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Abstract. In this article, we survey some of the recent developement in the study of
the compactness and uniqueness problems for a class of conformally compact Einstein
manifolds.

1. Introduction

Let Xd be a smooth manifold of dimension d with d ≥ 3 and with boundary ∂X = M .
A smooth conformally compact metric g+ on X is a Riemannian metric such that g = r2g+

extends smoothly to the closure X for some defining function r of the boundary ∂X in
X. A defining function r is a smooth nonnegative function on the closure X such that
∂X = {r = 0} and the differential Dr 6= 0 on ∂X. A conformally compact metric g+ on
X is said to be conformally compact Einstein (CCE) if, in addition,

Ric[g+] = −(d− 1)g+.

where Ric denotes the Ricci curvature. The most significant feature of CCE manifolds
(X, g+) is that the metric g+ is “canonically” associated with the conformal structure
[ĝ] on the boundary at infinity ∂X, where ĝ = g|T∂X . (∂X, [ĝ]) is called the confor-
mal infinity of a conformally compact manifold (X, g+). It is of great interest in both
the mathematics and theoretic physics communities to understand the correspondences
between conformally compact Einstein manifolds (X, g+) and their conformal infinities
(∂X, [ĝ]), especially due to the AdS/CFT correspondence in theoretic physics (cf. Mal-
dacena [32, 33, 34] and Witten [37]).

For a CCE manifold, given any conformal infinity h and for any defining function r, we
have always |∇gr| ≡ 1 on M . In fact, it is known that the full Riemann curvature tensor
Rm[g+] of the metric g+ has the asymptotic expansion near the infinity, ∀1 ≤ i, j, k, l ≤ d

Rmijkl[g+] = −|∇r(x)|2g((g+)ik(g
+)jl − (g+)il(g

+)jk) +O(r−3)

which yields the above claim. A conformally compact metric g+ on X is called asymp-
totically hyperbolic (AH) if in addition |∇gr| ≡ 1 on M . Moreover, given any conformal
infinity h, there exists a special defining function which we call geodesic defining function
r such that |∇gr| ≡ 1 in an asymptotic neighborhood M × [0, ε) of M and r2g+|TM = h.

Under geodesic defining function r, we have a nice expansion for CCE metric g+. It
turns out the asymptotic behavior of the compactified metric is slightly different when
the dimension d is even or odd.
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When d is even, the asymptotic behavior of the compactified metric g of CCE manifold
(Xd,Md−1, g+) with conformal infinity (Md−1, [h]) ([19, 18]) takes the form

(1.1) g := r2g+ = dr2+gr = dr2+h+g(2)r2+ · · · (even powers)+g(d−1)rd−1+g(d)rd+ · · ··

on an asymptotic neighborhood of M × (0, ε), where r denotes the geodesic defining func-
tion of g. The g(j) are tensors on M , and g(d−1) is trace-free with respect to a metric in
the conformal class on M . For j even and 0 ≤ j ≤ d−2, the tensor g(j) is locally formally
determined by the conformal representative, but g(d−1) is a non-local term which is not
determined by the boundary metric h, subject to the trace free condition.

When d is odd, the analogous expansion is
(1.2)
g := r2g+ = dr2 + gr = dr2 +h+ g(2)r2 + · · · (even powers) + g(d−1)rd−1 + krd−1 log r+ · · ··

where now the g(j) are locally determined for j even and 0 ≤ j ≤ d − 2, k is locally de-
termined and trace-free, the trace of g(d−1) is locally determined, but the trace-free part
of g(d−1) is formally undetermined.

We remark that h together with g(d−1) determine the asymptotic behavior of g ([18, 2]).

In this paper, we will first briefly survey some of the recent development in this research
area. We will then describe a series of joint works of the authors [7], with Jie Qing [8],
and with Xiaoshang Jin and Jie Qing [9] in which we address the issues of compactness
of sequences of CCE manifolds and uniqueness problem for a class of such manifolds
constructed earlier by [22].

2. Basics and some short survey

Some basic examples

Example 1:
A model case of a CCE manifold is the hyperbolic ball Bd with the Poincaré metric

gH := 4
(1−|x|2)2

∑d
i=1 dx

2
i where |x| :=

√∑d
i=1 x

2
i is the usual euclidean norm of x =

(x1, · · · , xd) ∈ Bd = {y ∈ Rd, |y| < 1}. For such metric, r(x) = 1−|x|
1+|x| is a geodesic defining

function with the conformal infinity h = 1
4
gSd−1 the standard metric on d− 1 sphere Sd−1

up to a constant and gr = (1− r(x)2)2h.

Example 2:
Another class of examples of CCE manifolds was constructed by Graham-Lee [22] in 1991,
where they have proved that for metrics on Sd−1 close enough in C2,α norm to the stan-
dard metric on Sd−1, is the conformal infinity of some CCE metric on the ball Bd for all
d ≥ 4.
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Example 3: AdS-Schwarzchild space

On (R2 × S2, g+m),

where
g+m = V dt2 + V −1dr2 + r2gc,

V = 1 + r2 − 2m

r
,

m is any positive number, r ∈ [rh,+∞), t ∈ S1(λ) and gc the surface measure on S2 and
rh is the positive root for 1 + r2− 2m

r
= 0. We remark, it turns out that in this case, there

are two different values of m so that both g+m are conformal compact Einstein filling for
the same boundary metric S1(λ)×S2. This is the famous non-unique “filling in” example
of Hawking-Page [27].

Existence and non-existence results

The most important existence result is the “Ambient Metric” construction by Fefferman-
Graham ([16],[18]). As a consequence of their construction, for any given compact mani-
fold (Md−1, h) with an analytic metric h, some CCE metric exists on some tubular neigh-
borhood Mn × (0, ε) of M . This later result was recently extended to manifolds M with
smooth metrics by Gursky-Székelyhidi [26].
As we have mentioned before, a perturbation result of Graham-Lee [22] asserts that in a
neighborhood of the standard metric gc on Sd−1, there exist a conformal compact Einstein
metric on Bd with any given conformal infinity h.

Recent results of Gursky-Han and Gursky- Han-Stolz ([24], [25]) showed that when X is
spin and of dimension 4k ≥ 8, and when the Yamabe invariant Y (M, [h]) > 0, then there
are topological obstructions to the existence of a CCE metric g+ defined in the interior of
X with conformal infinity given by [h]. The basic idea is to adapt the classical Lichnerow-

icz result on the vanishing of the Â-genus for spin manifolds of positive scalar curvature.
Indeed, suppose g+ is a CCE filling in of [h]; then one can use the compactification of
Lee to obtain a metric g = r2g+ with positive scalar curvature which is smooth up to the
boundary, and such that M is totally geodesic with respect to g. It follows that the index
of the Dirac operator (with respect to APS boundary conditions) is zero. However, using
well known properties of the index, it is possible to construct examples of spin manifolds
with boundary M and conformal classes [h] of positive Yamabe invariant on M such that
the index of the Dirac operator (with respect to any extension of any metric in [h]) has
non-vanishing index. For example, on the round sphere S4k−1 with k ≥ 2, there are in-
finitely many such conformal classes.

The result of Gursky-Han and Gursky-Han-Stolz was based on a key fact pointed out
earlier by J. Qing [36], which in turn relies on some earlier work of J. Lee [29].

Lemma 2.1. On a CCE manifold (Xd,Md−1, g+), assuming Y (M, [h]) > 0, then there
exists a compactification of g+ with positive scalar curvature; hence Y (X, ∂X, [r2g+]) > 0.

Uniqueness and non-uniqueness results
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Under the assumption of positive mass theorem, J. Qing [36] has established (Bd, gH)
as the unique CCE manifold with (Sd−1, [gc]) as its conformal infinity. The proof of this
result was later refined and established without using positive mass theorem by Li-Qing-
Shi [31] (see also Dutta and Javaheri [15]). Later in sections 4 and 5 of this lecture notes,
we will also prove the uniqueness of the CCE extension of the metrics constructed by
Graham-Lee [22] for all d ≥ 4.

As we have mentioned in the example 3 above, when the conformal infinity is S1(λ)×S2

with product metric, Hawking-Page [27] have constructed non-unique CCE fill-ins.

In a recent series of joint works of ([7], [8] and [9]), we work to address the compactness
issue of sequences of metrics on CCE manifolds. The question is as follows: given a
sequence of CCE manifolds (Xd,Md−1, {g+i }) withM = ∂X and {gi} = {r2i g+i } a sequence
of compactified metrics, denote hi = gi|TM , assuming {hi} forms a compact family of
metrics in M , when is it true that some representatives ḡi ∈ [gi] with {ḡi|M = hi} also
forms a compact family of metrics in X̄? One main difficulty to address the compactness
problem is due to the existence of some “non-local” term in the asymptotic expansion of
the metric near the conformal infinity. For example in the case d = 4, the g(3) term in
the asymptotic expansion of g = r2g+ in (1.1) is an ”non-local” as it depends on both
h = g|M and g+.

One application of compactness is the uniqueness result of the CCE extension of Gra-
ham and Lee for the metrics on Sd−1 close to the standard canonical metric on Sd−1. As
we have mentioned before, in the model case–the hyperbolic space form, it was proved
by [36] (see also [15] and later a different proof by [31]) that (Bd, gH) is the unique CCE
manifold with the standard canonical metric on Sd−1 as its conformal infinity. The com-
pactness result permits us to generalize the global uniqueness in the above setting. Such
result could be considered also as a stability result for the hyperbolic space.

In this work, if there is no confusion, we drop the argument g for the various curvature
tensors Ric,Rm, etc...

3. Compactness result in high dimensions d ≥ 5

On a general d-dimensional CCE manifold (Xd,Md−1, g+) with d ≥ 5. A general
consideration is what is a ”good” choice of the compactification of g+ one should use. A
most natural consideration is the compactication of the Yamabe metric (i.e. the metric
which minimize the L1 norm of the scalar curvature in the compactified conformal class
of metrics [g+] with fixed volume which we know exists). The problem with that choice
is that, we do not see how to control the corresponding boundary metric of the Yamabe
metric. Instead, in [9] and the earlier works of [7] and [8], we will consider a special choice
of compactification with some given boundary metric to start with. In the case when
d ≥ 5, the metric we chose and denoted by g∗ is the metric which was considered earlier
in a paper by Case-Chang, [6] and was named as the ”adopted metric”.
Given a boundary metric h on the conformal infinity M , the metric was defined by solving
the PDE:

(3.1) −∆g+v −
(d− 1)2 − 9

4
v = 0 on Xd,
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then we define g∗ := v
4
d−4 g+ = ρ2g+ with g∗|M = h, the fixed metric on the conformal

infinity of (Xd, g+). We now describe some special properties of the metric g∗.
Recall the fourth order Paneitz operator is given by (see [35, 5, 21])

(3.2) P4 = (−4)2 + δ(4A− d− 2

2(d− 1)
R)∇+

d− 4

2
Q4

where A = 1
d−2(Ric − R

2(d−1)g) is the Schouten tensor, δ is the dual operator of the

differential ∇, R denotes the scalar curvature and Q4 is a fourth order Q-curvature.
More precisely, let σk(A) denote the k-th symmetric function of the eigenvalues of A and
Q4 := −4σ1(A) + 4σ2(A) + d−4

2
σ1(A)2. For a Einstein metric with Ricg+ = −(d− 1)g+,

thus we have Q4[g
+] = 0 and

P4[g
+] = (−∆g+ −

(d− 1)2 − 1

4
) ◦ (−∆g+ −

(d− 1)2 − 9

4
).

Therefore

Q4[g
∗] =

2

d− 4
P4[g

∗]1 =
2

d− 4
v
d+4
d−4P4[g

+]v = 0

Moreover, g∗ is totally geodesic on boundary (see [9, Lemma2.6]).

We now recall some basic calculations for curvatures under conformal changes. Write
g+ = r−2g for some defining function r and calculate

Ric[g+] = Ric[g] + (d− 2)r−1∇2r + (r−14r − (d− 1)r−2|∇r|2)g
so that

R[g+] = r2(R[g] +
2d− 2

r
4r − d(d− 1)

r2
|∇r|2).

Here the covariant derivatives is calculated with respect to the metric g (or adopted
metrics g∗ in the following). Therefore, for adopted metrics g∗ of a conformally compact
Einstein metric g+, one has

(3.3) R[g∗] = 2(d− 1)ρ−2(1− |∇ρ|2),
which in turn gives

(3.4) Ric[g∗] = −(d− 2)ρ−1∇2ρ+
4− d

4(d− 1)
R[g∗]g∗

and

(3.5) R[g∗] = −4(d− 1)

d+ 2
ρ−14ρ.

When X is a smooth d-dimensional manifold with boundary ∂X and g+ is a confor-
mally compact Einstein metric on X with the conformal infinity (∂X, [h]) of nonnegative
Yamabe type, an important property of the g∗ metric was proved in the earlier work of
Case-Chang ([6, Lemma 4.2]) is that g∗ = ρ2g+ the adopted metrics associated with the
metric h with the positive scalar curvature in the conformal infinity have the positive
scalar curvature R[g∗] > 0 on X, which implies in particular,

(3.6) ‖∇ρ‖[g∗] ≤ 1.
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This property is one of main ingredients in our blow-up analysis.
Another important property in blow-up analysis is the non-collapsing result for adopted
metrics g∗ when the conformal infinity (∂X, [h]) is of positive Yamabe type (see [8, Lemma
3.3] and [9, Lemma 2.11]). That is, the volume of any geodesic ball with radius equals
to 1 is uniformly bounded below by some positive constant when the curvature tensor is
bounded.
We recall the Yamabe invariant of the conformal infinity (∂X, [h]) is defined as follows

Y (∂X, [h]) = inf
h̃∈[h]

∫
∂X
R[h̃]dvol[h̃]

V ol(∂X, h̃)(d−3)/(d−1)

We now split the discussion into two cases.

Case I, when d is even

We first consider the case when d is even. In this case due to the vanishing obstruction
tensor ([18, 20] ) for CCE manifolds, the curvature tensor satisfies an elliptic system. More
precisely, let Rikjl, Rij and Wikjl be Riemann, Ricci, Weyl curvature tensors respectively.
We recall the definition of 4-th order Bach tensor B on d-dimensional manifolds (Xd, g)
as

(3.7) Bij :=
1

d− 3
∇k∇lWkijl +

1

d− 2
WkijlR

kl.

Recall also the Cotten tensor C is defined as

(3.8) Cijk = Aij,k − Aik,j

where A is the schouten tensor. It turns out there is a relation between the divergence of
Weyl tensor to the Cotton tensor, namely

(3.9) ∇lWijkl = (d− 3)Ckij

Applying this relation (3.9), we can write the Bach tensor into the following equations

(3.10) (d− 2)Bij = ∆Rij −
d− 2

2(d− 1)
∇i∇jR−

1

2(d− 1)
4Rgij +Q1(Rm),

where Q1(Rm) is some quadratic term on Riemann curvature tensor

Q1(Rm) := 2WikjlR
kl− d

d− 2
Ri

kRjk+
d

(d− 1)(d− 2)
RRij+(

1

d− 2
RklR

kl− R2

(d− 1)(d− 2)
)gij

We now recall that the adapted metric g∗ have flat Q4-curvature, i.e., Q4[g
∗] = 0, which

can be rewritten into the following form

(3.11) −4R = −d
3 − 4d2 + 16d− 16

4(d− 2)2(d− 1)
R2 +

4(d− 1)

(d− 2)2
|Ric|2.

We will now incorporate the Q4-flat property of g∗ to the Bach equation of g∗ to derive
estimates of the curvature of g∗.
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One first recall that if follows from [18, 20] when d is even, the metrics conformal to
Einstein ones have the vanishing the obstruction tensors Oij (see also [28]), that is

(3.12) Oij = (4)d−4/2
1

d− 3
∇j∇lWijkl + lots = (4)d−4/2Bij + lots = 0

For example, when d = 6, we have

(3.13)
Bij,k

k = 2WkijlB
kl + 4Ak

kBij − 8AklC(ij)k,l
+4CkilCljk − 2CiklCjkl − 4Akk,lCij l + 4WkijlA

k
mA

ml

where 2C(ij)k = Cijk + Cjik. Gathering (3.10),(3.11) and (3.12), the Ricci tensor satisfies a
d−2 order elliptic system. This allows us to apply some standard elliptic PDE techniques,
to obtain a ε-regularity result for the Ricci tensor, and then for the metrics g∗. This is
the key step which permits us to do various blow-up analysis and derives the following
compactness result (see [9, Theorem 1.1]).

Theorem 3.1. Suppose that X is a smooth oriented d-dimensional manifold with d ≥ 6
even and with boundary ∂X = Sd−1. Let {g+i } be a set of conformally compact Einstein
metrics on X. Assume the set {hi} of metrics on the boundary with non-negative scalar
curvature that represent the conformal infinities lies in a given set C of metrics that is
of positive Yamabe type and compact in Ck,α Cheeger-Gromov topology with k ≥ d − 2.
Moreover, assume there exits some positive constant C > 0 such that the Yamabe invariant
of the conformal infinities is uniformly bounded below by C. Assume there is δ0 > 0 such
that if either

(1′)
∫
Xd(|W |d/2dvol)[g+i ] < δ0, or

(1′′) Y (∂X, [hi]) ≥ Y (Sd−1, [gS])− δ0,
then the set {g∗i } of the adopted metrics (after diffeomorphisms that fix the boundary) is
compact in Ck,α′ Cheeger-Gromov topology for all 0 < α′ < α.

Case II, when d is odd

When the dimension d of the manifold X is odd, in general, we would not expect the
strong estimate Cd−1 as in the cases when d is even due to the term of krd−1 log r term in
the expansion of the metric g as in (1.2). This term k happens to be the obstruction tensor
([18, 20]) on the boundary of X and which may not vanish. For all dimensions d, under
the assumptions (namely C6) of the boundary metrics, we will present a different strategy
to reach the compactness result. The main difference from even dimension case consists
to the boundary ε regularity. In odd dimensions, we have no the obstruction tensor to
exploit. Hence, we go back to the Einstein equation for the metric g+. As same as many
geometric problems, Einstein equation is invariant under the diffeomorphism group. We
will apply the gauge fixing technique for Einstein metric to prove ε regularity (see [9,
Lemma 4.6 and Lemma 4.7]). We need to choose a fixed gauge to get the regularity in
the neighborhood of the boundary. Another difficulty comes from the degeneration of
such elliptic equation at the infinity. To overcome it, we choose the suitable weighted
functional spaces for which the linearized operator of above ”Gauged Einstein equation”
is a isomorphism.
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Let us introduce some notations. We firstly choose smooth local coordinates θ =
(θ2, θ2, · · · , θd) on an open set U ⊂ ∂X. It can extend to (θ1, θ) = (ρ, θ2, θ2, · · · , θd) on
the open subset Ω = [0, ε)× U ⊂ X, where ρ is the above defining function and ε > 0 is
some small positive number.

For any fixed point p ∈ ∂X, let Ω be a neighbourhood and (ρ, θ) be the background
coordinates such that θ(p) = 0. For each R > 0 sufficiently small, we define ZR(p) ⊂ Ω ⊂
X:

ZR(p) = {(ρ, θ) ∈ Ω : |θ| < R, 0 < ρ < R}
In [14], Chrúsciel-Delay-Lee-Skinner use gauged Einstein equation to study the regu-

larity problem and later on Biquard-Herzlich [4] prove a local version. Let us consider the
nonlinear functional on d-dimensional open set ZR(p) with p ∈ ∂X introduced by Biquard
[3]: for two asymptotically hyperbolic metrics g+ and k+

(3.14) F (g+, k+) := Ric[g+] + (d− 1)g+ − δ∗g+(Bk+(g+)),

where Bk+(g+) is a linear condition, essentially the infinitesimal version of the harmonicity
condition

Bk+(g+) := δk+g
+ +

1

2
dtrk+(g+).

We have for any asymptotically hyperbolic metrics k+

D1F (k+, k+) =
1

2
(4L + 2(d− 1)),

where D1 denotes the partial differentiation of F with respective to its first variable, and
the Lichnerowicz Laplacian 4L on symmetric 2-tensors is given by

4L := ∇∗∇[k+] + 2
◦
Ric[k+]− 2

◦
Rm[k+];

where
◦
Ric[k+](u)ij =

1

2
(Rim[g+]uj

m +Rjm[k+]ui
m),

and
◦
Rm[k+](u)ij = Rimjl[k

+]uml.

It is clear for any CCE metrics g+

F (g+, g+) = 0.

Suppose (Xd, ∂X, g+) is conformally compact Einstein with positive conformal infinity
(∂X, [h]) and with dimension d ≥ 5. Assume that, under the adopted metrics g∗, we
assume

(1) ‖Rmg∗‖C0 ≤ 1;
(2) ‖h‖C6 ≤ N for some positive constants N > 0;

We will prove the ε regularity. Namely, Rmg∗ is in Hölder space C1,α for all α ∈ (0, 1) (or
equivalently, the adopted metric g∗ is in Hölder space C3,α) near the boundary ∂X.

We can identify {p ∈ X̄, ρ(p) ≤ r1} = [0, r1] × ∂X for some r1 > 0 as a submanifold
with the boundary. We consider a C4 compacitified AH manifold on [0, r1/2]× ∂X

t = dρ2 + h+ ρ2h(2), t+ = ρ−2t
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where h(2) = g(2) is the Fefferman-Graham expansion term and intrinsically determined
by the boundary metric h (g(2) is the schouten tensor of h for the adopted metric). Given
2R < r1/2, we look for a local diffeomorphism Φ : ZR(p)→ Φ(ZR(p)) ⊂ Z2R(p) such that
Φ∗g+ solves the gauged Einstein equation in ZR/2(p)

(3.15) F (Φ∗g+, t+) = 0

We divide the boundary ∂ZR(p) := ∂∞ZR(p) ∪ ∂intZR(p) = ({ρ = 0} ∩ ∂ZR(p)) ∪ ({ρ >
0} ∩ ∂ZR(p)). Recall CCE g+ and regular AH t+ have the same conformal infinity h on
∂X. We try to find a C2,α (with α ∈ (0, 1)) local diffeomorphism Φ : ZR(p) → Z2R(p)
fixing the boundary ∂∞ZR(p) such that the gauged condition is satisfied in ZR/2(p) up to
the diffeomorphism Φ, that is

Bt+(Φ∗g+) = 0 in ZR/2(p)

Thus, the gauged Einstein equation (3.15) is satisfied in ZR/2(p). Such equation permits
us to prove ρ2(Φ∗g+ − t+) in Hölder space C3,α for all α ∈ (0, 1), which gives ρ2Φ∗g+ in
C3,α. Using the fact g+ is CCE, we derive the regularity result for the Cotton tensor in
Hölder space C0,α. Hence, it follows from (3.7) and (3.10) that the Ricci tensor Ric is in
Hölder space C1,α in ZR/2(p) which yields the desired the ε-regularity in ZR/2(p). Once
the ε-regularity is established, the rest proof is as same as even dimensions case. Finally,
we prove the following compactness result. For the more details, see [9, Theorem 1.2].

Theorem 3.2. Suppose that X is a smooth oriented d-dimensional manifold with d ≥ 4
and with boundary ∂X = Sd−1. Let {g+i } be a set of conformally compact Einstein metrics
on X. Assume the set {hi} of metrics on the boundary with non-negative scalar curvature
that represent the conformal infinities lies in a given set C of metrics that is of positive
Yamabe type and compact in C6 Cheeger-Gromov topology. Moreover, assume there exits
some positive constant C > 0 such that the Yamabe invariant of the conformal infinities
is uniformly bounded below by C. Then under the above assumptions (1′) or (1′′), the set
{g∗i } of the adopted metrics (after diffeomorphisms that fix the boundary) is compact in
C3,α Cheeger-Gromov topology for all 0 < α < 1.

4. Uniqueness of Graham-Lee metrics in high dimension d ≥ 5

As an application of Theorem 3.2, we are able to establish the global uniqueness for
the CCE metrics on Xd with prescribed conformal infinities that are very close to the
conformal round (d − 1)-sphere as in the work of [22] (cf also [30]). Namely, (cf [9,
Theorem 1.3])

Theorem 4.1. For a given conformal (d − 1)-sphere (Sd−1, [h]) with d ≥ 5 that is suf-
ficiently close to the round one in C6 topology, there is exactly one conformally compact
Einstein metric g+ on Xd whose conformal infinity is the prescribed conformal (d − 1)-
sphere (Sd−1, [h]). Moreover, the topology of X should be a ball Bd.

We remark that there exists a unique CCE filling in metric when the conformal infinity
is the standard sphere [36] (see also [15, 31]). The above uniqueness result is stability one
for the model case–hyperbolic space.

The above theorem could be proved by contradiction. Assume otherwise there is a
sequence of conformal (d− 1)-dimensional sphere (Sd−1, [hi]) that converges to the round
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sphere such that, for each i, there exist two non-isometric conformally compact Einstein
metrics g+i and g̃+i . And g∗i and g̃∗i are the corresponding adopted metrics.

Up to a subsequence, both g∗i and g̃∗i converge to the adopted metric g∗H of hyperbolic
space in C3,α Cheeger-Gromov sense due to Theorem 3.2. On the other hand, there exists
a diffeomorphism ϕi of class C2,α for all α ∈ (0, 1) (equal to the identity on the boundary),
such that

F (ϕ∗i g̃
+
i , g

+
i ) = 0

Moreover ‖ϕi(x) − x‖C2,α → 0 and ‖ϕ∗i g̃∗i − g∗i ‖C1,α → 0 when i → ∞. By the implicit
function theorem, we have local uniqueness around each g+i , which implies, for large i, we
have

g+i = ϕ∗i g̃
+
i .

5. Compactness and uniqueness in dimension d = 4

In this section, we report results in dimension 4 established in [7, 8]. On a 4-dimensional
CCE manifold (X4,M3, g+), we will consider a special choice of compactification g∗ =
gFG = ρ2g+, called ”Fefferman-Graham’s compactification” (denoted also by FG metric
or FG compactification). We call it the FG metric as the PDE (5.1) which was used later
by Chang-Qing-Yang [12] to define the metric was first introduced in [17] in connection
with their study of integral conformal invariants for CCE manifolds.

In [17], they studied the function w which is a solution of the following PDE

(5.1) −4g+w = d− 1

We remark that in the special case when d = 4, the FG metric g∗ = e2wg+ on a CCE
4-manifold (X4,M3, g+) is a natural dimensional continuation of the adopted metrics on
CCE d-manifold (Xd,Md−1, g+) when d ≥ 5 in the following sense: Fixed a boundary
metric h, if we name the solution v as vs of the Poisson equation

(5.2) −∆g+v − s(d− 1− s)v = 0 on Xd,

when we choose s = d
2

+ 1, then for d ≥ 5, the adopted metric on Xd which we have

introduced earlier in section 4 is defined as g∗ = vs
d−4
2 g+ = ρ2sg

+ with g∗|M = h. While
when d = 4, we have s = d

2
+ 1 = 3 = d− 1, then the solution w of (5.1) satisfies

(5.3) w = − d

ds
|s=d−1vs,

and the FG metric is defined as the compactified metric g∗ = e2wg+ = ρ2g+. Note that
when s = d − 1, the natural solution of the Poisson equation (5.2) is vs ≡ 1, thus ρ is
the limiting function of ρs when s tends to d− 1. We refer the readers to the expository
article [13] for further explanation of the relationship between the adopted metric and
the FG metric, and the connection between FG metric and the notion of renormalized
volume and other integral conformal invariants in the CCE settings.

Thus the FG metric on X4 satisfies properties similar to the ”adopted metrics” defined
on Xd when d ≥ 5. The most important among them are the properties that the FG
metric g∗ has free Q4 curvature, and positive scalar curvature, and its restriction to the
boundary M is totally geodesic. For simplicity, we choose the boundary metric h be the
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Yamabe metric representative of the conformal infinity. With the same arguments as
Theorem 3.2, we then obtain the same result in dimension 4 (see [8, Theorem1.3]).

Theorem 5.1. Suppose that X is a smooth oriented 4-manifold with boundary ∂X = S3.
Let {g+i } be a set of conformally compact Einstein metrics on X. We assume

(1) The set {hi} of Yamabe metrics that represent the conformal infinities lies in a
given set C of metrics that is of positive Yamabe type and compact in Ck,α Cheeger-
Gromov topology with k ≥ 3 and with some α ∈ (0, 1);
there is δ0 > 0 such that if
either
(2)

∫
X4(|W |2dvol)[g+i ] < δ0,

or
(2′) Y (∂X, [hi]) ≥ Y (S3, [gS])− δ0,

then the set {g∗i } of the FG compactifications (after diffeomorphisms that fix the boundary)
is compact in Ck,α′ Cheeger-Gromov topology for all α′ ∈ (0, α).

We now present some general compactness results in [7, 8] on X4 without the assump-
tions that Weyl tensor is small in L2 norm or the Yamabe invariant of the conformal
infinity be close to that one of the standard sphere.

We first introduce some geometric quantities. In [7, Lemma 2.1], for a CCE manifold
(X4,M3, g+) with any compactification g, we introduce the notion of 2-tensor S which
on a 3-manifold M3

(S[g])α,β := ∇i(W [g])iαnβ +∇i(W [g])iβnα −∇n(W [g])nαnβ −
4

3
H[g](W [g])αnβ

n

where W [g] denotes the Weyl tensor, H[g] the mean curvature on the boundary M , letter
i is full indices, Greek indices α, β represent the tangential indices and n is the outward
unit normal of the boundary under the metric g. When the compactified metric g has
totally geodesic boundary, it takes the form:

(S[g])α,β =
1

2
∂n Ric[g]α,β −

1

12
∂nR[g]hα,β.

The 2-tensor S is conformally invariant in the sense that

S[r2g] = r−1S[g].

The connection of the S tensor to that of g(3) in (1.1) is that (see [7, Remark 2.2, (2.7)]):
Under any compactification by a geodesic defining function r, g = r2g+ has ∂nR[g] = 0
on M , thus

(5.4) (S[g])α,β = −3

2
g
(3)
α,β.

This shows that g(3) is also a local conformal invariant, which has been stated by Graham
[19].

The compactness result in general case can be stated as follows (see [8, Theorem 1.1]
and also [7, Theorem 1.1]):
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Theorem 5.2. Suppose that X is a smooth oriented 4-manifold with boundary ∂X = S3.
Let {g+i } be a set of conformally compact Einstein metrics on X. Assume the same
condition (1) in Theorem 5.1 holds. Assume the following conditions:

(2′′) The FG compactifications {g∗i = ρ2i g
+
i } associated with the Yamabe represen-

tatives {hi} on the boundary satisfies:

lim
r→0

sup
i

sup
x∈∂X

∮
B(x,r)

|Si|[g∗i ]dvol[hi] = 0

(3) H2(X,Z) = 0.

Then, the set {g∗i } of FG compactifications (after diffeomorphisms that fix the boundary)
forms a compact family in the Ck,α′ Cheeger-Gromov topology for all α′ ∈ (0, α).

We remark that we were aware that in the paper [1] by M. Anderson, he had asserted
similar compactness results in the CCE setting under no assumptions on the (analogue
of the) nonlocal tensor S. We have difficulty understanding some key estimates in his
arguments.

The key points for compactness result in general case on 4 dimensional CCE manifolds
are the following: on one hand, the condition (2′′) in Theorem 5.2 rules out the boundary
blow up; on the other hand, the topological condition (3) in Theorem 5.2 rules out the
interior blow up.

We now explain the connection of the S tensor to other scalar curvature invariants for
the metric g∗, which plays a key role in the results in [7, Theorem 1.7] and [8, Theorem 1.2].

Recall that on a 4-manifold (X4, g), a 4-th order Q4-curvature is given by

(5.5) Q4[g] := −1

6
4R− 1

2
|Ric|2 +

1

6
R2.

Q4 curvature is naturally associated with a 4th-order Paneitz operator (3.2). The relation
of the pair {Q4, P4} in 4 dimensions is like that of the well known pair {K,−∆} in 2
dimensions, where K denotes the Gaussian curvature:

−∆[g] +K[g] = K[e2wg]e2w on X2,

P4[g]w +Q4[g] = Q4[e
2wg]e4w on X4

for conformal changes of the metric. For a 4-manifold (X4, g) with boundary, in the earlier
works of Chang-Qing [10, 11], in connection with the 4th order Q curvature, a 3rd order
”non-local” boundary curvature T was introduced on ∂X to study the boundary behavior
of g. The relation between the pair (Q4, T ) is a generalization of that of the Dirichlet-
Neumann pair (−∆, ∂n). The expression of T curvature is in general complicated, but in
the special case when g is totally geodesic, the expression T takes the simple form:

(5.6) T [g] :=
1

12
∂nR.

We can state another compactness result (see [8, Theorem 1.2] and also [7, Theorem
1.7]).
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Theorem 5.3. Suppose that X is a smooth oriented 4-manifold with boundary ∂X = S3.
Let {g+i } be a set of conformally compact Einstein metrics on X. Assume the same
conditions (1) as in Theorems 5.1, (3) as in Theorem 5.2 and

(2′′′) For the associated Fefferman-Graham’s compactifications {g∗i = ρ2i g
+
i } with

the Yamabe representatives {hi} on the boundary,

lim inf
r→0

inf
i

inf
x∈∂X

∮
B(x,r)

T [g∗i ]dvol[hi] ≥ 0.

Then, the set {g∗i } is compact in Ck,α′ Cheeger-Gromov topology for all α′ ∈ (0, α) up to
diffeomorphisms that fix the boundary, provided k ≥ 7.

We remark that with the same arguments as in high dimensions (see Theorem 4.1), we
also reach a global uniqueness result in dimension 4 (see [8, Theorem 1.9]). Namely,

Theorem 5.4. For a given conformal 3-sphere (S3, [h]) that is sufficiently close to the
round one in C3,α Cheeger-Gromov topology with some α ∈ (0, 1), there is exactly one
conformally compact Einstein metric g+ on B4 whose conformal infinity is the prescribed
conformal 3-sphere (S3, [h]).
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-151.

[18] C. Fefferman and C. R. Graham, The ambient metric, Annals of Mathematics Studies, 178, Princeton
University Press, Princeton, (2012).

[19] C. R. Graham, Volume and Area renormalizations for conformally compact Einstein metrics, The
Proceedings of the 19th Winter School ”Geometry and Physics” (Srǹı, 1999). Rend. Circ. Mat.
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