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1. Introduction

The asymptotic expansion of the volume of an asymptotically hyperbolic Ein-
stein (AHE) metric defines invariants of the AHE metric and of a metric in the
induced conformal class at infinity. These have been of recent interest, motivated
in part by the AdS/CFT correspondence in physics. In this paper we derive some
new properties of these invariants.
Let (Xn+1, g+) be AHE with smooth conformal infinity (M, [g]), M = ∂X. We

always assume that X is connected although ∂X need not be. If r is a geodesic
defining function associated to a metric g in the conformal class at infinity (see §2
for more details), we have the following volume expansion ([G1]):

For n even,

Volg+({r > ǫ}) = c0ǫ
−n + c2ǫ

−n+2 + · · ·

+ cn−2ǫ
−2 + L log

1

ǫ
+ Vg+ + o(1)

For n odd,
Volg+({r > ǫ}) = c0ǫ

−n + c2ǫ
−n+2 + · · ·

+ cn−1ǫ
−1 + Vg+ + o(1).

If n is even, L is independent of the choice of g; if n is odd, Vg+ is independent of
g. These are invariants of the conformal infinity (M, [g]) and the AHE manifold
(X, g+), resp. The constants c2k and the renormalized volume Vg+ for n even
depend on the choice of representative metric g in the conformal infinity.
The coefficients c2k and L can be written as integrals over M of local expressions

in the curvature of g, the so-called renormalized volume coefficients v(2k)(g). (The
notation v(2k) is the same as in [G1, CF]. In §3 we also use the notation vk =
(−2)kv(2k) of [G2].) Changing perspective slightly, one realizes a given conformal
manifold (Mn, [g]) as the conformal boundary of an AHE manifold (X, g+) in an
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asymptotic sense (see [FG2]), and the v(2k)(g) are the coefficients in the asymptotic
expansion of the volume form of g+. They have recently been studied in [CF, G2].
They are well-defined for general metrics for all k ≥ 0 when n is odd but only for
0 ≤ k ≤ n/2 when n is even. However, for n ≥ 4 even they are also defined for
all k ≥ 0 if g is locally conformally flat or conformally Einstein. Directly from the
definition of v(2k) (see §2), we have

c2k =
1

n− 2k

∫

M

v(2k)(g)dvg, 0 ≤ k ≤ ⌊(n− 1)/2⌋,

L =

∫

M

v(n)(g)dvg, n even.

When n is even, Vg+ = Vg+(g) is a global quantity depending on the choice of
g. Nonetheless, its change under conformal rescaling of g can be expressed by
an integral of a local expression over the boundary. If ĝ = e2ωg is a conformally
related metric, then

Vg+(ĝ)− Vg+(g) =

∫

M

Pg(ω)dvg,

where Pg is a polynomial nonlinear differential operator whose coefficients depend
polynomially on g, g−1 and the curvature of g and its covariant derivatives, and
whose linear part in ω and its derivatives is v(n)(g)ω (see [G1]). In particular,

∂tVg+(e
2tωg)|t=0 =

∫

M

v(n)(g)ω dvg,

i.e. Vg+ is a conformal primitive of v(n).
Our first result is a formula for Vg+ for n odd in terms of a compactification of

the AHE metric g+. If s is any defining function for ∂X, the metric g = s2g+ is
called a compactification of g+. For any such compactification, ∂X is an umbilic
hypersurface relative to g, i.e. its second fundamental form is a smooth multiple
of the induced metric. We will say that g is a totally geodesic compactification if
the second fundamental form of M = ∂X relative to g vanishes identically. If g
is any compactification, then e2ωg is a totally geodesic compactification for many
choices of ω ∈ C∞(X); the totally geodesic condition on e2ωg is equivalent to the
condition that the normal derivative of ω at ∂X be a specific function determined
by g.

Theorem 1.1. If n ≥ 3 is odd, g+ is AHE, and g is a totally geodesic compactifi-
cation of g+, then

(1.1) Vg+ = Cn+1

∫

X

v(n+1)(g) dvg, Cn+1 =
2n−1(n+ 1)(n−1

2
)! 2

n!
.
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In the special case n = 3, Theorem 1.1 follows from a result of Anderson [An]
(see also [CQY] for a different proof) expressing the Gauss-Bonnet formula in terms
of Vg+ . Anderson showed that

(1.2) 8π2χ(X) =
1

4

∫

X

|W |2g+dvg+ + 6Vg+ ,

where W is the Weyl tensor and |W |2 = W ijklWijkl. On the other hand, for
a totally geodesic compactification, the boundary term vanishes in the Gauss-
Bonnet formula for the compact manifold-with-boundary (X, g). It was observed
in [CGY] that in dimension 4 the Pfaffian is a multiple of 1

4
|W |2 + 4σ2(g

−1P ),
where P denotes the Schouten tensor and σk(g

−1P ) the k-th elementary symmetric
function of the eigenvalues of the endomorphism g−1P . Since v(4)(g) = 1

4
σ2(g

−1P ),
the Gauss-Bonnet formula for (X, g) can be written

(1.3) 8π2χ(X) =

∫

X

[
1
4
|W |2g + 16v(4)(g)

]
dvg.

Comparing (1.2) and (1.3) and recalling that
∫
|W |2 is conformally invariant gives

(1.1).
For n > 3 odd, a generalization of Anderson’s formula expressing the renormal-

ized volume as a linear combination of the Euler characteristic and the integral of
a pointwise conformal invariant has been established in [CQY]. We do not use this
identity, but instead use the idea of its proof to directly relate the renormalized vol-
ume to the integral of v(n+1)(g) for a particular totally geodesic compactification.
The fact that (1.1) then holds for any totally geodesic compactification follows
using the result of [G2] that under conformal change, the v(2k) depend on at most
two derivatives of the conformal factor.
Our second result concerns the renormalized volume functionals Fk(g) defined

by

Fk(g) = (−2)k
∫

M

v(2k)(g) dvg

on the space of metrics on a connected compact manifold M . This normaliza-
tion is chosen so that Fk(g) =

∫
M
σk(g

−1P ) dvg if g is locally conformally flat;
the conformal properties of the functionals

∫
M
σk(g

−1P ) dvg have been intensively
studied during the last decade. In [CF] it was shown that if 2k 6= n, then the
Euler-Lagrange equation for Fk under conformal change subject to the constraint
that the volume is constant is v(2k)(g) = c. In [G2], it was shown that if a back-
ground metric g0 in the conformal class is fixed and one writes g = e2ωg0, then
the Euler-Lagrange equation v(2k)(e2ωg0) = c is second order in ω even though for
k ≥ 2, v(2k)(g) depends on 2k − 2 derivatives of g.
Any Einstein metric satisfies v(2k)(g) = c, so is a critical point of Fk. In this

paper, we identify the second variation at a general critical point of Fk under
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conformal change subject to the constant volume constraint and use this to show
that Einstein metrics of nonzero scalar curvature are local extrema. Let C denote
a conformal class of metrics on M and let C1 denote the subset of metrics of unit
volume.

Theorem 1.2. Let (M, g) be a unit volume connected compact Einstein manifold
of dimension n ≥ 3 with nonzero scalar curvature which is not isometric to Sn with
the standard metric (normalized to have unit volume). Suppose 1 ≤ k ≤ n and if
n is even assume that k 6= n/2. Then the second variation of (Fk|C1), (Fk|C1)

′′, is
a definite quadratic form on TgC1 whose sign is as follows:

(1) Let k < n/2.
• If R > 0, then (Fk|C1)

′′ is positive definite.
• If R < 0, then (Fk|C1)

′′ is positive definite for k odd and negative
definite for k even.

(2) Let k > n/2. Then all signs are reversed:
• If R > 0, then (Fk|C1)

′′ is negative definite.
• If R < 0, then (Fk|C1)

′′ is negative definite for k odd and positive
definite for k even.

For Sn with the (normalized) standard metric, the only change is that (Fk|C1)
′′ is

semi-definite with the indicated sign and with n+ 1-dimensional nullspace.

Of course, one concludes from Theorem 1.2 that Fk|C1 has a local maximum or
minimum at an Einstein metric, with sign determined as in the statement of the
theorem. The max-min conclusion follows also for Sn since the null directions for
the Hessian arise from conformal diffeomorphisms.
If g is locally conformally flat or if k = 1 or 2, then (−2)kv(2k)(g) = σk(g

−1P ).
In these cases Theorem 1.2 follows from Theorem 2 of [V], which is concerned with
the second variation of the functionals

∫
M
σk(g

−1P ) dvg. (Theorem 1.2 corrects
a sign error in the statement of Theorem 2 of [V] for k > n/2.) Theorem 1.2
indicates that for k > 2 and g not locally conformally flat, (−2)kv(2k)(g) is the
natural replacement for σk(g

−1P ). The special case k = 3, n > 6, of Theorem 1.2
was first proved by Guo-Li [GL] by direct computation of (F3|C1)

′′ from the explicit
formula for v(6)(g).
As mentioned above, Theorem 1.2 follows from a formula which we derive for

the second variation of Fk at a general critical point (Theorem 3.1). This second
variation formula is an immediate consequence of a formula derived in [ISTY] and
rederived in [G2] for the first conformal variation of v(2k)(g): by the result of [CF],
the first conformal variation of Fk is integration against a multiple of v(2k)(g), so
the second variation of Fk is integration against the first conformal variation of
v(2k)(g). The principal part of these variations is a symmetric contravariant 2-
tensor Lij

(k)(g) defined by (3.6) which was derived in [ISTY] and analyzed in some
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detail in [G2]. We also state a general condition in terms of Lij
(k)(g) which is suffi-

cient for definiteness of the second variation of Fk for non-Einstein critical points
and which generalizes a criterion of Viaclovsky in the cases k = 1, 2 or g locally
conformally flat when g has (possibly nonconstant) negative scalar curvature.
If n is even, Fn/2(g) is conformally invariant as noted above, so conformal vari-

ations of Fn/2(g) are trivial. A natural substitute for Fn/2(g) as far as conformal
variations is concerned is the renormalized volume Vg+(g) of an AHE metric g+ with

conformal infinity (M, [g]). Vg+ is a conformal primitive of v(n) as noted above, just

as (−2)−k 1
n−2k

Fk is a conformal primitive of v(2k) if 2k 6= n. So critical points of

Vg+ |C1 are precisely solutions of v(n)(g) = c. The identification of the first variation

of v(2k)(g) from [ISTY, G2] holds just as well for 2k = n, so this gives immediately
the second variation of Vg+ in terms of the tensor Lij

(n/2)(g) (Theorem 3.2). Einstein

metrics are critical points for Vg+ |C1 , and upon evaluating the second variation at
an Einstein metric, we deduce the following analogue of Theorem 1.2. We take
M to be connected and formulate the result for a general AHE manifold (X, g+)
such that C = (M, [g]) is one of the connected components of its conformal infinity.
We fix arbitrarily a representative of the conformal infinity on each of the other
connected components and view Vg+ as a function of the metric in the conformal
class on M .

Theorem 1.3. Let n ≥ 2 be even. Let (M, g) be a unit volume connected compact
Riemannian manifold with constant nonzero scalar curvature which is not isometric
to Sn with the standard metric (normalized to have unit volume). If n ≥ 4, assume
that g is Einstein. Let (X, g+) be AHE and suppose that (M, [g]) is one of the
connected components of its conformal infinity. The second variation of Vg+ |C1 is
a definite quadratic form on TgC1 whose sign is as follows:

• If R < 0, then
(
Vg+|C1

)′′
is negative definite.

• If R > 0, then
(
Vg+ |C1

)′′
is positive definite if n ≡ 0 mod 4 and negative

definite if n ≡ 2 mod 4.

For Sn with the (normalized) standard metric,
(
Vg+ |C1

)′′
is semi-definite with the

indicated sign and with n+ 1-dimensional nullspace.

We also state a sufficient condition for definiteness of the second variation of
Vg+ for non-Einstein critical points which is analogous to the condition mentioned
above for the Fk.
Colin Guillarmou has informed us that he has proved Theorem 1.3 in joint work

with S. Moroianu and J.-M. Schlenker.
The results of [CF, G2] and Theorem 1.2 indicate the importance of the renor-

malized volume functionals in conformal geometry, which we will hopefully con-
tinue to explore in future works.
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2. Renormalized Volume

Let g+ be an asymptotically hyperbolic Einstein (AHE) metric on Xn+1 with
smooth conformal infinity (M, [g]), where M = ∂X. Let g be a metric in the
conformal class on M . One can uniquely identify a neighborhood of ∂X with
[0, ǫ)× ∂X so that g+ takes the normal form

(2.1) g+ = r−2
(
dr2 + gr

)

for a 1-parameter family gr of metrics on M with g0 = g. The defining function
r is called the geodesic defining function associated to g. A boundary regularity
result ([CDLS, H, BH]) shows that gr is smooth up to r = 0 if n is odd, and has a
polyhomogeneous expansion as r → 0 if n is even. The family gr is even to order
n; in particular ∂rgr|r=0 = 0. Thus the geodesic compactification ggeod = r2g+ is
totally geodesic. Any other compactification which induces the same boundary
metric can be written as g = e2ωggeod for some ω ∈ C∞(X) satisfying ω = 0 on
∂X. Such a compactification g is totally geodesic if and only if ω = O(r2).
The renormalized volume coefficients v(2k)(g) are defined for 0 ≤ k ≤ ⌊n/2⌋ by

the asymptotic expansion

(2.2)

(
det gr
det g

)1/2

=

⌊n/2⌋∑

k=0

v(2k)(g)r2k + o(rn).

If n is odd, the definition can be extended to all k ≥ 0 by considering metrics g+
of the form (2.1) for which gr is even to infinite order and for which Ric(g+)+ng+
vanishes to infinite order. The v(2k)(g) are local curvature invariants of g which
are determined by an inductive algorithm; see [G1, G2]. Clearly v(0)(g) = 1. The
next three are given by:

v(2)(g) = −
R

4(n− 1)

v(4)(g) =
1

4
σ2(g

−1P ) =
1

8

[
(P j

j)
2 − P ijPij

]

v(6)(g) = −
1

8

[
σ3(g

−1P ) +
1

3(n− 4)
P ijBij

]
,

where Pij :=
1

n−2
[Rij −Rgij/2(n− 1)] and Bij := ∇k∇kPij −∇k∇jPik − P klWkijl

are the Schouten and Bach tensors of g, and σk(g
−1P ) is the k-th elementary

symmetric function of the eigenvalues of the endomorphism g−1P .
The rest of this section is devoted to the proof of Theorem 1.1. The first step is

to establish the result for a specific totally geodesic compactification. Let g be a
metric in the conformal class at infinity with associated geodesic defining function
r and geodesic compactification r2g+ = dr2 + gr. Theorem 4.1 of [FG1] asserts

the existence of a unique U ∈ C∞(
◦

X) such that −∆g+U = n (our convention is
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∆ = ∇k∇k) with the asymptotics

(2.3) U = log r + A+ Brn,

where A, B ∈ C∞(X) are even functions modulo O(r∞) and A|∂X = 0. Then
eU = reA+Brn is a defining function and

(2.4) gU := e2Ug+ = e2(A+Brn)
(
dr2 + gr

)

is a totally geodesic compactification. Theorem 4.3 of [FG1] asserts that

(2.5) Vg+ =

∫

∂X

B|∂X dvg.

Proposition 2.1. Theorem 1.1 holds for g = gU .

Proposition 2.1 follows from an argument of [CQY]. The formula of [CQY] men-
tioned in the introduction for the renormalized volume in terms of the the Euler
characteristic and the integral of a pointwise conformal invariant is derived by ap-
plying Alexakis’ theorem [Al] on the existence of a decomposition of Q-curvature.
Our proof of Proposition 2.1 uses an analogous identity expressing the Q-curvature
as a multiple of v(n+1) and a divergence. The existence of such a formula can be
deduced by general considerations since the integrals of the Q-curvature and v(n+1)

agree up to a multiplicative constant on compact Riemannian manifolds. However,
an explicit formula of this kind is known: the holographic formula for Q-curvature
of [GJ]. So we base our proof on the holographic formula for Q-curvature.
We first recall some properties of the metric gU which were established in [CQY].

Proposition 2.2. Let gU be given by (2.4), where U is the solution of −∆g+U = n
with asymptotics (2.3) as above. Then we have

• ([CQY] Lemma 2.1)

(2.6) Q(gU) = 0.

• ([CQY] Lemma 3.1) Let R denote the scalar curvature and ∆ the Laplacian
for the metric gU . Then

(2.7) ∂r∆
(n−3)/2R = −2nn!B on ∂X.

• ([CQY] Lemma 3.2) Let ∗ stand for indices in the tangential directions on
∂X. For the covariant derivatives of the curvature tensor Rijkl of gU , the
following three types of components

∇2k+1
r R∗∗∗∗, ∇2k

r Rr∗∗∗, ∇2k−1
r Rr∗r∗,

vanish at the boundary for 1 ≤ 2k + 1 ≤ n− 2.
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Proof of Proposition 2.1. The holographic formula for Q-curvature states that for
any metric in even dimension m = n+ 1, one has

(2.8) 2cm/2Q = v(n+1) +
1

n+ 1

(n−1)/2∑

k=1

(n+ 1− 2k)p∗2kv
(n+1−2k),

where c−1
l = (−1)l22ll!(l − 1)!. Here the v(n+1−2k) are the renormalized volume

coefficients, p2k is a natural differential operator of order 2k with no constant term
and with principal part an+1,k∆

k, where

an+1,k =
Γ ((n+ 1− 2k)/2)

22k k! Γ ((n+ 1)/2)
,

and p∗2k denotes the formal adjoint of p2k. In particular, each term p∗2kv
(n+1−2k)

with k ≥ 1 in the sum on the right-hand side of (2.8) is the divergence of a natural
1-form.
Apply (2.8) to gU and use (2.6) to deduce that

v(n+1)(gU) =−
1

n+ 1

(n−1)/2∑

k=1

(n+ 1− 2k)p∗2kv
(n+1−2k)

=−
2

n+ 1
p∗n−1v

(2) −
1

n+ 1

(n−3)/2∑

k=1

(n+ 1− 2k)p∗2kv
(n+1−2k)

=−
2

n+ 1
an+1,(n−1)/2∆

(n−1)/2v(2)

+ q v(2) −
1

n+ 1

(n−3)/2∑

k=1

(n+ 1− 2k)p∗2kv
(n+1−2k),

where q is a natural differential operator of order less than n − 1 which is a di-
vergence, and all the terms on the right-hand side refer to the metric gU . Now
integrate over X. The right-hand side is a divergence so can be rewritten as a
boundary integral. Recalling that v(2) = −1

2
P k

k = − 1
4n
R, one has

∫

X

∆(n−1)/2v(2) dvgU =
1

4n

∫

∂X

∂r∆
(n−3)/2R dvg.

But (2.7) asserts that ∂r∆
(n−3)/2R = −2nn!B on ∂X. Substituting and using (2.5)

gives
∫

X

∆(n−1)/2v(2) dvgU = −
n!

2
Vg+ .
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All terms in the expression

q v(2) −
1

n+ 1

(n−3)/2∑

k=1

(n+ 1− 2k)p∗2kv
(n+1−2k)

involve fewer derivatives of gU . Arguing as in [CQY], the third part of Proposi-
tion 2.2 implies that the resulting integral over the boundary vanishes. Thus

∫

X

v(n+1)(gU) dvgU = −
2

n+ 1
an+1,(n−1)/2

(
−
n!

2

)
Vg+ .

Collecting the constant gives the result. �

Proof of Theorem 1.1. Let g be a totally geodesic compactification of g+ with
induced boundary metric g. Let gU be the compactification as above with the
same boundary metric. Then g = e2ωgU where ω = O(r2). We will show that

(2.9)

∫

X

v(n+1)(g) dvg =

∫

X

v(n+1)(gU) dvgU .

The result then follows by Proposition 2.1.
Set gt = e2tωgU . Theorem 1.5 of [G2] gives a divergence formula of the form

∂t
(
v(n+1)(gt) dvgt

)
= (−2)−(n+1)/2∇i

(
Lij
((n+1)/2)(gt)∇j ω

)
dvgt

for a particular natural symmetric 2-tensor Lij
((n+1)/2). The covariant derivatives

refer to the Levi-Civita connection of gt. Integrating by parts and using∇ω|∂X = 0
gives

∂t

∫

X

v(n+1)(gt) dvgt = 0.

Thus
∫
X
v(n+1)(gt) dvgt is independent of t, which gives (2.9).

We have thus completed the proof of Theorem 1.1. �

3. Second Variation

If M is a connected compact manifold, consider the functional

(3.1) Fk(g) = (−2)k
∫

M

v(2k)(g) dvg

on the space of metrics on M , where v(2k)(g) is the renormalized volume coefficient
defined in §2. For notational convenience, we set

(3.2) vk(g) = (−2)kv(2k)(g).

This is the same notation as in [G2]. The coefficient is chosen so that if g is locally
conformally flat, then

vk(g) = σk

(
g−1P

)
, 0 ≤ k ≤ n
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(see Proposition 1 of [GJ]). It will also be convenient to introduce ρ = −1
2
r2 and

g(ρ) = gr, where gr is the 1-parameter family of metrics appearing in (2.1). Then
the expansion (2.2) defining the v(2k) becomes

(3.3)

(
det g(ρ)

det g

)1/2

∼
∑

k≥0

vk(g)ρ
k.

Set v(ρ) = (det g(ρ)/ det g)1/2.
Recall that for even n, the v(2k)(g) are only defined for k ≤ n/2 for general met-

rics. But they are invariantly defined for all k if n ≥ 4 and g is locally conformally
flat or conformally Einstein. This is because in these cases there is an invariant de-
termination of g(ρ) to all orders; see [FG2]. If g is Einstein with Rij = 2a(n−1)gij ,
one has g(ρ) = (1 + aρ)2g. Observe that this gives v(ρ) = (1 + aρ)n, so

(3.4) vk(g) = ak
(
n
k

)
, 0 ≤ k ≤ n.

For a conformal rescaling ĝ = e2ωg of an Einstein metric g, ĝr is defined by putting
the Poincaré metric r−2 (dr2 + (1− ar2/2)2g) for g into normal form relative to ĝ
by a diffeomorphism. Then one sets ĝ(ρ) = ĝr with ρ = −1

2
r2 and defines vk(ĝ)

via (3.3). This is well-defined, but a direct formula in terms of ĝ is not available.
The crucial ingredient in the variational analysis is the following formula for

the conformal variation of the vk(g). For a Riemannian manifold (M, g) and ω ∈
C∞(M), set gt = e2tωg and define δvk(g, ω) = ∂t|t=0vk(gt). Then (2.4), (3.8) of
[ISTY] (see also Theorem 1.5 of [G2]) show that

(3.5) δvk(g, ω) = ∇i

(
Lij
(k)(g)∇jω

)
− 2kvk(g)ω,

where

(3.6) Lij
(k)(g) = −

1

k!
∂k
ρ

(
v(ρ)

∫ ρ

0

gij(u) du

) ∣∣∣
ρ=0

= −

k∑

l=1

1

l!
vk−l(g) ∂

l−1
ρ gij(ρ)|ρ=0.

Here gij(u) = (gij(u))
−1 and ∇ denotes the covariant derivative with respect to g.

We first review the identification of the critical points of Fk from [CF, G2]. By
(3.2), (3.1) can be re-written as

Fk(g) =

∫

M

vk(g) dvg.

By (3.5) and the fact that δdvg = nωdvg, one deduces that the conformal variation
of Fk is given by

(3.7) δFk = (n− 2k)

∫

M

vkω dvg.
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For n even and 2k = n, this recovers the fact that Fn/2 is conformally invariant.
For 2k 6= n, we are interested in the restriction Fk|C1 , where C1 denotes the space of
unit volume metrics in a conformal class C of metrics on M . We use the Lagrange
multiplier method. The critical points are the metrics g ∈ C1 which satisfy for
some constant λ that

δ (Fk − λVol(M)) (g, ω) = 0 for all ω.

By (3.7), this is

(n− 2k)

∫

M

vkω dvg − nλ

∫

M

ω dvg = 0 for all ω,

which gives vk(g) = nλ/(n − 2k). Thus the critical points are precisely the unit
volume metrics for which vk(g) is constant.
The following theorem identifies the second variation of Fk|C1 at a critical point.

Suppose g is a unit volume metric for which vk(g) is constant. The tangent space
of C1 at g is given by

TgC1 =

{
2ωg :

∫

M

ω dvg = 0

}
.

For such an ω, set

(Fk|C1)
′′ (ω) = ∂2

t |t=0Fk(γt),

where γt is a curve in C1 satisfying γ0 = g and γ′
0 = 2ωg.

Theorem 3.1. Let n ≥ 3, k ≥ 1 and k ≤ n/2 if n is even. Let (M, g) be a
connected compact Riemannian manifold and suppose g satisfies vk(g) = c for
some constant c. Let ω ∈ C∞(M) satisfy

∫
M
ω dvg = 0. Then

(Fk|C1)
′′ (ω) = −(n− 2k)

∫

M

[
Lij
(k)(g)ωiωj + 2kvk(g)ω

2
]
dvg.

Proof. We can assume that k 6= n/2. Define λ by c = nλ/(n − 2k), so that
δ (Fk − λVol(M)) = 0. Since the Hessian at a critical point is invariantly defined
on the tangent space, we have

(Fk|C1)
′′ (ω) = ∂2

t |t=0 (Fk − λVol(M)) (gt),

with gt = e2tωg as above. Now (3.7) gives

∂tFk(gt) = (n− 2k)

∫

M

vk(gt)ω dvgt .

Combining this with

∂t Volgt(M) = n

∫

M

ω dvgt
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shows that

∂2
t |t=0 (Fk − λVol(M)) (gt) = ∂t|t=0

[
(n− 2k)

∫

M

vk(gt)ω dvgt − λn

∫

M

ω dvgt

]

=(n− 2k)

∫

M

[δvk(g, ω) + nvk(g)ω]ω dvg − λn2

∫

M

ω2 dvg

=(n− 2k)

∫

M

δvk(g, ω)ω dvg + n2λ

∫

M

ω2 dvg − λn2

∫

M

ω2 dvg

=(n− 2k)

∫

M

δvk(g, ω)ω dvg

=− (n− 2k)

∫

M

[
Lij
(k)(g)ωiωj + 2kvk(g)ω

2
]
dvg,

where for the last equality we use (3.5) and integration by parts. �

We remark that Theorem 3.1 and its proof remain valid for all k ≥ 1 when
n ≥ 4 is even if g is Einstein or locally conformally flat. This is because the
main ingredient, (3.5), just uses that the Poincaré metrics arising from conformally
related metrics on the boundary are related by a diffeomorphism.

Proof of Theorem 1.2. Let g be Einstein with Rij = 2a(n − 1)gij. We use Theo-
rem 3.1 to evaluate (Fk|C1)

′′. Recall that gij(ρ) = (1+aρ)2gij and v(ρ) = (1+aρ)n.
So gij(ρ) = (1 + aρ)−2gij. Hence

v(ρ)

∫ ρ

0

gij(u) du = ρ(1 + aρ)n−1gij.

Therefore (3.6) gives

(3.8) Lij
(k)(g) = −ak−1

(
n− 1
k − 1

)
gij, 1 ≤ k ≤ n.

Recalling (3.4), Theorem 3.1 gives

(Fk|C1)
′′ (ω) =(n− 2k)ak−1

(
n− 1
k − 1

)∫

M

(
|∇ω|2g − 2naω2

)
dvg

=(n− 2k)ak−1

(
n− 1
k − 1

)∫

M

(
|∇ω|2g −Rω2/(n− 1)

)
dvg.

If R < 0, this has the same sign as the leading coefficient (n − 2k)ak−1, which
gives the desired conclusion.
If R > 0, we use Obata’s estimate [O] for the first eigenvalue of −∆ for an

Einstein metric: λ1(−∆) ≥ R/(n − 1) with equality only for Sn. This leads to
the desired result. For Sn, the equality holds if and only if ω is an eigenfunction
corresponding to λ1. This is the (n+1)-dimensional space of infinitesimal conformal
factors corresponding to conformal diffeomorphisms. �
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It is possible to formulate a result also for non-Einstein critical points. It is
clear from Theorem 3.1 that if Lij

(k)(g) is definite and vk(g) is a constant of the

same sign, then (Fk|C1)
′′ is definite. This generalizes the result of Viaclovsky that

negative k-admissible critical points are local extrema when k = 1 or 2 or g is
locally conformally flat.
Consider finally the second variation of the renormalized volume when n is even.

Let (X, g+) be AHE and let C = (M, [g]) be one of the connected components of
its conformal infinity. Fix a representative of the conformal infinity on each of the
other connected components and view Vg+(g) as a function on C. As discussed in
the introduction, its conformal variation is

δVg+ =

∫

M

v(n)(g)ω dvg.

Upon introducing a Lagrange multiplier exactly as above for Fk, one deduces that
the critical points of Vg+|C1 are the unit volume metrics for which v(n)(g) is constant.
For such a g and for ω satisfying

∫
M
ω dvg = 0, we define the second variation by

(
Vg+ |C1

)′′
(ω) = ∂2

t |t=0Vg+(γt),

where γt is a curve in C1 satisfying γ0 = g and γ′
0 = 2ωg.

Theorem 3.2. Let n ≥ 2 be even. Let (X, g+) be AHE and let (M, [g]) be one of
the connected components of its conformal infinity. Suppose that g satisfies that
v(n)(g) = c for some constant c and let

∫
M
ω dvg = 0. Then

(
Vg+ |C1

)′′
(ω) = (−1)n/2+12−n/2

∫

M

[
Lij
(n/2)(g)ωiωj + nvn/2(g)ω

2
]
dvg.

Proof. We argue exactly as in the proof of Theorem 3.1. Define λ by c = nλ so
that δ

(
Vg+ − λVol(M)

)
= 0. Then

(
Vg+ |C1

)′′
(ω) = ∂2

t |t=0

(
Vg+ − λVol(M)

)
(gt)

with gt = e2tωg. And

∂2
t |t=0

(
Vg+ − λVol(M)

)
(gt) = ∂t|t=0

[∫

M

v(n)(gt)ω dvgt − λn

∫

M

ω dvgt

]

=

∫

M

[
δv(n)(g, ω) + nv(n)(g)ω

]
ω dvg − λn2

∫

M

ω2 dvg

=(−2)−n/2

∫

M

δvn/2(g, ω)ω dvg

=(−1)n/2+12−n/2

∫

M

[
Lij
(n/2)(g)ωiωj + nvn/2(g)ω

2
]
dvg.

�
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Proof of Theorem 1.3. This follows exactly as in the proof of Theorem 1.2 above.
If n ≥ 4 and g is Einstein with Rij = 2a(n− 1)gij , or if n = 2 and g has constant

scalar curvature R = 4a, then Lij
(n/2)(g) is given by (3.8) and vn/2(g) by (3.4).

Substituting into Theorem 3.2 gives

(
Vg+ |C1

)′′
(ω) = −(−a)n/2−12−n/2

(
n− 1
n/2− 1

)∫

M

(
|∇ω|2g −Rω2/(n− 1)

)
dvg.

The conclusion is now clear if R < 0. If R > 0, it follows from the same argument
as in the proof of Theorem 1.2 using Obata’s estimate on λ1(−∆). �

The sign of the second variation can also be deduced from Theorem 3.2 for
certain non-Einstein critical points of Vg+ . It is clear that

(
Vg+|C1

)′′
is definite

if Lij
(n/2)(g) is definite and vn/2(g) is a constant of the same sign. For instance,

one concludes that
(
Vg+|C1

)′′
is negative definite if g is a negative n/2-admissible

solution of σn/2(g
−1P ) = c and n = 4 or n ≥ 6 with g locally conformally flat.

Under these conditions, vn/2(g) = σn/2(g
−1P ) and Lij

(n/2)(g) = −T ij
(n/2−1)(g

−1P ) is

the negative of the corresponding Newton tensor (see [G2]).
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