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Abstract

In this paper we show a new inequality which generalizes to the unit sphere the
Lebedev-Milin inequality of the exponentiation of functions on the unit circle. It may
also be regarded as the counterpart on the sphere of the second inequality in the Szegö
limit theorem on the Toeplitz determinants on the circle. On the other hand, this
inequality is also a variant of several classical inequalities of Moser-Trudinger type on
the sphere. The inequality incorporates the deviation of the center of mass from the
origin into the optimal inequality of Aubin for functions with mass centered at the
origin, and improves Onofri’s inequality with the contribution of the shifting of the
mass center explicitly expressed.

1 Introduction
Let S2 be the unit sphere and for u ∈ H1(S2) define

Fα(u) = α

∫
S2
|∇u|2dω + 2

∫
S2
udω − log

∫
S2
e2udω, (1.1) MTAO

where the volume form dω is normalized so that
∫
S2 dω = 1. The well-known Moser-Trudinger

inequality [13] says that Fα is bounded below if and only if α ≥ 1. Later on Onofri [14]
sharpened Moser-Trudinger inequality and showed that for α ≥ 1 the best lower bound of
Fα is equal to zero. Onofri’s inequality was based on an inequality established earlier by
Aubin [1] who proved that if Fα is restricted to

M := {u ∈ H1(S2) :

∫
S2
e2uxi = 0, i = 1, 2, 3},

then for α > 1
2
, Fα is bounded below and the infimum is attained in M. All these inequal-

ities play crucial roles in the “Nirenberg’s problem” of prescribing Gaussian curvature, in
particular in the work of Chang and Yang ([5] and [4]). In their effort to prescribe Gaussian
curvature without additional assumption on the symmetry of the curvature, Chang and Yang
have further improved the above Aubin-Onfri inequality by showing that (see Proposition B
in [5]) for α sufficient close but less than 1, the lower bound of Fα again is equal to zero for

1



u in the class M, their work led to the following conjecture:

Conjecture A. For α ≥ 1
2

inf
u∈M

Fα(u) = 0.

In 1998, Feldman, Froese, Ghoussoub and Gui [7] proved that this conjecture is true
for axially symmetric functions when α > 16

25
− ϵ. Later the second author and Wei [11],

and independently Lin [12] proved Conjecture A for axially symmetric functions. In [8]
Ghoussoub and Lin showed that Conjecture A holds true for α ≥ 2

3
− ϵ, for some ϵ > 0.

Finally Gui and Moradifam proved in [10] that Conjecture A is indeed true. Actually they
[10] obtained something stronger than the conjecture, by showing the following uniqueness
result for the corresponding Euler-Lagrange equation for the functional Fα.

MAOTheorem Theorem 1.1 The following equation

α∆u+
e2u∫

S2 e
2udω

− 1 = 0 on S2 (1.2) standardPDE

has only constant solutions for 1
2
≤ α < 1.

2 A Refined Aubin-Onofri Type Inequality
The main result in this paper is to establish a variant of Aubin-Onofri inequality. To motivate
the study of such type of inequalities, we first recall the classical Lebedev-Milin inequality
on the exponentiation of functions defined on the unit circle S1, which is in spirit similar to
that of the Moser-Trudinger inequality for functions defined on S2.

Assume on S1 ⊂ R2 ∼ C

u(z) =
∞∑
k=1

akz
k, eu(z) =

∞∑
k=0

βkz
k.

Then the Lebedev-Milin inequality on the unit circle ([6]) states

log(
∞∑
k=0

|βk|2) ≤
∞∑
k=1

k|ak|2 (2.1) LM

if the right hand side is finite , and equality holds if and only if ak = γk/k for some γ ∈ C
with |γ| < 1. This is well known in the community of univalent functions, in particular in
connection with Bieberbach conjecture.

Denote D the unit disc on R2. For any real function u defined on the unit circle, we recall
that the right hand side of (2.1) is indeed H

1
2 (S1) norm of u, which can also be identified

as the H1(D) norm of the harmonic extension, which we denote again by u, on the disc D.
Then the classical Lebedev-Milin inequality may be written as

log(
1

2π

∫
S1
eudθ)− 1

2π

∫
S1
udθ ≤ 1

4π
||∇u||2L2(D). (2.2) ML
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It turns out Lebedev-Milin inequality is the “first step” of a string of monotonically increasing
inequalities in the Szegö Limit Theorem ([9], 5.5a) on Toeplitz determinants. Here we will
just quote the second inequality in the Szegö limit theorem:

log(| 1
2π

∫
S1
eudθ|2 − | 1

2π

∫
S1
eueiθdθ|2)− 1

π

∫
S1
udθ ≤ 1

4π
||∇u||2L2(D). (2.3) GS2

One notes that in the special case when
∫
S1 e

ueiθdθ = 0, as a direct consequence of the above
inequality we have

log(
1

2π

∫
S1
eudθ)− 1

2π

∫
S1
udθ ≤ 1

8π
||∇u||2L2(D). (2.4) GS2cor

Indeed this special form of the inequality was independently verified by Osgood, Phillips,
Sarnak [15] and was used in their study of isospectral compactness for metrics defined on
compact surfaces. It was later pointed out by H. Widom ([16]) that it is a direct consequence
of the Szegö Limit Theorem. We remark that actually Widom has also pointed out that for
all integer k, there is a string of such inequalities for functions u with

∫
S1 e

ueijθdθ = 0 for
all 1 ≤ j ≤ k. In a recent work([3]), Chang and Hang have further explored this angle
and established a weaker form of such inequalities for functions defined on the 2-sphere with
vanishing higher order of moments.

The relevance to us is the apparent comparison of the inequality of (2.4) on S1 as com-
pared to Conjecture A in the introduction for functions defined on S2. This leads us to ask
the question if there a corresponding inequality on S2 similar to that of (2.3), which in the
special case when u is in M reduces to the statement in Conjecture A.

Motivated by this, we consider the following family of functionals in H1(S2):

Iα(u) = α

∫
S2
|∇u|2dω + 2

∫
S2
udω − 1

2
log[(

∫
S2
e2udω)2 −

3∑
i=1

(

∫
S2
e2uxidω)

2] (2.5) I_alpha

where α > 0.
The question we are asking is what is the minimum value of α for which the functional

Fα(u) stays non-negative for all functions u ∈ H1(S2). One notices that if such a minimum
value α is 1

2
, then we would recover the statement in Conjecture A. But to our surprise, the

answer of the question is actually no, and the minimum value of such α is actually 2
3
. We

will present here our analysis, and state the following result as our main theorem.

main Theorem 2.1 For any α > 0, we have

Iα(u) ≥ (α− 2

3
)

∫
S2
|∇u|2dω, ∀u ∈ H1(S2). (2.6) ineq

In particular, when α ≥ 2
3

we have

Iα(u) ≥ 0, ∀u ∈ H1(S2). (2.7) ineq1

Furthermore, for 0 < α < 2
3
, infH1(S2) Iα(u) = −∞.
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In the rest of the section, we will present the proof of the above theorem. Due to the
invariance of Iα(u) by a constant addition, we may confine our discussion in the normalized
space

H = {u ∈ H1(S2) :

∫
S2
e2udω = 1}. (2.8) normalized

The strategy is to first study the Euler-Lagrange equation of the functional Iα, assuming
the critical point is obtained. It turns out for the special value α = 2

3
, for each point a⃗ in

the unit ball B1 ⊂ R3, there is a unique solution u ∈ H, which we can write down explicitly,
of the Euler-Lagrange equation, with the center of mass of e2u being at a⃗. Based on this
analysis, we then study the minimum of Iα(u) over the class of u with a fixed center of
mass and verify that it is achieved for each α > 1

2
. Although the infimum of Iα(u) tends to

negative infinity as a⃗ goes to the unit sphere S2 = ∂B1 when 1
2
< α < 2

3
, it turns out that

Iα(u) ≥ 0 for all u ∈ H1(S2) when α ≥ 2
3
, due to the complete understanding of the critical

points of I2/3(u) in H with the center constrained.

We now begin the analysis. For each u ∈ H, denote

ai =

∫
S2
e2uxidω, i = 1, 2, 3. (2.9) a_i

euler Proposition 2.1 The Euler Lagrange equation for the functional Iα in H is

α∆u+
1−

∑3
i=1 aixi

1−
∑3

i=1 a
2
i

e2u − 1 = 0 on S2. (2.10) simple

We now study the solution of equation (2.10).

eq-main Proposition 2.2 i ) When α ∈ (0, 1) and α ̸= 2
3
, equation (2.10) has only zero solution in

H;
ii) When α = 2

3
, for any a⃗ = (a1, a2, a3) ∈ B1, there is a unique solution u to equation

(2.10) in H such that (2.9) holds. In particular, u is axially symmetric about a⃗ if a⃗ ̸= (0, 0, 0).
After a proper rotation, the solution u is explicitly given by the formula in (2.17) below.

Proof :

To investigate (2.10), recall the Kazdan-Warner condition for the Gaussian curvature
equation:

∆u+K(x)e2u = 1 on S2, (2.11) ageneral

then ∫
S2
(∇K(x) · ∇xj)e

2udω = 0 for each j= 1,2, 3. (2.12) KW

If u satisfies the (2.10), then

K(x) =
1

α

(1−
∑3

i=1 aixi)

(1−
∑3

i=1 a
2
i )

+ (1− 1

α
)e−2u. (2.13) gaussian
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Substituting (2.13) into (2.12), we obtain for each j = 1, 2, 3,

1

α

1

(1−
∑3

i=1 a
2
i )

∫
S2
(
∑
i

ai(∇xi · ∇xj))e
2udω = (−2)(1− 1

.
α)

∫
S2
(∇u · ∇xj)dω.

Integrate by part the last term, and substitute the term ∆u in equation (2.10) and simplify.
We then get∑

i

ai

∫
S2
∇xi · ∇xje

2udω = 2(1− 1

α
)
∑
i

ai

∫
S2
xixje

2udω − 2(1− 1

α
)aj.

We now notice that ∇xi · ∇xj = −xixj when i ̸= j, |∇xj|2 = 1− x2
j , thus we get

(3− 2

α
)aj

∫
S2
e2udω = (3− 2

α
)
∑
i

ai

∫
S2
xixje

2uω.

Multiply the above formula by aj and sum over j, we get

(3− 2

α
)

∫
S2

(∑
j

a2j − |
∑
i

aixi|2
)
e2udω = 0.

This implies that if α ̸= 2
3
, there holds ai = 0, i = 1, 2, 3, since

(
3∑

i=1

aixi)
2 ≤

3∑
i=1

a2i on S2

and the equality only holds when a⃗ = (a1, a1, a3) is the zero vector or x is parallel to the vector
(a1, a1, a3) if it is not the zero vector. Therefore, we conclude that when α ∈ (0, 2

3
) ∪ (2

3
, 1),

the equation (2.10) have only zero solution, in view of Theorem 1.1.
For α = 2

3
, we assume that u is a solution to the coupled equations (2.9) and (2.10).

Without of loss of generality, we may assume that (a1, a2, a3) = (0, 0, a) with a ∈ (0, 1) and
consider

2

3
∆u+

1− ax3

1− a2
e2u − 1 = 0 on S2. (2.14) eq-a

We shall use the stereographic projection to transform the equation to be on R2. Let Π be
the stereographic projection S2 → R2 with respect to the north pole N = (0, 0, 1):

y = Π(x) :=

(
x1

1− x3

,
x2

1− x3

)
.

Note that
x3 =

|y|2 − 1

|y|2 + 1
, dω =

dy

π(|y|2 + 1)2

Suppose u is a solution of (2.14), and let

w(y) := u(Π−1(y))− 3

2
ln(1 + |y|2) for y ∈ R2.
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Then w satisfies
∆w +

6

1 + a
(µ2 + |y|2)e2w = 0 in R2 (2.15) plane

where µ2 = 1+a
1−a

> 1, b > 0 and∫
R2

(µ2 + |y|2)e2wdy = (1 + a)π. (2.16) total

Now it is easy to verify directly that

w(y) = −3

2
ln(µ2 + |y|2) + 2 lnµ+

1

2
ln

2

1 + µ2

is a solution to (2.15) and (2.16), and hence u(x) defined by

u(x) = u(Π−1(y)) :=
3

2
ln

1 + |y|2

µ2 + |y|2
+ 2 lnµ+

1

2
ln

2

1 + µ2
(2.17) solution

is a solution to (2.14). It is also easy to compute that
∫
S2 e

2udω = 1 and∫
S2
e2ux3dω =

∫
R2

e2u(Π
−1(y))(

|y|2 − 1

|y|2 + 1
)

dy

π(|y|2 + 1)2
= a,

and therefore u is a solution to (2.9) and (2.10) with (a1, a2, a3) = (0, 0, a).
To show the uniqueness of the solution to (2.14), we will recall a general result regarding

the radial symmetry of solutions. Assume u ∈ C2(R2) satisfies

∆u+K(|y|)e2u = 0 in R2, (2.18) general

and
1

2π

∫
R2

K(|y|)e2udy = β < ∞, (2.19) 16Pi

where K(y) := K(|y|) ∈ C2(R2) is a non constant positive function satisfying

(K1) ∆ ln(K(|y|)) ≥ 0, y ∈ R2

(K2) lim
|y|→∞

|y|K′(|y|)
K(|y|)

= 2l > 0, y ∈ R2.

The following general symmetry result is proven in [10].

th-general Proposition 2.3 Assume that K(y) = K(|y|) > 0 satisfies (K1)− (K2), and u is a solution
to (2.18)-(2.19) with l + 1 < β ≤ 4. Then u must be radially symmetric.

Applying Proposition 2.3 to (2.15) and (2.16) with l = 1, β = 3, we conclude that
the solution to (2.15) and (2.16) must be radially symmetric. Furthermore, such a radial
solution must be unique by Theorem 1.5 of [12]. Therefore we have finished the proof of the
Proposition (2.2). ■
Proof of Theorem 2.1
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For any a⃗ = (a1, a2, a3) ∈ B1 := {|a| < 1} ⊂ R2, let us define

Ma⃗ := {u ∈ H ⊂ H1(S2) :

∫
S2
e2uxi = ai, i = 1, 2, 3}. (2.20) minimizing

First we consider a constrained minimizing problem on Ma⃗ :

m(α, a⃗) := min
u∈Ma⃗

Iα(u)

and recall the following compactness result:

compact Proposition 2.4 For any α > 1
2
, a⃗ = (a1, a2, a3) ∈ B1, there exists Cα,⃗a ∈ R such that

Iα(u) ≥ Cα,⃗a, ∀u ∈ Ma⃗. (2.21) lowerbound

Furthermore, there is a positive constant Mα,|⃗a|,C > 0 depending only on α, |⃗a| < 1 and C
such that ∥u∥H1(S2) ≤ Mα,|⃗a|,C in the sub level set ICα,⃗a := {u ∈ Ma⃗, Iα(u) ≤ C}.

Proof:

This result may be known to researchers in the area, although it seems not stated or
proven explicitly in the literature. Here we will give a sketch of proof following Proposition
2.1 of [3].

Assume that for some α > 1
2
, a⃗ = (a1, a2, a3) ∈ B1, there is a sequence uk ∈ Ma⃗, k =

1, 2, · · · such that Iα(uk) → −∞ as k → ∞. Then

ūk :=

∫
S2
ukdω → −∞, k → ∞.

By the classical Moser-Trudinger inequality, we have∫
S2
|∇uk|2dω ≥ −2ūk → ∞, k → ∞.

Let mk = (
∫
S2 |∇uk|2dω)

1
2 and

vk =
uk − ūk

mk

.

Then, when k is sufficiently large, by the assumption vk satisfies

ln(

∫
S2
e2mkvkdω) = −2ūk ≥ α

∫
S2
|∇uk|2dω = αm2

k.

Assume that vk converges weakly to v in H1(S2) as k → ∞ and

|∇vk|2dω → |∇v|2dω + σ and e2mkvkdω∫
S2 e

2mkvkdω
→ ν, k → ∞.

in measure, where σ(S2) = ν(S2) = 1. Then, by Proposition 2.1 in [3] we have,

{x ∈ S2 : σ(x) ≥ α} = {P} and ν = δP
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for some P ∈ S2 since α > 1
2
. Note that here we have a normalized area of the unit sphere

being 1 with the measure ω while in [3] the area of the unit sphere is 4π.
This leads to a contradiction that

a⃗ =

∫
S2
e2ukxdω =

∫
S2 e

2mkvkxdω∫
S2 e

2mkvkdω
→ P, k → ∞.

The argument also shows that ∥∇u∥L2(S2) is bounded in the sub level set ICα,⃗a := {u ∈
Ma⃗, Iα(u) ≤ C} for any fixed C ∈ R. The Jensen inequality and the convexity of the
exponential function as well as (4.2) lead to the boundedness of ū =

∫
S2 udω in the set ICα,⃗a.

Therefore, Proposition 2.4 holds. ■
From here it is standard to show that there exists a minimizer uα,⃗a ∈ Ma⃗ of (2.20)

satisfying

α∆u+ e2u(ρ−
3∑

i=1

βixi) = 1, x ∈ S2 (2.22) minimizer

for some ρ ∈ R and β⃗ = (β1, β2, β3) ∈ R3.
To be more precise, for a fixed α > 1

2
there is a minimizing sequence of uk ∈ Ma⃗, k =

1, 2, · · · of Iα such that uk is bounded in H1(S2) and uk converges weakly to uα,⃗a in H1(S2)
and uα,⃗a ∈ Ma⃗. (See, e.g., the proof of Theorem 5.1 of [3].) Hence uα,⃗a is a minimizer of
minu∈Ma⃗

Iα(u). It is easy to see that

ρ = 1 +
3∑

i=1

βiai.

Using Kazdan-Warner condition (2.12), we obtain

2(
1

α
− 3

2
)

3∑
i=1

βi

∫
S2
xixje

2udω = 2(
1

α
− 1)ρaj − βj, j = 1, 2, 3. (2.23) condition

In particular, when α = 2
3
, we have

βj =
aj

1− |⃗a|2
, j = 1, 2, 3.

Then equation (2.22) is equivalent to (2.10) when α = 2
3
.

After a proper rotation so that a⃗ points to the north pole and using the stereographic
project Π : S2 → R2, the solution is uniquely determined by

u 2
3
,|⃗a|(x) :=

3

2
ln

1 + |y|2

µ2 + |y|2
+ 2 lnµ+

1

2
ln

2

1 + µ2

where µ2 = 1+|⃗a|
1−|⃗a| > 1.
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Hence, by direct computations we have∫
S2
|∇u 2

3
,|⃗a||2dω =

1

4π

∫
R2

9(µ2 − 1)2

4

|y|2

(|y|2 + 1)2(|y|2 + µ2)2
dy

=
9

4

(µ2 + 1) ln(µ2)− 2(µ2 − 1)

µ2 − 1
,

(2.24) gradient

and ∫
S2
u 2

3
,|⃗a|dω =

1

4π

∫
R2

3

2
ln(

1 + |y|2

µ2 + |y|2
)

4

(1 + |y|2)2
dy + ln(µ2) +

1

2
ln(

2

1 + µ2
)

= −3

2

µ2 ln(µ2) + µ2 − 1

µ2 − 1
+ ln(µ2) +

1

2
ln(

2

1 + µ2
).

Then we can calculate
min
u∈Ma⃗

I 2
3
(u) = I 2

3
(u 2

3
,|⃗a|) = 0.

Furthermore,

min
u∈Ma⃗

Iα(u) ≤ Iα(u 2
3
,|⃗a|) = (α− 2

3
)

∫
S2
|∇u 2

3
,|⃗a||2dω

= (α− 2

3
)

9

4|⃗a|
(
−2|⃗a|+ ln

1 + |⃗a|
1− |⃗a|

)
.

(2.25) upper

In particular, if α < 2
3

we have that minu∈Ma⃗
Iα(u) → −∞ as |⃗a| → 1. This establishes

the proof of Theorem 2.1. ■

3 Uniqueness and symmetry
For a better understanding of Iα(u), particularly for α ̸= 2

3
, we need to consider the minimizer

uα,⃗a in (2.22) more closely.
First, we can rotate the coordinates properly so that β1 = β2 = 0. From (2.23) we see

that β3 ̸= 0 if a⃗ ̸= (0, 0, 0). Without loss of generality, we assume that a3 ≥ 0. In view of
(2.23), we have in particular ρ = 1 + β3a3 and (2.22) becomes

α∆u+ e2u(1 + β3(a3 − x3)) = 1, x ∈ S2. (3.1) reduced

Also (2.23) is reduced to

2(
1

α
− 3

2
)β3

∫
S2
(x3)

2e2uα,⃗adω = 2(
1

α
− 1)ρa3 − β3. (3.2) beta_3

Using (3.2) and the fact that

(a3)
2 = (

∫
S2
x3e

2uα,⃗a)2dω ≤
∫
S2
(x3)

2e2uα,⃗adω ≤ 1,
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we can obtain
a3

1− a23
≤ β3 ≤

2( 1
α
− 1)a3

1− a23
, if α ∈ (

1

2
,
2

3
] (3.3) beta-small

and
a3

1− a23
≥ β3 ≥

2( 1
α
− 1)a3

1− a23
, if α ∈ [

2

3
, 1]. (3.4) beta-large

We first show that when α ∈ (1/2, 1) is fixed, the solution set {uα,⃗a} with parameters a⃗
has a simple structure near the trivial solution u = 0 with (α, a⃗) = (α, (0, 0, 0)).

uniqueness_a Proposition 3.1 Fix α ∈ (1/2, 1). There is a constant δ(α) > 0 sufficiently small such
that when 0 < |⃗a| < δ(α), (3.1) has a unique solution uα,⃗a in Ma := Ma⃗, which is therefore
axially symmetric around a⃗.

Proof. We only need to consider the special case a⃗ = (0, 0, a3) after a proper rotation.
From (3.3) and (3.4), we know that β → 0, as a3 → 0 and hence uα,⃗a converges to the trivial
solution u = 0 as a3 goes to zero. Furthermore, from (3.2) we obtain

lim
a3→0

β

a3
= 3(1− α).

Suppose there is a sequence of {a(k) := a
(k)
3 , k = 1, 2, · · · } with |a(k)| → 0 as k → ∞ such

that minu∈Ma⃗
Iα(u) has two distinct solutions u

(k)
1 , u

(k)
2 which satisfies (3.1) with β

(k)
1 , β

(k)
2

respectively.
From (3.3) and (3.4), we know that β(k)

1 , β
(k)
2 → 0, as k → ∞ and hence u(k)

1 , u
(k)
2 converge

in C2(S2) to the trivial solution u = 0 as k goes to infinity, due to the uniqueness result
Theorem 1.1. Furthermore, from (3.2) we obtain

lim
k→∞

β
(k)
i

a(k)
= 3(1− α), i = 1, 2.

Let wk := u
(k)
1 − u

(k)
2 , and mk := ∥u(k)

1 − u
(k)
2 ∥L∞(S2). Note that wk satisfies

α∆wk + (e2u
(k)
1 − e2u

(k)
2 )

(
1 + β

(k)
1 (a(k) − x3)

)
= e2u

(k)
2 (β

(k)
2 − β

(k)
1 )(a(k) − x3).

Multiplying the above equation by a(k) − x3 and integrating on S2, we can obtain

|β(k)
1 − β

(k)
2 | ≤ C∥u(k)

1 − u
(k)
2 ∥L∞(S2)

for some positive constant C.
Hence, after taking a proper subsequence, we know that wk/mk converges in C2(S2) to

some nontrivial function ϕ ∈ C2(S2), and (β
(k)
1 − β

(k)
2 )/mk converges to a constant µ0 ∈ R.

Furthermore, we have ∫
S2
ϕdω =

∫
S2
ϕx3dω = 0

and
α∆ϕ+ 2ϕ+ µ0x3 = 0, x ∈ S2.

10



Multiplying the above equation by x3 and integrating on S2, we obtain µ0 = 0. Since
α ∈ (1/2, 1) and the first and second eigenvalue of the Laplacian on S2 are λ1 = 2, λ2 = 6
respectively, this leads to a contradiction. The proposition is proven. ■

Next we shall show a uniqueness result for α close to 2
3

when a⃗ is fixed.

uniqueness Proposition 3.2 Fix a⃗ ∈ B1. There is a constant δ(⃗a) > 0 sufficiently small such that when
|α− 2

3
| < δ, (3.1) has a unique solution in Ma := Ma⃗, which is therefore axially symmetric.

Proof. We only need to consider solutions to (3.1) in Ma⃗ with possible different
β3. Assume the contrary that there is a sequence of αk, k = 1, 2, · · · such that αk → 2

3
as

k → ∞, and (3.1) has distinct solutions u1,k, u2,k corresponding to possibly distinct values
of β3 = β1

k , β
2
k and distinct rotations a⃗1k, a⃗

2
k of a⃗ respectively. It is well-known that these

solutions are smooth and uniformly bounded. By the uniqueness of solution to (2.14), it is
easy to see that a⃗1k, a⃗

2
k converge to a⃗ = (0, 0, a3), and β1

k , β
2
k converge to β3 =

|⃗a|
1−|⃗a|2 = a3

1−a23
.

In view of (2.23), it is also easy to see that

|β1
k − β2

k| ≤ C(|⃗a|)|α− 2

3
| × ∥u1,k − u2,k∥L∞(S2)

for some positive constant C depending only on |⃗a| ∈ (0, 1).
Let

ϕk =
u1,k − u2,k

∥u1,k − u2,k∥L∞(S2)
.

It is standard to verify that u1,k, u2,k converges to u 2
3
,⃗a in C2(S2) with a⃗ = (0, 0, a3), as

k → ∞, and ϕk converges, after passing to a subsequence, in C2(S2) to ϕ with ||ϕ||L∞(S2) = 1.
Furthermore, ϕ satisfies (5.2) and the linearized equation

2

3
∆ϕ+

2(1− a23)

(1− a3x3)2
ϕ = 0, x ∈ S2. (3.5) linear3.5

Now consider the eigenvalue problem

∆ϕ+
λ(1− a2)

(1− ax3)2
ϕ = 0, x ∈ S2. (3.6) eigenvalue

for a fixed a ∈ (0, 1). Note that for any a ∈ (0, 1), the transformation Ta : S2 → S2 given by

Ta(x) =
(√1− a2x1

1− ax3

,

√
1− a2x1

1− ax3

,
x3 − a

1− ax3

)
is a conformal transformation. Indeed,

Ta = Π−1
(√1− a

1 + a
Π) : S2 → S2

and
det(dTa) =

(1− a2)

(1− ax3)2
.

11



Then we observe that P (Ta(x)) is an eigenfunction to (3.6) if and only if P (x) is a spherical
harmonics. Therefore, (3.6) has only eigenvalues λ = m(m+1) for a nonnegative integer m.
This leads to a contradiction to (3.5) since λ = 3 is not an eigenvalue of (3.6). The proof is
complete. ■

We can show the axial symmetry of a minimizer to minu∈Ma⃗
Iα(u) for most cases, though

it is still not completely resolved whether a given minimizer is always axially symmetric.
symmetry Proposition 3.3 Fix a⃗ ∈ B1, assume that for α > 1/2, uα,⃗a is a solution to (3.1) in

Ma := Ma⃗. Then uα,⃗a must be axially symmetric when either i) α ∈ (1/2, 2/3] or ii) α ≥ 1
or iii) α ∈ (2/3, 1) and |⃗a| ≤ 1−α

2α−1
.

Proof. For this purpose, we choose the stereographic project Π : S2 → R2 from the
north pole N = (0, 0, 1). By (3.3) and (3.4), we have

0 ≤ β3 <
1

1− a3
, ρ− β3 > 0.

Set

wα,⃗a(y) := uα,⃗a(Π
−1(y))− 1

α
ln(1 + |y|2) + 1

2
ln(

4(ρ− β3)

α
) for y ∈ R2.

Let µ be a positive constant with µ2 = ρ+β3

ρ−β3
> 1. Then wα,⃗a satisfies

∆w +K(|y|)e2w = 0 in R2 (3.7) general-plane

and
1

2π

∫
R2

K(|y|)e2wdy =
2

α
(3.8) general-total

where
K(|y|) := (µ2 + |y|2)(1 + |y|2)

2
α
−3.

i) When 1
2
< α < 2

3
, it is easy to see that K(|y|) satisfies (K1) − (K2) with l = 2

α
− 2.

By Proposition 2.3, we know that wα,⃗a(y) is radially symmetric and hence uα,⃗a(y) must be
axially symmetric and a1 = a2 = 0.

ii) When α > 1, then K > 0 is not constant and decreasing in r = |y|. The standard
moving plane method can lead to the radial symmetry of wα,⃗a(y). Indeed, the radially
symmetric solution is also unique (see Theorem 1.4 of [12]).

When α = 1, by (3.2), we know that β3 = 0 and hence (3.1) becomes (1.2) with α = 1.
It is well known that there is a unique solution to u1,⃗a ∈ Ma⃗ which is axially symmetric
about a⃗.

iii) When 2
3
< α < 1, if µ2(3− 2

α
) ≤ 1 we have

∆ lnK(|y|) =
4[µ(r2 + 1) +

√
3− 2

α
(r2 + µ2)]

(r2 + 1)2(r2 + µ2)2

(
µ(r2 + 1)−

√
3− 2

α
(r2 + µ2)

)
≥ 0

and hence (K1)− (K2) are satisfied. In particular, in view of (3.4), (K1)− (K2) hold when

a3 = |⃗a| ≤ 1− α

2α− 1
. (3.9) a_3

By Proposition 2.3 with l = 2
α
− 2 , under the condition (3.9), wα,⃗a(y) must be radially

symmetric and hence uα,⃗a(x) must be axially symmetric, a1 = a2 = 0. ■
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4 Estimates of the minimum of Iα on Ma⃗

In this section, we shall estimate for α ∈ (1/2, 1)

m(α, a) := inf
u∈Ma⃗,|⃗a|=a

Iα(u), ∀a ∈ [0, 1). (4.1) minimizer_a

In view of Proposition 2.4, we know that m(α, a) is a continuous function of a ∈ [0, 1)
for any fixed α ∈ (1/2, 1).

We have the following estimates.

energy Theorem 4.1 There hold pointwise in a ∈ [0, 1)

m(α, a) ≥


(
2

α
− 3) ln(1− a2), α ∈ (1/2, 2/3),

α(
1

α
− 3

2
) ln(1− a2), α ∈ (2/3, 1).

(4.2) lowerbound

and

m(α, a) ≤


(
2

α
− 3) ln(1− a2), α ∈ (2/3, 1),

3α

2a
(
1

α
− 3

2
)
(
ln(1− a2)− 2(ln(1 + a)− a)

)
, ∀α ∈ (1/2, 1).

(4.3) upperbound

There also holds asymptotically as a → 1

m(α, a) ≤ (
1

α
− 3

2
) ln(1− a2)

(
1 + o(1)

)
, α ∈ (1/2, 1). (4.4) upper-approx

Proof.
We first recall Onofri’s inequality

F1(u) =

∫
S2
|∇u|2dω + 2

∫
S2
udω − log

∫
S2
e2udω ≥ 0, u ∈ H1(S2). (4.5) onofri

In view of (2.6) and (4.5), it is easy to see by interpolation that for α ∈ (2/3, 1]

Iα(u) ≥ α(
1

α
− 3

2
) ln(1− a2), ∀u ∈ M. (4.6) lower-large

As we know from previous discussion, there is a minimizer uα,a to the minimization
problem (4.1), which is a solution to (3.1) with a3 = a, β3 = β3(a) satisfying (3.3) and (3.4).
Also from Proposition 3.1, the solution uα,a forms a curve smooth curve parametrized by
a ∈ (0, δ(α)). Furthermore, the linearized operator of (3.1) is a Fredholm operator on the
tangent space of Ma⃗ at any solution u of (3.1) on Ma⃗. By the compactness of solutions
of (3.1) for a3 = a ∈ [0, 1 − ϵ] for any fix ϵ ∈ (0, 1) and the analyticity of equation (3.1) in
term of u, it can be shown by the global bifurcation theory (see, e.g, Theorem 9.1.1 in [2])
that any solution set of (3.1) can be extended globally with either a → 0, 1 or being a closed
loop. In particular, by Proposition 3.1 there exists a branch of solution set which extends
to a = 0 in one direction and to a = 1 in the other direction. Note that we do not know in
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general the uniqueness of the solution for a fixed a ∈ (0, 1), there might be more branches,
and each branch of solutions might contain portions which are not minimizers of (4.1).

Nevertheless, by the compactness result Proposition 2.4 again, there are only finite num-
bers of smooth branches of solutions to (3.1) for a ∈ [0, 1− ϵ] with ϵ > 0, and we can find a
piecewise smooth solution curve uα,a(τ), τ ∈ (0,∞) to (3.1) in Ma := Ma⃗ with a⃗ = (0, 0, a)
such that a(τ) → 1 as τ → ∞. Furthermore, the singular set

S := {τ : a′(τ) does not exists ; or a′(τ) = 0 ; or
∂uα,a(τ)

∂a
does not exists in C2(S2)}

does not have accumulative point. For a fixed a ∈ (0, 1), there is some T > 0 depending on
α such that a(T ) = a. We have

a′(τ)

∫
S2
e2uα,a(τ)

∂uα,a(τ)

∂a
dω = 0, τ ∈ [0, T ] \ S

and
a′(τ)

∫
S2
e2uα,a(τ)x3

∂uα,a(τ)

∂a
dω = a′(τ), τ ∈ [0, T ] \ S.

Now using (3.1) and the above equalities we obtain

∂Iα(uα,a(τ))

∂τ
= −2(β(τ)− a(τ)

1− a2(τ)
)a′(τ), τ ∈ [0, T ] \ S.

Using similar arguments, we can find a solution curve of (4.1), still denoted by uα,a(τ), τ ∈
[0, T ], which is piecewise smooth, but may have finite discontinuous points τi, i = 1, 2, · · · , N
with τ0 = 0, τN = a. Moreover, it can be chosen that a(τ) is continuous, and uα,a(τ) has
both left limit and right limit at τi, i = 0, 1, 2, · · · , N in C2(S2) and Iα(uα,a(τ)) = m(α, a(τ))
is continuous. Furthermore, a′(τ) > 0, τ ∈ (τi, τi+1), i = 0, 1, 2, · · · , N .

Hence, using (3.3) and (3.4) with a3 = a(τ) and β3 = β3(τ), in view of Iα(uα,0) = 0 we
have for α ∈ (1/2, 2/3]

0 ≥ Iα(uα,a) =

∫ T

0

∂Iα(uα,a(τ))

∂τ
dτ

=
N∑
i=1

∫ τi

τi−1

∂Iα(uα,a(τ))

∂τ
dτ ≥

N∑
i=1

∫ τi

τi−1

(
2

α
− 3)

2a(τ)a′(τ)

1− a2(τ)
dτ

and for α ∈ (2/3, 1]

0 ≤ Iα(uα,a) =

∫ T

0

∂Iα(uα,a(τ))

∂τ
dτ

=
N∑
i=1

∫ τi

τi−1

∂Iα(uα,a(τ))

∂τ
dτ ≤

N∑
i=1

∫ τi

τi−1

(
2

α
− 3)

2a(τ)a′(τ)

1− a2(τ)
dτ.

Hence the first inequalities in both (4.2) and (4.3) are proven.
Next, we will estimate m(α, a(τ)) from above by using suitable auxiliary functions. Define

ũα,µ(x) = ũα,µ(Π
−1(y)) :=

1

α
ln

1 + |y|2

µ2 + |y|2
, y ∈ R2. (4.7) test
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Direct computations show that∫
S2
|∇ũα,µ|2dω =

1

4π

∫
R2

|∇ũα,µ(Π
−1(y))|2dy =

1

α2(µ2 − 1)

(
2(1− µ2) + (µ2 + 1) ln(µ2)

)
,

∫
S2
ũα,µdω =

1

4π

∫
R2

ũα,µ(Π
−1(y))

4

(1 + |y|2)2
dy = − 1

α(µ2 − 1)

(
(1− µ2) + µ2 ln(µ2)

)
,

and ∫
S2
e2ũα,µdω =

1

4π

∫
R2

e2ũα,µ(Π−1(y)) 4

(1 + |y|2)2
dy =

1− µ2−4/α

( 2
α
− 1)(µ2 − 1)∫

S2
e2ũα,µx3dω =

1

4π

∫
R2

e2ũα,µ(Π−1(y))4(|y|2 − 1)

(1 + |y|2)3
dy

=
( 2
α
)µ4−4/α + ( 2

α
− 2)(µ2 − µ2−4/α)− 2

α

( 2
α
− 1)( 2

α
− 2)(µ2 − 1)2

Hence, we have
Iα(ũα,µ) = (

3

2
− 1

α
) ln(µ2)

(
1 + o(1)

)
(4.8)

as a → 1 and µ → ∞.
Now we compute the center of mass of ũα,µ

aα,µ :=

∫
S2 e

2ũα,µx3dω∫
S2 e

2ũα,µdω
= 1−

2( 2
α
− 1)(1− µ2) + 2(µ

4
α
−2 − 1)

( 2
α
− 2)(µ2 − 1)(µ

4
α
−2 − 1)

.

It is easy to see that for α ∈ (1/2, 1)

aα,µ → 1 as µ → ∞; aα,µ → 0 as µ → 1.

Hence for any fixed a ∈ (0, 1) there is at least a positive number µ(a) such that aα,µ(a) = a
and

µ2(a) =
α

(1− α)(1− a)

(
1 + o(1)

)
, as a → 1.

Letting µ = µ(a), we can choose a constant c = c(a) such that vα,a := uα,µ(a) + c(a) ∈ Ma

and
Iα(vα,a) = (

1

α
− 3

2
) ln(1− a2)

(
1 + o(1)

)
as a → 1.

Hence (4.4) holds.
Therefore, the proof is complete. ■

Remark 4.2 In view of (4.5), we can then derive a lower bound of the gradient L2 norm
of a minimizer uα,a of (4.1) asymptotically∫

S2
|∇uα,a|2dω ≥ − ln(1− a2)

α

(
1 + o(1)

)
as a → 1;
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While for α ∈ (1/2, 2/3), using (2.7) a better lower bound can also be obtained∫
S2
|∇uα,a|2dω ≥ −3 ln(1− a2)

2α

(
1 + o(1)

)
as a → 1.

By (2.6) and the above gradient estimates, we can obtain for α ∈ (2/3, 1) an asymptotical
lower bound

m(α, a) ≥ (α− 2

3
)

∫
S2
|∇uα,a|2dω ≥ 2

3
(
1

α
− 3

2
) ln(1− a2)

(
1 + o(1)

)
as a → 1.

However, this energy lower bound is not as good as (4.6). When α ∈ (1/2, 2/3), similar
energy lower bound does not follow immediately from the gradient lower bound. If it did, it
would be a sharp one as it would coincide with the upper bound. Nevertheless, it is expected
that

m(α, a) = (
1

α
− 3

2
) ln(1− a2)

(
1 + o(1)

)
as a → 1.

Similarly using (4.5) and (4.3), we can obtain, when α ∈ (2/3, 4/5), a lower bound of the
gradient L2 norm of a minimizer uα,a of (4.1) point wisely in a∫

S2
|∇uα,a|2dω ≥ − 4− 5α

2α(1− α)
ln(1− a2), ∀a ∈ [0, 1],

which leads to the following lower bound point wisely in a

m(α, a) ≥ (α− 2

3
)

∫
S2
|∇uα,a|2dω ≥ −(4− 5α)(2α− 3)

4α(1− α)
ln(1− a2).

We note that the upper bound in (4.3) is not optimal which leads to the technical condition
α < 4/5 in the above estimates instead of the natural range up to α < 1.

On the other hand, using (2.7) and (4.3), we can also derive an upper bound of the
gradient L2 norm of a minimizer uα,a of (4.1) point wisely in a when α ∈ (2/3, 1)∫

S2
|∇uα,a|2dω ≤ − 3

α
ln(1− a2), ∀a ∈ [0, 1].

Similarly, using (2.7) and (4.4), we can derive an upper bound of the gradient L2 norm of a
minimizer uα,a of (4.1) asymptotically in a when α ∈ (2/3, 1)∫

S2
|∇uα,a|2dω ≤ − 3

2α
ln(1− a2)

(
1 + o(1)

)
as a → 1.

Similar upper bounds seem not follow immediately when α ∈ (1/2, 2/3).

Remark 4.3 The following technical questions still remain open:
1) Should uα,⃗a(x) always be axially symmetric for all α ∈ (2

3
, 1) and a⃗ ∈ B1?

2) Is the minimizer uα,⃗a(x) unique determined? In particular, is β uniquely determined?
We know that if β is uniquely determined by α and a⃗, then the axially symmetric solution
uα,⃗a(y) is unique.
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3) Fixed α ∈ (1
2
, 1), a⃗ ∈ B1, for any given β⃗ = β3a⃗/|⃗a|, 0 < β3 < 1

1−|⃗a| , ρ = 1 + β3 |⃗a|,
there is a unique axially symmetric solution u to (2.22) with the corresponding w solving
(3.7)- (3.8), following Theorem 1.5 of [12]. However, it is not clear whether the center of
mass Aa⃗/|⃗a| of u is still a⃗ and the total mass M is still 1 or not. Certainly for some such
β3, ρ, we should have A ̸= |⃗a|,M ̸= 1 since otherwise (3.3) or (3.4) should hold. This implies
that a solution to (3.7)-(3.8) may not a solution to the minimizing problem minu∈Ma⃗

Iα(u).
Nevertheless, we note that M [1 + β3(|⃗a| − |A|)] = 1 still holds.

4) Can we compute or estimate more accurately m(α, a). We need to get more information
on the minimizer. In particular, what is the asymptotic behavior of the solution uα,⃗a as a⃗ ∈ B1

goes to the unit sphere? If we have a detailed profile of the solution in different regions, we
might get an optimal asymptotic estimate of m(α, a).

We note that the answers to all above questions are known for α = 2
3

as shown in Theorem
2.1. The technical questions and other related problems will be studied in a forthcoming paper.

5 Second Variation of Iα

Now we consider another technical aspect of Iα: the second variation of Iα in H1(S2), in an
effort to understand Iα better.

Fixed a solution u ∈ H to (2.10) and (2.9), for any ϕ ∈ H1(S2) we have

D2Iα(u)(ϕ, ϕ) = 2α

∫
S2
|∇ϕ|2dω +

8

(1− |⃗a|2)2
(∫

S2
e2u(1− a⃗ · x)ϕdω

)2
− 4

1− |⃗a|2
(∫

S2
e2u(1− a⃗ · x)ϕ2dω + (

∫
S2
e2uϕdω)2 −

3∑
i=1

(

∫
S2
e2uxiϕdω)

2
)
.

In particular, at u ≡ 0 for any ϕ ∈ H1(S2)

D2Iα(0)(ϕ, ϕ) = 2α

∫
S2
|∇ϕ|2dω − 4

∫
S2
ϕ2dω + 4(

∫
S2
ϕdω)2 + 4

3∑
1

(

∫
S2
xiϕdω)

2.

Let ϕ =
∑∞

n=0 bnϕn where {ϕn}∞0 is an orthonormal basis of H1(S2) formed by spherical
harmonics in an increasing order of eigenvalues λn. Note that ϕ0 = 1, ϕi =

√
3xi, i = 1, 2, 3

and λi = 0, λ1 = λ2 = λ3 = 2 and λ4 = 6.
Then ∀ϕ ∈ H1(S2)

D2Iα(0)(ϕ, ϕ) = 2α
∞∑
n=0

λnb
2
n − 4

∞∑
n=0

b2n + 4b20 +
4

3

3∑
n=1

b2n

≥ (4α− 8

3
)

3∑
n=1

b2n + (12α− 4)
∞∑
n=4

b2n.

In particular, the linearized equation of equation (2.10) at u ≡ 0 is

α∆ϕ+ 2ϕ− 2

∫
S2
ϕdω − 2

3∑
i=1

xi

∫
S2
xiϕdω = 0 on S2. (5.1) linear
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It has a kernel Kα = {ϕ0} if α ̸= 2
3

and K 2
3
= {ϕi, i = 0, 1, 2, 3} when α = 2

3
.

Hence, it is easy to conclude from the above discussion the following

second variation Proposition 5.1 i) when α ∈ (2
3
, 1), D2Iα(0)(ϕ, ϕ) ≥ 0 and the equality holds only when ϕ

is a constant function; In particular, D2Iα(0) is positive definite when restricted to H;
ii) when α = 2

3
, D2Iα(0)(ϕ, ϕ) ≥ 0 and the equality holds only when ϕ is expanded by

ϕ0 = 1, ϕi =
√
3xi, i = 1, 2, 3;

iii) when α < 2
3
, D2Iα(0) is not non-negative. In particular, Iα(u) < 0 for some u ∈

H1(S2)..

This fact gives a simple explanation of the critical value of α being 2/3, compared to Theorem
2.1.

Finally, we shall look at the second variation of Iα at the nontrivial explicit solution when
α = 2

3
. We can rewrite the solution as

u 2
3
,⃗a(x) = −3

2
ln (1− a⃗ · x) + ln(1− |⃗a|2), x ∈ S2.

Then, for any ϕ ∈ H1(S2), from Theorem 2.1 we have

D2I 2
3
(u 2

3
,⃗a)(ϕ, ϕ)

=
4

3

∫
S2
|∇ϕ|2dω + 8(1− |⃗a|2)2

(∫
S2

ϕ

(1− a⃗ · x)2
dω

)2 − 4(1− |⃗a|2)
∫
S2

ϕ2

(1− a⃗ · x)2
dω

−4(1− |⃗a|2)3
(
(

∫
S2

ϕ

(1− a⃗ · x)3
dω)2 −

3∑
i=1

(

∫
S2

xiϕ

(1− a⃗ · x)3
dω)2

)
≥ 0.

In particular, if we consider the second variation of I 2
3

at u 2
3
,⃗a on M 2

3
,⃗a, we only need to deal

with ϕ ∈ H1(S2) with∫
S2

ϕ

(1− a⃗ · x)3
dω = 0,

∫
S2

xiϕ

(1− a⃗ · x)3
dω = 0, i = 1, 2, 3. (5.2) constraint

In this setting, it also holds that∫
S2

ϕ

(1− a⃗ · x)2
dω = 0.

Hence we have

D2I 2
3
(u 2

3
,⃗a)(ϕ, ϕ) =

4

3

∫
S2
|∇ϕ|2dω − 4(1− |⃗a|2)

∫
S2

ϕ2

(1− a⃗ · x)2
dω ≥ 0.
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6 Monotonicity
In this section, we shall discuss and prove the first monotonicity formula of the analogue
of the Szegö Limit theorem on S2. Following [9] (Section 2.1-2.2, Chapter 2), for any given
function f ≥ 0, f ̸≡ 0, we denote a measure dν = fdω on S2 and orthogonalize the functions
f0 = 1, f1 =

√
3x1, f2 =

√
3x2, f3 =

√
3x3 with respect to this measure. Note that f0, f1, f2, f3

form an orthonormal basis for spherical harmonics of order less than or equal to 1 with respect
to the measure dω.

Differing from the case on S1 as discussed in [9], we only construct ϕ0, ϕ1, ϕ2, ϕ3 such that
ϕ0, ϕ1 form an orthonormal basis for functions generated by f0, fi respectively for i = 1, 2, 3.

Denote the inner product on L2(S2, dν) by <,>. We define

D0 =< f0, f0 >=

∫
S2

fdω

and
D0,i = det

(
< f0, f0 > < f0, fi >
< fi, f0 > < fi, fi >

)
, i = 1, 2, 3

and

D1 =
1

3

3∑
i=1

D0,i.

It is easy to see that ϕ0 = D
−1/2
0 f0 and

ϕi = (D0D0,i)
−1/2

∣∣∣∣< f0, f0 > < f0, fi >
f0 fi

∣∣∣∣ = li,0f0 + li,1fi

where
li,0 = −(D0D0,i)

−1/2 < f0, fi >, i = 1, 2, 3,

li,1 = (D0D0,i)
−1/2 < f0, f0 >= (

D0

D0,i

)1/2, i = 1, 2, 3.

Now we state the following stage one monotonicity relation on S2, which may be consid-
ered as the counterpart on S2 of the Szegö monotonicity theorem on S1.

monotone Proposition 6.1 We have

D1 = (

∫
S2
fdω)2 −

3∑
i=1

(

∫
S2
fxidω)

2 ≥ 0

and
lnD0 −

∫
S2
fdω ≤ lnD1 − 2

∫
S2
fdω. (6.1) monotonicity

Proof It is easy to see that
3∑

i=1

(

∫
S2
fxidω)

2 ≤
3∑

i=1

∫
S2
fdω ·

∫
S2
fx2

i dω ≤ (

∫
S2
fdω)2.
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To show (6.1), we shall follow the proof of Theorem a of [9] and prove

µi := inf
ai∈R

∫
S2
|ai + fi|2dν

is attained at ai =
li,0
li,1

and

µi = l−2
i,1 =

D0,i

D0

, i = 1, 2, 3.

This can be seen from the folowing two facts. First,

µi ≤
∫
S2
| li,0
li,1

+ fi|2dν ≤ l−2
i,1 < ϕi, ϕi >= l−2

i,1

Second, if we write ai + fi = b0ϕ0 + biϕi where bili,1 = 1, hence∫
S2
|ai + fi|2dν = b20 + b2i ≥ b2i = l−2

i,1 .

Therefore

D1

D0

=
1

3

3∑
i=1

µi

=
1

3
inf
ai∈R

∫
S2

3∑
i=1

|ai + fi|2dν

= inf
ci∈R

∫
S2

3∑
i=1

|ci + xi|2dν

For any (c1, c2, c3) ∈ R3, let

η(x) =
3∑

i=1

|ci + xi|2, x ∈ S2.

We know that

η(x) = 1 +
3∑

i=1

c2i +
3∑

i=1

2cixi ≥ 0

and
ln(

∫
S2
ηdν) = ln(

∫
S2
ηfdω) ≥

∫
S2
ln (ηf)dω ≥

∫
S2
ln (η)dω +

∫
S2
ln fdω.

We claim that for any (c1, c2, c3) ∈ R3,∫
S2
ln (η)dω ≥ 0.
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For this purpose, we assume without loss of generality that (c1, c2, c3) = (0, 0, t), t ≥ 0 ∈ R
after a possible rotation, and define

g(t) =

∫
S2
ln (η)dω =

∫
S2
ln (1 + t2 + 2tx3)dω =

1

2

∫ 1

−1

ln (1 + t2 + 2tx3)dx3.

Straightforward computations lead to

g(t) = ln(1 + t)(1 +
t2 + 1

2t
) + ln(|t− 1|)(t

2 + 1

2t
− 1)− 1, t ∈ (0, 1) ∪ (1,∞)

and g(1) = 2 ln 2− 1. It is easy to check that limt→0+ g(t) = 0 and lim t → ∞g(t) = ∞ and
g(t) is continuous in (0,∞) and g ∈ C1(0,∞). Indeed, g′(1) = 1 and

g′(t) =
1

4t2
(
4t+ (t2 − 1) ln(

1 + t

1− t
)2
)
, t ∈ (0, 1) ∪ (1,∞)

is continuous in (0,∞).
It is easy to check by differentiation again that g′(t) > 0, t ∈ (0,∞) and hence g(t) >

0, t ∈ (0,∞). This proves the claim.
Hence,

ln(D1/D1) ≥
∫
S2
ln fdω

and (6.1) follows. This completes the proof.

Remark 6.1 If we choose f = e2u, (2.7) is equivalent to

lnD1 − 2

∫
S2
fdω ≤ 4

3

∫
S2
|∇u|2dω.

The factor 4
3

in the above inequality makes the inequality weaker than the Szegö limit theorem
on S1, where the factor is 1 for the corresponding term. Given the optimal constant in (2.7),
we may not expect that the Szegö limit theorem on S2 holds fully in its original S1 form.
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