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Abstract. A classical result of Aubin states that the constant in Moser-
Trudinger-Onofri inequality on S2 can be imporved for functions with zero �rst
order moments of the area element. We generalize it to higher order moments
case. These new inequalities bear similarity to a sequence of Lebedev-Milin
type inequalities on S1 coming from the work of Grenander-Szego on Toeplitz
determinants (as pointed out by Widom). We also discuss the related sharp
inequality by a perturbation method.

1. Introduction

Let (M; g) be a smooth compact Riemann surface without boundary. For an
integrable function u on M , we denote

u =
1

� (M)

Z
M

ud�: (1.1)

Here � is the measure associated with the Riemannian metric g.
The classical Moser-Trudinger inequality (see [ChY2, F, M]) tells us that for

every u 2 H1 (M) n f0g with u = 0, we haveZ
M

e
4� u2

kruk2
L2(M) d� � c (M; g) : (1.2)

Here c (M; g) is a positive constant independent of u.
A direct consequence of (1.2) is the following Moser-Trudinger-Onofri inequality:

for every u 2 H1 (M) with u = 0, we have

log

Z
M

e2ud� � 1

4�
kruk2L2(M) + c1 (M; g) : (1.3)

We remark that the inequality (1.3) has attracted more interest than the original
inequality (1.2) due to its close relation to Gauss curvature equation and spectral
geometry through the classical Polyakov formula (see for example [On, OsPS]).
On the standard sphere, it is found in [A, corollary 2 on p159] that for u 2

H1
�
S
2
�
with u = 0 and

R
S2 xie

2u(x)d� (x) = 0 for i = 1; 2; 3, the constant 1
4� in

(1.3) can be lowered i.e. for any " > 0, we have

log

�
1

4�

Z
S2
e2ud�

�
�
�
1

8�
+ "

�
kruk2L2 + c": (1.4)

Here c" is a constant depending on " only.
A closely related question is to �nd the best constant in (1.3) and (1.4). In [On],

the best constant c1 (M; g) for (1.3) is found on the standard S
2. More precisely it

1
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is shown that for u 2 H1
�
S
2
�
with u = 0, we have

log

�
1

4�

Z
S2
e2ud�

�
� 1

4�
kruk2L2 : (1.5)

For (1.4), it is proved recently in [GuM] that the best constant c" is 0. In other
words, for u 2 H1

�
S
2
�
with u = 0 and

R
S2 xie

2u(x)d� (x) = 0 for i = 1; 2; 3, we have

log

�
1

4�

Z
S2
e2ud�

�
� 1

8�
kruk2L2 : (1.6)

This con�rms a conjecture in [ChY1].
To motivate our discussion, let us look at some research on S

1 which has similar
spirit as above. For convenience we letD be the unit disk in R

2. For any u 2 H1 (D)
with

R
S1 ud� = 0, the Lebedev-Milin inequality (see [D, chapter 5]) tells us

log

�
1

2�

Z
S1
eud�

�
� 1

4�
kruk2L2(D) : (1.7)

This should be compared to (1.5).
On the other hand, as observed in [Wi], we have a sequence of Lebedev-Milin

type inequalities following from the work of Grenander-Szego [GrS] on Toeplitz
determinants. More precisely for any integer m � 0, u 2 H1 (D) with

R
S1 ud� = 0

and
R
S1 e

ueik�d� = 0 for k = 1; � � � ;m, we have

log

�
1

2�

Z
S1
eud�

�
� 1

4� (m+ 1)
kruk2L2(D) : (1.8)

For m = 0, (1.8) is just (1.7). For m = 1, (1.8) is proved in [OsPS, section
2]. These inequalities should be compared to (1.6). Note that cos k� and sin k� are
eigenfunctions of ��S1 with eigenvalue k2. So (1.8) actually tells us we can improve
the coe¢ cient of kruk2L2(D) further if eu is perpendicular to more eigenfunctions of
��S1 . For a while, people wonder whether we have similar improvements of (1.4)
or (1.6) on S

2. The main aim of this note, as stated in Theorem 1.1 below, is to
con�rm this guess.
To state the main results, we need some notations. For any nonnegative integer

k, we denote

Pk =
�
all polynomials on R

3 with degree at most k
	
; (1.9)

�
Pk =

�
p 2 Pk :

Z
S2
pd� = 0

�
; (1.10)

Hk =
�
all degree k homogeneous polynomials on R

3
	
; (1.11)

Hk = fh 2 Hk : �R3h = 0g : (1.12)

It is known that
HkjS2 = fhjS2 : h 2 Hkg (1.13)

is exactly the eigenspace of ��S2 associated with eigenvalue k (k + 1). Moreover

�
Pk
����
S2
=

kM
i=1

HijS2 : (1.14)

We refer the reader to [SW, chapter IV] for these facts.
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De�nition 1.1. Let m 2 N, we denote

Nm (1.15)

=
�
N 2 N : 9x1; � � � ; xN 2 S

2 and �1; � � � ; �N 2 [0;1) s.t. �1 + � � �+ �N = 1

and for any p 2
�
Pm, �1p (x1) + � � �+ �Np (xN ) = 0.

�
=

�
N 2 N : 9x1; � � � ; xN 2 S

2 and �1; � � � ; �N 2 [0;1) s.t. for any p 2 Pm,

�1p (x1) + � � �+ �Np (xN ) =
1

4�

Z
S2
pd�.

�
.

The smallest number in Nm is denoted as Nm i.e. Nm = minNm.

The importance of Nm lies in the following theorem, which is the main result of
this paper.

Theorem 1.1. Assume u 2 H1
�
S
2
�
such that

R
S2 ud� = 0 (here � is the standard

measure on S
2) and for every p 2

�
Pm,

R
S2 pe

2ud� = 0, then for any " > 0, we have

log

Z
S2
e2ud� �

�
1

4�Nm
+ "

�
kruk2L2 + c": (1.16)

It is worth pointing out that the coe¢ cient 1
4�Nm

+ " is almost optimal (see
Lemma 3.1). On the other hand, in view of (1.6) and (1.8), it would be very
interesting to determine the best possible constant c" in (1.16) for m � 2.
The condition in (1.15) is the same as saying the cubature formula (a more

familiar name of cubature formula is quadrature formula)

1

4�

Z
S2
fd� � �1f (x1) + � � �+ �Nf (xN ) (1.17)

for functions f on S
2 has nonnegative weights and degree of precision m (here we

use the terminology in [HSW]). Various cubature formulas are of great practical
importance in scienti�c computing and have been extensively studied in the litera-
ture (see the review articles [Co, HSW] and the references therein). In particular,
the size of Nm is discussed in [HSW, section 4.6]. It follows from [Co, theorem 7.1]
or [HSW, theorem 4] that

Nm �
�hm
2

i
+ 1
�2
: (1.18)

Here [t] denotes the largest integer less than or equal to t. In our case when all the
weights �i�s are nonnegative, a simple proof of (1.18) is given on [HSW, p1203]. In
general, �nding the exact values of Nm for all m�s is still an open problem.
On the other hand, it is straightforward to see that N1 = 2 (see Example 4.1).

Hence (1.4) follows from Theorem 1.1. It is also well known in numerical analysis
community that N2 = 4 (we provide an elementary proof of this fact in Lemma 4.1
for reader�s convenience). As a consequence, we have

Corollary 1.1. Assume u 2 H1
�
S
2
�
such that

R
S2 ud� = 0 and for every p 2

�
P2,R

S2 pe
2ud� = 0, then for any " > 0, we have

log

Z
S2
e2ud� �

�
1

16�
+ "

�
kruk2L2 + c": (1.19)
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At last we want to point out that our analysis of H1 on surfaces depends heavily
on the Hilbert space structure of H1, and closely follows [L, p197]. For similar
discussion of W 1;n (n � 3) on a Riemannian manifold of dimension n, [L, p197]
has to use special symmetrization process to gain the pointwise convergence of the
gradient of functions considered. In [H], by adapting the approach in this paper,
we are able to avoid the symmetrization process and generalize the analysis to
dimensions at least 3 as well as higher order Sobolev spaces. We also remark that in
a forthcoming paper [ChG] we discuss an inequality on S

2 which is the counterpart
of the second inequality in the Szego limit theorem of the Toeplitz determinants on
the unit circle.
In Section 2, we will derive some extensions of the concentration compactness

principle in dimension 2. These re�nements will be used in Section 3 to prove
our main theorem. In Section 4, we discuss some elementary facts about Nm. In
particular we will show N2 = 4. In Section 5, we will make a �rst e¤ort toward
related sharp inequalities generalizing (1.6). In Section 6, we will show our approach
gives a new way to prove the sequence of Lebedev-Milin type inequalities on the
unit circle.

2. Refinements of concentration compactness principle in dimension 2

In this section, we will extend the concentration compactness principle in di-
mension 2 developed in [L, section I.7]. These extensions will be crucial in the
derivation of Theorem 1.1.
We start from a basic consequence of Moser-Trudinger inequality (1.2).

Lemma 2.1. For any u 2 H1 (M) and a > 0, we haveZ
M

eau
2

d� <1: (2.1)

Proof. Without losing of generality, we can assume u is nonnegative and unbounded.
For b > 0, let v = (u� b)+, then

krvk2L2 =
Z
u>b

jruj2 d�! 0

as b!1. Let w = v � v, then

0 � u � v + b = w + v + b:

Hence

u2 � 2w2 + 2 (v + b)2 :
We have

eau
2

� e2a(v+b)
2

e2aw
2

� e2a(v+b)
2

e
4� w2

krwk2
L2

when b is large enough. It follows thatZ
M

eau
2

d� � ce2a(v+b)
2

<1:

�

Next we prove a localized version of [L, Theorem I.6].
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Lemma 2.2. Assume ui 2 H1 (M) such that ui = 0 and kruikL2 � 1. We also
assume ui * u weakly in H1 (M), ui ! u a.e. and

jruij2 d�! jruj2 d�+ � (2.2)

in measure. If K � M is a compact subset with � (K) < 1, then for any 1 � p <
1

�(K) , we have e
4�u2i is bounded in Lp (K) i.e.

sup
i

Z
K

e4�pu
2
i d� <1: (2.3)

Proof. For basics about measure theory we refer the readers to [EG]. Let vi = ui�u,
then vi * 0 weakly in H1 (M), vi ! 0 in L2 (M). For any ' 2 C1 (M), we have

kr ('vi)k2L2

=

Z
M

�
jr'j2 v2i + 2'vir' � rvi + '2 jrvij

2
�
d�

=

Z
M

jr'j2 v2i d�+ 2
Z
M

'vir' � rvid�

+

Z
M

�
'2 jruij2 � 2'2ru � rui + '2 jruj2

�
d�

!
Z
M

'2d�

as i ! 1. Assume 1 � p1 <
1

�(K) , then � (K) <
1
p1
. Hence there exists ' 2

C1 (M) such that 'jK = 1 and
R
M
'2d� < 1

p1
. It follows that for i large enough,

kr ('vi)k2L2 <
1

p1
:

Hence Z
K

e4�p1(vi�'vi)
2

d� �
Z
M

e4�p1('vi�'vi)
2

d�

�
Z
M

e
4�

('vi�'vi)
2

kr('vi)k2L2 d�

� c (M; g) :

To continue, we observe that for any " > 0,

u2i = ((vi � 'vi) + u+ 'vi)2

= (vi � 'vi)2 + 2 (vi � 'vi) (u+ 'vi) + (u+ 'vi)2

� (1 + ") (vi � 'vi)2 +
�
1 + "�1

�
(u+ 'vi)

2

� (1 + ") (vi � 'vi)2 + 2
�
1 + "�1

�
u2 + 2

�
1 + "�1

�
'vi

2:

Hence
e4�u

2
i � e4�(1+")(vi�'vi)

2

e8�(1+"
�1)u2e8�(1+"

�1)'vi2 :

Given 1 � p < 1
�(K) , we can choose a p1 2

�
p; 1

�(K)

�
. There exists a " > 0 such that

p1
1+" > p. Note that e4�(1+")(vi�'vi)

2

is bounded in L
p1
1+" (K), e8�(1+"

�1)u2 2 Lq (K)
for any q < 1 (by Lemma 2.1) and e8�(1+"

�1)'vi2 ! 1 as i ! 1, it follows from
Holder�s inequality that e4�u

2
i is bounded in Lp (K). �
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Corollary 2.1. With the same assumption as in Lemma 2.2, let

� = max
x2M

� (fxg) � 1: (2.4)

(1) If � < 1, then for any 1 � p < 1
� , e

4�u2i is bounded in Lp (M). In particular,

e4�u
2
i ! e4�u

2

in L1 (M).
(2) If � = 1, then � = �x0 for some x0 2 M , u = 0 and after passing to a

subsequence,
e4�u

2
i ! 1 + c0�x0 (2.5)

in measure for some c0 � 0.

Proof. First we assume � < 1. Let 1 � p < 1
� , then for any x 2 M , � (x) < 1

p .

Hence for some rx > 0 small, we have �
�
Brx (x)

�
< 1

p . By the compactness of M ,
we see

M =

N[
i=1

Bri (xi) :

Here ri = rxi . Then

M =
N[
i=1

Bri (xi):

It follows from the Lemma 2.2 that

sup
j

Z
Bri

(xi)

e4�pu
2
jd� <1:

Summing up, we get

sup
j

Z
M

e4�pu
2
jd� <1:

Next we assume � = 1. SinceZ
M

jruj2 d�+ � (M) � 1;

and u = 0, we see u = 0 and � = �x0 for some x0 2 M . For r > 0 small, we
know e4�u

2
i is bounded in Lq (MnBr (x0)) for any q < 1, hence e4�u2i ! 1 in

L1 (MnBr (x0)). It follows that after passing to a subsequence, e4�u
2
i ! 1 + c0�x0

in measure for some c0 � 0. �

Now we are ready to derive the main re�nement of the earlier concentration
compactness principle.

Proposition 2.1. Assume � > 0, mi > 0, mi ! 1, ui 2 H1 (M) such that
ui = 0, kruikL2 = 1 and

log

Z
M

e2miuid� � �m2
i : (2.6)

We also assume ui * u weakly in H1 (M), jruij2 d� ! jruj2 d� + � in measure
and

e2miuiR
M
e2miuid�

! � (2.7)

in measure. Let
fx 2M : � (x) � 4��g = fx1; � � � ; xNg ; (2.8)
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then

� =
NX
i=1

�i�xi ; (2.9)

here �i � 0 and
PN

i=1 �i = 1.

Proof. First we claim that if K is a compact subset of M with � (K) < 4��, then
� (K) = 0. Indeed, we can �nd another compact set K1 such that K � intK1 and
� (K1) < 4��. Fix a number p such that

1

4��
< p <

1

� (K1)
;

then Lemma 2.2 tells us Z
K1

e4�pu
2
i d� � c;

here c is a constant independent of i. Using

2miui � 4�pu2i +
m2
i

4�p
;

we see Z
K1

e2miuid� � ce
m2
i

4�p :

It follows that R
K1
e2miuid�R

M
e2miuid�

� ce(
1

4�p��)m
2
i :

Hence

� (K) � � (intK1) � lim inf
i!1

R
K1
e2miuid�R

M
e2miuid�

= 0:

It follows that � (K) = 0.

If � (x) < 4��, then for some rx > 0 small, we have �
�
Brx (x)

�
< 4��. It

follows from the claim that �
�
Brx (x)

�
= 0. Hence

� (Mn fx1; � � � ; xNg) = 0:

In another word, � =
PN

i=1 �i�xi with �i � 0 and
PN

i=1 �i = 1. �

3. Proof of Theorem 1.1

Let f1; � � � ; fL 2 C (M) and � > 0 be given. Here is our strategy to show for
any u 2 H1 (M) with u = 0 and

R
M
fie

2ud� = 0 for 1 � i � L, we have

log

Z
M

e2ud� � � kruk2L2 + c: (3.1)

This will be proven by contradiction argument. If it is not the case, then there
exists vi 2 H1 (M), vi = 0,

R
M
fje

2vid� = 0 for 1 � j � L, such that

log

Z
M

e2vid�� � krvik2L2 !1 (3.2)

as i!1. Then log
R
M
e2vid�!1. Since

log

Z
M

e2vid� � 1

4�
krvik2L2 + c (M; g) ; (3.3)
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we see krvikL2 !1. Letmi = krvikL2 and ui =
vi
mi
, thenmi !1, kruikL2 = 1,

ui = 0. After passing to a subsequence, we have

ui * u weakly in H1 (M) ;

log

Z
M

e2miuid�� �m2
i ! 1;

jruij2 d� ! jruj2 d�+ � in measure,
e2miuiR

M
e2miuid�

! � in measure.

Let
fx 2M : � (x) � 4��g = fx1; � � � ; xNg ; (3.4)

then it follows from Proposition 2.1 that

� =
NX
i=1

�i�xi ; (3.5)

here �i � 0 and
PN

i=1 �i = 1. On the other hand we haveZ
M

fjd� = 0

for 1 � j � L. In another word, we have

4��N � 1; (3.6)
NX
i=1

�ifj (xi) = 0 (3.7)

for 1 � j � L. We hope to get contradiction from these inequalities.

Proof of Theorem 1.1. Let � = 1
4�Nm

+ ". If (1.16) is not true, then the above

discussion gives us x1; � � � ; xN 2 S
2, �1; � � � ; �N � 0 such that

PN
i=1 �i = 1 and for

any p 2
�
Pm, �1p (x1) + � � � + �Np (xN ) = 0. Moreover 4��N � 1. In particular,

N 2 Nm and hence N � Nm. It follows that

� � 1

4�N
� 1

4�Nm
:

This contradicts with the choice of �. �

Next we want to show the constant 1
4�Nm

+ " in (1.16) is almost sharp.

Lemma 3.1. Assume m 2 N. If a � 0 and c 2 R such that for any u 2 H1
�
S
2
�

with u = 0 and
R
S2 pe

2ud� = 0 for every p 2
�
Pm, we have

log

Z
S2
e2ud� � a kruk2L2 + c; (3.8)

then a � 1
4�Nm

.

Proof. First we note that we can rewrite the assumption as for any u 2 H1
�
S
2
�

with
R
S2 pe

2ud� = 0 for every p 2
�
Pm, we have

log

Z
S2
e2ud� � a kruk2L2 + 2u+ c: (3.9)
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Assume N 2 N, x1; � � � ; xN 2 S
2 and �1; � � � ; �N 2 [0;1) s.t. �1 + � � �+ �N = 1

and for any p 2
�
Pm, �1p (x1)+ � � �+�Np (xN ) = 0. We will prove a � 1

4�N . Lemma
3.1 follows. Without losing of generality we can assume �i > 0 for 1 � i � N and
xi 6= xj for 1 � i < j � N .
To continue let us �x some notations. For x; y 2 S

2, we denote xy as the geodesic
distance between x and y on S

2. For r > 0 and x 2 S
2, we denote Br (x) as the

geodesic ball with radius r and center x i.e. Br (x) =
�
y 2 S

2 : xy < r
	
.

Let � > 0 be small enough such that for 1 � i < j � N , B2� (xi) \B2� (xj) = ;.
For 0 < " < �, we let

�" (t) =

8<: 2 log �" ; 0 < t < ";
2 log �t ; " < t < �;
0; t > �:

If b 2 R, then we write

�";b (t) =

8<: �" (t) + b; 0 < t < �;
b
�
2� t

�

�
; � < t < 2�;

0; t > 2�:

Let

v (x) =
NX
i=1

�"; 12 log �i (xxi) ; (3.10)

then Z
S2
e2vd� =

NX
i=1

Z
B�(xi)

e2�"(xxi)+log �id�+O (1) (3.11)

= 2�

Z �

0

e2�"(r) sin rdr +O (1)

= 2��4"�2 +O

�
log

1

"

�
as "! 0+.

Note that since dim
�
�
Pm
����
S2

�
= m2+2m, we can �x p1; � � � ; pm2+2m 2

�
Pm such

that p1jS2 ; � � � ; pm2+2mjS2 is a base for
�
Pm
����
S2
. For 1 � j � m2 + 2m, we haveZ

S2
e2vpjd� = O

�
log

1

"

�
(3.12)

as "! 0+. Indeed,Z
S2
e2vpjd�

=
NX
i=1

�i

Z
B�(xi)

e�"(xxi)pj (x) d� (x) +O (1)

=
NX
i=1

 
�ipj (xi)

Z
B�(xi)

e�"(xxi)d� (x) +

Z
B�(xi)

e�"(xxi)O
�
xxi

2
�
d� (x)

!
+O (1) ;
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here we have used the Talyor expansion of pj near xi and the vanishing of integral
of �rst order terms by symmetry. Using

NX
i=1

�ipj (xi) = 0;

we see Z
S2
e2vpjd� = O

�
log

1

"

�
:

To get a test function satisfying orthogornality condition, we need to do some cor-

rections. We �rst claim that there exists  1; � � � ;  m2+2m 2 C1c

 
S
2n

N[
i=1

B2� (xi)

!
such that the determinant

det

�Z
S2
 jpkd�

�
1�j;k�m2+2m

6= 0: (3.13)

Indeed, here is one way to construct these functions. Fix a nonzero smooth function

� 2 C1c

 
S
2n

N[
i=1

B2� (xi)

!
, then �p1; � � � ; �pm2+2m are linearly independent. It

follows that the matrix �Z
S2
�2pjpkd�

�
1�j;k�m2+2m

is positive de�nite and has positive determinant. Then  j = �2pj satis�es the
claim.
It follows from (3.13) that we can �nd �1; � � � ; �m2+2m 2 R such thatZ

S2

0@e2v + m2+2mX
j=1

�j j

1A pkd� = 0 (3.14)

for k = 1; � � � ;m2 + 2m. Moreover

�j = O

�
log

1

"

�
(3.15)

as "! 0+. As a consequence we can �nd a constant c1 > 0 such that

m2+2mX
j=1

�j j + c1 log
1

"
� log 1

"
: (3.16)

We de�ne u as

e2u = e2v +
m2+2mX
j=1

�j j + c1 log
1

"
: (3.17)

Note this u will be the test function we use to prove Lemma 3.1.

It follows from (3.14) that
R
S2 e

2upd� = 0 for all p 2
�
Pm. Moreover using (3.11)

and (3.15) we seeZ
S2
e2ud� = 2��4"�2 +O

�
log

1

"

�
= 2��4"�2 (1 + o (1)) ; (3.18)
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hence

log

Z
S2
e2ud� = 2 log

1

"
+O (1) (3.19)

as "! 0+. Calculation shows

u = o

�
log

1

"

�
: (3.20)

At last we claim Z
S2
jruj2 d� = 8�N log 1

"
+ o

�
log

1

"

�
: (3.21)

Once this is known, we plug u into (3.9) and get

2 log
1

"
� 8�Na log 1

"
+ o

�
log

1

"

�
:

Divide log 1" on both sides and let "! 0+, we see a � 1
4�N .

To derive (3.21), we note that on S
2n

N[
i=1

B2� (xi), jruj = O (1) (here we need to

use (3.15) and (3.16)), henceZ
S2
jruj2 d� =

NX
i=1

Z
B2�(xi)

jruj2 d�+O (1)

=
NX
i=1

Z
B�(xi)

jruj2 d�+O (1)

=
NX
i=1

8�

Z �

"

r�10 sin r�
c1 log

1
"

�i�4
+ r�4

�2 dr +O (1)
= 8�N log

1

"
+ o

�
log

1

"

�
:

�

4. The number Nm

We start with the following basic observation.

Example 4.1. N1 = 2. It is clear that N1 � 2, on the other hand, by setting
�1 = �2 =

1
2 and x2 = �x1, we see N1 � 2. Hence N1 = 2.

Lemma 4.1. N2 = 4.

Proof. Indeed it follows from (1.18) that N2 � 4. Here we give a direct proof. Note
that N2 � N1 = 2.
If N2 = 2, then we have �1x1 + �2x2 = 0. It implies �1 = �2 =

1
2 . Hence

x2 = �x1. By rotation, we assume x1 = (0; 0; 1). Let p (y) = y21 , then

�1p (x1) + �2p (x2) = 0 6=
1

4�

Z
S2
pd�:

We get a contradiction.
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If N2 = 3, then we have �1x1 + �2x2 + �3x3 = 0. It follows that x1; x2; x3 must
lie in a plane. By rotation we can assume that plane is the horizontal plane. Let
p = y23 , then

�1p (x1) + �2p (x2) + �3p (x3) = 0 6=
1

4�

Z
S2
pd�:

This gives us a contradiction.
Hence we only need to �nd x1; x2; x3; x4 2 S

2, �1; �2; �3; �4 � 0 with �1 + �2 +

�3 + �4 = 1 such that for any p 2
�
P2, we have

�1p (x1) + �2p (x2) + �3p (x3) + �4p (x4) = 0: (4.1)

We claim the four vortices of a regular tetrahedron inside the unit sphere with
�i =

1
4 for 1 � i � 4 would satisfy the property. Indeed, let

x1 = (0; 0; 1) ;

x2 =

 
0;
2
p
2

3
;�1
3

!
;

x3 =

 r
2

3
;�
p
2

3
;�1
3

!
;

x4 =

 
�
r
2

3
;�
p
2

3
;�1
3

!
:

Then we have
x1 + x2 + x3 + x4 = 0:

Moreover using

H2 = span

(
y21 �

jyj2

3
; y22 �

jyj2

3
; y1y2; y1y3; y2y3

)
;

checking (4.1) for each p in the base veri�es the identity. �

It remains an interesting question to �nd Nm for all m�s.

5. A sharp inequality by perturbation

In this section we prove a sharp inequality by the perturbation method in the
same spirit as [ChY1].

Theorem 5.1. There exists an a0 < 1
8� such that for all u 2 H1

�
S
2
�
satisfyingR

S2 ud� = 0 and for every p 2
�
P2,

R
S2 pe

2ud� = 0, we have

log

�
1

4�

Z
S2
e2ud�

�
� a0 kruk2L2 : (5.1)

For convenience we denote

S2 =
�
u 2 H1

�
S
2
�
: u = 0;

Z
S2
pe2ud� = 0 for all p 2

�
P2
�
: (5.2)

For a given number a 2
�
1
16� ;

1
8�

�
, it follows from Corollary 1.1 that for every

u 2 S2,
log

�
1

4�

Z
S2
e2ud�

�
� a kruk2L2 + ca: (5.3)
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Let

s = sa = inf
u2S2

�
a kruk2L2 � log

�
1

4�

Z
S2
e2ud�

��
: (5.4)

We claim s is achieved. Indeed if ui 2 S2 is a minimizing sequence, then

a kruik2L2 � log
�
1

4�

Z
S2
e2uid�

�
� c:

Here c is a constant independent of i. Choose a number " with 0 < " < a � 1
16� .

Using Corollary 1.1 we have

a kruik2L2 � log
�
1

4�

Z
S2
e2uid�

�
+ c �

�
1

16�
+ "

�
kruik2L2 + c:

It follows that
kruikL2 � c:

After passing to a subsequence we can �nd u 2 H1
�
S
2
�
such that ui * u weakly

in H1
�
S
2
�
. Hence ui ! u in L2

�
S
2
�
and we can also assume ui ! u a.e. For any

b > 0, we have

2bui � 4�
u2i

kruik2L2
+
b2 kruik2L2

4�
:

Hence Z
S2
e2buid� � ce

b2kruik2L2
4� � c:

It follows that e2ui ! e2u in L1
�
S
2
�
. Hence for any p 2

�
P2,

R
S2 pe

2ud� = 0. It
follows that u 2 S2.

s � a kruk2L2 � log
�
1

4�

Z
S2
e2ud�

�
� lim inf

i!1

�
a kruik2L2 � log

�
1

4�

Z
S2
e2uid�

��
= s:

Hence u is a minimizer.
Let ua be a minimizer for (5.4). When no confusion would happen, we simply

write u instead of ua. We will show that if a is close enough to 1
8� , the minimizer

u must be identically zero. This would imply Theorem 5.1.
To achieve this aim, we can assume 5

48� < a < 1
8� . Since u is a minimizer, we

see

a kruk2L2 � log
�
1

4�

Z
S2
e2ud�

�
� 0:

Hence applying Corollary 1.1 we get

a kruk2L2 � log
�
1

4�

Z
S2
e2ud�

�
� 1

12�
kruk2L2 + c:

It implies kruk2L2 � c, a constant independent of a.
Next we claim that as a ! 1

8� , ua * 0 weakly in H1
�
S
2
�
. Indeed if this is not

the case, then we can �nd a sequence ai ! 1
8� , ui = uai such that ui * w weakly

in H1
�
S
2
�
and w 6= 0. We can also assume ui ! w a.e. It follows from classical
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Moser-Trudinger inequality (see (1.2)) that e2ui ! e2w in L1
�
S
2
�
. Hence w 2 S2.

Since

ai kruik2L2 � log
�
1

4�

Z
S2
e2uid�

�
;

taking a limit we get

1

8�
krwk2L2 � log

�
1

4�

Z
S2
e2wd�

�
:

It follows from equality case of (1.4) (see [GuM]) that w = 0. This gives us a
contradiction.
Applying the Moser-Trudinger inequality (1.2) again we see for any b > 0,

e2bua ! 1 in Lq
�
S2
�
for any q 2 [1;1) as a! 1

8� . Hence

a kruak2L2 � log
�
1

4�

Z
S2
e2uad�

�
! 0:

It follows that kruakL2 = o (1) as a! 1
8� .

To continue we observe that since
�
P2
����
S2
= H1jS2 � H2jS2 = (H1 +H2)jS2 ;

u satis�es the Euler-Langrage equation

�a�u� e2uR
S2 e

2ud�
= � 1

4�
+ `e2u + he2u (5.5)

for some ` = `a 2 H1 and h = ha 2 H2.
Since H1 + H2 is a �nite dimensional vector space, any two norms on it are

equivalent. Hence we �x an arbitrary norm on H1 + H2 from now on. We claim
that `a ! 0 and ha ! 0 as a! 1

8� . For convenience we write

� =
1

4�

Z
S2
e2ud�:

Note that � = 1 + o (1). The equation becomes

�a�u+ 1

4�
= e2u

�
1

4��
+ `+ h

�
: (5.6)

Multiplying 1
4�� + `+ h and integrating on S

2, we seeZ
S2

�
�a�u+ 1

4�

��
1

4��
+ `+ h

�
d� =

Z
S2
e2u
�
1

4��
+ `+ h

�2
d�:

Using the fact u 2 S2 it becomes

a

Z
S2
u (2`+ 6h) d�

=

Z
S2
e2u (`+ h)

2
d�

=

Z
S2

�
e2u � 1

�
(`+ h)

2
d�+

Z
S2
`2d�+

Z
S2
h2d�:

It follows that

o (k`k+ khk) =
Z
S2
`2d�+

Z
S2
h2d�+ o

�
k`k2 + khk2

�
:
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Hence
k`k2 + khk2 = o (k`k+ khk) :

We get k`k+ khk = o (1).
Now we claim that kuakL1 = o (1). Indeed sincee2u� 1

4��
+ `+ h

�
� 1

4�


L2

�
e2u� 1

4��
� 1

4�

�
L2
+
1

4�

e2u � 1
L2
+
e2u (`+ h)

L2

= o (1) ;

it follows from (5.6) and standard elliptic theory that kuakW 2;2 = o (1). Sobolev
embedding theorem tells us kuakL1 = o (1).
At last we observe that e2u � � is perpendicular to R, H1 and H2, hence

12

Z
S2

�
e2u � �

�2
d�

�
Z
S2

��re2u��2 d�
= 4

Z
S2
e4u jruj2 d�

=

Z
S2
ru � re4ud�

=

Z
S2
(��u) e4ud�

=

Z
S2
(��u)

�
e4u � �2

�
d�

=
1

a

Z
S2

�
e2u
�
1

4��
+ `+ h

�
� 1

4�

� �
e4u � �2

�
d�

=
1 + o (1)

2�a

Z
S2

�
e2u � �

�2
d�+

1

a

Z
S2
e2u (`+ h)

�
e4u � �2

�
d�:

On the other hand,Z
S2
e2u (`+ h)

�
e4u � �2

�
d�

=

Z
S2

�
e2u � �

�
(`+ h)

�
e4u � �2

�
d�+ �

Z
S2
(`+ h)

�
e4u � �2

�
d�

= o (1)

Z
S2

�
e2u � �

�2
d�+ �

Z
S2
(`+ h)

�
e4u � 2�e2u + �2

�
d�

= o (1)

Z
S2

�
e2u � �

�2
d�+ �

Z
S2
(`+ h)

�
e2u � �

�2
d�

= o (1)

Z
S2

�
e2u � �

�2
d�:

Here we have used the fact u 2 S2. Plug this equality back we see�
12� 1

2�a
+ o (1)

�Z
S2

�
e2u � �

�2
d� � 0:
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Since a is close to 1
8� , we get

R
S2
�
e2u � �

�2
d� = 0. Hence u must be constant

function. In view of the fact u = 0, we get u = 0. This �nishes the proof of
Theorem 5.1.

6. A revisit of Lebedev-Milin type inequalities on S
1

In this section we will show the above method on S
2 provides a variational

approach for a sequence of Lebedev-Milin type inequalities on S
1. Let D be the

unit disk in the plane and S
1 = @D be the unit circle. We use � as the usual angle

variable and identify R
2 as C.

Theorem 6.1. For m 2 N, u 2 H1 (D) with
R
S1 ud� = 0 and

R
S1 e

ueik�d� = 0 for
k = 1; � � � ;m, we have

log

�
1

2�

Z
S1
eud�

�
� 1

4� (m+ 1)
kruk2L2(D) : (6.1)

Moreover equality holds if and only if u (z) = log 1
j1��zm+1j2 for some � 2 C with

j�j < 1.

For m = 1, (6.1) is proved in [OsPS] by variational method. As observed in [Wi],
(6.1) follows from the work of Grenander-Szego [GrS] on Toeplitz determinants.
On S

1, the Moser-Trudinger inequality (1.2) is replaced by the Beurling-Chang-
Marshall inequality (see [ChM, corollary 2]): for u 2 H1 (D) n f0g with

R
S1 ud� = 0,

we have Z
S1
e
� u2

kruk2
L2(D) d� � c: (6.2)

Similar to (1.9)�(1.12), for any nonnegative integer k, we write

Pk =
�
real polynomials on R

2 with degree at most k
	
; (6.3)

�
Pk =

�
p 2 Pk :

Z
S1
pd� = 0

�
; (6.4)

Hk =
�
degree k homogeneous real polynomials on R

2
	
; (6.5)

Hk = fh 2 Hk : �R2h = 0g = spanR
�
Re
�
zk
�
; Im

�
zk
�	
: (6.6)

Note that
HkjS1 = spanR fcos k�; sin k�g (6.7)

and
�
Pk
����
S1
= spanR fcos j�; sin j� : j 2 N; j � kg : (6.8)

Corresponds to De�nition 1.1, we have for m 2 N,

Nm
�
S
1
�

(6.9)

=
�
N 2 N : 9z1; � � � ; zN 2 S

1 and �1; � � � ; �N 2 [0;1) s.t. for any p 2 Pm,

�1p (z1) + � � �+ �Np (zN ) =
1

2�

Z
S1
pd�.

�
and Nm

�
S
1
�
= minNm

�
S
1
�
. Unlike the case on S

2, it is known that

Nm
�
S
1
�
= m+ 1: (6.10)
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Indeed ifN 2 Nm
�
S
1
�
, we must haveN � m+1. Otherwise, for the z1; � � � ; zN 2 S

1

in (6.9), we let f (z) = (z � z1) � � � (z � zN ), then Re f; Im f 2 Pm. It follows that

1

2�

Z
S1
fd� = �1f (z1) + � � �+ �Nf (zN ) = 0:

On the other hand, we clearly have

1

2�

Z
S1
fd� = (�1)N z1 � � � zN 6= 0:

This gives us a contradiction. Hence Nm
�
S
1
�
� m + 1. On the other hand, for

1 � k � m+1, we let �k = 1
m+1 and zk = e

2k�
m+1 i. It follows that m+1 2 Nm

�
S
1
�
.

Hence Nm
�
S
1
�
= m+ 1.

Now we are ready to state the analogue of Theorem 1.1 on S
1.

Lemma 6.1. Assume m 2 N, u 2 H1 (D) such that
R
S1 ud� = 0 and

R
S1 e

ueik�d� =
0 for 1 � k � m, then for any " > 0 we have

log

Z
S1
eud� �

�
1

4�Nm (S1)
+ "

�
kruk2L2(D) + c" (6.11)

=

�
1

4� (m+ 1)
+ "

�
kruk2L2(D) + c":

Note that for m = 1, Lemma 6.1 is treated in [OsPS, lemma 2.5]. We can prove
Lemma 6.1 by replacing (1.2) with (6.2) and following the approach in Section 2
and Section 3. The detail is left to interested readers.
To continue we denote

Sm =
�
u 2 H1 (D) :

Z
S1
ud� = 0;

Z
S1
eueik�d� = 0 for k = 1; � � � ;m

�
: (6.12)

Let a 2
�

1
4�(m+1) ;

1
4�m

�
, then it follows from Lemma 6.1 that

inf
u2Sm

�
a kruk2L2(D) � log

�
1

2�

Z
S1
eud�

��
(6.13)

is achieved.
Let u be a minimizer for (6.13), then u is smooth and for some real numbers �k

and k,

��u = 0 in D;

2a
@u

@�
� euR

S1 e
ud�

= � 1

2�
+

mX
k=1

(�k cos k� + k sin k�) e
u:

Here � is the unit outer normal direction of S
1. Let

v = u� log
�
2a

Z
S1
eud�

�
; (6.14)
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then v is smooth and

��v = 0 in D;

@v

@�
+

1

4�a
= ev +

mX
k=1

�
cke

ik� + cke
�ik�� ev;Z

S1
eveik�d� = 0 for k = 1; � � � ;m:

Here c1; � � � ; cm are complex constants. Next we claim ck = 0 for all k. For the
case m = 1, this is proved in [OsPS, lemma 2.6].

Lemma 6.2. Let m 2 N, � > 0, v 2 C1
�
D
�
such that

R
S1 e

veik�d� = 0 for
k = 1; � � � ;m and

��v = 0 in D; (6.15)

@v

@�
+ � = ev +

mX
k=1

�
cke

ik� + cke
�ik�� ev; (6.16)

here � is the unit outer normal direction of S
1 and c1; � � � ; cm are complex constants,

then ck = 0 for 1 � k � m.

Proof. We write

vjS1 =

1X
k=�1

ake
ik�; ak 2 C; ak = a�k;

evjS1 =
1X

k=�1
bke

ik�; bk 2 C; bk = b�k:

It follows from the assumption that

bk = 0 for 1 � jkj � m: (6.17)

Using (6.15) and (6.16) we see

1X
k=�1

jkj akeik� + � =

0@1 + mX
j=1

cje
ij� +

mX
j=1

cje
�ij�

1A 1X
k=�1

bke
ik�:

Compare the constant term on both sides and using (6.17) we get b0 = �. On the
other hand, for k 6= 0, we have

jkj ak = bk +
mX
j=1

cjbk�j +
mX
j=1

cjbk+j : (6.18)

Next we observe that
@� (e

v) = ev@�v;

hence
1X

k=�1
kbke

ik� =

0@ 1X
j=�1

jaje
ij�

1A 1X
k=�1

bke
ik�

!
:

It follows that

kbk =
1X

j=�1
jajbk�j : (6.19)
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Plug (6.18) into (6.19), we get

kbk =
1X

j=�1
sgn (j)

"
bj +

mX
s=1

csbj�s +
mX
s=1

csbj+s

#
bk�j :

In particular, for 1 � k � m, it becomes

kbk =
kX
j=1

bjbk�j +
mX
s=1

cs

k+sX
j=1

bj�sbk�j +
kX
s=1

cs

k�sX
j=1

bj+sbk�j

+
mX

s=k+1

cs

0X
j=k�s+1

bj+sbk�j :

Using (6.17) we get �2ck = 0, hence ck = 0. �

It follows from Lemma 6.2 that the function v de�ned in (6.14) satis�es

��v = 0 in D;
@v

@�
+

1

4�a
= ev on S

1:

Since 1
4�a 2 (m;m+ 1), it follows from [OsPS, lemma 2.3] that v is a constant

function. Hence any minimizer of (6.13) must be 0. In another word, for any
u 2 Sm,

log

�
1

2�

Z
S1
eud�

�
� a kruk2L2(D) :

Let a! 1
4�(m+1) , we get (6.1).

If u 2 Sm such that

log

�
1

2�

Z
S1
eud�

�
=
kruk2L2(D)
4� (m+ 1)

;

then u is smooth and for some real numbers �k and k,

��u = 0 in D;

1

2� (m+ 1)

@u

@�
� euR

S1 e
ud�

= � 1

2�
+

mX
k=1

(�k cos k� + k sin k�) e
u:

Let

v = u� log
R
S1 e

ud�

2� (m+ 1)
;

it follows from Lemma 6.2 that

��v = 0 in D;
@v

@�
+m+ 1 = ev on S

1:

By [Wa, theorem 7], we can �nd � 2 C with j�j < 1 such that

v (z) = log
(m+ 1)

�
1� j�j2

�
j1� �zm+1j2

:

Using the fact
R
S1 ud� = 0, we see u (z) = log

1
j1��zm+1j2 .
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At last calculation shows for any � 2 C with j�j < 1, if we write u� (z) =
log 1

j1��zm+1j2 , then u� 2 Sm and

log

�
1

2�

Z
S1
eu�d�

�
= log

1

1� j�j2
=

1

4� (m+ 1)
kru�k2L2(D) :

Theorem 6.1 follows.

References

[A] T. Aubin.Meilleures constantes dans le théorème d�inclusion de Sobolev et un théorème de
Fredholm non linéaire pour la transformation conforme de la courbure scalaire. (French)
J. Functional Analysis 32 (1979), no. 2, 148�174.

[ChG] S.-Y. A. Chang and C. F. Gui. A sharp inequality on the exponentiation of functions on
the sphere. Preprint, 2020.

[ChM] S.-Y. A. Chang and D. E. Marshall. On a sharp inequality concerning the Dirichlet inte-
gral. Amer. J. Math. 107 (1985), no. 5, 1015�1033.

[ChY1] S.-Y. A. Chang and P. C. Yang. Prescribing Gaussian curvature on S2. Acta Math. 159
(1987), no. 3�4, 215�259.

[ChY2] S.-Y. A. Chang and P. C. Yang. Conformal deformation of metrics on S2. J. Di¤erential
Geom. 27 (1988), no. 2, 259�296.

[Co] R. Cools. Constructing cubature formulae: the science behind the art. Acta numerica,
1997, 1�54, Acta Numer., 6, Cambridge Univ. Press, Cambridge, 1997.

[D] P. L. Duren. Univalent functions. Grundlehren der Mathematischen Wissenschaften [Fun-
damental Principles of Mathematical Sciences], 259. Springer-Verlag, New York, 1983.
xiv+382 pp.

[EG] L. C. Evans and R. F. Gariepy. Measure theory and �ne properties of functions. Revised
edition. Textbooks in Mathematics. CRC Press, Boca Raton, FL, 2015. xiv+299 pp.

[F] L. Fontana. Sharp borderline Sobolev inequalities on compact Riemannian manifolds.
Comment. Math. Helv. 68 (1993), no. 3, 415�454.

[GrS] U. Grenander and G. Szego. Toeplitz forms and their applications. California Mono-
graphs in Mathematical Sciences University of California Press, Berkeley-Los Angeles
1958 vii+245 pp.

[GuM] C. F. Gui and A. Moradifam. The sphere covering inequality and its applications. Invent.
Math. 214 (2018), no. 3, 1169�1204.

[H] F. B. Hang. A remark on the concentration compactness principle in critical dimension.
arXiv:2002.09870

[HSW] K. Hesse, I. H. Sloan and R. S. Womersley. (2010) Numerical Integration on the Sphere.
In: Freeden W., Nashed M.Z., Sonar T. (eds) Handbook of Geomathematics. Springer,
Berlin, Heidelberg.

[L] P. L. Lions. The concentration-compactness principle in the calculus of variations. The
limit case. I. Rev. Mat. Iberoamericana 1 (1985), no. 1, 145�201.

[M] J. Moser. A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20
(1970/71), 1077�1092.

[On] E. Onofri. On the positivity of the e¤ ective action in a theory of random surfaces. Comm.
Math. Phys. 86 (1982), no. 3, 321�326.

[OsPS] B. Osgood, R. Phillips and P. Sarnak. Extremals of determinants of Laplacians. J. Funct.
Anal. 80 (1988), no. 1, 148�211.

[SW] E. M. Stein and G. Weiss. Introduction to Fourier analysis on Euclidean spaces. Princeton
Mathematical Series, No. 32. Princeton University Press, Princeton, N.J., 1971. x+297
pp.

[Wa] X. D. Wang. Uniqueness results on surfaces with boundary. Calc. Var. Partial Di¤erential
Equations 56 (2017), no. 3, Art. 87, 11 pp.

[Wi] H. Widom. On an inequality of Osgood, Phillips and Sarnak. Proc. Amer. Math. Soc.
102 (1988), no. 3, 773�774.



IMPROVED MOSER-TRUDINGER-ONOFRI INEQUALITY UNDER CONSTRAINTS 21

Department of Mathematics, Princeton University, Fine Hall, Washington Road,
Princeton, NJ 08544

E-mail address : chang@math.princeton.edu

Courant Institute, New York University, 251 Mercer Street, New York NY 10012
E-mail address : fengbo@cims.nyu.edu


