω̄ to the
complex plane C such that the portion ∂Ω ∩ Bδ0(Qj) of the boundary
is mapped onto a C2 curve.

Clearly, non-smooth domains such as n-polygons satisfies conditions (i) and
(ii) above. Hence, our theory developed in this article can be applied to
n-polygons. See examples in section 6.

Equation (1.1) often appears in many different disciplines of mathematics.
Recently, it has been derived in the context of statistical mechanics from the
mean field limit of the Gibbs measure associated to vorticity fields of Euler
flows, as studied by Caglioti, Lions, Marchioro and Pulvirenti [5, 6], and also
by Kiessling [18], and Chanillo and Kiessling [8]. A related problem also
appears in the self-dual condensate solutions of Chern-Simons Higgs model
of superconductivity. See Ding, Jost, Li and Wang [15, 17], Nolasco and
Tarantello [25, 26] and references therein. In many examples of application,
one is interested in the case when ρ = 8π.

Associated with (1.1) is the nonlinear functional Jρ:

Jρ(φ) = log

(

∫

−Ωe
φdx

)

− 1

2ρ

∫

Ω
| 5 φ|2dx

for φ ∈ H1
0 (Ω). It is well-known that Jρ(φ) is bounded above for φ ∈ H1

0(Ω)
if and only if ρ ≤ 8π. For ρ < 8π, the supreman of Jρ is always attained
by virtue of the Moser-Trudinger inequality [23]. However, for ρ = 8π, the
existence of extremal functions, which attains the supreman of J8π, is a more
difficult problem and depends on the geometry of Ω in a subtle way. It was
noted in [5, 6, 7] that when Ω is a ball, the supreman of J8π is never attained
by a function φ in H1

0 (Ω). On the other hand, the extremal functions exists
for a long and thin rectangle Ω. As far as the authors know, there are very
few known results concerning either the existence of solutions of (1.1) with
ρ = 8π or the existence of the extremal functions of J8π. Even now, the
following basic question is not yet answered. For the simplicity, a domain Ω
is called type C if the supreman of J8π can be attained.

[Q]. The domains of type C is open in the C1-topology.

In this paper, we will give an affirmative answer to [Q] at least for simply-
connected domains.
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For any bounded smooth domain Ω, we set

I8π(Ω) = sup
φ∈H1

0 (Ω)

J8π(φ).(1.2)

In the case when the domain is not of type C, we can compute J8π(Ω) ex-
plicitly, as done in [5, 6]. We denote G(x, y) to be the Green function and
G̃(x, y) to be the regular part of G:

G̃(x, y) = G(x, y) +
1

2π
log |x− y|.(1.3)

Set
γ(x) = G̃(x, x).(1.4)

When there are no confusions, γ(x) is sometimes called the regular part of
the Green function. Now suppose Ω is not of type C. Then in [5], I8π(Ω) was
computed and its value is equal to

I8π(Ω) = 1 + 4π sup
Ω̄

γ(x) + log
|B1|
|Ω| .(1.5)

where B1 is the unit ball and |Ω| stands for the area of Ω. See Theorem 7.1
of [5] for a proof of (1.5). Surprisingly, the converse holds.

Theorem 1.1. Let Ω be a bounded piecewise C2 simply-connected domain.
Then Ω is of type C if and only if

I8π(Ω) > 1 + 4π sup
Ω̄

γ(x) + log
|B1|
|Ω| .(1.6)

Readily, Theorem 1.1 give a positive answer to [Q] for simply-connected
domains.

Corollary 1.2. The simply-connected domains of type C is open in the C1

topology.

We note that the ”if” part of Theorem 1.1 has already been proved in [5].
The crucial step of our proof of the ”only if” part is to study the behavior of
a sequence of blowup solutions uk of (1.1) with ρ = ρk, where ρk satisfies

lim
k→+∞

ρk = 8π.(1.7)
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Under the condition (1.7), the set of blowup points of uk consists of only one
point p, and the location of p can be determined apriori by

5 γ(p) = 0.(1.8)

See Nagasaki and Suzuki [24], Li [19], Chen and Lin [10, 12] and the references
therein. It is a fundamentally important question how to determine the sign
of ρk − 8π. In [11], the second and third authors have studied the question
for the general case of multi-bubble solutions. For the case of single blowup
point, the asymptotic formulas in [11] can be reduced to

ρk − 8π = c

[

(∆ log h(p)) + o(1)

]

εk log
1

εk
(1.9)

for some positive constant c > 0, where

εk = ρk

(

∫

Ω
h(x)euk(x)dx

)−1

,(1.10)

and uk is a solution of

{

∆uk + ρk
h(x)euk(x)

∫

h(x)euk(x)dx
= 0 in Ω,

uk = 0 on ∂Ω.
(1.11)

If the function log h is a harmonic function at p, then the formulas (1.9) does
not yield any information for the sign of ρk − 8π. In this case, we should
refine our previous works in order to answer the questions here.

Theorem 1.3. Let Ω be a bounded piecewise C2 domain in R2 and h(x)
be a C2 positive function in Ω̄. Suppose log h(x) is a harmonic function in
Ω and uk is a sequence of blowup solutions of (1.11) with limh→+∞ ρk = 8π.
Then

ρk − 8π =
8

πh(p)

(

∫

Ω

H(y, 0)

|y − p|4dy −
∫

Ωc

dy

|y − p|4 + o(1)

)

εk,(1.12)

where p is the blowup point, Ωc = R2\Ω and H(y, 0) is defined by

H(y, 0) =
h(y)

h(p)
e8π(G̃(y,p)−γ(p)) − 1 for y ∈ Ω.(1.13)
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In many cases, it is convenient to work with the formulas (1.12). However,
for some situations such as when the deformation of domains is required, it
is suitable to work through the conformal mapping of the unit ball onto Ω
while Ω is a simply connected domain. We explain it in the followings.

Let z = x1+ix2 denote the complex variable associated with the point x =
(x1, x2), and z = f(w) be the conformal map from the unit ball {w | |w| < 1}
onto Ω. Let w = g(z) stands for the inverse function of f . Obviously, the

Green function G(x, p) = − 1
2π

log |g(z)| and G̃(x, p) = − 1
2π

log( |g(z)|
|z−p|

). Hence,

γ(p) can be expressed in term of f by

γ(p) = G̃(p, p) =
1

2π
log |f ′(0)| =

1

2π
log |a1|,(1.14)

where f(w) is written as

f(w) = f(0) +
∞
∑

n=1

anw
n.(1.15)

Furthermore, due to the symmetry of G̃(x, y) = G̃(y, x), condition (1.8) is
equivalent to 5xG̃(x, p) = 0 at x = p. Let ∂

∂z
denote the derivative with

respect to the complex variable z. Then at x = p,

∂

∂z
G̃(z, p)

∣

∣

∣

∣

∣

z=p

= − 1

4π

∂

∂z
log

(

|g(z)|2
|z − p|2

)
∣

∣

∣

∣

∣

z=p

= − 1

4π

{

g′(z)

g(z)
− 1

z − p

}∣

∣

∣

∣

∣

z=p

= − 1

4π

{

1

wf ′(w)
− 1

f(w) − p

}∣

∣

∣

∣

∣

w=0

=
a2

4πa2
1

.

Hence, (1.8) is equivalent to a2 = 0. Hence, for any critical point p of γ, we
set

D(p) =
∞
∑

n=3

n2

n− 2
|an|2 − |a1|2.(1.16)

Obviously, D(p) is well-defined because a2 = 0. Since the area |Ω| of
Ω = π

∑∞
n=1 |an|2n, the series of (1.16) is absolutely convergent. By using
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the conformal map f , the asymptotic formulas (1.12) can be simplified to

Theorem 1.4. Suppose f and Ω be described as above and uk is a sequence
of blowup solution of (1.1) and (1.7). Let p be the blowup point of uk. Then

ρk − 8π = π(D(p) + o(1))εk,(1.17)

where εk and D(p) are given in (1.10) and (1.16).

We note that when Ω is smooth, the existence of solutions with single
one blowup point has been obtained by Weston and Moseley in 70s. In
[33] and [21, 22], Weston and Moseley apply the Liouville theorem for (1.1)
to construct approximation solutions, where the error of solutions and its
approximations can be estimated within the range εlk for some large l. Then
they use the implicit function theorem to obtain the solution with sufficiently
small εk. For solutions with multi-bubbles, we refer the recent works Barakat
and Pacard [3], Chen and Lin [12] and the references therein. However, in
order to construct solutions successfully, Weston and Moseley have to assume
Ω to satisfy a nondegenerate condition at p, that is, p is a nondegenerate
critical point of γ(x). In terms of f , the nondegenerate condition is equivalent
to

|a3|
|a1|

6= 1

3
.(1.18)

Under the condition (1.18), Theorem 1.4 has been proved by Suzuki and
Nagasaki [31] for those special solutions uk obtained by Weston and Moseley,
because the estimates of the errors of solutions and its approximation is used
in their proof. Our theorem holds for any blowup solutions in any simply-
connected domain. Our proof of Theorem 1.3 are based on the estimates of
the error term of solutions and its approximation bubble, which has been
done for the general case in [11]. To see how D(p) is related to our problem,
we employ the conformal map to construct a test function. Set vε(w) =
2 log( 1+ε

ε+|w|2
) for |w| ≤ 1 and uε(z) = vε(g(z)) for z ∈ Ω, where g is the

inverse function of f . Then by a straightforward computation (see section 5
for details of computation), one has

J8π(uε) = 1 + 4πγ(p) + log
|B1|
|Ω| + |a1|−2D(p)ε+O(|ε|2).(1.19)
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Clearly, if D(p) > 0 for some maximum point p of γ, then I8π(Ω) > 1 +

4πmaxΩ̄ γ + log |B1|
|Ω|

. Hence by the ”if” part of Theorem 1.1, we conclude
that Ω is of type C. In this paper, we will prove that the converse holds also.

Theorem 1.5. A bounded piecewise C2 simply-connected domain Ω is of
type C if and only if

D(p) > 0(1.20)

for some maximum point p of γ.

We use two deep results to prove Theorem 1.5. The first one is Theo-
rem 1.3 or Theorem 1.4, that is, the asymptotic formulas (1.12) and (1.17).
The other is the uniqueness theorem for solutions to equation (1.1) with
ρ ≤ 8π and for a simply connected domain Ω. By employing Bol’s isoperi-
metric inequality, T. Suzuki [29] beautifully proved the uniqueness theorem
for ρ < 8π. Together with Theorem 1.3, this uniqueness theorem for ρ < 8π
heuristically establishes that if D(p) < 0 for all maximum points of γ, then
Ω is not of type C. Because if D(p) < 0 for a maximum point p of γ, then by
(1.18), p is a nondegenerate critical point of γ. Thus, there exists a sequence
of solution uk of (1.1) with ρ = ρk, which blows up at p. The existence of
such a sequence of solutions was due to Weston [33]. By Theorem 1.4, we
have ρk < 8π. Now, the uniqueness theorem of Suzuki yields that uk is the
maximizer of Jρk

. Since the maximizer uk blows up at p as ρk ↑ 8π, it is
plausible to guess that the maximizer of J8π does not exist, that is, Ω is not
of type C. In fact, this is a corollary of the following stronger result.

Theorem 1.6. Suppose that Ω is a bounded piecewise C2 simple-connected
domain, then equation (1.1) possesses at most one solution for each ρ ≤ 8π.
Furthermore, the linearized equation of (1.1) with ρ ≤ 8π at the unique so-
lution has a positive first eigenvalue.

As we noted before, Theorem 1.6 was proved by Suzuki [29] for ρ < 8π.
For this paper, the uniqueness theorem for ρ = 8π plays an even more im-
portant role. In fact, by the argument above, Theorem 1.6 for ρ = 8π implies
that Ω is not of type C if D(p) < 0 for all maximum point p of γ. It is easy to
see that domains such as balls and cubes belong to this class. However, for
domains with D(p) = 0 for some maximum point p of γ, the above argument
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to prove that Ω is not type C simply fails, because Theorem 1.3 does not yield
any information of sign of ρk − 8π in this case. Surprisingly, the following
theorem show that the existence of critical point p of γ with D(p) ≤ 0 set a
strong restriction on the ”geometry” of Ω.

Theorem 1.7 Suppose that Ω is bounded piecewise C2 simply-connected
domain and p is a critical point of γ with D(p) ≤ 0. Then p is the unique
maximum point of γ. Furthermore, the unique solution uρ(x) of (1.1) with
ρ < 8π must blow up at p as ρ ↑ 8π.

Together with Theorem 1.5, we have

Theorem 1.8. Suppose that Ω is a bounded piecewise C2 simply-connected
domain and γ(x) has more then one maximum point. Then Ω is of type C.

The paper is organized as follows. In order to prove (1.5), we have to
show apriori that for a sequence of blowup solution, any blowup point must
be inside of the domain Ω. This has been done for C2 domain. This holds
also for a peiecewisely C2 domain. In section 2, we give a grief account. In
section 3, we first prove Theorem 1.3. Here we have to use estimates in [11]
for the error term ηk of the solution uk and its approximation. By using this
estimate, we will derive the asympototic formulas (1.12). This asymptotic
formulas is more useful when we come to computation for concrete examples.
By using the conformal map f , (1.17) can be derived easily from (1.12). As
we note, Theorem 1.6, the uniqueness theorem, plays an important role in our
paper. We present its proof in section 4. Here, we employ the symmetrization
and the Bol inequality to reduce our problem to the case of radial functions.
We treat the radial case in a more elementary and direct way than in [29],
where the uniqueness theorem for ρ < 8π was proved in smooth domains.
Our argument becomes lengthy when non-smooth domains are considered.
However, we want to include its proof here because the uniqueness theorem
for non-smooth domains has its own interest. As we mentioned, the asymp-
totic formulas (1.17) is employed in the argument when the deformation of
domains is required. This is the case for the proof of Theorem 1.7, whose
proof are given in section 5. In section 6, we first give a proof of Theorem
1.5 and by using Theorem 1.5, we prove Theorem 1.1. In the final section,
we present several examples to discuss the type of domains, as applications
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of our theorems in this paper.

Ackowledgement. Part of this work has been done while the second au-
thor visited National Center for Theoretical Sciences of NSC in Taiwan. He
would like to thank NCTS for the warm hospitality and the stimulating en-
vironment.

2 Non-smooth domains

Since in section 6, we will consider non-smooth domains such as n-polygons.
We will give a brief account concerning the regularity of solutions of (1.1) in
our setting. First, we note that in order to derive (1.5) as done in the proof
of Theorem 7.1 in [5], we have to prove the blowup point could not occur on
the boundary. This is known when Ω is a C2 domain. For a piecewise C2

domain, this holds true as shown in the followings.

Lemma 2.1. Let u ∈ H1
0 (Ω) be a weak solution of (1.1). Then u ∈

C∞(Ω)∩C(Ω̄). Furthermore if uk is a sequence of blowup solutions of (1.1),
then all the blowup points are located inside of Ω.

Proof. By the Moser-Trudinger inequality, eu(x) ∈ Lp(Ω̄) for any p > 1.
Thus, u(x) ∈ C∞(Ω) follows readily from the standard regularity theorems
of elliptic equation. As for the boundary regularity, u is C1,α locally near
x0 ∈ ∂Ω for any α < 1 provided ∂Ω has a C2 regularity at x0. Now suppose
x0 is one of vertex {Q1, . . . , QN}, say, x0 = 0 ∈ Γ1 ∩ Γ2 and θ is the inner
angle of Γ1 and Γ2 at 0, where Γj is the C2 connected component of ∂Ω.
Let w = g(z) be the conformal map which maps Γ1 ∪ Γ2 to be a C2 curve
near g(0). Set g(0) = 0 and z = f(w) be to be the inverse map of g. Then
v(w) = u(f(w)) satisfies

{

∆v + |f ′(w)|2ev = 0 in Ω̃,
v(w) = 0 for w ∈ ∂ ′Ω̃ = g(Γ1 ∪ Γ2),

(2.1)

where Ω̃ = g(Bδ0(0) ∩ Ω). Clearly, |f(w)| = |w| θ
π (1 + o(1)) with o(1) → 0

as |w| → 0. Hence, if θ > π, then |f ′(w)|2 is a Hölder function of exponent
α0 for some α0 > 0. By the regularity theorem, v ∈ C1,α near 0 for any
o < α < 1. In particular, u(x) is continuous at 0.
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If 0 < θ < π, then |f ′(w)|2ev ∈ Lp0 for some p0 > 1 due to the Moser-
Trudinger inequality. Since ∂Ω̃ is C2 at 0, v ∈ W 2,p0 locally near 0. By the
Sobolev embedding, v is Hölder locally near 0. Hence the continuity of u at
each vortex is proved.

Now suppose the exists a sequence of solutions uk of (1.1) with ρk → ρ.
It suffices for us to show that uk(x) can not blow up at any vertex point
Q. If the angle θ at Q is less than π, then the domain Ω is converx in a
neighborhood of 0. Applying the method of moving planes to Ω, the blowup
points must be away from Q. If θ > π, then we can use the conformal map

f(w) = w
θ

θ1 , Q = 0 and f(0) = 0 is assumed where θ1 < π. Clearly, f(w)
map a curve C onto Γ1 ∪Γ2 and the inner angle of C at 0 is equal to θ1. Let
Ω̃ be the domain such that f(Ω̃) = Ω ∩ Bδ0(0). Then Ω̃ is convex at 0, and
v(w) = u(f(w)) satisfies

{

∆v + |w|2(
θ
θ1

−1)
ev = 0 in Ω̃,

v = 0 on ∂′Ω̃ = g(Γ1 ∪ Γ2),

where g = f−1 is the inverse function. Let w = (w1, w2). By a rotation,
we may assume the axis w1 = 0 intersects with ∂ ′Ω̃ non-tangentially and

Ω̃ ⊂ {w | w2 < 0}. Since θ
θ1
−1 > 0, |w|2(

θ
θ1

−1)
is increasing in |w2| for w ∈ Ω̃,

Thus, we can apply the method of moving plane to show v(w) > v(wλ) for
w ∈ Ω̃, w2 < λ < 0 and wλ is the reflection point of w with respect to
w2 = λ, provided that Ω̃ ∩ {w | w2 = λ} is non-empty. Then it implies that
the blowup points must be away from Q. This completes the proof of Lemma
2.1. Q.E.D.

Corollary 2.2. Suppose that Ω is a bounded piecewise C2 domain. If Ω is
not type C, then

I8π(Ω) = 1 + 4π sup
Ω̄

γ(x) + log
|B1|
|Ω| .(2.2)

Proof. This immediately follows from the original proof of (2.2) for the
smooth domains and Lemma 2.1, which states the blowup point must be in-
side of Ω. We skip the proof here and refer the detail of the proof to Theorem
7.1 of [5]. Q.E.D.
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3 Asymptotic expansion of ρk − 8π

In this section, we are going to prove the asymptotic formulas (1.12) for
a piecewisely C2 doamin Ω. Since all the estimates of solutions are local in
nature, for the simplicity, we may assume our domain Ω is C2 throughout
this section. Let Ω be a C2 bounded domain and h(x) be a positive C2

function defined in Ω̄. Consider a sequence of blowup solution uk of (1.11)
such that

lim
k→+∞

ρk = 8π.(3.1)

Set
{

λk = uk(pk) = maxΩ̄ uk(x) → +∞ as k → +∞,

p = limk→+∞ pk.
(3.2)

To describe the behavior of uk, we collect some well-known facts in the
following lemmas.

Lemma 3.1. By passing to a subsequence, solutions uk(x) converges to
the Green function G(x, p) in C2

loc(Ω̄\{p}). Furthermore, the blowup point p
satisfies

5 (log h(x) + 8πG̃(x, p)) = 0 at x = p.(3.3)

Lemma 3.1 was proved by Nagasaki and Suzuki [24] and the identity (3.3)
can be derived from the Pohozaev identity. Since the proofs are standard
and the results are well-known now, we skip the proofs here. To describe the
bubbling behavior of uk near p, we have to quote a result due to Li [19]. We
denote ũk by

ũk = uk(x) − dk, dk = log

(

∫

Ω
h(x)eukdx

)

.(3.4)

Then ũk(x) satisfies

{

∆ũk + ρkh(x)e
ũk(x) = 0 in Ω,

ũk(x) = −dk on ∂Ω.
(3.5)

Since uk(x) uniformly converges to G(x, p) for |x − pk| = δ0 for any fixed
small δ0 > 0, the difference |ũk(x)− ũk(y)| is uniformly bounded for any two
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points x, y on ∂Bδ0(pk). Thus, we can apply Li’s theorem to ũk. Hereafter,
Bδ0(p) denote the ball of center p and radius δ0. In [19], Li proved

Lemma 3.2. There exists constants c and δ0 such that

|ũk(x) − λ̃k + 2 log(1 + eke
λ̃k |x− pk|2)| ≤ c(3.6)

for |x− pk| ≤ δ0, where λ̃k = maxΩ ũk = λk − dk and ek = ρkh(pk)
8

.

For |x− pk| = δ0, (3.6) implies

|ũk(x) + λ̃k| ≤ c.(3.7)

Since uk(x) uniformly converges to G(x, p) for |x−pk| ≥ δ0, we have |ũk(x)+
dk| = |uk(x)| ≤ c1 for |x− pk| ≥ δ0. Thus by (3.7),

|dk − λ̃k| ≤ c1 and |λk − 2λ̃k| ≤ c1.(3.8)

As in [11], the estimate (3.6) is not enough for us to derive (1.12). There-
fore, we have to estimate the profile of uk more precisely in Bδ0(p). In order
to achieve it, we introduce the error term ηk by

ηk(x) = ũk(x) − Uk(x) − ρk(G̃k(x, pk) − γ(pk)),(3.9)

for x ∈ Ω̄, where

Uk(x) = λ̃k − 2 log

[

1 + eke
λ̃k |x− qk|2

]

,(3.10)

and qk satisfies
5 Uk(pk) = 5 log h(pk).(3.11)

Note that 5Uk(x) = −4eke
λ̃k (x−qk)

1+eke
λ̃k |x−qk|2

. From it, qk satisfies

|pk − qk| ≤ c e−λ̃k .(3.12)

Clearly from (3.3), we expect that 5ηk(pk) = −5Uk(pk)− ρk 5 G̃(pk, pk) =
−[5 log h(pk) + ρk 5 G̃(pk, pk)] should be small. In fact, we have

| 5 ηk(pk)| = O(λ̃ke
−λ̃k).(3.13)
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See Lemma 5.4 of [11]. Recall that Uk(x) is an entire solution of

∆Uk + ρkh(pk)e
Uk(x) = 0 in R2.

For the rest of this section, we denote Gk(x) = G(x, pk) and G̃k(x) = G̃(x, pk)
to simplify our notation. First, we derive the equation for ηk.

Lemma 3.3. The error term ηk satisfies

{

∆ηk(y) + ρkh(pk)e
Uk(y)Hk(y, ηk) = 0 for y ∈ Ω̄,

ηk(y) = O(λ̃ke
−λ̃k) on ∂Ω̄,

(3.14)

where

Hk(y, t) =
h(y)

h(pk)
et+ρk(G̃k(y)−G̃k(pk)) − 1.

Proof. (3.14) is already proved in [11]. See Theorem 1.4 of [11]. For the
convenience of readers, we give a scatch of the proof. Since G̃k(x) is harmonic,
(3.9) yields

∆ηk = ρkh(pk)e
Uk(x) − ρkh(x)e

ũk

= −ρkh(pk)eUk(x)

{

h(x)

h(pk)
eũk−Uk(x) − 1

}

= −ρkh(pk)eUk(x)

{

h(x)

h(pk)
eηk+ρk(G̃k(x)−G̃k(pk)) − 1

}

by applying ũk − Uk(x) = ηk + ρk(G̃k(x) − G̃k(pk)).
For y ∈ ∂Ω, we have

ηk(y) = −dk − Uk(y) +
ρk

2π
log |y − pk| + ρkG̃k(pk)

= −dk + ρkG̃k(pk) + λ̃k + 2 log

(

ρkh(pk)

8

)

+
ρk

2π
log

(

|y − pk|
|y − qk|

)

+2 log

(

1 +
8

ρkh(pk)
|y − qk|−2e−λ̃k

)

+O(|ρk − 8π|)

= −dk + ρkG̃k(pk) + λ̃k + 2 log

(

ρkh(pk)

8

)

+O(λ̃ke
−λ̃k).
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Here, we use (3.12) and |ρk − 8π| = O(λ̃ke
−λ̃k). For the proof of the latter,

see Theorem 1.1 of [11]. In [11], we denote

Ik = −dk + λ̃k + ρkG̃k(pk) + 2 log

(

ρkh(pk)

8

)

.

By using Theorem 7.2 in [11],

|Ik| ≤ c λ̃ke
−λ̃k .(3.15)

Thus, ηk(y) = O(λ̃ke
−λ̃k) for y ∈ ∂Ω. Q.E.D.

The estimate (3.15) yields the following.

Lemma 3.4. e−λ̃k = π2h2(p)e8πγ(p)e−dk [1 + o(1)].

Proof of Theorem 1.3. By the definition of Hk(x, t), we have

ρkh(x)e
ũk(x) = ρkh(pk)e

Uk(x) + ρkh(pk)e
Uk(x)Hk(x, ηk(x))(3.16)

for x ∈ Ω. Substituting (3.16) into (1.11),

ρk =
∫

Ω
ρkhe

ũk(x)dx(3.17)

=
∫

Ω
ρkh(pk)e

Uk(x)dx+
∫

Ω
ρkh(pk)e

Uk(y)Hk(y, ηk)dy

= 8π −
∫

Ωc
ρkh(pk)e

Uk(y)dy +
∫

Ω
ρkh(pk)e

Uk(y)Hk(y, ηk)dy.

Clearly

∫

Ωc
ρhh(pk)e

Uk(y)dy(3.18)

=

(

ρkh(pk)

e2k

∫

Ωc

dy

|y − pk|4
+ o(1)

)

e−λ̃k

=

(

8

πh(p)

∫

Ω

dy

|y − p|4 + o(1)

)

e−λ̃k .
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The integrand of the last term of (3.17) can be expressed, by the Taylor
expansion, as

ρkh(pk)e
Uk(y)Hk(y, ηk)(3.19)

= ρkh(pk)e
Uk(y)Hk(y, 0) + ρkh(pk)e

Uk(y)(Hk(y, 0) + 1)ηk

+ρkh(pk)e
Uk(y)O(|ηk|2).

Except for the first item of (3.19), heuristically the integration of all other
terms in (3.19) should bounded by o(εk). However, this o(εk)-estimate of the
integral of ρkh(pk)e

Uk(y)ηk is not obvious at all. In fact, its smallness is due
to the effect of cancellation. This effect of cancellation can be made clear
only when ηk is explicitly solved in the order of εk. To avoid the complexity
necessary for this delicate estimates, we apply an useful trick from [11]. Set

ψ(x) =
1 − a|x− qk|2
1 + a|x− qk|2

,(3.20)

where a = ρkh(pk)
8

eλ̃k . The function ψ(x) is chosen as a comparison function
because it satisfies

∆ψ(x) + ρkh(pk)e
Uk(y)ψ = 0 in R2.(3.21)

Since ηk satisfies

∆ηk + ρkh(pk)e
Uk(y)Hk(y, ηk) = 0 in Ω.

by Lemma 3.3, we have

∫

Ω
ρkh(pk)e

UkHk(y, ηk)dy = −
∫

∂Ω

∂ηk

∂ν
dσ(3.22)

=
∫

∂Ω

(

ψ
∂ηk

∂ν
− ηk

∂ψ

∂ν

)

dσ +
∫

∂Ω

(

ηk
∂ψ

∂ν
− (1 + ψ)

∂ηk

∂ν

)

dσ.

Applying (3.22) and (3.21) together, the Green Theorem yields

∫

∂Ω

(

ψ
∂ηk

∂ν
− ηk

∂ψ

∂ν

)

dσ = −
∫

Ω
ρkh(pk)e

Uk(y)(Hk(y, ηk) − ηk)ψdy.

Note that

ψ = −1 +
2

1 + a|x− qk|2
.

15



∫

Ω
ρkh(pk)e

Uk(y)Hk(y, 0)(−ψ)dy

=
∫

Ω
ρkh(pk)e

Uk(y)Hk(y, 0)dy − 2
∫

Ω

ρkh(pk)e
Uk(y)

(1 + a|x− qk|2)
Hk(y, 0)dy.

By Lemma 3.3,

h(pk)Hk(y, 0)(3.23)

= exp{log(h) + ρk(G̃k(y) − G̃k(pk))} − h(pk)

=
2
∑

j=1

aj(yj − pk,j) +
B11

2
(y1 − pk,1)

2 +
B22

2
(y2 − pk,2)

2

+
1

2

(

2
∑

j=1

aj(yj − pk,j)

)2

+O(|y − pk|3),

where a = (a1, a2) = 5[log h(y) + ρkG̃k(y)] at y = pk, and

(

B11 0
0 B22

)

is

the Hessian of log h+ ρkG̃k at y = pk, after orthogonal transformation of the
coordinate. By (3.13), we have

|a| = | 5 log h(y) + ρkG̃k(y)| ≤ λ̃ke
−λ̃k

for y = pk. Since |pk − qk| = O(e−λ̃k) by (3.12), (3.23) yields

h(pk)Hk(y, 0) =
2
∑

j=1

bj(yj − qk,j) +
1

2

2
∑

j=1

Bjj(yj − qk,j)
2(3.24)

+O(λ̃ke
−2λ̃k + λ̃2

ke
−2λ̃k |y − qk|2 + |y − qk|3).

Note
B11 +B22 = 0.

because log h is harmonic. Recall that Uk(y) is radially symmetric with
respect to qk. Thus,

ρk

∫

Bδ(qk)

eUk(y)

{

2
∑

j=1

bj(yj − qk,j) +
1

2

2
∑

j=1

Bjj(yj − qk,j)
2

}

dy = 0.
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Therefore, by (3.24) we have
∣

∣

∣

∣

∣

ρk

∫

Bδ(qk)
h(pk)e

Uk(y)Hk(y, 0)dy

∣

∣

∣

∣

∣

(3.25)

≤ c

{

∫

Bδ(qk)

eUk(y)|y − qk|3dy + λ̃ke
−2λ̃k

}

≤ c

{

δe−λ̃k + λ̃ke
−2λ̃k

}

,

where c is a constant independent of δ and k.
For any arbitrary small δ > 0,

ρk

∫

Ω\Bδ(qk)
h(pk)e

Uk(y)Hk(y, 0)dy

= ρke
−2
k e−λ̃kh(pk)

∫

Ω\Bδ(qk)

Hk(y, 0)

|y − qk|4
dy +O(1)e−2λ̃k

∫

Ω\Bδ(qk)

Hk(y, 0)

|y − qk|6
dy

=
8

πh(p)
e−λ̃k

(

∫

Ω\Bδ(p)

H(y, 0)

|y − p|4dy + o(1)

)

,

because
|eUk(y) − e−2

k |y − qk|−4e−λ̃k | ≤ c |y − qk|−6e−2λ̃k

for |y − qk| >> e−
1
2
λ̃k . With (3.25), it yields

ρk

∫

Ω
h(pk)e

Uk(y)Hk(y, 0)dy =
8

πh(p)
e−λ̃k

(

∫

Ω

H(y, 0)

|y − p|4dy + o(1)

)

,(3.26)

where
∫

Ω

H(y, 0)

|y − p|4dy := lim
δ↓0

∫

Ω\Bδ(p)

H(y, 0)

|y − p|4dy.

By the scaling y′ = e
λ̃k
2 y, it is easy to obtain

∣

∣

∣

∣

∣

∫

Ω

eUk(y)

1 + a|y − qk|2
Hk(y, 0)dy

∣

∣

∣

∣

∣

= O(e−
3
2
λ̃k)(3.27)

by (3.24). By Lemma 3.3, |ηk(y)|+ |5ηk(y)| = O(λ̃ke
−λk) for y ∈ ∂Ω. Hence

∫

∂Ω

(

ηk
∂ψ

∂ν
− (1 + ψ)

∂ηk

∂ν

)

dσ = O(λ̃ke
−2λ̃k),(3.28)

17



and (1.12) follows readily from (3.18), (3.26) – (3.28). This proves Theorem
1.3. Q.E.D.

Proof of Theorem 1.4. To derive (1.17), we use a conformal mapping
z = f(w) from the unit ball B1 → Ω such that

f(0) = p.

Since p is a critical point of γ, we have

f ′′(0) = 0.

To simplify our notation, we denote the function uk(f(w)) by uk(w). Then
uk satisfies















∆uk + ρk
h(w)euk

∫

B1

h(w)eukdw
= 0 in B1,

uk = 0 on ∂B1,

where h(w) = |f ′(w)|2 and dw stands for the volume form in B1. By the
choice of f , the blowup point of uk is the origin and G̃k(x) → 0 uniformly in
B̄1. Thus

h(0)H(w, 0) = |f ′(w)|2 − |f ′(0)|2, and h(0) = |f ′(0)|2 = |a1|2.(3.29)

Let f(w) = f(0) +
∑∞
n=1 anw

n. Then (3.29) implies

h(0)
∫

B1

H(w, 0)

|w|4 dw = 2π
∫ 1

0
r−3

∞
∑

n=3

|an|2n2r2(n−1)dr(3.30)

= 2π
∑

n=3

|an|2n2
∫ 1

0
r2n−5dr

= π
∞
∑

n=3

n2

n− 2
|an|2.

On the other hand,
∫

Bc
1

dy

|y|4 = 2π
∫ ∞

1

dr

r3
= π.

Therefore, we have by (1.12)

ρk − 8π =
8

h2(0)
e−λ̃k

(

∞
∑

n=3

n2

n− 2
|an|2 − |a1|2

)

.(3.31)
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By Lemma 3.4, we have

e−dk =
1

h2(0)π2
e−λ̃k(1 + o(1)),

and

εk = ρke
−dk =

8

πh(0)2
e−λ̃k .(3.32)

Substituting (3.32) into (3.31), we have (1.17). Q.E.D.

4 Uniqueness Theorem

The main purpose of this section is to prove Theorem 1.6. First, we start
with the beautiful theorem of uniqueness of solution (1.1) with ρ < 8π, which
was due to T. Suzuki [29].

Theorem 4.1. Suppose that Ω is a bounded piecewise C2 simply-connected
domain. Then for each ρ ∈ [0, 8π), there exists an unique solution for (1.1).

By applying the classical Bol inequality, Suzuki [29] proved Theorem 4.1
for smooth domains by virture of a special technique of symmetrization,
which was initiated by Bandle [2] first. Without employing Bol’s inequality,
this method of symmetrization has been successfully applied to other prob-
lems related to equation (1.1) in recent years, e.g., see [9], [13]. Our proof of
Theorem 1.6 also employs the method of symmetrization, which could allow
the original problem to be reduced to the radial case. We treat the radial
case in more elementary and straightforward way than in [29] for ρ < 8π.
However, our complete proof becomes lengthy because non-smooth domains
are considered here. We would like to give a proof for non-smooth domain,
because it has its own interest. We begin with the following isoperimetric
inequality, which was due to Bandle [2] when ω is a simply-connected domain.

Lemma 4.2. Suppose v satisfies ∆v + ev = 0 in Ω and satisfies

∫

Ω
ev(x)dx ≤ 8π,(4.1)
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where Ω is a simply-connected domain. Set

m(ω) =
∫

ω
evdx and l(∂ω) =

∫

∂ω
e

v
2 dσ

for any ω ⊂⊂ Ω. Then the inequality holds

2l2(∂ω) ≥ [(8π −m(ω)]m(ω).(4.2)

Furthermore, if ω is not simply-connected, then the inequality (4.2) is always
strict.

Proof. When ω is simply-connected, (4.2) was proved by Bandle [2]. For
the general case, the proof can be given by induction on the number of ”holes”
of ω. For the simplicity, we assume ∂ω = Γ1 + Γ2 and Γ2 bounds another
simply connected domain Ω̃. Then by (4.2) for simply-connected domains,
we have

2l2(∂ω) = 2[l(Γ1) + l(Γ2)]
2

= 2l2(Γ1) + 2l2(Γ2) + 4l(Γ1)l(Γ2)

> [8π −m(ω ∪ Ω̃)]m(ω ∪ Ω̃) + [8π −m(Ω̃)]m(Ω̃)

= [8π −m(ω) −m(Ω̃)][m(ω) +m(Ω̃)] + [8π −m(Ω̃)]m(Ω̃)

= [8π −m(ω)]m(ω) + 2m(Ω̃)[8π −m(Ω̃) −m(ω)]

≥ [8π −m(ω)]m(ω),

because m(Ω̃) +m(ω) ≤ ∫

Ω e
vdx ≤ 8π. Q.E.D.

Let Ω be a piecewisely C2 simply-connected domain, and ∂Ω =
⋃N
l=1 Γ̄l,

where Γl is a connected component of C2 portion of the boundary ∂Ω.

Lemma 4.3. Let µ2(Ω) be the second eigenvalue of ∆+ev for the Dirichlet
problem. Then

µ2(Ω) > 0,

provided that
∫

Ω e
vdx ≤ 8π.

Proof. We prove Lemma 4.3 by contradiction. Suppose µ2(Ω) ≤ 0. Then
there exists a positive constant K ≤ 1 and a second eigenfunciton ϕ satisfying

{

∆ϕ +Kevϕ = 0 in Ω,
ϕ = 0 on ∂Ω.

(4.3)
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Before continuing to give a proof, we want to make a remark concerning the
continuity of ϕ. It is natural that ϕ is assumed to be in H1

0 (Ω). By composing
with a conformal map as done in Lemma 2.1, we can prove ϕ ∈ C∞(Ω)∩C(Ω̄).
Since it is standard, we skip the proof here.

Let Ω+ = {x ∈ Ω | ϕ(x) > 0}. Set U(x) = −2 log(1 + 1
8
|x|2) which

satisfies ∆U + eU = 0 in R2. Without loss of generality, we may assume
∫

Ω+
ev(x)dx ≤ 4π,(4.4)

because the total measure
∫

Ω e
v(x)dx ≤ 8π. For any t > 0, the set Ωt = {x ∈

Ω|ϕ(x) > t} is compactly contained in Ω because ϕ is continuous on Ω̄. We
set r(t) ≥ 0 such that

∫

Br(t)

eU(x)dx =
∫

{ϕ>t}
ev(x)dx,(4.5)

where Br(t) is the open ball of center 0 and radius r(t). Note that by the
regularity of ϕ, for any t < s < maxΩ̄ ϕ, the set {x | t ≤ ϕ(x) < s} has a
positive measure. Therefore r(t) is strictly decreasing in t and is continuous
in t for t ∈ (0,maxΩ̄ ϕ). Denote ϕ∗(r) to be the symmetrization of ϕ with
respect to the measures eU(x)dx and ev(x)dx respectively, that is,

ϕ∗(r) = sup{t | r < r(t)}.(4.6)

Then ϕ∗(x) has the same distribution of ϕ with respect to measures eU(x)dx

and ev(x)dx respectively, that is, for t > 0,
∫

{ϕ∗>t}
eU(x)dx =

∫

{ϕ>t}
ev(x)dx.(4.7)

Therefore,
∫

BR0

eU(x)(ϕ∗)2dx =
∫

Ω+
ev(x)ϕ2dx(4.8)

holds where R0 = r(0+) = limt↓0 r(t). To derive a contradiction, we use the
coarea formulas

− d

dt

∫

Ωt
| 5 ϕ|2dx =

∫

∂Ωt

| 5 ϕ|ds, and(4.9)

− d

dt

∫

Ωt

ev(x)dx =
∫

∂Ωt

ev

| 5 ϕ|ds
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hold for almost everywhere t. Since
∫

Ω e
vdx ≤ 8π, we have by the co-area

formulas (4.9) and by Lemma 4.2,

− d

dt

∫

Ωt

| 5 ϕ|2dx =
∫

{ϕ=t}
| 5 ϕ|ds(4.10)

≥
(

∫

{ϕ=t}
e

v
2 ds

)2(
∫

{ϕ=t}

ev

| 5 ϕ|ds
)−1

= −
[

d

dt

(
∫

Ωt

ev(x)dx

)

]−1

l2({ϕ = t})

≥ 1

2

(

8π −
∫

Ωt

ev(t)dx

)(
∫

Ωt

ev(x)dx

)

[

− d

dt

∫

Ωt

ev(x)dx

]−1

=
1

2

(

8π −
∫

Ω∗

t

eU(x)dx

)(

∫

Ω∗

t

eU(x)dx

)[

− d

dt

∫

Ω∗

t

eU(x)dx

]−1

,

for almost everywhere t where Ω∗
t = Br(t) = {x | ϕ∗(x) > t}. Since U(r)

is a radial function, (4.2) becomes an equality for any ball Br(t). Thus, the
coarea formulas (4.9) yields

− d

dt

(

∫

Ω∗

t

| 5 ϕ∗|2dx
)

(4.11)

=
1

2

(

8π −
∫

Ω∗

t

eU(x)dx

)(

∫

Ωt
t

eU(x)dx

)[

− d

dt

∫

Ω∗

t

eU(x)dx

]−1

.

Together with (4.10), (4.11) implies

− d

dt

∫

Ωt

| 5 ϕ|2dx ≥ − d

dt

∫

Ω∗

t

| 5 ϕ∗|2dx(4.12)

for almost everywhere t. By integrating (4.12) with respect to t, we obtain
then

∫

BR0

| 5 ϕ∗|2dx ≤
∫

Ω+

| 5 ϕ|2dx.(4.13)

Together with (4.8) and (4.13), the equation (4.3) yields

0 ≥ (K − 1)
∫

Ω+
ev(x)ϕ2(x)dx(4.14)

=
∫

Ω+
| 5 ϕ|2dx−

∫

Ω+
ev(x)ϕ2(x)dx

≥
∫

BR0

| 5 ϕ∗|2dx−
∫

BR0

eU(x)|ϕ∗|2(x)dx.
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Therefore, the first eigenvalue λ1 of ∆ + eU on BR0 is nonpositive.
Since U(x) = U(|x|) is radial, the first eigenfunction of ∆ + eU(r) is also

radial. By a straightforward computation, the function ψ(r) = 8−r2

8+r2
satisfies

∆ψ(r) + eU(r)ψ(r) = 0 in R2.(4.15)

Therefore, the nonpositive first eigenvalue λ1 of ∆ + eU implies R0 ≥
√

8.
On the other hand, since

∫

BR0

eU(x)dx =
∫

Ω+
ev(x)dx ≤ 4π,

we deduce R0 =
√

8, λ1 = 0 and
∫

BR0

eUdx = 4π.(4.16)

Consequently, the inequality of (4.12) and then all the inequalities of (4.10),
turn out to be equalities. Particularly, by Lemma 4.2, Ωt is simply connected
for almost every t. Due to the regularity of ϕ, Ωt and then Ω+ are all simply-
connected domains for all t > 0. Similarly, the Schwartz inequality on each
level set {ϕ = t} becomes an equality and it implies

ev(x) = Φ+(ϕ(x))| 5 ϕ(x)|2(4.17)

holds for almost everywhere t = ϕ(x) and for some function Φ+ of t.
By (4.16), we have

∫

Ω−

ev(x)dx ≤ 4π,

where Ω− = {x | ϕ(x) < 0}. By the same argument of symmetrization, we
have ∫

Ω−

ev(x)dx = 4π,(4.18)

Ω− is also a simply connected domain and

ev(x) = Φ−(ϕ(x))| 5 ϕ(x)|2(4.19)

for almost everywhere s = ϕ(x) < 0 and a function Φ− of s.
Since both Ω+ and Ω− are simply connected, the nodal line, that is, the

closure of {ϕ(x) = 0 | x ∈ Ω}, must intersect with ∂Ω and at least, one of
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∂Ω± ∩ ∂Ω contains an arc of positive length. Without loss of generality, one
may assume ∂Ω+∩∂Ω contains an arc of positive length. Furthermore, for any
two points yk ∈ ∂Ω∩∂Ω+, k = 1, 2, which are not on the nodal line, we choose
a sequence of xi,k ∈ Ω → yk for k = 1, 2 such that ϕ(xi,k) = ti ↓ 0 where
(4.17) holds for such ti. Since Φ+(ϕ(xi,1)) = Φ+(ϕ(xi,2)) and ev(xi,k) → 1 as
i→ +∞ for k = 1, 2, (4.17) implies | 5 ϕ(y1)| = | 5 ϕ(y2)|, i.e., | 5 ϕ(y)| =
constant for all y which are contained in a connected component of Γl∩∂Ω+,
l = 1, 2, . . . , N . We recall Γl is a C2 portion of the boundary ∂Ω.

Since the nodal line has a non-empty intersection with ∂Ω, we let x0

denote any point of the intersection (Note that the nodal line is continuous
up to the boundary because it has a finite length.) Two cases are discussed
seperately.
Cases 1. Suppose x0 ∈ Γl for some l ∈ {1, 2, . . . , N}. Then by the Lp

elliptic regularity, ϕ(x) is W 2,p in a neighborhood of x0 with any p > 1.
Thus ϕ(x) ∈ C1,α at x0 for any α ∈ (0, 1). Since x0 is the intersection of the
boundary and the nodal line of ϕ, we have 5ϕ(x0) = 0. Then | 5 ϕ(y)| = 0
for all y ∈ Γl∩∂Ω+, which yields a contradiction to the Hopf boundary point
lemma, unless ϕ(x) is identically to be zero. This proves Lemma 4.3 for case
1.
Cases 2. Suppose x0 is not a smooth point of the boundary, say, x0 ∈
Γ1 ∩ Γ2. Let θ denote the inner angle of Γ1 and Γ2 at x0. For the simplicity
of notations, we assume x0 = 0. By case 1, we conclude that one of Γ1 and
Γ2 must be contained in ∂Ω+. Without loss of generality, we may assume
Γ1 ⊆ ∂Ω+. Let w = g(z) be a conformal mapping which maps Ω∩Bδ0(0) into
Ω̃ such that one part of the boundary Ω̃, which is the image of ∂Ω ∩ Bδ0(0)
under g, is C2 at the image of g(0). Let g(0) = 0 and f(w) denote the inverse
map of g. Set ṽ(w) = v(f(w)) and ϕ̃(w) = ϕ(f(w)). Then ϕ̃ satisfies

{

∆ϕ̃ + |f ′(w)|2eϕ̃ṽ = 0 in Ω̃,
ϕ̃ = 0 in ∂′Ω̃,

(4.20)

where ∂′Ω̃ = ∂Ω̃ ∩ g(∂Ω ∩Bδ0). Since θ is the inner angle of Γ1 and Γ2 at 0,
we have

|f ′(w)|2 = |w|2( θ
π
−1)(1 + o(1)),(4.21)

where o(1) → 0 as |w| → 0.
If π < θ < 2π, then |f ′(w)|2 is a Cα0 function for some α0 > 0. By the
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regularity of elliptic equation, ϕ̃ is C1,α near 0 for any α ∈ (0, 1). Thus,

5 ϕ̃(0) = 0 and | 5 ϕ̃(w)| ≤ cα|w|α(4.22)

for any 0 < α < 1 because the nodal line of ϕ̃ touch ∂ ′Ω̃ at 0. On the other
hand, for w = w(z), z ∈ Γ1, we have

| 5w ϕ̃(w)| = | 5z ϕ̃(z)|| ∂z
∂w

| = c |f ′(w)|,(4.23)

where | 5 ϕ(z)| = c for all z ∈ Γ1. Choose θ
π
− 1 < α < 1 and w = w(z)

where z ∈ Γ1 ⊆ ∂Ω+. Then by (4.22) and (4.21), we have

c |w| θ
π
−1 ≤ cα|w|α,

which implies c = 0. Hence, we obtain a contradition again.
Suppose 0 < θ < π. Then ϕ̃ isH1 in a neighborhood of 0. Since |f ′(w)|2 =

O(|w| θ
π
−1), we have |f ′(w)|2eṽϕ̃ ∈ Lp locally near 0 for any 1 < p < 1

1− θ
π

.

By the elliptic regularity and Sobolev’s embedding theorem, ϕ̃ ∈ Cα0 locally
for some α0 < 1. We want to prove ϕ̃ ∈ Cα locally for any α ∈ (0, 1) by
iteration. To see it, we assume ϕ̃ ∈ Cα0 . Then

|ϕ̃(w)| ≤ c0|w|α0.(4.24)

Substituting (4.24) into the equation, we have

|f ′(w)|2eṽ|ϕ̃(w)| ≤ c1|w|(
2θ
π

+α0−2).

By the elliptic regularity, ϕ̃ ∈ W 2,p locally near 0 for

1 < p <

(

2

2 − (2θ
π

+ α0)

)

+

=

{

+∞ if 2 ≤ 2θ
π

+ α0,
2

2−( 2θ
π

+α0)
if 2 > 2θ

π
+ α0.

If 2 ≤ 2θ
π

+ α0, then ϕ̃ ∈ Cα locally near 0 for any α ∈ (0, 1). So, we assume
2 > 2θ

π
+ α0. Then by the Sobolev embedding, ϕ̃ ∈ Cα for any α ∈ (0, 1) if

2θ
π

+α0 > 1, and ϕ̃ ∈ Cα for any α < 2θ
π

+α0 if 2θ
π

+α0 ≤ 1. In particular, ϕ̃ ∈
Cα0+ θ

π . By repeating the process a finite time, we have established ϕ̃ ∈ Cα

locally near 0 for any α. Then |ϕ̃(w)| ≤ cα|w|α for α ∈ (0, 1). Substituting
it into equation (4.20) again, by noting |f ′(w)|2eṽϕ̃(w) = O(|w|−β) for some
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β < 1, we have |f ′(w)|2eṽϕ̃(w) ∈ Lp locally for some p > 2. Applying the
regularity theorem and the Sobolev embedding once again, we conclude that
ϕ̃ ∈ Cα1 locally near 0 for some α1 > 0.

Since the nodal line of ϕ̃ touch the boundary at 0, 5ϕ̃(0) = 0. In partic-
ular, for w = w(z), 0 6= z ∈ Γ1 and z → 0,

0 = | 5 ϕ̃(0)| = lim
w→0

| 5 ϕ̃(w)|

= lim
z→0

| 5 ϕ(z)||w| θ
π
−1(1 + o(1)).

Recall that |5ϕ(z)| = constant for z ∈ Γ1. By the identity above, we deduce
| 5 ϕ(z)| = 0 for z ∈ Γ1, which yields a contradiction to the Hopf boundary
point lemma. This contradiction finishes the proof of Lemma 4.3 Q.E.D.

Remark 4.4. If
∫

Ω e
vdx < 8π, then a contradiction can be obtained by

using (4.16) and (4.18) only, that is, no assumption of smoothness of ∂Ω is
required for Lemma 4.3 when ρ < 8π. However, in order to apply the sym-
metrization, the continuity of ϕ on Ω̄ is needed. For example, this continuity
of ϕ is guaranteed if Ω is a Lipschitz domain. Even for a domain such as
Ω0 = {z | z = 1

3
w3+w, |w| > 1}, this holds true. Note that ∂Ω0 has a cusp at

±2
3
i and the inner angles at ± 2

3
i are equal to 2π. Hence Theorem 4.1 holds for

Ω0. However, for ρ = 8π, it is still an open problem, because the nodal line of
ϕ might touch with the boundary ∂Ω0 at ±2

3
i, where our method simply fails.

Proof of Theorem 1.6. We first prove that the linearized equation of
(1.1) at u has no null eigenfunctions in H1

0 (Ω). Suppose ϕ is a solution of
the linearized equation















∆ϕ+
ρeuϕ
∫

Ω e
udx

− ρ(
∫

Ω e
uϕdx)eu

(
∫

Ω e
udx)2

= 0 in Ω,

ϕ = 0 on ∂Ω,

(4.25)

where ρ = 8π and u is a solution of (1.1) with ρ = 8π. For ρ < 8π, we refere
the proof to [29].

By the remark in the proof of Lemma 4.3, ϕ is continuous on Ω̄. We want
to prove ϕ ≡ 0 in Ω̄. Let

ϕ̃ = ϕ−
∫

Ω e
uϕdx

∫

Ω e
udx

, and v = u+ log ρ− log(
∫

Ω
eudx)(4.26)
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Then ϕ̃ satisfies
{

∆ϕ̃+ evϕ̃ = 0 in Ω,
ϕ̃ |∂Ω= constant on ∂Ω.

(4.27)

By (4.26), ϕ̃ also satisfies
∫

Ω
evϕ̃(x)dx = 0(4.28)

By (4.28), ϕ̃ must change sign provided that ϕ̃ 6≡ 0 in Ω. If ϕ̃ |∂Ω≡ c1 and
c1 = 0, ϕ̃ ≡ 0 by to Lemma 4.3 and consequently ϕ ≡ 0. So, we may assume
c1 < 0. Hence, the nodal line {ϕ̃ = 0} is away from ∂Ω and divides Ω into two
components Ω+ = {x | ϕ̃(x) > 0} and Ω− = {x | ϕ̃(x) < 0}. Furthermore,
by Lemma 4.3, Ω+ is simply-connected and satisfies

∫

Ω+
ev(x)dx ≥ 4π ≥

∫

Ω−

ev(x)dx.(4.29)

Set Ω+ ⊂ Ω̃+ = {x | ϕ̃(x) > c1} and Ω̃− = {x | ϕ̃(x) < c1}. We discuss two
cases separately.
Cases 1. Assume Ω̃− is an empty set.

In this case we can do the symmetrization for ϕ̃ in Ω as in the proof of
Lemma 4.3, that is, for any t > c1, we set Br(t) to be the open ball of center
0 and radius r(t) such that

∫

Br(t)
ev(x)dx =

∫

{ϕ̃>t}
eU(x)dx,

where U(x) is defined as in Lemma 4.3. As before, r(t) is continuous, strictly
decreasing in t and limt↓c1 R(t) = +∞, because

∫

Ω e
v(x)dx = 8π. The sym-

metrization ϕ̃∗(x) = ϕ̃∗(|x|) is defined as the same as before. By Lemma 4.2
and the coarea formulas, we obtain as before

∫

R2
| 5 ϕ̃∗|2dx ≤

∫

Ω
| 5 ϕ̃|2dx =

∫

Ω
evϕ̃2(x)dx =

∫

R2
eU ϕ̃∗2

dx,(4.30)

and ∫

R2
eU ϕ̃∗(x)dx =

∫

Ω
ev(x)ϕ̃(x)dx = 0.(4.31)

Set

K∗ = inf

{

∫

R2
| 5 ψ|2dx | ψ(x) is radially symmetric,(4.32)

∫

R2
eU(x)ψ(x)dx = 0 and

∫

R2
eU(x)ψ2(x)dx = 1

}

.
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Note that

∣

∣

∣

∣

∫

R2
eU(x)ψ(x)dx

∣

∣

∣

∣

≤
(
∫

R2
eU(x)ψ2(x)dx

)
1
2
(
∫

R2
eU(x)dx

)
1
2

.

Hence, condition (4.31) also holds for any minimizer of (4.32). Set ψ∗ to be
the minimizer of (4.32) and ψ∗ satisfies

{

∆ψ∗ +K∗eU(x)ψ∗ = 0 in R2,
∫

R2 eU(x)ψ∗dx = 0.
(4.33)

By (4.30), K∗ ≤ 1. Therefore, ψ∗ changes the sign once and only once,
otherwise it yields a contradiction to Lemma 4.3. Let ξ0 be the zero of ψ∗

and we may assume ψ∗(r) > 0 if r < ξ0 and ψ∗(r) < 0 if r > ξ0. By (4.31),

rψ∗′(r) =
∫ r

0
eU(s)ψ∗(s)sds(4.34)

=
∫ ∞

r
eU(s)ψ∗(s)sds < 0

for r ∈ (ξ0,∞). Therefore, ψ∗′(r) is decreasing for r ≥ ξ0 and rψ∗′(r) → 0 as
r → +∞. Clearly, (4.33) yields

|rψ∗′(r)| ≤
(

∫ ∞

r
eU(s)ψ∗2

(s)sds

)
1
2
(

∫ ∞

r
eU(s)sds

)
1
2

≤ c r−1

for large r. Hence limr→+∞ ψ∗(r) exists and

lim
r→+∞

ψ∗(r) < 0(4.35)

Let ψ(r) = 8−|x|2

8+|x|2
. Then ψ satisfies

∆ψ + eUψ(r) = 0.(4.36)

Together with (4.33), we have

r

(

ψ∗

ψ(r)

)′

=
(1 −K∗)

ψ2(r)

∫ r

0
eU(s)ψ∗(s)ψ(s)sds.
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If ξ0 <
√

8 where ψ(
√

8) = 0, then ψ∗(r)
ψ(r)

is increasing for r ∈ [0, ξ0]. Clearly,
it yields

0 <
ψ∗(0)

ψ(0)
<
ψ∗(ξ0)

ψ(ξ0)
= 0,

a contradiction. Thus, ξ0 ≥
√

8. Similarly, we have

lim
R→+∞

R

(

ψ∗

ψ

)′

(R)ψ2(R) − r

(

ψ∗

ψ

)′

ψ2(r) = (1 −K∗)
∫ ∞

r
eU(s)ψ∗(s)ψ(s)sds.

Since
lim

R→+∞
R[ψ∗′(R)ψ(R) − ψ′(R)ψ∗(R)] = 0,

We have

−
(

ψ∗

ψ

)′

ψ2(r) = (1 −K∗)
∫ ∞

r
eU(s)ψ∗(s)ψ(s)sds.

If ξ0 >
√

8, then ψ∗

ψ
(r) is decreasing for r ≥ ξ0. Then it yields

0 =
ψ∗(ξ0)

ψ′(ξ0)
> lim

r→+∞

ψ∗(r)

ψ(r)
= − lim

r→+∞
ψ∗(r),

a contradiction to (4.35). Therefore, we conclude ξ0 =
√

8 and ψ∗(r)ψ(r) > 0
for all r 6=

√
8. Again,

0 = lim
r→+∞

(ψ∗(r)′ψ(r) − ψ′(r)ψ∗(r))r

= (1 −K∗)
∫ ∞

0
eU(s)ψ∗(s)ψ(s)sds

yields K∗ = 1, and (4.30) becomes an equality. Therefore, all the inequalities
of (4.10) turn out to be equalities. In particular,

l2{ϕ̃ = t} =
1

2

(

8π −
∫

Ωt

ev(x)dx

)

∫

Ωt

ev(x)dx(4.37)

holds for almost everywhere t. Since ϕ̃ is continuous on Ω̄, we have

l2{ϕ = t} ≥ c > 0
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for some constant c > 0 and for t is close to c1. On the other hand, for any
ε > 0,

8π −
∫

Ωt

ev(x)dx ≤ ε

holds if t is sufficiently close to c1. Thus, it yields a contradiction to (4.37)
when t is close to c1. This contradiction proves that Ω̃− is non-empty.
Cases 2. Ω̃− is not empty. In this case, we still do the symmetrization for
Ω̃+ as before. Set R̃0 be

∫

{ϕ>c1}
ev(x)dx =

∫

B
R̃0

eU(x)dx(4.38)

But for t < c1, we symmetrize {ϕ < t} as

∫

R2\B̄r̃(t)

eU(x)dx =
∫

{ϕ(x)<t}
ev(x)dx(4.39)

Since
∫

Ω e
vdx = 8π, we have limt↑c1 r̃(t) = R̃0. Set

ϕ̃∗∗(r) = inf{t | x ∈ R2\B̄r̃(t)}.

for r > R̃0 and
lim
r↓R̃0

ϕ̃∗∗(r) = lim
s↑R̃0

ϕ̃∗(s)(4.40)

By the isoperimetric inequality (4.2), the symmetrization yields

∫

B
R̃0

| 5 ϕ̃∗(x)|2dx ≤
∫

Ω̃+
| 5 ϕ̃|2dx(4.41)

as (4.30). For t < c1, we note that {ϕ = t} bounds the domain {x | ϕ < t}
which obiviously is not a simply-connected domain. Thus, by (4.2)

(

∫

{ϕ=t}
e

v
2

)2

>
1

2

(

8π −
∫

{ϕ<t}
evdx

)(

∫

{ϕ<t}
evdx

)

for t < c1. Then (4.10) yields for t < c1

− d

dt

∫

Ωt

| 5 ϕ̃|2dx =
∫

{ϕ=t}
| 5 ϕ̃|ds
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>
1

2

(

8π −
∫

{ϕ<t}
evdx

)(

∫

{ϕ<t}
evdx

)[

− d

dt

∫

Ωt

ev(x)dx

]−1

=
1

2

(

8π −
∫

R2\Br̃(t)

eUdx

)(

∫

R2\Br̃(t)

eUdx

)[

− d

dt

∫

R2\Br̃(t)

eU(x)dx

]−1

= − d

dt

∫

R2\Br̃(t)

| 5 ϕ̃∗∗|2dx.

Integrating from c1 to infΩ̄ ϕ̃, we obtain

∫

Ω
| 5 ϕ̃|2dx−

∫

Ω̃+
| 5 ϕ̃|2dx ≥

∫

R2\B
R̃0

| 5 ϕ̃∗∗|2dx.(4.42)

By (4.40), ϕ̂(r) is continuous at R̃0, where ϕ̂ is defined by

ϕ̂(r) =

{

ϕ̃∗ if r < R̃0,

ϕ̃∗∗ if r > R̃0.

Together with (4.41) and (4.42), it yields

∫

R2
| 5 ϕ̂|2dx <

∫

Ω
| 5 ϕ̃|2dx =

∫

Ω
evϕ̃2dx =

∫

R2
eU(ϕ̂)2dx.(4.43)

Clearly, ϕ̂ also satisfies

∫

R2
eU ϕ̂(x)dx =

∫

Ω
evϕ̃(x)dx = 0.

As before, we set

K∗ =

{

∫

R2
| 5 ψ|2dx

∣

∣

∣

∣

∣

ψ(x) is radially symmetric,

∫

R2
eUψ(x)dx = 0 and

∫

R2
eU(x)ψ2(x) = 1

}

.

The minimizing is exactly the same one as (4.32). By the previous argument,
we have K∗ = 1. On the other hand, K∗ < 1 by (4.43). This contradiction
shows that there are no null eigenfunctions of the linearized equation except
the trivial one.
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Since the linearized equation has only the trivial solution, it is not hard
to prove the estimate for the inverse operator. For example, we can show
that

‖ϕ‖H1
0 (Ω) + ‖ϕ‖L∞(Ω) ≤ c ‖L(ϕ)‖L∞(Ω),(4.44)

where L denotes the linearized operator of (4.25). Note that both ‖ϕ‖H1
0 (Ω)

and ‖ϕ‖L∞(Ω) is invariant under the conformal transformation. By using the
implicit function theorem and (4.44), we can prove that for any solution u

of (1.1) with ρ = 8π, there is a solution uρ(x) of (1.1) with small |ρ − 8π|
and limρ→8π uρ(x) = u(x). Thus, the uniqueness of (1.1) with ρ = 8π follows
readily from Theorem 4.1. Q.E.D.

5 Domains with D(p) = 0

In this section, we discuss critical points of γ with D(p) ≤ 0. Throughout
this section, Ω is always assumed to be simply-connected. Now we are in the
position to prove Theorem 1.7.

Proof of Theorem 1.7. We first note that if the nondegenerate condition
is not satisfied, then

D(p) =
∞
∑

n≥3

n2|an|2
n− 2

− |a1|2 > 0

unless an = 0 for n ≥ 4. But, if an = 0 for n ≥ 4, f(z) = z + 1
3
z3 after

a rotation and a scaling. Clearly, f ′(±i) = 0, and it implies that Ω has a
cusp at its boundary point ± 2

3
i and its inner angle at ± 2

3
i are 2π. Call Ω0

to be this particular domain. Note that Ω0 is not a piecewisely C2 domain
discussed in this paper. Hence we conclude that if D(p) ≤ 0 then p is a
nondegenerate critical point.

Suppose D(p) < 0. Since p is a nondegenerate critical point, there exists
a sequence of solutions uk of (1.1) with ρ = ρk such that uk blows up at
p. By Theorem 1.4, we know ρk < 8π. Thus, by the uniqueness theorem
of Suzuki, uk is the minimizer of the nonlinear functional Jρk

. Clearly, the
blowup point p must be a maximum point of γ. Now suppose that there
exists another maximum point q 6= p. If D(q) < 0, then there exists another
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sequence of solutions vk with ρk < 8π, which blows up at q. For k large, we
have vk 6= uk. Then we obtain a contradiction to the uniqueness theorem of
Suzuki. If D(q) = 0, we can perturb Ω slightly to Ω′ such that q is also a
critical point of γΩ′ and DΩ′(q) < 0. We can perturb the domain Ω by using
the conformal map. Set f(w) be the conformal mapping from the unit ball to
Ω with f(0) = q. Denote fη(w) = q +

∑∞
n≥3 anη

nwn + (a1η)w, for 0 < η < 1.
Let Ωη be the image of the unit B1 under the conformal fη. Clearly, Ωη is a
smooth domain Ωη → Ω as η → 1. By (1.16), DΩη(q) < D(q) = 0. So, we
choose Ω′ to be one of Ωη for small 1− η > 0. Note that because a2 = 0, q is
also a critical point of Ω′. Since Ω′ is a small perturbation of Ω, there exists
another critical point p′ of γΩ′ near by p such that DΩ′(p′) < 0 (because p is
a nondegenerate critical point of γΩ). Since p′ 6= q, it violates the conclusion
of the previous step. The last case is D(q) > 0. Then by the computation in

the next section, we have I8π(Ω) > 1 + supΩ̄ γ(x) + log |B1|
|Ω|

. Then I8π(Ω) can
be attained by some extremal function v. by Theorem 1.6 and the implicit
function theorem, there exists a sequence of solutions v(x; ρ) of (1.1) with
v(x; ρ) → v(x) as ρ ↑ 8π. Thus, v(x; ρk) 6= uk(x) because uk blows up at p.
This violates the uniqueness theorem for ρ < 8π. This finishes the proof of
the uniqueness of the maximum point p with D(p) < 0.

Now suppose D(p) = 0. We claim that there exists a blowup sequence
of solutions uk of (1.1) with ρk ↑ 8π such that p is the blowup point. The
claim is proved by using Theorem 1.6, the uniqueness theorem for ρ = 8π.
To see it , we can perturb the domain Ω to obtain a sequence of domains
Ωj → Ω such that for each j, p ∈ Ωj and p is a critical point of γj = γΩj

with
Dj(p) = DΩj

(p) < 0. By the previous step, we know p is the unique maximum
point of γj and for each j and any ρ ∈ [0, 8π), there exists an unique solution
uj(x; ρ) of (1.1). Since uj(x; ρ) is unique, uj(x; ρ) is smoothly depending on
the parameter ρ for each j. Since Dj(p) < 0, supΩ̄j

uj(x; ρ) → +∞ as ρ ↑ 8π
for each j and the blowup point uj(x, ρ) is p only, as ρ ↑ 8π. Thus, for any
large constant C > 0 and for any j, there exists a ρj ∈ [0, 8π) such that

sup
Ω̄j

uj(x; ρj) = C, and(5.1)

sup
B δ0

2

(p)
uj(x; ρj) = C > 2 sup

Ω̄j\Bδ0
(p)

uj(x; ρj),(5.2)

where δ0 is a small positive number such that 4δ0 < dist (p, q) for any critical
point q 6= p of γ. By passing to a subsequence of j, uj(x; ρj) uniformly
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converges to a solution u(x, C) of (1.1) with ρ(C) = limj→+∞ ρj ≤ 8π. By
the uniqueness theorem of (1.1) with ρ = 8π, equation (1.1) for Ω possesses
one solution at most. Hence if C is chosen to be large, then ρ(C) < 8π. By
letting C = k → +∞, we then construct a sequence of blowup solutions uk
of (1.1) with ρ = ρk ↑ 8π which blows up at p. By (5.2), the blowup point
of uk must be p. Hence the claim is proved. Since p is a maximum point of
γj(x), by passing to the limit, p is a maximum point of γ(x).

We remain to prove p is the unique maximum point. suppose q 6= p is
another maximum point. Then by the previous step, D(q) ≥ 0. The case
D(q) > 0 is also excluded by the same argument before. So, we assume
D(q) = 0. Then by the claim, we have two different sequence of blowup solu-
tions of (1.1) with ρ ↑ 8π. This violates Theorem 1.6 again. Hence Theorem
1.7 is proved. Q.E.D.

6 Extremal functions

Proposition 6.1. Suppose that Ω is bounded piecewisely C2 simply con-
nected domain and u(x; ρ) is the minimizer of Jρ with ρ ∈ [0, 8π). Then the
followings are equivalent.

(i) u(x; ρ) is uniformly bounded for x ∈ Ω̄ and ρ ∈ [0, 8π),

(ii) Ω is of type C, and

(iii) Equation (1.1) with ρ = 8π possesses a solution.

Proof. Obviously, (i) ⇒ (ii) and (ii) ⇒ (iii). Now suppose (1.1) possesses
a solution u for ρ = 8π. Then by Theorem 1.6 and the implicit function
theorem, for |ρ− 8π| small, equation (1.1) possesses a solution u(x; ρ) which
tends to u as ρ ↑ 8π By the uniqueness theorem, u(x; ρ) is the minimizer of
Jρ for ρ < 8π. Hence (iii) ⇒ (i) is proved.

Lemma 6.2. Let Ω be a bounded domain of R2 and p be a critical point of
γ. If D(p) > 0, then I8π(Ω) > 1 + maxΩ̄ γ(x) + log( |B1|

|Ω|
).

Proof. Let f be the conformal map from the unit ball B1 onto Ω, with
f(0) = p. For any ε > 0, we set
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vε(z) = 2 log

(

1 + ε

ε+ |z|2
)

(6.1)

for |z| < 1, and denote uε as a test function by

uε(y) = vε(f
−1(y))

for y ∈ Ω. Then

1

16π

∫

Ω
| 5 uε(y)|2dy =

1

16π

∫

B1

| 5 vε|2dz(6.2)

= 2
∫ 1

0

r3

(ε+ r2)2
dr

= log

(

1 + ε

ε

)

− 1

1 + ε

and,

∫

Ω
euε(y)dy =

∫

B1

|f ′(z)|2 (1 + ε)2

(ε+ |z|2)2
dz

= 2π

(

|a1|2
∫ 1

0

(1 + ε)2r

(ε+ r2)2
dr +

∞
∑

n=3

|an|2n2(1 + ε2)
∫ 1

0

r2n−1

(ε+ r2)2
dr

)

= π

(

|a1|2(1 + ε)

ε
+

∞
∑

n=3

n2

n− 2
|an|2 +O(ε)

)

.

Thus,

J8π(uε) = log
|B1|
|Ω| + log

(

1

π

∫

B1

|f ′(z)|2evε(z)dx

)

− log
(ε+ 1)2

ε

= log
|B1|
|Ω| + log

[

|a1|2
ε

+

(

|a1|2 +
∞
∑

n=3

n2

n− 2
|an|2

)

+O(|ε|)
]

+ log
ε

(ε+ 1)
+

1

1 + ε

= log
|B1|
|Ω| + log

[

|a1|2 +

(

∞
∑

n=3

n2

n− 2
|an|2

)

ε+O(|ε|2)
]

+1 − ε+O(ε2)

= log
|B1|
|Ω| + 1 + log |a1|2 + |a1|−2D(p)ε+O(|ε|2).
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Since γ(p) = 1
2π

log |a1|, we have

J8π(uε) = 4πγ(p) + 1 + log
|B1|
|Ω| + |a1|−2D(p)ε+O(|ε|2)

> 1 + 4πγ(p) + log
|B1|
|Ω| ,

provided that ε is sufficiently small and D(p) > 0. Q.E.D.

Now we can give proofs of Theorem 1.5 and Theorem 1.6.

Proof of Theorem 1.5. By lemma 6.2, if there is a maximum point p of
γ(x) with D(p) > 0, then I8π(Ω) > 1 + 4πmaxΩ̄ γ(x) + log |B1|

|Ω|
. Then by the

”if” part of Theorem 1.1 (which was already proved in [5,Theorem 7.1]), the
supreman of J8π can be attained.

Now suppose all the maximum points p of γ(p) satisfy D(p) ≤ 0. Then
by Theorem 1.7, there is only one unique maximum point. By Theorem 1.8,
there exists a sequence of solutions u(x; ρ) of (1.1) with ρ < 8π such that
u(x; ρ) blows up at p exactly. Then by (i) of Proposition 6.1, the supreman
of J8π can not be attained. Q.E.D.

Proof of Theorem 1.6. Now suppose that the supreman of J8π can be
attained. Then by Theorem 1.5, D(p) > 0 for all the maximum points p of

γ. Applying Lemma 6.2, we then have I8π(Ω) > 1 + 4πmaxΩ̄ γ + log |B1|
|Ω|

.
Q.E.D.

7 Final discussions

In this section, we will give several examples to interprete our theorems.
First, we would like to apply Theorem 1.5 to the domain Ω of regular n-
polygon.

Proposition 7.1. Let Ω be the regular n-polygon. Then Ω is not of type
C.

36



Proof. Let the origin be the center of Ω. Since Ω is convex, 0 is the unique
critical point of γ. By the Schwartz-Christoffel formulas, we have

f ′(z) = (1 − zn)−
2
n =

∞
∑

k=0

2
n
( 2
n

+ 1) . . . ( 2
n

+ k − 1)

k!
znk.

See [1]. Then

Dn(0) =
∞
∑

k=1

(

2
n
( 2
n

+ 1) . . . ( 2
n

+ k − 1)

k!

)2(
1

nk − 1

)

−1.

Clearly, Dn(0) ≤ D3(0). Let Ak =

(

2
3
( 2
3
+1)...( 2

3
+k−1)

k!

)2

1
3k−1

. Since Ak+1

Ak
=

1− 15k+11
9(k+1)2

≤ (k+1
k+2

)
5
3 , we have Ak ≤ C(k+1)−

5
3 for k = 2, . . ., where C = 5

27
3

2
3 .

Therefore,

D3(0) ≤ 2

9
+

5

27
3

2
3

∞
∑

k=2

(k + 1)−
5
3 − 1

=
5

18
(
3

2
)

2
3 − 7

9
< 0,

where
∑∞
k=3 k

− 5
3 ≤ 3(1

2
)

5
3 is used. By Theorem 1.5, Ω is not of type C.Q.E.D.

Now suppose Ω to be a rectangle with sides 0 < a ≤ b. Proposition 7.1
tells us that if a = b, then Ω is not of type C. On the other hand, if b

a
is

sufficiently small, then Ω is of type C. In general, we have the following result.

Proposition 7.2. There exists a constant 0 < η0 < 1 such that Ω is of type
C if and only if b

a
< η0.

Proof. Let
f ′
θ(z) = (1 − z2)−

1
2 (1 − e−2iθz2)−

1
2

for |z| < 1, where θ is a constant with 0 < θ < π
2
. By the Christoffel-

Schwartz formulas, fθ maps the unit ball onto a rectangle Ω(θ). Let a(θ) and
b(θ) denotes the two sides of Ω(θ). We claim

a(θ)

b(θ)
is an increasing function of θ.(7.1)
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Note that

a(θ) =
∫ θ

0

dϕ

|1 − e2iϕ| 12 |1 − e2i(ϕ−θ)| 12
=

1

4

∫ θ

0

dϕ
√

sinϕ sin(θ − ϕ)

=
1

4

∫ θ
2

−θ
2

dϕ
√

sin(ϕ+ θ
2
) sin( θ

2
− ϕ)

=
1

4

∫ θ
2

−θ
2

dϕ
√

sin2 θ
2
− sin2 ϕ

.

By changing the variable τ = sinϕ, we have

a(θ) =
1

4

∫ τ0

−τ0

dτ
√

(1 − τ 2)(τ 2
0 − τ 2)

=
1

4

∫ 1

−1

dτ
√

(1 − τ 2
0 τ

2)(1 − τ 2)
,

where τ0 = sin θ
2
. Obviously, a(θ) is increasing in θ.

The area of the rectangle Ω(θ) is

A(θ) =
∫

B1

dxdy

|1 − z2||1 − e−2iθz2| =
∫

B1

dxdy

|1 − z2||e2iθ − z2| .

We want to prove A(θ) is decreasing in θ. Set 0 < θ1 < θ2 ≤ π
2
, the line

L = {z = tei(θ1+θ2) | |t| ≤ 1} decomposes the unit ball into two regions Ω1

and Ω2, where e2iθ1 ∈ Ω1 and e2iθ2 ∈ Ω2. Then

A(θ1) − A(θ2)(7.2)

=
∫

B1

(|1 − z2||e2iθ1 − z2|)−1 − (|1 − z2||e2iθ2 − z2|)−1dxdy

=
1

2

∫

B1

1

|z|

{

[(1 − z)|e2iθ1 − z|]−1 − [|1 − z||e2iθ2 − z|]−1

}

dxdy

=
1

2

∫

Ω1

|z|−1(|1 − z|)−1

{

(|e2iθ1 − z|)−1 − (|e2iθ2 − z|)−1

}

dxdy

−1

2

∫

Ω2

|z|−1(|1 − z|)−1

{

|e2iθ2 − z|)−1 − (|e2iθ1 − z|)−1

}

dxdy.

Let z∗ be the reflection point of z with respect to the line L. Then

|e2iθ2 − z| = |e2iθ1 − z∗|, and,

|e2iθ1 − z| = |e2iθ2 − z∗|
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for z ∈ Ω2. Therefore

A(θ1) − A(θ2)

=
1

2

∫

Ω1

1

|z|

{

1

|1 − z| −
1

|1 − z∗|

}{

(|e2iθ1 − z|)−1 − (|e2iθ2 − z|)−1

}

dxdy > 0,

where 1 ∈ Ω1 and |1 − z| < 1 − |z∗| for z ∈ Ω1.

Write a(θ)
b(θ)

= a2(θ)
A(θ)

. Then (7.1) is proved. Obviously, limθ→π
2

a(θ)
b(θ)

= 1 and

limθ→0
a(θ)
b(θ)

= 0.
Set

D(θ) =
∫

B1

(

|f ′
θ(z)|2
|z|4 − 1

|z|4
)

dxdy −
∫

Bc
1

1

|z|4dxdy

For 0 < θ1 < θ2, we have

D(θ1)−D(θ2) =
∫

B1

1

|z|4
{

(|1− z2||e2iθ1 − z2|)−1− (|1− z2||e2iθ2 − z2|)−1dxdy.

By using the same argument of (7.2), we can prove D(θ1) > D(θ2). Hence
D(θ) is decreasing in θ. For θ = π

2
, Ω(π

2
) is a cube. Hence D(π

2
) < 0. On

the other hand, it is known that D(θ) > 0 if θ is small. Therefore, there

exists θ0 ∈ (0, π
2
) such that D(θ) > 0 if and only if θ < θ0. Let η0 = a(θ0)

b(θ0)
.

Proposition 7.2 follows readily from Theorem 1.5. Q.E.D.

Next, we consider the domain Ωh to be a dumbell which consists of two
disjoint balls B1 and B2 connected with a tube of small width h > 0. Let
r1 ≤ r2 be the radius of B1 and B2 respectively.

Proposition 7.3. Let Ωh be the domain described above.

(i) If r1 < r2, then for small h > 0, Ωh is not of type C, and

(ii) If r1 = r2 and Ωh is assumed to be symmetric with respect to x2-axis,
then Ωh is of type C.

Proof. Let p1 and p2 are the center of B1 and B2 respectively. Gh and
γh denote the Green function and the regular part of Gh. Obviously, γh(x)
converges to the regular part of B1 (and of B2) uniformly in any compact set
x of B1 (and of B2). Thus, there exists a local maximum of γh at p1,h and
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p2,h with limh→0 pi,h = pi for i = 1, 2. We use the formulas (1.12), instead of
the series sum (1.16), to compute D(pi,h) for i = 1, 2. For example at p1,h,
the associated function Hh converges to

H(y, 0) =
{

0 if y ∈ B1

r−4
1 |y − p1|4 − 1 if y ∈ B2

as h ↓ 0. Thus,

∫

B1∪B2

H(y, 0)

|y − p1|4
dy −

∫

(B1∪B2)c

dy

|y − p1|4
= πr−4

1 r2
2 −

∫

Bc
1

dy

|y − p1|4
= π(r2

2 − r2
1)r

−4
1 > 0.

Hence D(p1,h) > 0 for Ωh. Similarly, we can compute

lim
h↓0

D(p2,h) = π(r2
1 − r2

2)r
−4
2 < 0.

By Theorem 1.5, p2,h must be the maximum point and Ωh is not of type C
provided that h is sufficiently small. This proves (i).

For r2 = r1, the shape of the connection tube might affect the type of
domains. We consider only the symmetric one. Obviously, p2,h and p1,h are
the maximum points of γh for small h where p1,h and p2,h tends to the centers
of B1 and B2 respectively as h ↓ 0. Since those maximum point p of γ with
D(p) ≤ 0 is unique, we see D(p1,h) = D(p2,h) must be positive. By Theorem
1.5, Ωh is of type C. This proves (ii). Q.E.D.

In this paper, we have already seen that Theorem 1.6 plays an impor-
tant role. In general, we do not expect it holds for non-simply connected
domains. Nevertheless, it still holds for an annulus domain. Note for the
domain Ωa = {x | a < |x| < 1}. We have proved that I8π(Ωa) is attained by
some extremal functions. See [10].

Proposition 7.4. Let Ωa = {x | a < |x| < 1}. Then any solution u of
(1.1) is radially symmetric for any β ∈ (0, 8π]. Moreover, the solution is
unique.
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Proof. Set ϕ(x) = ∂u
∂θ

. Then ϕ satisfies

{

∆ϕ+ ρeuϕ
∫

Ωa
eudx

= 0 in Ωa,

ϕ = 0 on ∂Ωa.

If ρ ≤ 8π, we will apply the isoperimatic inequality to show that ϕ ≡ 0.
Assume ϕ 6≡ 0. Our proof is based on the simple observation: for any
r ∈ (a, 1), there exists at least two zeros of ϕ on the cricle {x | |x| = r}. Thus
{ϕ = 0} must intersect with each connected component of the boundary ∂Ωa

and ϕ has at least two critical points. Now suppose that ϕ has a critical point
at some point p ∈ {ϕ = 0}, then by the simple geometry of the plane, the
nodal line {ϕ = 0} must enclose two simply connected domains. Then we can
follows the symmetrization argument of Lemma 4.3 to obtain a contradiction
if ρ ≤ 8π. This proves ϕ ≡ 0 and then u must be radially symmetric. The
uniqueness of radial solution (1.1) for any β ∈ R has been proved in [5].
Q.E.D.
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