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Abstract. In this note we study some conformal invariants of a Riemannanian
manifold (Mn, g) equipped with a smooth measure m. In particular, we show that
there is a natural definition of the Ricci and scalar curvatures associated to such
a space, both of which are conformally invariant. We also adapt the methods of
Fefferman-Graham [3] and Graham-Jenne-Mason-Sparling [5] to construct families
of conformally covariant operators defined on these spaces. Certain variational
problems in this setting are considered, including a generalization of the Einstein-
Hilbert action.

1. Introduction

By a Riemannian measure space (or RM-space) we will mean a triple (Mn, g,m)
consisting of a smooth oriented manifold Mn, a Riemannian metric g, and a smooth
measure m defined on Mn. In this paper we introduce some conformal invariants of an
RM -space; that is, local quantities which depend on g and m but which are insensitive
to conformal changes of the metric. In particular, we define conformally invariant no-
tions of the Riemannian, Ricci, and scalar curvature associated to (Mn, g,m). When
m is the Riemannian measure of g the conformally invariant curvatures agree with
their classical counterparts (see Section 2).

The dependence of our invariants on the measure m is mediated by the density
function f , defined by

dm = e−fdV ol(g).(1.1)

In particular the conformally invariant curvatures are local expressions in g and f .
For example, the conformally invariant scalar curvature is defined by

Rm
n (g) = R(g) +

2(n− 1)

n
∆gf −

(n− 1)(n− 2)

n2
|∇f |2,

where R(g) is the scalar curvature of g. It is invariant in the sense that Rm
n (e2wg) =

e−2wRm
n (g).

Geometric quantities associated a metric and measure are of course not new, and
go back at least to the work of Bakry-Emery [1], who introduced a notion of the
Ricci curvature in this setting. In Perelman’s recent work on the Ricci flow ([14]) he
defined the scalar curvature associated to the BE-Ricci tensor. Previosuly, Gromov
[6] defined a notion of mean curvature in the presence of a measure. This was recently
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expanded on by Morgan [11], who considered generalized isoperimetric inequalities.
The work of Perelman, Lott ([8], [9]), and Lott-Villani ([10]) have amply demonstrated
the importance of metric/measure spaces in various mathematical contexts, from the
Ricci flow to optimal transport to collapsing theory.

As we explain below, the Ricci curvature of Bakry-Emery and the associated scalar
curvature defined by Perelman can be viewed as the infinite-dimensional versions of
the conformally invariant Ricci and scalar curvature:

lim
n→∞

Rm
n (g) = Rm(g),

where Rm(g) is the scalar curvature introduced by Perelman. The meaning of this
formula is described in Section 4.

The diffeomorphism group D of the manifold acts on an RM -space via pull-back:
ϕ ∈ D =⇒ ϕ∗(Mn, g,m) = (Mn, ϕ∗g, ϕ∗m). This action gives rise to a notion of RM-
invariance: a quantity q = q(g,m) is an RM-invariant if q(ϕ∗g, ϕ∗m) = ϕ∗q(g,m).
The conformally invariant curvatures are RM -invariants, as are the Ricci curvature
of Bakry-Emery and the scalar curvature of Perelman. However, if we allow D to
act on the metric alone (keeping the measure m fixed), then in general q(ϕ∗g,m) 6=
ϕ∗q(g,m). This dependence on the diffeo-class of a metric is in stark contrast to the
Riemannian setting, and has some interesting consequences.

We also make some preliminary observations about the variational theory of the
conformally invariant curvature. For example, we introduce a generalization of the
Einstein-Hilbert action, defined by

Sm(g) =

∫

Rm
n (g)e−

(n−2)
n

f dV ol(g).

Viewed as a functional on the space of metrics (with m fixed), critical points of Sm

are conformal to an Einstein metric. Though Sm is conformally invariant, it is not
invariant under pull-backs of the metric by a diffeomorphism. This fact naturally
leads to the constrained problem of restricting Sm to the orbit of g under the action
of D. Somewhat surprisingly, this is intimately related to the Yamabe problem.

In subsequent papers we will provide detailed proofs of the results announced below.
We will also present some geometric applications of these ideas, and give a more
systematic treatment of the conformal invariants of RM -spaces by the methods of
Fefferman-Graham [3].

Acknowledgements. The authors are indebted to the referees for several excellent
suggestions. The first and third author would also like to thank Robin Graham for
an informative discussion about the ambient metric construction.

2. Conformally invariant curvatures

Let (Mn, g) be a Riemannian manifold of dimension n ≥ 2. We denote the Ricci
tensor by Ric(g), the scalar curvature by R(g), and the volume form by dV ol(g).
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Given a measure m, we define the density function f by

dm = e−fdV ol(g).(2.1)

That is, f is the logarithm of the Radon-Nikodym derivative of dV ol(g) with respect
to dm.

Consider a conformal change of metric ĝ = e2wg. Let f̂ denote the density function
associated to ĝ; i.e.,

dm = e−f̂dV ol(ĝ).(2.2)

Since dV ol(ĝ) = enw dV ol(g), it follows that

f̂ = f + nw.(2.3)

In particular, if we define gm = e−(2/n)fg, then for this conformal metric we have

dm = dV ol(gm),

f̂ = 0.
(2.4)

We call gm the canonical base metric in [g]. It is obviously the unique metric in [g]
with the properties (2.4).

We now introduce conformally invariant versions of the curvature associated to an
RM -space (Mn, g,m). There are several possible approaches to this, which differ
only by perspective. The first is perhaps the least elegant, but we include it for two
reasons: it shows why the existence of these invariants is a non-trivial fact, and it
gives some insight into our initial approach to their construction.

The approach begins with a simple question: Does there exist a tensor with the
same structure as the BE-Ricci tensor (or the scalar curvature of Perelman–linear in
the second derivatives of f , quadratic in the first), but with the additional property
of conformal invariance? The answer is ’yes’, and the formula for such a tensor is
given by the following Proposition:

Proposition 2.1. Let λ be any real number. Then the tensor

T = T (g) = Ric(g) + (
n− 2

n
)∇2

gf +
1

n
(∆gf)g + (

n− 2

n2
)df ⊗ df −

(n− 2)

n2
|∇f |2g

+ λ
[

R(g) +
2(n− 1)

n
∆gf −

(n− 1)(n− 2)

n2
|∇f |2

]

g

(2.5)

is a pointwise conformal invariant. More precisely,

ĝ = e2wg =⇒ T (ĝ) = T (g).(2.6)

Proof. To prove (2.5), and to understand why the existence of T is somewhat surpris-
ing, we begin by considering a tensor of the form

T = T (g) = Ric(g) + c1R(g)g + c2∇
2f + c3(∆gf)g + c4df ⊗ df + c5|∇f |

2g,(2.7)
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where c1, . . . , c5 are arbitrary constants. Using the formulas for the curvature, Hes-
sian, and laplacian under a conformal change of metric (see [2], p. 58), and the
identity (2.3), we want to find c1, . . . , c5 so that

T (ĝ) = T (g).(2.8)

It turns out that the condition (2.8) imposes six linear equations on the five unknowns
c1, . . . , c5, raising the possibility that the system could be over-determined. Surpris-
ingly, this system turns out to be under-determined: if we let λ = c1 be the free
parameter and solve for the remaining constants in terms of c1, we get (2.5). �

In view of (2.5) it is natural to make the following two definitions:

Definition 2.1. Let (Mn, g,m) be an RM-space. The conformally invariant Ricci
curvature of (Mn, g,m) is the symmetric (0, 2)-tensor

Ricmn (g) = Ric(g) + (
n− 2

n
)∇2

gf +
1

n
(∆gf)g + (

n− 2

n2
)df ⊗ df −

(n− 2)

n2
|∇f |2g,

(2.9)

where f is given by (2.1).

Definition 2.2. Let (Mn, g,m) be an RM-space. The conformally invariant scalar
curvature is the trace of Ricmn ; i.e., the function

Rm
n (g) = R(g) +

2(n− 1)

n
∆gf −

(n− 1)(n− 2)

n2
|∇f |2,(2.10)

where f is given by (2.1).

By Proposition 2.1, the conformally invariant Ricci and scalar curvatures satisfy
the following identities:

ĝ = e2wg =⇒ Ricmn (ĝ) = Ricmn (g),(2.11)

ĝ = e2wg =⇒ Rm
n (ĝ) = e−2wRm

n (g).(2.12)

It follows from the proof of Proposition 2.1 that Ricm
n is the unique tensor of the form

(2.7) which is conformally invariant and which reduces to the usual Ricci tensor when
f ≡ 0. A similar uniqueness statement holds for Rm

n .
Because the scaling properties of Ricmn and Rm

n differ, it will be convenient to define
a scale-invariant version of Rm

n . To this end we define

τm(g) = e
2
n

fRm
n (g).(2.13)

From (2.3) and (2.12) we see that

τm(e2wg) = τm(g).(2.14)

It is clear from the definitions that for any metric g,

RicdV ol(g)
n (g) = Ric(g),

RdV ol(g)
n (g) = R(g),

τ dV ol(g)(g) = R(g).

(2.15)
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In particular, for the canonical base metric we have

Ricmn (gm) = Ric(gm),

Rm
n (gm) = R(gm),

τm(gm) = R(gm).

(2.16)

The connection between the scalar curvature and the conformal laplacian suggests
a different construction for Rm

n and τm. To explain this, it will be helpful if we use
different notation. If we write the density function as

dm = envdV ol(g),(2.17)

then

Rm
n (g) = −c−1

n e−
n−2

2
vLg(e

n−2
2

v), τm(g) = −c−1
n e

n+2
2

vLg(e
n−2

2
v),(2.18)

where cn = (n−2)
4(n−1)

and Lg = ∆g − cnR(g) is the conformal laplacian. The conformal

invariance of Rm
n and τm can be seen as a consequence of the conformal invariance of

L. Let ĝ = e2wg; since

dm = env̂dV ol(ĝ) = env̂enwdV ol(g),

it follows that the density functions associated associated to g and ĝ are related by

v̂ = v − w.(2.19)

Then, for example,

Rm
n (ĝ) = −c−1

n e−
n−2

2
v̂Lĝ(e

n−2
2

v̂)

= −c−1
n e−

n−2
2

(v−w)Le2wg(e
n−2

2
(v−w))

= −c−1
n e−

n−2
2

ve
n−2

2
we−

n+2
2

wLg(e
n−2

2
we

n−2
2

(v−w))

= −c−1
n e−2we−

n−2
2

vLg(e
n−2

2
v)

= e−2wRm
n (g).

This approach can be generalized to other curvatures.
Finally, following a suggestion of the referee, we present a simple method for con-

structing general conformal invariants of an RM -space. Let I = I(g) be a Riemannian
invariant (scalar curvature, Ricci curvature, etc.). Suppose we wish to construct its
conformally invariant counterpart I(g, f), in the sense that we want I(g, 0) = I(g)

and I(ĝ, f̂) = I(g, f) for any conformal metric ĝ ∈ [g]. If we define

I(g, f) = I(e−(2/n)fg)

= I(gm),
(2.20)

where gm is the canonical base metric in [g], it is clear from (2.3) that I satisfies the
desired properties. Indeed, it follows that this is the unique such invariant satisfying
these conditions.
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At first glance it is difficult to see why the conformally invariant notions of Ricci
and scalar should be natural to consider, aside from the transformation laws (2.11)-
(2.12). However, we shall see that some important properties of the usual Ricci and
scalar curvatures are retained by their conformally invariant counterparts.

Proposition 2.2. Let (Mn, g,m) be an RM-space.

(i) If Ricmn (g) > 0 (respectively, ≥ 0, = 0, ≤ 0, < 0), then [g] contains a metric
whose Ricci curvature is positive (resp., non-negative, zero, non-positive, negative).

(ii) If Rm
n (g) > 0 (resp., ≥ 0, = 0, ≤ 0, < 0), then [g] contains a metric whose scalar

curvature is positive (resp., non-negative, zero, non-positive, negative).

Proof. Both statements are immediate consequences of (2.16). �

The converse of Proposition 2.2 is false. For example, suppose we are given a metric
g of positive Ricci curvature; then it is easy to construct a measure m so that Ricm

n (g)
has negative eigenvalues on an open set.

2.1. The Einstein condition. Finally, let us define

Em
n (g) = Ricmn (g) −

1

n
Rm

n (g)g

= Ric(g) −
1

n
R(g)g + (

n− 2

n
)∇2

gf − (
n− 2

n2
)(∆gf)g

+ (
n− 2

n2
)df ⊗ df − (

n− 2

n3
)|∇f |2g,

(2.21)

the trace-free conformally invariant Ricci curvature. Obviously Em
n enjoys the same

invariance properties as Ricmn . In the same way that the sign of the conformally
invariant Ricci curvature detects the existence of a conformal metric with the same
sign, the tensor Em

n detects the existence of a conformal Einstein metric:

Proposition 2.3. Let (Mn, g) be a smooth Riemannian manifold of dimension n ≥ 3.

(i) If m is a measure for which Em
n (g) = 0, then [g] contains an Einstein metric,

namely, the canonical base metric.

(ii) If g is an Einstein metric and m is a measure for which Em
n (g) = 0, then either

dm = λdV ol(g) for some constant λ > 0, or (Mn, g) is homothetically isometric
to (Sn, gc), where gc denotes the round metric, and dm = λϕ∗dV ol(gc) for some
conformal map ϕ and constant λ > 0.

The proof of part (ii) follows from Obata’s uniqueness theorem for conformally
Einstein metrics of constant scalar curvature (see [13]).

One consequence of the classical second Bianchi identity is that the scalar curvature
of an Einstein metric must be constant. An analogous result holds in the setting of
RM -spaces: an RM -space with n ≥ 3 and Em

n (g) = 0 has constant τm-curvature.
Note that the condition τm(g) = const. is conformally invariant, while by (2.12) the
condition Rm

n (g) = const. is not.
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3. Conformally covariant operators on RM-spaces

Using the constructions of Fefferman-Graham [3] and Graham-Jenne-Mason-Sparling
[5] one may construct families of conformally covariant differential operators associ-
ated to an RM -space. Moreover, the conformally invariant scalar and Ricci arise
naturally in these constructions.

Let (Mn, g) be a Riemannian manifold of dimension n ≥ 2. A metrically defined
differential operator A = Ag is said to be conformally covariant of bi-degree (a, b) if
it obeys the following transformation under a conformal change of metric ĝ = e2wg:

Aĝ(ψ) = e−bwAg(e
awψ)(3.1)

for some constants a, b and all ψ ∈ C∞(Mn). For example, when n = 2, Ag = ∆g

is conformally covariant with a = 0 and b = 2. More generally, when n ≥ 3 the

conformal laplacian Ag = Lg = ∆g −
(n−2)
4(n−1)

R(g) is conformally covariant with a =

(n− 2)/2 and b = (n+ 2)/2.
In [5], Graham-Jenne-Mason-Sparling constructed conformally covariant operators

Pk for all positive integers k when n is odd, and for 1 ≤ k ≤ n/2 when n is even, with
a = (n− 2k)/2 and b = (n + 2k)/2. The principal part of Pk is given by (∆)k; when
k = 1 then P1 is just the conformal laplacian. These operators were derived from the
ambient metric construction of Fefferman-Graham which is briefly described below.
Given an RM -space (Mn, g,m), we can modify the method of [5] to derive a family
of operators Am

g satisfying

ĝ = e2wg =⇒ Am
ĝ (ψ) = e−bwAm

g (eawψ),(3.2)

for some constants a, b and all ψ ∈ C∞(Mn).

Theorem 3.1. Let (Mn, g,m) be an RM-space with n ≥ 3. Let k be a positive
integer; if n is even we assume in addition that 1 ≤ k ≤ n/2. For α ∈ R, denote
βk(α) = (nα− n+ 2k)/2. Then, given any α ∈ R there is an operator Pm

α,k satisfying
(3.2) with a = −βk(α) and b = 2k − βk(α), the leading term of which is given by

Pm
α,k =

(

∆g − α〈∇f,∇ · 〉)k + · · ·

When α = 0 the operator Pm
α,k coincides with Pk. For k = 1 we have the formula

Pm
α,k(ψ) = ∆gψ − α〈∇f,∇ψ〉 +

nα− n+ 2

2(n− 2)

(

α∆gf +
nα + n− 2

2(n− 1)
R(g)

)

ψ.(3.3)

As in [5], our operators are constructed by an inductive algorithm; when k becomes
large the formulas become increasingly complicated. In fact, Graham-Jenne-Mason-
Sparling presented two (equivalent) ways of deriving their operators. We will briefly
describe one of their methods, indicating the modifications necessary to produce the
measure-dependent operators Pm

α,k.

To begin, given a Riemannian manifold (Mn, g), let G ⊂ S2T ∗Mn denote the ray
bundle consisting of metrics in the conformal class of g. Fixing a representative
g ∈ [g] determines a fiber variable t on G, by writing a general point in G in the form
(x, t2g(x)). If {xi} are local coordinates on Mn, the coordinate system (t, xi) on G
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extends to a coordinate system (t, xi, ρ) on G̃ = G × (−1, 1), where ρ is a defining
function for G, homogeneous of degree 0 (see [3] for details). Using these coordinates

we can define the ambient metric g̃ on G̃ by

g̃ = 2ρdt2 + 2tdt dρ+ t2gij(x, ρ)dx
idxj,(3.4)

where gij(x, 0) = gij(x) is the given representative of [g]. For ρ 6= 0 the Taylor
expansion of gij(x, ρ) is determined by formally solving the Einstein equation

Ric(g̃) = 0.

Let δs : G → G denote the dilations δs(g) = s2g, with s > 0. Functions on G which
are homogeneous of degree β with respect to δs are known as conformal densities of
weight β. Given a density φ of weight β, consider the problem of extending φ to a
harmonic function on G̃ with the same homogeneity. That is, we want to find the
formal power series solution of

∆̃(tβφ) = 0.(3.5)

The operators of [5] arise as the obstruction to formally solving (3.5) with β + 1
2
n =

k = 1, 2, 3, . . .
Given an RM -space (Mn, g,m) we can also construct the ambient metric g̃, but

we need to extend the density function f associated to m as well.

Lemma 3.1. Let (Mn, g,m) be a Riemannian measure space with dm = e−fdV ol(g).
Let k be a positive integer; if n is even we assume in addition that 1 ≤ k ≤ n/2.

Then there is an extension f̃ : G̃ → R with f̃(t, x, ρ) = f(x, ρ) + n log t, such that

f(x, 0) = f(x) for all x ∈Mn, and f̃ satisfies

∆̃f̃ = O(ρk)

near G on G̃.

To derive the operators Pm
α,k we replace (3.5) with

∆̃(tβφ) − α〈∇̃f̃ , ∇̃(tβφ)〉 = 0.(3.6)

Again, the operators arise as the obstruction to writing a formal power series solution
of (3.6).

Remarks.

(1) The conformally invariant curvatures can also be defined in terms of the ex-

tension f̃ . For example, Rm
n (g) is given by

Rm
n (g) = −

(n− 1)(n− 2)

n2
|∇̃f̃ |2

∣

∣

∣

Mn
.(3.7)

(2) The referee pointed out another possible construction of conformally covariant
operators on RM -spaces, by using the operators Pk of [5]. Letting

Gm
α,k(φ) = e

αf

2 Pk(e
−

αf

2 φ),
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it is easy to see that these operators satisfy the same conformal covariance as
the operators Pm

α,k in Theorem 3.1. Interestingly, in general Gm
α,k and Pm

α,k do
not agree. For example, when k = 1 they differ by a multiple Cα,n of Rm

n (g).

4. Relation to the curvatures of Bakry-Emery and Perelman

There is a surprising relationship between the conformally invariant Ricci and scalar
curvatures, and the curvatures defined by Bakry-Emery [1] and Perelman [14]. To
recall the definition of these latter invariants, once again we let (Mn, g,m) denote an
RM -space, and let f be defined by (2.1):

dm = e−fdV ol(g).

The Bakry-Emery Ricci curvature is defined by

Ricm(g) = Ric(g) + ∇2
gf.(4.1)

Later, Perelman introduced a notion of the scalar curvature associated to the BE-
Ricci tensor:

Rm(g) = R(g) + 2∆f − |∇f |2.(4.2)

In particular, Rm is not the trace of Ricm. The definition of Ricm arose in the analysis
of infinite-dimensional diffusion processes. Subsequently Perelman pointed out the
interpretation of both Ricm and Rm as the curvature terms in various ”weighted”
Weitzenböck formulas (see [14], [8]).

As we now explain, these quantities can also be viewed as the infinite-dimensional
limit of their conformally invariant counterparts. Arguing informally, notice if we
let the dimension n → ∞ in the formula (2.9), in the limit we obtain the BE-Ricci
curvature:

lim
n→∞

Ricmn (g) ” = ” Ric(g) + ∇2
gf

= Ricm(g).

Similarly, letting n→ ∞ in the definition of Rm
n gives the scalar curvature defined by

Perelman:

lim
n→∞

Rm
n (g) ” = ” R(g) + 2∆gf − |∇f |2

= Rm(g).

In these formulas we used quotation marks to emphasize the fact that the process of
letting the dimension go to infinity is not meant to be taken literally. However, we
can make these formal observations more concrete by a routine construction.

Let (Td−n, ds2) denote the flat (d−n)-dimensional torus, and consider the product
manifold Nd = Mn × Td−n with the product metric h = g + ds2. To define the
conformally invariant Ricci and scalar curvatures on N d we need to define a measure,
so we take the product measure dµ = dm×dV ol(ds2). Note that if dm = e−fdV ol(g)
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and dµ = e−f̃dV ol(h), it follows that f̃ = f . Therefore, given tangent vectors X, Y ∈
TMn, if we denote their lift to TN d also by X, Y , then by the definition of Ricmn

lim
d→∞

Ricµd(h)(X, Y ) = lim
d→∞

{

Ric(h)(X, Y ) + (
d− 2

d
)∇2

hf̃(X, Y ) +
1

d
(∆hf̃)h(X, Y )

+ (
d− 2

d2
)(df̃ ⊗ df̃)(X, Y ) −

(d− 2)

d2
|∇f̃ |2h(X, Y )

}

= lim
d→∞

{

Ric(g)(X, Y ) + (
d− 2

d
)∇2

gf(X, Y ) +
1

d
(∆gf)g(X, Y )

+ (
d− 2

d2
)df(X)df(Y ) −

(d− 2)

d2
|∇f |2g(X, Y )

}

= Ric(g)(X, Y ) + ∇2f(X, Y )

= Ricm(g)(X, Y ).

Similarly,

lim
d→∞

Rm
d (h) = Rm(g).

Remark. This interpretation of the BE-Ricci tensor and the scalar curvature as
infinite-dimensional limits of conformal invariants can be used to define the notion of
the full curvature tensor associated tom. The details will be provided in a forthcoming
paper.

5. D-actions on RM-spaces

As we noted in the introduction, the diffeomorphism group D of the manifold acts
on an RM -space (Mn, g,m) by pull-back:

ϕ∗(Mn, g,m) = (Mn, ϕ∗g, ϕ∗m).(5.1)

This leads to a natural notion of invariance:

Definition 5.1. A covariant tensor field T = T (g,m) on Mn is a local RM-invariant
if for every diffeomorphism ϕ : Mn →Mn,

T (ϕ∗g, ϕ∗m) = ϕ∗T (g,m).(5.2)

What are examples of local RM -invariants? The first and most important is the
density function f , along with its covariant derivatives. Consequently, the conformally
invariant curvatures Ricmn , R

m
n , and τm are all RM -invariants, as well as the BE Ricci

tensor Ricm and the scalar curvature Rm of Perelman.
In certain problems we want to restrict the action of the diffeomorphism to the

metric alone, leaving the measure fixed. Using (5.2), it is easy to see the effect of
such an action: If T = T (g,m) is a local RM -invariant, then for any ϕ ∈ D

T (ϕ∗g,m) = ϕ∗T (g, (ϕ−1)∗m).(5.3)
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There are two ways of interpreting this formula. One is to view pull-backs of the
metric as determining a change in the measure, m 7→ (ϕ−1)∗m. By a Theorem of
Moser, this is actually an equivalence; that is, all measures can be realized in this
manner:

Proposition 5.1. Let (Mn, g,m) be an RM-space and T = T (g,m) a local RM-
invariant. Given a measure µ with the same total mass, there is a diffeomorphism
ϕ ∈ D with

T (ϕ∗g,m) = ϕ∗T (g, µ).(5.4)

Conversely, given a diffeomorphism ϕ ∈ D, there is a measure µ (with the same total
mass) satisfying (5.4).

Proof. Since µ and m have the same total mass, By Moser’s theorem [12] there is a
diffeomorphism ϕ ∈ D such that µ = (ϕ−1)∗m. Therefore, (5.4) follows from (5.3).

The converse is obvious; just take µ = (ϕ−1)∗m. �

Another interpretation of (5.3) comes from comparing the conformally invariant
curvatures with their classical counterparts. The Ricci curvature of a Riemannian
metric is not conformally invariant, but is invariant under pull-back of the metric
by a diffeomorphism. The reverse is true for Ricm

n ; moreover, this ”exchange of
invariance” actually has a precise description:

Proposition 5.2. Let (Mn, g,m) be an RM-space.

(i) Given ĝ ∈ [g], there is a diffeomorphism ϕ ∈ D such that

Ric(ϕ∗ĝ) = Ricmn (ϕ∗g).(5.5)

Conversely, given a diffeomorphism ϕ ∈ D, there is a conformal metric ĝ ∈ [g]
such that (5.5) holds.

(ii) A similar statement holds for τm : Given ĝ ∈ [g], there is a diffeomorphism ϕ ∈ D
such that

R(ϕ∗ĝ) = τm(ϕ∗g).(5.6)

Conversely, given a diffeomorphism ϕ ∈ D, there is a conformal metric ĝ ∈ [g]
such that (5.6) holds.

An analogous result holds for the conformally invariant scalar curvature Rm
n , but

one needs to take into account the scaling.

6. Variational formulas

Let M = M(Mn) denote the space of Riemannian metrics on Mn, and P the
space of all probability measures. An RM -functional is a (differentiable) mapping
F : M×P → R which is invariant under the action of D in (5.2):

F(ϕ∗g, ϕ∗m) = F(g,m).(6.1)
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The basic example of an RM -functional is the integral of a scalar local RM -
invariant q = q(g,m):

F(g,m) =

∫

q(g,m) dV ol(g).(6.2)

Of particular interest is the case where q is an expression involving the conformally
invariant curvature.

As in the previous section, we will also be interested in the problem of fixing a
measure m while varying the metric:

Fm(·) = F(·, m).(6.3)

A constrained version of this problem arises from restricting Fm to the orbit of the
metric g under the action of D.

6.1. The total τm-curvature. Many classical variational problems from differential
geometry and mathematical physics have counterparts in the setting of RM -spaces.
For example, one can consider the RM -functional generalizing the total scalar curva-
ture:

Sm(g) =

∫

Rm
n (g) dνn

=

∫

τm(g) dm,

(6.4)

where dνn = e−
(n−2)

n
fdV ol(g). When n = 2 then (6.4) reduces to the Gauss-Bonnet

integral.
To study the variational properties of Sm, we fix a measure m ∈ P and view Sm as

a functional on the space of Riemannian metrics. As we shall see, the parallels with
the total scalar curvature are considerable. We begin with a first variation calculation:

Theorem 6.1. (i) Sm is conformally invariant:

Sm(e2wg) = Sm(g).

(ii) The L2(dνn)-gradient of Sm is (minus) the conformally invariant trace-free Ricci
tensor: i.e.,

Sm(g)′h =
d

dt

∣

∣

∣

t=0
Sm(g + th)

=

∫

−〈h,Em
n (g)〉 dνn.

(6.5)

In particular, a metric g is critical for Sm if and only if it is conformal to an Einstein
metric.

There is a well known mini-max scheme associated to the total scalar curvature
functional, in which one minimizes in each conformal class (the Yamabe problem)
then maximizes over all conformal classes (see [15]). There is an analogous mini-
max scheme for Sm, but due to its conformal invariance it is clear that the Yamabe
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problem (i.e., the ”mini-” part) needs to be modified. Since Proposition 5.2 showed
that conformal deformations of the scalar curvature are equivalent to deformations of
τm under pull-back, apparently the appropriate replacement for ”conformal class” is
”diffeomorphism class”; that is, one should consider

σ(Mn, m) ≡ sup
g∈M

inf
ϕ∈D

Sm(ϕ∗g).(6.6)

As the next result shows, this value turns out to be the same as the σ-constant defined
by the scalar curvature:

σ(Mn) = sup
g∈M

Y (Mn, [g]),(6.7)

where Y (Mn, [g]) denotes the Yamabe invariant of the conformal class of g.

Theorem 6.2. Let (Mn, g,m) be a Riemannian measure space, where for simplicity
we assume m is a probability measure. Then

inf
ϕ∈D

Sm(ϕ∗g) = Y (Mn, [g]).(6.8)

In particular, we have

σ(Mn, m) = σ(Mn),(6.9)

independent of the measure m.
Moreover, the infimum on the left-hand side of (6.8) is attained by a diffeomorphism

ϕ0 ∈ D if and only if there is a conformal metric which attains the Yamabe invariant.

Like the Yamabe problem, critical points of the constrained problem satisfy a scalar
equation:

Proposition 6.1. The metric g is critical for Sm
∣

∣

D(g)
if and only if τm(g) = const.

The proof of Proposition 6.1 relies on the fact that the formal tangent space to
D(g) is given by Lie derivatives of the metric with respect to smooth vector fields.
Consequently, it is natural to introduce a linear functional Gm(g) : X(Mn) → R,
where X(Mn) denotes the Lie algebra of vector fields on Mn:

Gm(g)(X) =

∫

Xτm(g) dm.(6.10)

This is the obvious extension of the Futaki invariant from Kähler geometry [4], or the
Kazadan-Warner integral from conformal geometry [7].

Proposition 6.2. (i) The functional Gm(g) is conformally invariant: if ĝ = e2wg,
then

Gm(ĝ) = Gm(g).

(ii) If X is a conformal Killing vector field, then Gm(g)(X) = 0.

(iii) If Em
n (g) = 0, then Gm(g) = 0. In particular, unless Gm(g) ≡ 0 for some measure

m, the conformal class of g does not contain an Einstein metric.
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