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Abstract. In this paper we study Riemannanian manifolds (Mn, g) equipped with
a smooth measure m. In particular, we show that Riemannian invariants of (Mn, g)
give rise to conformal densities of the Riemannian measure space (Mn, g,m). This
leads to a natural definition of the Ricci and scalar curvatures of RM -spaces, both of
which are conformally invariant. We also study some natural variational integrals.

1. Introduction

By a Riemannian measure space (or RM -space) we will mean a triple (Mn, g, m)
consisting of a smooth oriented manifold Mn, a Riemannian metric g, and a smooth
measure m defined on Mn. In this paper we show that every Riemannian invariant of
(Mn, g) gives rise to a conformal density of the RM -space (Mn, g, m). In particular,
we define conformally invariant notions of the Riemannian, Ricci, and scalar curvature
associated to (Mn, g, m). When m is the Riemannian measure of g the conformally
invariant curvatures agree with their classical counterparts (see Section 3).

In the Riemannian setting, the construction of conformal invariants is an important
problem with connections to many fields in mathematics and physics; see the articles
of Fefferman-Graham ([FG85], [FG02]) and Graham-Hirachi ([GH05]), for example.
As we shall see, the additional structure of a measure gives rise to many conformal
invariants which are not, in general, Riemannian invariants.

The dependence of our invariants on the measure m is mediated by the density
function f , defined by

dm = e−fdV ol(g).(1.1)

In particular the conformally invariant curvatures are local expressions in g and f .
For example, the conformally invariant scalar curvature is defined by

Rm
n (g) = e−

2
n

fR(e−
2
n

fg)

= R(g) +
2(n− 1)

n
∆gf − (n− 1)(n− 2)

n2
|∇f |2,

where R(g) is the scalar curvature of g. It is invariant in the sense that Rm
n (e2wg) =

e−2wRm
n (g).

Geometric quantities associated a metric and measure are of course not new, and
go back at least to the work of Bakry-Émery [BE85], who introduced a notion of the
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Ricci curvature in this setting. In Perelman’s recent work on the Ricci flow ([Per02])
he defined the scalar curvature associated to the BE-Ricci tensor. As we explain
below, the Ricci curvature of Bakry-Émery and the associated scalar curvature defined
by Perelman can be viewed as the infinite-dimensional versions of the conformally
invariant Ricci and scalar curvature.

The diffeomorphism group D of the manifold acts on an RM -space via pull-back:
ϕ ∈ D ⇒ ϕ∗(Mn, g, m) = (Mn, ϕ∗g, ϕ∗m). This action gives rise to a notion of RM -
invariance: T = T (g, m) is an RM -invariant if T (ϕ∗g, ϕ∗m) = ϕ∗T (g,m). The con-
formally invariant curvatures are RM -invariants, as are the Ricci curvature of Bakry-
Émery and the scalar curvature of Perelman. However, if we allow D to act on the
metric alone (keeping the measure m fixed), then in general T (ϕ∗g,m) 6= ϕ∗T (g,m).
This dependence on the diffeo-class of a metric leads to a fundamental result (The-
orem 5.2): the behavior of a Riemannian invariant under conformal deformations of
the metric is equivalent to the action of D (via conjugation) on the associated density.

Using this equivalence we study a natural class of variational integrals defined by
scalar conformal densities. An example of particular interest is the (weighted) integral
of the conformally invariant scalar curvature:

Sm[g] =

∫
Rm

n (g)e−
2
n

f dm.

Viewed as a functional on the space of metrics (with m fixed), critical points of Sm

are conformal to an Einstein metric. We can also consider the constrained problem
of restricting Sm to the orbit of g under the action of D. By Theorem 5.2, this is
equivalent to the Yamabe problem.

Many of the results of this paper were announced in [CGY06]. In the sequel to
this paper [CGY07] we will construct conformally covariant operators on RM -spaces,
based on the methods of Fefferman-Graham ([FG85]). These are analogues of the
GJMS-operators ([GJMS92]) defined on Riemannian manifolds. They also give rise
to a family of ”scalar curvatures” associated to an RM -space, and the conformally
invariant curvatures of this paper play an important role in the construction.

2. RM-invariants

Let (Mn, g) be a Riemannian manifold of dimension n ≥ 2. We denote the Rie-
mannian curvature tensor by Riem, the Ricci tensor by Ric (or Ric(g)), and the
scalar curvature by R (or R(g)). Finally, we denote the volume form of g by dV ol(g).

Let G ⊂ S2T ∗Mn denote the ray bundle consisting of metrics in the conformal class
of g; we also denote the conformal class by [g] = {ĝ = e2wg | w ∈ C∞(Mn)}. If δs :
G → G denotes the dilations δs(g) = s2g, then sections of G which are homogeneous
of degree β with respect to δs are called conformal densities of weight β.

Suppose m is a smooth measure defined on Mn. We define the density function
associated to m by

dm = e−fdV ol(g).(2.1)
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That is, f is the logarithm of the Radon-Nikodym derivative of dV ol(g) with respect to

dm. Given a conformal metric ĝ = e2wg, let f̂ denote the density function associated
to ĝ; i.e.,

dm = e−f̂dV ol(ĝ).(2.2)

Since dV ol(ĝ) = enw dV ol(g), it follows that

f̂ = f + nw.(2.3)

The measure m determines a canonical choice of conformal metric whose density
function is zero; we call this the canonical base metric. The precise formulation of
this fact is given by the following lemma:

Lemma 2.1. Let (Mn, g, m) be an RM -space. Then there is a unique metric gm ∈ [g]
with the property

dm = dV ol(gm).(2.4)

We call gm the canonical base metric in [g].

Proof. Let f be the density function associated to g:

dm = e−fdV ol(g).

If we take

gm = e−
2
n

fg,(2.5)

then from formula (2.3) it follows that dm = dV ol(gm). The uniqueness of gm is
clear. ¤

As we noted in the introduction, given an RM -space the diffeomorphism group D
of the manifold acts on (Mn, g, m) by pull-back:

ϕ∗(Mn, g, m) = (Mn, ϕ∗g, ϕ∗m).(2.6)

This leads to a natural notion of invariance:

Definition 2.1. A covariant tensor field T = T (g, m) on Mn is a local RM-invariant
if for every diffeomorphism ϕ : Mn → Mn,

T (ϕ∗g, ϕ∗m) = ϕ∗T (g,m).(2.7)

We will usually omit the adjective ”local”, unless the context requires it. We can
also define RM -invariance for contravariant tensors:

T (ϕ∗g, ϕ∗m) = ϕ∗T (g,m),

and thus extend the notion to tensor fields of all types.

Example 1. The density function f associated to a measure, along with its covariant
derivatives, is an example of a local RM -invariant:
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Lemma 2.2. Let (Mn, g, m) be a Riemannian measure space, and let f be given by

dm = e−fdV ol(g).(2.8)

Then f is an RM -invariant. In addition, ∇kf , all tensor products of the form∑

I=(i1,...,ip)

cI∇i1f ⊗ · · · ⊗ ∇ipf,(2.9)

and all contractions of (2.9) are RM -invariants.

Proof. Given a diffeomorphism ϕ : Mn → Mn, write

ϕ∗dm = e−fϕdV ol(ϕ∗g).(2.10)

Comparing (2.8) and (2.10) and using the invariance of the Riemannian volume form
under pull-back we conclude

fϕ = ϕ∗f = f ◦ ϕ.(2.11)

Thus, f is an RM -invariant. From this fact it follows that all covariant derivatives
of f , and all tensor powers of its covariant derivatives along with their contractions,
are also RM -invariants.

¤

Example 2. The Bakry-Émery Ricci tensor and the scalar curvature introduced by
Perelman are both examples of RM -invariants. This follows from Lemma 2.2, since
the definitions are

Ricm(g) = Ric(g) +∇2f, (Bakry-Émery)

Rm(g) = R(g) + 2∆f − |∇f |2. (Perelman)

(2.12)

Example 3. Given a Riemannian invariant, one can construct various RM -invariants
through multiplication by a weight. More precisely, the (multiplicative) group of
smooth positive functions C+ = {γ ∈ C∞(Mn) | γ > 0} acts on a metric by conformal
deformation:

γ : g 7→ γ · g.(2.13)

Of course, C+ also acts on sections of the tensor bundles ⊗kT ∗Mn ⊗` TMn by mul-
tiplication. Suppose I = I(g) is a Riemannian invariant. To simplify matters we
assume I is a scalar function or more generally a covariant tensor field; thus

I(ϕ∗g) = ϕ∗I(g).(2.14)

Definition 2.2. Given a pair of real numbers (α, β), let

Im
α,β(g) = eβfI(eαfg)(2.15)

That is, Im
α,β is obtained from I through ’conjugation’ by the action of C+. It

follows from Lemma 2.2 that Im
α,β is an RM -invariant. As we shall see, an example

of particular importance is when α = −2/n and β = 0.
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2.1. Conformal densities. An RM -conformal density is a conformal density (in the
usual sense) which is also an RM -invariant. Using the construction of RM -invariants
in Example 3 above, we now show that every Riemannian invariant induces such a
conformal density, of any specified weight:

Proposition 2.1. Let (Mn, g,m) be a Riemannian measure space with density func-
tion f :

dm = e−fdV ol(g).(2.16)

Suppose I = I(g) is Riemannian invariant. Then for any real number β, the RM -
invariant

Im
−2/n,β/n(g) = e(β/n)fI(e−

2
n

fg)(2.17)

is a conformal density of weight β.

Proof. Let ĝ = e2wg; by (2.3)

Im
−2/n,β/n(ĝ) = e(β/n)f̂I(e−

2
n

f̂ ĝ)

= e(β/n)(f+nw)I(e−
2
n

(f+nw)e2wg)

= eβwe(β/n)fI(e−
2
n

fg)

= eβwIm
−2/n,β/n(g).

It follows that (2.17) defines a conformal density of weight β. ¤
It is clear from the definitions that

IdV ol(g)
α,β (g) = I(g).(2.18)

In particular, for the canonical base metric we have

Im
α,β(gm) = I(g).(2.19)

3. Conformally invariant curvatures

If we take I to be the curvature of a Riemannian metric (scalar, Ricci, etc.), then
by Proposition 2.1 we can construct conformally invariant ’curvatures’ associated to
an RM -space:

Definition 3.1. Let (Mn, g,m) be an RM -space. The conformally invariant scalar
curvature of (Mn, g,m) is given by

Rm
n (g) = e−

2
n

fR(gm)

= R(g) +
2(n− 1)

n
∆gf − (n− 1)(n− 2)

n2
|∇f |2,

(3.1)

where f is given by (2.16) and gm is the canonical base metric. Rm
n is a conformal

density of weight −2: If ĝ = e2wg, then

Rm
n (ĝ) = e−2wRm

n (g).(3.2)

In particular, Rm
n shares the same scaling properties as the scalar curvature.
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Notice when n = 2, the conformally invariant scalar curvature is given by

Rm
2 (g) = R(g) + ∆f.(3.3)

It will be convenient to define a scale-invariant version of Rm
n .

Definition 3.2. Let (Mn, g, m) be an RM -space. The τm-curvature of (Mn, g,m) is
the quantity

τm(g) = e
2
n

fRm
n (g)

= R(gm).
(3.4)

τm(g) is a conformal density of weight 0: If ĝ = e2wg, then

τm(ĝ) = τm(g).(3.5)

Definition 3.3. Let (Mn, g,m) be an RM-space. The conformally invariant Ricci
curvature of (Mn, g,m) is given by

Ricm
n (g) = Ric(gm)

= Ric(g) + (
n− 2

n
)∇2

gf +
1

n
(∆gf)g + (

n− 2

n2
)df ⊗ df − (n− 2)

n2
|∇f |2g.

(3.6)

Ricm
n is a conformal density of weight 0: If ĝ = e2wg, then

Ricm
n (ĝ) = Ricm

n (g).(3.7)

In particular, Ricm
n shares the same scaling properties as the Ricci curvature.

Note that Rm
n (g) is the contraction of Ricm

n (g). Moreover, by (2.18)

RicdV ol(g)
n (g) = Ric(g),

RdV ol(g)
n (g) = R(g),

τ dV ol(g)(g) = R(g).

(3.8)

for any metric g. In particular, by (2.19), for the canonical base metric gm we have

Ricm
n (gm) = Ric(gm),

Rm
n (gm) = R(gm),

τm(gm) = R(gm).

(3.9)

From these identities we see that certain properties of the usual Ricci and scalar
curvatures are retained by their conformally invariant counterparts:

Proposition 3.1. Let (Mn, g, m) be an RM -space.

(i) If Ricm
n (g) > 0 (respectively, ≥ 0, = 0, ≤ 0, < 0), then [g] contains a metric

whose Ricci curvature is positive (resp., non-negative, zero, non-positive, negative).

(ii) If Rm
n (g) > 0 (resp., ≥ 0, = 0, ≤ 0, < 0), then [g] contains a metric whose scalar

curvature is positive (resp., non-negative, zero, non-positive, negative).
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Proof. Both statements are immediate consequences of (3.9). ¤
The converse of Proposition 3.1 is false. For example, suppose we are given a metric

g of positive Ricci curvature; then it is easy to construct a measure m so that Ricm
n (g)

has negative eigenvalues on an open set.

3.1. The Bianchi identity. The contracted second Bianchi identity implies that

(δRic)j = ∇iRij =
1

2
∇jR,(3.10)

where δ is the divergence operator. If we introduce the Bianchi operator B = Bg on
symmetric (0, 2)-tensors by

Bh = δh− 1

2
d(trg h),(3.11)

then (3.10) can be written

BRic = 0.(3.12)

Similar identities hold for the conformally invariant Ricci and scalar curvatures.
First, a simple calculation gives

∇iRicm
n (g)ij =

1

2
∇jR

m
n (g) + (

n− 2

n
)Ricm

n (g)ij∇if.(3.13)

To make this more compact, we define the operator

δm
n = δ − (

n− 2

n
)∇f(3.14)

where denotes the interior product. Note that δm
n is the adjoint of ∇ relative to a

weight. Let

dνn = e−(n−2
n

)fdV ol(g),(3.15)

and for functions u, v ∈ L2(Mn) define

〈u, v〉L2(g,dνn) =

∫
uv dνn.(3.16)

If X, Y are smooth vector fields, we define

〈X,Y 〉L2(g,dνn) =

∫
〈X, Y 〉g dνn,

and use this definition to extend the L2-inner product to tensors of all types. In
particular, for a symmetric (0, 2)-tensor h and 1-form η we have∫

〈h,∇η〉dνn =

∫
−〈δm

n h, η〉dνn.(3.17)

δm
n can be extended to act on sections of other bundles; for example, if ω ∈ Ωp(TMn)

and θ ∈ Ωp−1(TMn) are forms, then∫
〈ω, dθ〉dνn = −

∫
〈δm

n ω, θ〉dνn(3.18)
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defines δm
n on the exterior algebra.

Using δm
n , (3.13) becomes

δm
n Ricm

n (g) =
1

2
dRm

n (g).(3.19)

We will refer to the operator δm
n as the m-adjoint. We can also define the Bianchi

operator associated to a measure:

Bm
n h = δm

n h− 1

2
d(trg h).(3.20)

Then (3.19) is equivalent to

Bm
n Ricm

n (g) = 0.(3.21)

It is interesting to note that Bm is conformally invariant:

ĝ = e2wg =⇒ Bm
n,ĝ = e−2wBm

n,g.(3.22)

Acting on forms, δm
n : Ωp(TMn) → Ωp−1(TMn) is conformally ”covariant”:

ĝ = e2wg =⇒ δm
n,ĝ(e

2(1−p)wη) = e2(p−2)wδm
n,gη.(3.23)

In particular, δm
n acting on 1-forms is invariant: δm

n,ĝ = e−2wδm
n,g.

3.2. The Einstein condition. There is a natural notion of an Einstein metric in
the RM -setting.

Definition 3.4. Let (Mn, g, m) be an RM -space. The conformally invariant trace-
free Ricci tensor of (Mn, g, m) is given by

Em
n (g) = Ricm

n (g)− 1

n
Rm

n (g)g

= Ric(g)− 1

n
R(g)g + (

n− 2

n
)∇2

gf − (
n− 2

n2
)(∆gf)g

+ (
n− 2

n2
)df ⊗ df − (

n− 2

n3
)|∇f |2g,

(3.24)

Obviously Em
n enjoys the same invariance properties as Ricm

n . In the same way
that the sign of the conformally invariant Ricci curvature detects the existence of
a conformal metric with the same sign, the tensor Em

n detects the existence of a
conformal Einstein metric:

Proposition 3.2. Let (Mn, g) be a smooth Riemannian manifold of dimension n ≥ 3.

(i) If m is a measure for which Em
n (g) = 0, then [g] contains an Einstein metric,

namely, the canonical base metric.

(ii) If g is an Einstein metric and m is a measure for which Em
n (g) = 0, then either

dm = λdV ol(g) for some constant λ > 0, or (Mn, g) is homothetically isometric
to (Sn, gc), where gc denotes the round metric, and dm = λϕ∗dV ol(gc) for some
conformal map ϕ and constant λ > 0.
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Proof. The proof of (i) follows from the conformal invariance of Em
n and the definition

of the canonical base metric.
To prove (ii), suppose g is Einstein and Em

n (g) = 0. By part (i), the canonical

base metric gm = e−
2
n

fg is also Einstein. This leads to two possibilities: either gm

is homothetic to g, in which case f = const. and dm = λdV ol(g) as claimed, or the
conformal class of g admits two distinct Einstein metrics. In this latter case it follows
from a theorem of Obata ([Oba71], Proposition 6.2) that (Mn, g) is homothetically
isometric to (Sn, gc), and (also up to homothety) gm is obtained from g by a conformal
transformation. In particular,

m = dV ol(gm) = λdV ol(ϕ∗gc)

= λϕ∗dV ol(gc).

¤
One consequence of the classical second Bianchi identity is that the scalar curvature

of an Einstein metric must be constant. An analogous result holds in the setting of
RM -spaces. By the Bianchi identity (3.19),

δm
n Em

n (g) =
(n− 2)

2n
∇Rm

n (g) +
(n− 2)

n2
Rm

n (g)∇f.(3.25)

Also,

dRm
n (g) = d

(
e−

2
n

fτm(g)
)

= − 2

n
Rm

n (g)df + e−
2
n

fdτm(g).

Substituting this into (3.25) gives

δm
n Em

n (g) =
(n− 2)

2n
e−

2
n

fdτm(g).(3.26)

Corollary 3.1. If (Mn, g, m) is an RM-space with n ≥ 3 and Em
n (g) = 0, then τm(g)

is constant.

Remark 3.1. By (3.5) the condition τm(g) = const. is conformally invariant, while by
(3.2) the condition Rm

n (g) = const. is not.

4. Relation to the curvatures of Bakry-Émery and Perelman

In this section we explore the relationship of the conformally invariant Ricci and
scalar curvatures to the curvatures defined by Bakry-Émery [BE85] and Perelman
[Per02]. To recall the definition of these latter invariants, once again we let (Mn, g, m)
denote an RM -space, and let f be defined by (2.1):

dm = e−fdV ol(g).

The Bakry-Émery Ricci curvature is defined by

Ricm(g) = Ric(g) +∇2
gf.(4.1)
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This definition arose in the analysis of infinite-dimensional diffusion processes, though
this interpretation will not be relevant in the present paper. Instead, we will empha-
size the role it plays as the curvature term in a ”weighted” Wietzenböck formula, as
we now explain.

In [Per02] (see also Lott, [Lot03]), Perelman defined the adjoint d∗m of the exterior
derivative d relative to the measure m1. More precisely, given a p-form η and smooth
function ϕ, d∗m is defined by

∫
〈dϕ, η〉 dm = −

∫
ϕ d∗mη dm.(4.2)

By (2.1),

d∗m = d∗ −∇f .(4.3)

In case p = 1, in local coordinates we have

d∗mη = gkl∇kηl − gkl∇kfηl.(4.4)

Similarly, one can define the adjoint of the covariant derivative, denoted ∇∗m. Using
these operators we can form the associated ’Hodge laplacian’ and ’rough laplacian’:

¤m = dd∗m + d∗md,(4.5)

∆m = ∇∗m∇.(4.6)

The following Weitzenböck formula for one-forms follows from the definitions of ¤m

and ∆m (see [Per02], §1.3; [Lot03], §2):

∆m = ¤m + Ricm.(4.7)

Perelman introduced a notion of the scalar curvature associated to the BE-Ricci
tensor:

Rm = R + 2∆f − |∇f |2.(4.8)

In particular, Rm is not the trace of Ricm. Perelman justified this definition in two
ways: first, by noting that the classical contracted second Bianchi identity holds for
Ricm and Rm:

d∗mRicm =
1

2
dRm.(4.9)

Second, Perelman showed that the Dirac operator defined relative to dm in an anal-
ogous fashion leads to a Wetizenböck formula for the spin laplacian, where the usual
scalar curvature term replaced by Rm.

As we now explain, the BE-Ricci curvature, and the scalar curvature defined by
Perelman, can both be viewed as the infinite-dimensional limit of their conformally
invariant counterparts. To see this we make use of a common construction, that of
taking the product of Mn with a manifold of large dimension (see, e.g., [Lot03]).

1So that our laplacians agree with the Euclidean laplace operator, we add the minus sign.
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First, however, let us argue informally: If we let the dimension n →∞ in (3.6), then
in the limit we obtain the BE-Ricci curvature:

lim
n→∞

Ricm
n (g) ” = ” Ric +∇2

gf

= Ricm(g).

Similarly, letting n →∞ in the definition of Rm
n gives the scalar curvature defined by

Perelman:

lim
n→∞

Rm
n (g) ” = ” R + 2∆gf − |∇f |2

= Rm(g).

In these formulas we used quotation marks to emphasize the fact that the process of
letting the dimension go to infinity is not meant to be taken literally. However, we can
make these formal observations more concrete by the aforementioned construction.

Let (Td−n, ds2) denote the flat (d−n)-dimensional torus, and consider the product
manifold Nd = Mn × Td−n with the product metric h = g + ds2. To define the
conformally invariant Ricci and scalar curvatures on Nd we need to define a measure,
so we take the product measure dµ = dm×dV ol(ds2). Note that if dm = e−fdV ol(g)

and dµ = e−f̃dV ol(h), it follows that f̃ = f . Therefore, given tangent vectors X, Y ∈
TMn, if we denote their lift to TNd also by X, Y , then by the definition of Ricm

n

lim
d→∞

Ricµ
d(h)(X,Y ) = lim

d→∞

{
Ric(h)(X,Y ) + (

d− 2

d
)∇2

hf̃(X, Y ) +
1

d
(∆hf̃)h(X,Y )

+ (
d− 2

d2
)(df̃ ⊗ df̃)(X,Y )− (d− 2)

d2
|∇f̃ |2h(X,Y )

}

= lim
d→∞

{
Ric(g)(X, Y ) + (

d− 2

d
)∇2

gf(X,Y ) +
1

d
(∆gf)g(X, Y )

+ (
d− 2

d2
)df(X)df(Y )− (d− 2)

d2
|∇f |2g(X, Y )

}

= Ric(g)(X,Y ) +∇2f(X, Y )

= Ricm
g (X,Y ).

Similarly,

lim
d→∞

Rm
d (h) = Rm(g).

A similar argument can be used to relate the m-divergence defined in Section 3.1
with the operator d∗m. Comparing (3.14) and (4.3) one sees that formally

” lim
n→∞

δm
n = d∗m. ”

This can also be made precise using the construction above.



12 SUN-YUNG A. CHANG, MATTHEW J. GURSKY, AND PAUL YANG

5. D and C+-actions on RM-spaces

As we observed in Section 2, there are two natural group actions on RM -spaces:
the natural D-action defined by (2.6),

ϕ : (Mn, g, m) 7→ (Mn, ϕ∗g, ϕ∗m),

and the action of C+ via conformal rescaling:

γ : (Mn, g, m) 7→ (Mn, γg, m).(5.1)

Note that C+ acts on the metric alone, while D acts by pull-back on both the metric
and the measure. On the other hand, if T = T (g,m) is an RM -invariant and we pull
back the metric g by a diffeomorphism ϕ ∈ D (leaving m fixed), then by (2.6),

T (ϕ∗g, m) = ϕ∗T (g, (ϕ−1)∗m).(5.2)

One way of interpreting (5.2) is to view pull-backs of the metric as determining a
change in the measure, m 7→ (ϕ−1)∗m. By a Theorem of Moser, this is actually an
equivalence; that is, all measures can be realized in this manner:

Theorem 5.1. Let (Mn, g, m) be an RM-space and T = T (g,m) a local RM -
invariant. Given a measure µ with∫

dµ =

∫
dm,(5.3)

there is a diffeomorphism ϕ ∈ D with

T (ϕ∗g,m) = ϕ∗T (g, µ).(5.4)

Conversely, given a diffeomorphism ϕ ∈ D, there is a measure µ satisfying (5.3) and
(5.4).

Proof. By Moser’s theorem [Mos65], equation (5.3) implies the existence of a diffeo-
morphism ϕ ∈ D such that µ = (ϕ−1)∗m. Therefore, (5.4) follows from (5.2).

The converse is obvious; just take µ = (ϕ−1)∗m. ¤
Our next result shows that the behavior of a Riemannian invariant I = I(g) under

conformal deformations of the metric is equivalent to the behavior of the associated
conformal density Im

−2/n,0(g) under conjugation by a diffeomorphism. To simplify the
statement we normalize the measure and the metric:

Theorem 5.2. Let (Mn, g,m) be an RM -space, where for convenience we assume g
and m have the same total mass:∫

dV ol(g) =

∫
dm.(5.5)

Suppose I = I(g) is a Riemannian invariant, and Im = Im
−2/n,0(g) is the conformal

density of weight 0 defined in (2.17). Given ĝ ∈ [g] of the same volume, there is a
diffeomorphism ϕ ∈ D such that

I(ĝ) = (ϕ−1)∗Im(ϕ∗g).(5.6)
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Conversely, given a diffeomorphism ϕ ∈ D, there is a conformal metric ĝ ∈ [g] (of
the same volume) such that (5.6) holds.

Proof. Given ĝ ∈ [g] with the same volume of g (and consequently, the same mass as
m), by Moser’s Theorem there is a diffeomorphism ϕ ∈ D such that

(ϕ−1)∗dm = dV ol(ĝ).(5.7)

Therefore, by (5.2),

Im(ϕ∗g) = ϕ∗
(I(ϕ−1)∗m(g)

)

= ϕ∗
(IdV ol(ĝ)(g)

)

= ϕ∗
(IdV ol(ĝ)(ĝ)

)
(by conformal invariance of Im)

= ϕ∗
(
I(ĝ)

)
. (by (2.18))

Since I is a Riemannian invariant, pulling back both sides by ϕ−1 gives (5.6).

Conversely, suppose ϕ ∈ D is given. Then

(ϕ−1)∗m = enwdV ol(g)(5.8)

for some function w. Let ĝ = e2wg; then (5.8) can be rewritten

(ϕ−1)∗m = dV ol(ĝ).(5.9)

Therefore,

Im(ϕ∗g) = ϕ∗
(I(ϕ−1)∗m(g)

)

= ϕ∗
(IdV ol(ĝ)(g)

)

= ϕ∗
(IdV ol(ĝ)(ĝ)

)
(by conformal invariance of Im)

= ϕ∗
(
I(ĝ)

)
, (by (2.18))

and pulling back by ϕ we get (5.6). ¤

Remark 5.3. Theorem 5.2 can be regarded as the fundamental theorem of the geom-
etry of RM -spaces, in that it gives the relationship between RM -conformal densities
and Riemannian invariants.

Corollary 5.1. Let (Mn, g,m) be an RM -space, where for convenience we assume g
and m have the same total mass. Given ĝ ∈ [g] with the same volume as g, there is
a diffeomorphism ϕ ∈ D such that

R(ĝ) = (ϕ−1)∗τm(ϕ∗g).(5.10)

Conversely, given a diffeomorphism ϕ ∈ D, there is a conformal metric ĝ ∈ [g] such
that (5.10) holds.
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6. Variational theory

In this section we consider variational problems associated to RM -spaces. We begin
with some general features of variational integrals, and describe a natural constrained
problem. In the succeeding section we explore in detail an interesting example asso-
ciated to the scalar curvature.

Let M = M(Mn) denote the space of Riemannian metrics on Mn, and P the space
of all probability measures. Sometimes we may need to normalize the volume, so we
denote by M1 the subspace of unit-volume metrics.

Definition 6.1. An RM -functional is a (differentiable) mapping F : M× P → R
which is invariant under the action of D in (2.7):

F(ϕ∗g, ϕ∗m) = F(g, m).(6.1)

The basic example of an RM -functional is the integral of a scalar local RM -
invariant q = q(g, m):

F(g, m) =

∫
q(g,m) dV ol(g).(6.2)

Of particular interest will be the case where q is the conformal density Im(g) =
Im
−2/n,0(g) associated to a Riemannian invariant I(g), as defined in Proposition 2.1.

Let

Jm[g] =

∫
Im(g) dm,(6.3)

and denote the corresponding Riemannian functional by

J [g] =

∫
I(g) dV ol(g).(6.4)

Example. Let I(g) = R(g), the scalar curvature. Then

Sm[g] =

∫
τm(g) dm,(6.5)

while the Riemannian functional is the total scalar curvature:

S[g] =

∫
R(g) dV ol(g).(6.6)

Let ∇J denote the L2-gradient of the functional J [·] (assuming it exists):

d

ds
J [g + sh]

∣∣∣
s=0

=

∫ 〈∇J(g), h
〉

g
dV ol(g).(6.7)

Proposition 6.1. Suppose (Mn, g, m) is an RM-space, and I = I(g) is a scalar
Riemannian invariant. Let Im = Im

−2/n,0 denote the associated conformal density,

and define the functionals J and Jm by (6.4) and (6.3), respectively. Then

(i) The functional Jm is conformally invariant:

Jm[e2wg] = Jm[g].(6.8)
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(ii) If the functional J is differentiable with L2-gradient ∇J , then Jm is also differ-
entiable, and

∇Jm(g) = e
2
n

f
{
∇J(gm)− 1

n
trgm

(∇J(gm)
)
gm

}
.(6.9)

Proof. The conformal invariance of Jm is obvious from the definition. To prove (6.9),
we first note that the gradient of J can be expressed in terms of the L2-adjoint of the
linearized operator:

d

ds
J [g + sh]

∣∣∣
s=0

=

∫
d

ds
I(g + sh)

∣∣∣
s=0

dV ol(g) +

∫
I(g)

d

ds
dV ol(g + sh)

∣∣∣
s=0

=

∫
I ′(g)[h] dV ol(g) +

∫
1

2
I(g)(trgh) dV ol(g)

=
〈
I ′(g)[h], 1

〉
L2

+
〈
h,

1

2
I(g)g

〉
L2

=

∫ 〈
h, I ′(g)∗(1) +

1

2
I(g)g

〉
g

dV ol(g),

which implies

∇J(g) = I ′(g)∗(1) +
1

2
I(g)g.(6.10)

Similarly, for Jm we find

d

ds
Jm[g + sh]

∣∣∣
s=0

=

∫
d

ds
Im(g + sh)

∣∣∣
s=0

dm

=

∫
(Im)′(g)[h] dm

=
〈
(Im)′(g)[h], 1

〉
L2(g,dm)

=
〈
h, (Im)′(g)∗(1)

〉
L2(g,dm)

,

hence

∇Jm(g) = (Im)′(g)∗(1).(6.11)

Claim 6.1.

(Im)′(g)∗u = e
2
n

f
{

I ′(gm)∗u− 1

n
trgm

(
I ′(gm)∗u

)
gm

}
,(6.12)

where gm = e−
2
n

fg is the canonical base metric.

Proof. The claim follows from the identity

(Im)′(g)[h] = I ′(gm)[e−
2
n

f h̊],(6.13)

where

h̊ = h− 1

n
(trg h)g,
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by simply integrating by parts. To verify (6.13), let fs be defined by

dm = e−fsdV ol(g + sh).(6.14)

Then

d

ds
fs

∣∣
s=0

=
1

2
trg h.(6.15)

Since Im(g) = I(e−
2
n

fg), we find

(Im)′(g)[h] =
d

ds
Im(g + sh)

∣∣∣
s=0

=
d

ds
I
(
e−

2
n

fs(g + sh)
)∣∣∣

s=0

= I ′(e−
2
n

fg)[e−
2
n

f (h− 1

n
(trg h)g)].

¤

Using (6.12) and (6.10) we conclude

∇Jm(g) = (Im)′(g)∗(1)

= e
2
n

f
{

I ′(gm)∗(1)− 1

n
trgm

(
I ′(gm)∗(1)

)
gm

}

= e
2
n

f
{
∇J(gm)− 1

n
trgm

(∇J(gm)
)
gm

}
.

¤

Example. The gradient of the total scalar curvature is the ’gravitational tensor’:

∇S(g) = −Ric(g) +
1

2
R(g)g,

whose trace is

trg∇S(g) =
(n− 2)

2
R(g).

Therefore, by Proposition 6.1 the gradient of Sm is

∇Sm(g) = e
2
n

f
{
−Ric(gm) +

1

2
R(gm)gm − 1

n

[(n− 2)

2
R(gm)

]
gm

}

= e
2
n

f
{
−Ric(gm) +

1

n
R(gm)gm

}

= −e
2
n

fEm
n (g),

(6.16)

where Em
n (g) is the conformally invariant trace-free Ricci tensor (see Section 3.2).

Proposition 6.2. Let (Mn, gm) be an RM -space of dimension n ≥ 3. Then g is
critical for Sm if and only if it is conformal to an Einstein metric.
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6.1. A constrained variational problem. Since we are fixing the measure when
studying Jm, a natural constrained variational problem is to restrict the functional
to the orbit of a metric g under the action of D. By Theorem 5.2, this is equivalent
to restricting the associated functional J to the conformal class of g:

Theorem 6.1. Let (Mn, g, m) be an RM-space, where m is a probability measure
and we normalize g to have unit volume. Let I, J, Im, and Jm be as above. Then

Jm
∣∣
D(g)

= J
∣∣
[g]1

,(6.17)

where D(g) =
{
ϕ∗g | ϕ ∈ D}

is the orbit of g under the action of D, and [g]1 denotes
metrics conformal to g of unit volume.

More precisely: Given ϕ ∈ D, there is a conformal metric ĝ ∈ [g]1 with

Jm[ϕ∗g] = J [ĝ].(6.18)

Conversely, given ĝ ∈ [g]1, there is a diffeomorphism ϕ ∈ D such that (6.18) holds.

Proof. This equivalence is essentially a corollary of Theorem 5.2 and its proof. Given
ϕ ∈ D, there is a conformal metric ĝ ∈ [g]1 with

(ϕ−1)∗Im(ϕ∗g) = I(ĝ).

Pulling back by ϕ gives

Im(ϕ∗g) = ϕ∗I(ĝ).(6.19)

Also, by (5.9),

dm = ϕ∗dV ol(ĝ).(6.20)

Therefore,

Jm[ϕ∗g] =

∫
Im(ϕ∗g) dm

=

∫
ϕ∗I(ĝ) ϕ∗dV ol(ĝ)

=

∫
I(ĝ) dV ol(ĝ)

= J [ĝ].

(6.21)

Conversely, by Theorem 5.2, if ĝ is a conformal metric of unit volume then there
is a diffeomorphism ϕ ∈ D satisfying (6.19) and (6.20). Then (6.21) implies

J [ĝ] = Jm[ϕ∗g],

and (6.18) follows. ¤
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7. The total τm-curvature

Now let I = I(g) be the scalar curvature, and consider the variational integral
associated to its RM -counterpart; i.e., the τm-curvature. As a corollary of Theorem
6.1, we can give a different characterization of the Yamabe invariant:

Theorem 7.1. Let (Mn, g, m) be an RM -space of dimension n ≥ 3, where m is a
probability measure and we normalize g to have unit volume. Then

inf
ϕ∈D

∫
τm(ϕ∗g) dm = Y (Mn, [g]),(7.1)

where Y (Mn, [g]) is the Yamabe invariant of g. Moreover, the infimum on the left-
hand side of (7.1) is attained by a diffeomorphism if and only if there is a conformal
metric which attains the Yamabe invariant.

Remark 7.2. Recall the σ-constant of a manifold Mn is defined to be

σ(Mn) = sup
g∈M

Y (Mn, [g]).(7.2)

If we let

σ(Mn,m) ≡ sup
g∈M1

inf
ϕ∈D

Sm(ϕ∗g),(7.3)

then it follows from Theorem 7.1 that

σ(Mn,m) = σ(Mn),(7.4)

independent of the measure m.

More generally, a metric is a critical point of the total scalar curvature constrained
to a fixed conformal class if and only if it has constant scalar curvature. The corre-
sponding result for the total τm-curvature is

Proposition 7.1. When the dimension n ≥ 3, a metric g is critical for Sm
∣∣
D(g)

if

and only if τm(g) = const.

Proof. Let {ϕt} be the 1-parameter family of diffeomorphisms generated by a vector
field X. By (6.16),

0 =
d

dt
Sm(ϕ∗t g)

∣∣
t=0

= Sm(g)′[LXg]

= −
∫
〈e 2

n
fEm

n (g), LXg〉 dm

= −
∫
〈Em

n (g), LXg〉 dνn.

(7.5)

The Proposition will follow from the next Lemma:



CONFORMAL INVARIANTS 19

Lemma 7.1. For any vector field X,
∫
−〈Em

n (g), LXg〉 dνn =
(n− 2)

n

∫
Xτm(g) dm.(7.6)

Proof. Let α = X[ be the one-form dual to the vector field X, then

〈Em
n (g), LXg〉 = 2〈Em

n (g),∇α〉.
Therefore,∫

−〈Em
n (g), LXg〉 dνn =

∫
−2〈Em

n (g),∇α〉 dνn

=

∫
2〈δm

n Em
n (g), α〉 dνn (by (3.17))

=

∫
(n− 2)

n
〈e− 2

n
f∇τm(g), α〉 dνn (by (3.26))

=
(n− 2)

n

∫
〈∇τm(g), α〉 dm

=
(n− 2)

n

∫
Xτm(g) dm.

¤

To complete the proof of the Proposition, for any vector field X (7.6) implies

0 =
d

dt
Sm(ϕ∗t g)

∣∣
t=0

= −
∫
〈Em

n (g), LXg〉 dV ol(g)

=
(n− 2)

n

∫
Xτm(g) dm,

and it follows that τm(g) must be constant. ¤

In view of Proposition 7.1, it is natural to introduce the following linear functional
Gm(g) : X(Mn) → R:

Gm(g)(X) =

∫
Xτm(g) dm.(7.7)

This is the obvious extension of the Futaki invariant from Kähler geometry [Fut83],
or the Kazadan-Warner integral from conformal geometry [KW74].

Proposition 7.2. (i) The functional Gm(g) is conformally invariant: if ĝ = e2wg,
then

Gm(ĝ) = Gm(g).

(ii) If X is a conformal Killing vector field, then Gm(g)(X) = 0.
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(iii) If Em
n (g) = 0, then Gm(g) = 0. In particular, unless Gm(g) ≡ 0 for some measure

m, the conformal class of g does not contain an Einstein metric.

Proof. (i) The conformal invariance of Gm(g) follows from the conformal invariance
of τm.

(ii) If X is a conformal vector field, then LXg = ψg for some function ψ. Therefore,
〈Em

n (g), LXg〉 = 0, and from (7.6) it follows that Gm(g)(X) = 0.

(iii) If Em
n (g) = 0, then (7.6) obviously implies Gm(g) = 0.

¤
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