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Abstract. We prove that conformal metrics on domains of the round sphere,
with non-negative constant Q-curvature, and non-negative scalar curvature,
has positive mean curvature on the boundary of embedded balls (in the round
metric). As a result, such metrics have certain reflection symmetries if the
complement of the domain is contained in a lower-dimensional round sphere.
We also prove that the development map of a locally conformally flat metric
with non-positive Schouten tensor is an embedding.
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1. Introduction

An important question in conformal geometry is to understand under what condi-
tions the development map of a locally conformally flat manifold into the standard
sphere is an embedding. Another related question is to understand conditions on
a domain Ω ⊂ Sn under which a complete conformal metric exists on Ω with con-
stant scalar curvature; also relevant is the uniqueness of such a metric, or possibly
cataloging such metrics when uniqueness fails and Ω is some canonical domain in
Sn such as Sn \ Sl for some 0 ≤ l < n.

In [SY88] Schoen and Yau found some sufficient conditions for the develop-
ment map of a locally conformally flat manifold to be an embedding. In particular
they proved that the answer is positive if the Yamabe constant of (M, g) is non-
negative. No positive result is known, as far as we are aware, in the case when
the Yamabe constant of (M, g) is negative. In general the development map may
not be an embedding, as shown by the elementary examples S1r × Hn−1 where r
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is the radius of the circle; moreover, these examples also show that the holonomy
representation of the fundamental group of M under the development map may
not be discrete. However, Kulkarni and Pinkall showed in [KP86] that for a closed
conformally flat n-manifold M with infinite fundamental group, its development
map d : M �→ Sn is a covering map, iff d is not surjective.

In [SY88], Schoen–Yau also proved that if a complete metric g = v−2(x)|dx|2
exists on a domain Ω ⊂ Rn with its scalar curvature having a positive lower bound,
then the Hausdorff dimension of ∂Ω has to be ≤ n−2

2 . In another direction, Schoen
constructed in [S88] complete conformal metrics with scalar curvature 1 on Sn \Λ
when Λ is a certain subset of Sn, including the case when it is any finite set with at
least two points. Later Mazzeo and Parcard [MP96] [MP99] proved that if Ω ⊂ Sn

is a domain such that Sn \ Ω consists a finite number of smooth submanifold of
dimension < n−2

2 , then one can find a complete metric g = v−2(x)|dx|2 on Ω with
its scalar curvature identical to +1.

For the negative scalar curvature case, the works of Löwner–Nirenberg [LN75],
Aviles [A82], and Veron [V81] imply that if Ω ⊂ Sn admits a complete, conformal
metric with negative constant scalar curvature, then the Hausdorff dimension of
∂Ω > n−2

2 . Löwner–Nirenberg [LN75] also proved that if Ω ⊂ Sn is a domain with

smooth boundary ∂Ω of dimension > n−2
2 , then there exists a complete metric

g = v−2(x)|dx|2 on Ω with its scalar curvature = −1; such a metric is unique
when ∂Ω consists of hypersurfaces. This result was later generalized by D. Finn
[F95] to the case of ∂Ω consisting of smooth submanifolds of dimension > n−2

2
and with boundary.

It is natural to ask whether some kind of additional curvature condition in
the negative Yamabe constant case would force the development map to be an
embedding as well, and whether further curvature conditions would improve the
estimate on the Hausdorff dimension of ∂Ω?

The additional curvature conditions are often imposed in terms of the σk or
Q-curvature of a representative metric g. The σk-curvature, denoted as σk(Ag),
refers to the kth elementary symmetric functions of the eigenvalues of the 1-1
tensor derived from the Weyl–Schouten tensor Ag of the conformal metric g,

Ag =
1

n− 2

{
Ric− R

2(n− 1)
g

}
.

Note that the σ1(Ag) curvature is simply the scalar curvature of g, up to a dimen-
sional constant.

The condition involving the σk-curvature often assumes that the Weyl–Schou-
ten tensor Ag is in the Γ+

k class for some k > 1, i.e., the eigenvalues, λ1 ≤
· · · ≤ λn, of Ag at each x satisfy σj(λ1, . . . , λn) > 0 for all j, 1 ≤ j ≤ k. It is
also natural to consider metrics whose Weyl–Schouten tensor Ag is in Γ−

k class,
namely, (−1)jσj(λ1, . . . , λn) > 0 for all j, 1 ≤ j ≤ k. It is known that the operator
w �→ σk(Ae2wg0) is elliptic when the Weyl–Schouten tensor of g = e2wg0 is in either

Γ+
k or Γ−

k class.
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The Q-curvature of a metric g is defined through

Qg = cn|Rcg|2 + dn|Rg|2 − ΔgRg

2(n− 1)
,

with cn and dn being some dimensional constants: cn = − 2
(n−2)2 and dn =

n3−4n3+16n−16
8(n−1)2(n−2)2 . Note that Qg involves 4th-order derivatives of the metric. The

Q-curvatures of two conformally related metrics g and gu = u
n+4
n−4 g (for n �= 4)

have the following relation through a 4th-order differential operator Pg, called the
Panietz-type operator:

Pg(u) =
n− 4

2
Qguu

n+4
n−4 for n �= 4,

where Pg(u) = (−Δg)
2u+div[(anRgg+bnRicg)du]+

n−4
2 Qgu for some dimensional

constants an and bn. For n = 4, Pg(u) = (−Δg)
2u + div[(23Rg − 2Ricg)du], and

the relation between the Q-curvatures takes the following form:

Pg(w) + 2Qg = 2Qe2wge
4w.

Pg enjoys certain conformal covariance properties much like those of the conformal
Laplace operator; see [CY97] for more details.

In [CHgY04], Chang, Hang, and Yang proved that if Ω ⊂ Sn (n ≥ 5) admits
a complete, conformal metric g with

σ1(Ag) ≥ c1 > 0, σ2(Ag) ≥ 0, and

|Rg|+ |∇gR|g ≤ c0, (1.1)

then dim(Sn \ Ω) < n−4
2 . This has been generalized by M. Gonzáles [G04] to the

case of 2 < k < n/2: if Ω ⊂ Sn admits a complete, conformal metric g with

σ1(Ag) ≥ c1 > 0, σ2(Ag), . . . , σk(Ag) ≥ 0, and (1.1),

then dim(Sn \ Ω) < n−2k
2 . See also the work of Guan, Lin and Wang [GLW04].

[CHgY04] also contains a result involving conditions on the Q-curvature:
if Ω ⊂ Sn (n ≥ 3) admits a complete, conformal metric g with Rg ≥ c1 > 0
and Qg ≥ c2 > 0, then dim(Sn \ Ω) < n−4

2 . In particular, this means Ω = Sn

when n ≤ 4. If we replace Qg ≥ c2 > 0 by Qg ≥ 0, then when n ≥ 5, we have
dim(Sn \ Ω) ≤ n−4

2 .
There are earlier results involving the Q-curvature that are relevant to the

discussion here: they concern the radial symmetry and classification of solutions

to constant Q-curvature equations on Rn. When g = u
4

n−4 |dx|2 on a domain in
Rn, u > 0, n �= 4, the Q-curvature Qg of g is computed through

(−Δ)
2
u =

n− 4

2
Qgu

n+4
n−4 ;

while on a domain in R4, if g = e2w|dx|2, then
(−Δ)

2
w = 2Qge

4w.
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In [CY97] Chang and Yang proved that any entire smooth solution u(x) to

(−Δ)
n
2 u(x) = (n− 1)!enu(x) on Rn (1.2)

with the asymptotic behavior as x → ∞:

u(x) = log
2

1 + |x|2 + w

(
x

1 + |x|2
)

for some

smooth function w defined near 0,

(1.3)

must be rotationally symmetric with respect to some point in Rn, and of the form

log
2λ

1 + λ2|x− x0|2 for some x0 ∈ Rn and constant λ > 0. (1.4)

In [L98] C.S. Lin obtained related results. For (1.2) in the case n = 4, Lin
obtained the same result as in [CY97] under an integral assumption∫

R4

e4u(y)dy =
8π2

3
. (1.5)

Lin’s result actually implies that any solution u to (1.2) for the n = 4 case with∫
R4 e

4u(y)dy < ∞ must satisfy
∫
R4 e

4u(y)dy ≤ 8π2

3 , with equality iff u is of the form
(1.4).

Lin also obtained a related result for the positive constant Q-curvature equa-
tion on Rn, n > 4, {

Δ2u(x) = u
n+4
n−4 (x), x ∈ Rn;

u(x) > 0, x ∈ Rn.
(1.6)

His result implies that any solution to (1.6) must be rotationally symmetric with
respect to some point x0 ∈ Rn, and of the form

u(x) = cn

(
λ

1 + λ2|x− x0|2
)n−4

2

, (1.7)

for some λ > 0 and a dimensional constant cn.
The proofs in both [CY97] and [L98] involve the method of moving planes.

In [X00] X. Xu provided a proof for the rotational symmetry of solutions to (1.6)
using the method of moving spheres.

Considering also that the canonical locally conformally flat metric on Sn \
Sn−k ∼= Sk−1 ×Hn−k+1, given via stereographic coordinates of Sn \ Sn−k as

dx2
1 + · · ·+ dx2

n

x2
1 + · · ·+ x2

k

=
dρ2 + ρ2dω2

Sk−1 + dx2
k+1 + · · ·+ dx2

n

ρ2

= dω2
Sk−1 +

dρ2 + dx2
k+1 + · · ·+ dx2

n

ρ2

with ρ2 = x2
1 + · · · + x2

k, has its scalar curvature equal to (n − 1)(2k − n − 2)
and its Q-curvature equal to 8(2k− n)(2k− n− 4)/n, the sign of the Q-curvature
alone is a poor indicator of how the metric behaves. Our first result, stated below,
stems from this observation that it is natural to impose some additional condition
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involving the scalar curvature when considering global properties of solutions to
the Q-curvature equation.

Theorem 1.1. Let g be a conformal metric on Ω ⊂ Sn such that

Qg ≡ 1 or 0 in Ω, (1.8)

and

Rg ≥ 0 in Ω. (1.9)

(i) If Sn \Ω contains more than one point and g is complete on Ω, then for any
ball B ⊂⊂ Ω in the canonical metric gSn , the mean curvature of its boundary
∂B in metric g with respect to its inner normal is positive;

(ii) If Sn \Ω is empty or consists of one point, then g is the round metric on Sn

in the case Qg ≡ 1; and the flat metric on Sn \ {∞} ∼ Rn in the case Qg ≡ 0
and Sn \ Ω = {∞}.
A corollary of Theorem 1.1 is the following

Corollary 1.2. Suppose that Γ ⊂ Sl for l ≤ n−2
2 and contains more than one point.

Then any complete, conformal metric g on Sn \Γ satisfying (1.8) and (1.9) has to
be symmetric with respect to rotations of Sn which leave Sl invariant.

A second corollary of Theorem 1.1 is the following

Corollary 1.3. Suppose that g = u(x)4/(n−4)gSn is a conformal metric on Ω � Sn

such that (1.8) and (1.9) hold, and that g is a complete metric on Ω or u(x) →
∞ as x → ∂Ω, then there exists a constant C > 0 such that u(x)2/(n−4) ≤
Cδ(x, ∂Ω)−1, where δ(x, ∂Ω) is the distance from x to ∂Ω in the metric gSn.

Remark 1.4. Corollary 1.2 can be considered as extending the consideration in
[CY97, L98, X00] to cases where the solutions are not defined on Sn or Rn, but
on some more general Ω � Sn. Note that the corresponding (classification) results
on Sn or Rn in [CY97, L98, X00] hold without assuming (1.9), but assuming (1.5)
only when n = 4. We will see below – Remark 1.7 and the last 2 paragraphs for
the n = 4 case in the proof of Theorem1.1 in the next section – that, in the n = 4
context, (1.5) is equivalent to (1.9).

In [Sc88] Schoen proved a version of Theorem 1.1 and Corollary 1.2 for a
conformal, complete metric on Ω � Sn with non-negative constant scalar curva-
ture using a moving spheres argument, and proved a version of Corollary 1.3 in
the same setting using a blow up argument. There have been many similar sym-
metry results on entire solutions or entire solutions with one point deleted to the
constant σk curvature equation in the positive Γk class, which are generalizations
of the Yamabe equation; a partial list of work in this direction includes those of
Viaclovsky [V00a][V00b], Chang, Gursky and Yang [CGY02b][CGY03], Li and Li
[LL03][LL05], Guan, Lin and Wang [GLW04], Li[L06].

Remark 1.5. In Theorem 1.1 we use the sign convention for the mean curvature
as in [Sc88], namely, the mean curvature of the boundary of round Euclidean balls
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with respect to their inner normals is positive, as is the mean curvature of the
boundary of round balls in Sn when they are confined to a hemisphere – note that
as soon as a round ball in Sn contains a hemisphere, the mean curvature of its
boundary with respect to its inner normal becomes negative in our convention.

Since umbilicity is invariant under a conformal change of metric, and round
balls are umbilic in the canonical metric, our theorem implies that all principal
curvatures of ∂B in metric g are positive.

Remark 1.6. The canonical locally conformally flat metric on Sn \ Sn−k ∼= Sk−1 ×
Hn−k+1, for appropriate range of k, provides examples of metrics satisfying the
assumptions in Theorem 1 with Γ = Sn−k. The existence of conformal metrics sat-
isfying the assumptions in Theorem 1 for more general Γ is an interesting question,
but will not be addressed here.

In a local conformal representation for g(x) = u(x)
4

n−4 |dx|2 when n �= 4, we
have

(n− 4)Rg(x) = −4(n− 1)u(x)−
n

n−4

(
Δu(x) +

2

n− 4

|∇u(x)|2
u(x)

)
. (1.10)

We see that the condition (1.9) for n > 4 implies that

Δu(x) ≤ 0. (1.11)

The analog of (1.10) when n = 4 and g = e2w|dx|2 is

Rg(x) = −6e−2w(x)
(
Δw(x) + |∇w(x)|2) . (1.12)

We remark that in Y. Li’s joint work [LL05] with A. Li on the study of
entire solutions to a class of conformally invariant PDEs, and later on in his study
of local behavior near isolated singularities of such solutions in [L06], condition
(1.11) was used. One important ingredient in [LL05, L06] is that they work with
the equations of u as well as of its classical Kelvin transforms with respect to the
spheres ∂B(x0, R):

ux0,R(x) :=
Rn−2

|x− x0|n−2
u

(
x0 +

R2(x− x0)

|x− x0|2
)
,

and that Δu(x) ≤ 0 for |x − x0| < (≥)R is equivalent to Δux0,R(x) ≤ 0 for
|x− x0| > (≤)R. This comes from computing the scalar curvature of a conformal

metric g in the set up: g(x) = u(x)
4

n−2 |dx|2

Rg(x) = −4
n− 1

n− 2
u(x)−

n+2
n−2Δu(x). (1.13)

This is different from (1.10). Note that under the inversion in ∂B(x0, R) : x �→
x0 +

R2(x−x0)
|x−x0|2 , the same metric g is represented as

g(x0 +
R2(x− x0)

|x− x0|2 ) = u(x0 +
R2(x− x0)

|x− x0|2 )
4

n−2

(
R

|x− x0|
)4

|dx|2

= ux0,R(x)
4

n−2 |dx|2,
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so

Rg

(
x0 +

R2(x− x0)

|x− x0|2
)

= −4
n− 1

n− 2
ux0,R(x)

− n+2
n−2Δux0,R(x).

In dealing with the Q-curvature equations, the metric g is often represented

as g(x) = u(x)
4

n−4 |dx|2 (when n �= 4), so the corresponding transformation under
the inversion in ∂B(x0, R) is

uQ;x0,R(x) =
Rn−4

|x− x0|n−4
u

(
x0 +

R2(x− x0)

|x− x0|2
)
,

which gives

u(y)
4

n−4 |dy|2
∣∣∣
y=x0+

R2(x−x0)

|x−x0|2
= uQ;x0,R(x)

4
n−4 |dx|2.

In this set up, uQ;x0,R(x) would satisfy (1.6) if u(x) does, although Δu(x0 +
R2(x−x0)
|x−x0|2 ) ≤ 0 is not equivalent to ΔuQ;x0,R(x) ≤ 0. However, condition (1.9) is

a geometric condition and would imply (1.11) (when n > 4) for any of its local

representation in the form above, namely, (1.9) would imply Δu(x0+
R2(x−x0)
|x−x0|2 ) ≤ 0

as well as ΔuQ;x0,R(x) ≤ 0 – this is essential for our argument; (1.11) itself is not
a geometrically invariant condition.

These discussions have their analogs in the n = 4 case, where we write g(x) =
e2w(x)|dx|2, and under the inversion in ∂B(x0, R), the metric g is represented as

g(x0 +
R2(x−x0)
|x−x0|2 ) = e2wQ;x0,R(x)|dx|2, where

wQ;x0,R(x) = w

(
x0 +

R2(x− x0)

|x− x0|2
)
+ ln

(
R2

|x− x0|2
)
.

Remark 1.7. Theorem 1 implies that Sn \ Ω cannot be a single point for the case
of Qg = 1 and g complete on Ω. For, if that were the case, we could place that
single point at ∞ so as to obtain an entire solution on Rn, and the conclusion in
(i) of Theorem 1 would imply that, at any x ∈ Rn, for any unit vector e in Rn,
and for any r > 0, ∇eu(x) +

n−4
2r u(x) ≥ 0 for the n > 4 case – see the set up in

the next section, and this would imply ∇eu(x) = 0, which would imply that u is
a constant in Rn, but constants are not solutions to (1.2) or (1.6).

In [CY97, L98, X00] cited above, one technical step is to establish that entire
solutions u to (1.2) under their respective assumptions and to (1.6) are superhar-
monic on Rn. In the n > 4 case these authors proved that all entire solutions to
(1.6) are of the standard form (1.7). But in the n = 4 case the superharmonicity
of u is not enough to lead to the same classification; condition (1.5) is needed. In
fact, Theorem 1.2 in [L98] Lin gives some properties of entire solutions to (1.2) for

n = 4 satisfying
∫
R4 e

4u(y)dy < 8π2

3 ; and in [CC01] Chang and Chen constructed
such solutions. These solutions are not of the form (1.7), and from the perspec-
tive of Theorem 1, the conclusions of Theorem 1 does not hold on all Euclidean
spheres for these solutions. This means that condition (1.9) is related to, but differ-
ent from, the superharmonicity of a particular representation of the metric, that it
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is needed for the conclusions of Theorem 1, and that these solutions do not satisfy
(1.9). These properties can be verified directly on large Euclidean spheres using
the expansion (1.10) and (1.11) of [L98].

Remark 1.8. Corollary 1.3 follows from Theorem 1.1 as Schoen did in [Sc88] in the
case of constant positive scalar curvature equation. The outline of the argument
goes as follows. If the upper bound does not hold, then a sequence of rescaled
solutions centered along a sequence of points approaching ∂Ω would converge to
an entire solution on Rn to the same equation. The solutions of the latter equation
are completely classified; they correspond to the round metric on Sn, therefore
their mean curvatures (and principal curvatures) along large Euclidean spheres
become negative. But in the closure of any such a large Euclidean ball, this metric
is the uniform limit of a sequence of metrics whose principal curvatures along its
boundary sphere is positive by the version of Theorem 1.1. This would cause a
contradiction; therefore Corollary 1.3 must hold. We will not supply a detailed
proof of Corollary 1.3 here.

Remark 1.9. Although Schoen’s result in [Sc88] corresponding to Theorem 1.1
was stated and proved for a constant positive scalar curvature metric on a domain
Ω � Sn, an examination of the proof indicates that, as long as the three main
ingredients for the moving plane/sphere arguments are valid, the same conclusion
can be drawn, namely, the same conclusion as given in Theorem 1 continues to hold
if the following three steps are still valid: (i). the initiation of the inequality between
a solution in a half-space/ball enclosing its singular set and its reflected solution;
(ii). the above inequality is a strict point wise inequality unless it becomes a
point wise equality in the entire comparison domain; and (iii). the strict inequality
continues to hold if the half-space/ball is moved in a small open neighborhood.

Both (i) and (iii) involve proving that the solution in a neighborhood of its
singular set stays above its reflected solution (which is a smooth solution to the
equation near the singular set) by a positive amount – we did this here by using
the maximum principle for superharmonic functions in a domain with a boundary
component having zero Newtonian capacity, without imposing an explicit growth
condition of the solution toward its singular set.

Both (ii) and (iii) involve using the strong maximum principle and the Hopf
boundary lemma for the difference between the solution and its reflected solution,
when this difference is assumed to be non-negative. But this part works for solu-
tions to the constant scalar curvature equation, even if the constant is non-positive;
in fact, it works even for the constant σk curvature equation, as long as the equa-
tion is elliptic. (i) and (iii) can be established if we assume that the conformal
factor tends to ∞ uniformly upon approaching the boundary of its domain. We
thus have

Theorem 1.10. Let g be a conformal metric on Ω � Sn such that (a) σk(Ag) =

a constant in Ω, (b) Ag ∈ Γ+
k (or Γ−

k respectively) pointwise in Ω, and (c) if we
write g = e2wgSn , then w → ∞ uniformly upon approaching ∂Ω. Then for any ball
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B ⊂⊂ Ω in the canonical metric gSn , the mean curvature of its boundary ∂B in
metric g with respect to its inner normal is positive.

Theorem 1.10 essentially appeared in earlier work, maybe not in such ex-
plicit formulation, see, for example, estimate (27) in [LL05]. Some computational
sketches will be provided in the next section to illustrate the implementation of
the argument outlined in the previous remark.

Remark 1.11. Our background discussion mentioned results which construct con-
formal metrics satisfying the assumptions in Theorem 1.10 for the k = 1 case.
The construction of such conformal metrics for k > 1 and more general Ω (sub-
ject to the constraints on the dimension of Sn \ Ω) is an interesting question. In
a recent work [GLN18] González, Li, and Nguyen construct viscosity solutions to
a class of conformally invariant equations, which include the equations in (a) of
Theorem 1.10, such that these solutions are in Γ−

k when they solve the equations
in (a), and these solutions satisfy (c) – under appropriate dimensional constraints
on ∂Ω. Maximum principle, the key tool in proving Theorems 1.1 and 1.10, is
valid for viscosity solutions, see [LNW18]; so Theorems 1.10 applies to solutions
in [GLN18].

Our next result provides a criterion for the development map of a locally
conformally flat manifold to be an embedding in the negative Yamabe constant
case.

Theorem 1.12. Let (M, g) be a complete, locally conformally flat manifold, and
F : (M, g) �→ (Sn, gSn) be a conformal immersion. If the Schouten tensor Ag of
some metric in the conformal class of g is non-positive point wise on M , then F
is an imbedding.

Based on the following algebraic property that σ1(Ag) ≤ 0 and

σ2(Ag) ≥ (n− 2)

2(n− 1)
(σ1(Ag))

2 (1.14)

imply Ag ≤ 0, we have

Corollary 1.13. If (M, g) is a complete, locally conformally flat manifold, and satis-
fies σ1(Ag) ≤ 0 and (1.14), and F : (M, g) �→ (Sn, gSn) is a conformal immersion,
then F is an imbedding.

Remark 1.14. Based on the following relation between the Schouten tensor Ag and
the Einstein tensor Eg

Ag =
Eg

n− 2
+

Rg

2n(n− 1)
g =

Eg

n− 2
+

σ1(Ag)

n
g, (1.15)

we have

2σ2(Ag) =
n− 1

n
(σ1(Ag))

2 − ||Eg||2
(n− 2)2

, (1.16)

where ||Eg|| is the metric norm of E with respect to g.
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It then follows that condition (1.14) is a kind of pinching condition, as it is
equivalent to

||Eg||2
(n− 2)2

≤ (σ1(Ag))
2

(n− 1)n
, (1.17)

using (1.16). (1.14) is also equivalent to

(n− 1)||Ag||2 ≤ (σ1(Ag))
2 (1.18)

Remark 1.15. Theorem 1.12 and its corollary were obtained in the early 2000’s,
and were lectured by the second author in several seminar talks, including the fall
2003 CUNY Graduate Center Differential Geometry and Analysis Seminar.

When the condition Ag ≤ 0 is not satisfied, F may not be an embedding,
as shown by the canonical locally conformally flat metric on S1r × Hn−1, whose
Schouten tensor is diag(12 ,− 1

2 , . . . ,− 1
2 ).

We will provide a proof of Theorem 1.1 and Corollary 1.2 in Section 2. The
proof of Theorem 1.1 will follow the outlines as was done in [CY97], [L98], and
[X00]. We will only sketch the main steps of the proof, in particular, indicate how
to handle the behavior of the solution near ∂Ω. Some computational sketches will
also be provided for a proof of Theorem 1.10.

We will provide a proof of Theorem 1.12 in Section 3.

2. Proof of Theorems 1.1 and 1.10

Proof of Theorem 1.1. We first set up a stereographic coordinate for proving The-
orem 1.1. Let B ⊂⊂ Ω be as given in Theorem 1.1. We can choose a stereo-
graphic coordinate such that B is mapped onto {x ∈ Rn : x1 < λ0} – this
amounts to choosing coordinate such that the north pole lies on ∂B, and is equiv-
alent to working with an appropriately transformed uQ;x0,R in place of u. Define
Σλ = {x ∈ Rn : x1 > λ}, and Tλ = ∂ (Σλ) = {x ∈ Rn : x1 = λ}. Let Γ be the
image of Sn \Ω under this stereographic map. Then Γ is a compact subset in Σλ0 .

Define Σ
′
λ = Σλ \ Γ. In this stereographic coordinate we can write

g(x) = u(x)
4

n−4 |dx|2 for x ∈ Rn \ Γ. (2.1)

Here, we first provide the details for the n > 4 case; the modifications needed for
the n = 3, 4 cases will be sketched at the end.

The statement that the mean curvature of ∂B in metric g with respect to its
inner normal is positive in the n > 4 case is equivalent to

ux1(x) > 0 for all x ∈ Tλ0 . (2.2)

Remark 2.1. If one represents B by a Euclidean ball B(x0, r) with x0 as center and
r > 0 as radius, then the statement that the mean curvature of ∂B at x ∈ ∂B in
metric g with respect to its inner normal is positive (when n > 4) is equivalent to

∇θu(x) +
n− 4

2r
u(x) :=

∂u(x0 + rθ)

∂r
+

n− 4

2r
u(x) > 0 for x = x0 + rθ, θ ∈ Sn−1,

(2.3)
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as the mean curvature in metric g = u(x)4/(n−4)|dx|2 at a point x on ∂B is given by

2u(x)
2−n
n−4

n− 4

[
∇θu(x) +

n− 4

2r
u(x)

]
.

It follows from this set up that (2.3) implies gradient estimate for u, for, if∇u(x) =

|∇u(x)|e for some e ∈ Sn−1, then, with x0 = x+ δ(x,Γ)
2 e, B δ(x,Γ)

2
(x0) ⊂ Ω, and x ∈

∂B δ(x,Γ)
2

(x0), thus (2.3) at x implies that |∇u(x)| = −∇−eu(x) < n−4
δ(x,Γ)u(x). Y.

Li and his collaborators also used estimates like (2.3) (see, for example [LL05] and
[LN14]), or rather an inequality of the form u(y) ≥ ux0,r(y) (or u(y) ≥ uQ;x0,r(y)
in our setting, which is used in deriving (2.3)), to obtain gradient estimates.

Remark 2.2. It follows from Theorem 2.7 in [SY88] that, in the situation of our
Theorem 1.1, the Newtonian capacity cap(Sn\Ω) = 0, which implies that cap(Γ) =
0. We will use this to deal with the behavior of u(x) and that of Δu(x) near Γ.

Let v(x) = −Δu(x). Then based on our set up, we have{
Δv(x) = −u

n+4
n−4 (x) ≤ 0 in Rn \ Γ,

v(x) ≥ 0 in Rn \ Γ, (2.4)

(the Q ≡ 0 case can be handled by a straightforward modification) and that u(x)
has an expansion at x = ∞:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x) = c1|x|4−n +

n∑
j=1

bjxj

|x|n−2
+O

(
1

|x|n−2

)

uxi = −(n− 2)c1xi|x|2−n +O

(
1

|x|n−2

)
uxixj (x) = O

(
1

|x|n−2

) (2.5)

for some constants c1 > 0 and bj’s. It follows from this expansion that v(x) =
−Δu(x) has the following expansion at x = ∞:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(x) = c0|x|2−n +

n∑
j=1

ajxj

|x|n +O

(
1

|x|n
)

vxi = −(n− 2)c0xi|x|−n +O

(
1

|x|n
)

vxixj (x) = O

(
1

|x|n
) (2.6)

for some constants c0 > 0 and aj ’s.

Set xλ = (2λ−x1, x2, . . . , xn), which is the reflection of x with respect to Tλ,
and

wλ(x) = u(x)− u(xλ) for x ∈ Σ
′
λ.
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We will prove using the moving planes method that, when g cannot be extended
as a smooth metric across Γ,

u(x)− u(xλ) > 0 and v(x)− v(xλ) > 0, for all x ∈ Σ
′
λ and λ ≤ λ0. (2.7)

It would then follow from (2.7) that

ux1(x) ≥ 0 and ∂x1(Δu(x)) ≤ 0, for any x with x1 ≤ λ0, (2.8)

which, together with the strong maximum principle applied to u(x) − u(xλ) and
v(x) − v(xλ), would conclude our proof.

In our setting it is impossible for v(x) ≡ 0 on Rn \ Γ due to (2.6). Then it
follows from (2.4) and the strong maximum principle that v(x) > 0 in Rn \ Γ.

We may suppose that Γ ⊂ B(0, R0) for some R0 > 0. Now for any R ≥ R0,

since v > 0 in B(0, R) \ Γ, there exists δ > 0 depending on R such that v(x) ≥ δ
for all x ∈ ∂B(0, R). It now follows, using cap(Γ) = 0 and (2.4), that

v(x) ≥ δ for all x ∈ B(0, R) \ Γ. (2.9)

A reference for this kind of extended maximum principle is [L72, Chap. III, Thm.
3.4]. A formulation of this kind extended maximum principle in our setting is

Lemma 2.3. Suppose that (i) Ω is a bounded domain in Rn and that Γ ⊂ Ω has
capacity 0, (ii) v is superharmonic in Ω \ Γ, and (iii) v is bounded below in Ω \ Γ,
and there exists M such that for any z ∈ ∂Ω, lim infx∈Ω,x→z v(x) ≥ M . Then
v(x) ≥ M in Ω \ Γ.

The expansion (2.6) of v(x) at ∞ and Lemma 2.3 in [CGS89] implies that{
there exists λ1 ≤ λ0 and R1 ≥ R0 such that

v(x) > v(xλ) for all x ∈ Σ
′
λ with |x| ≥ R1, and λ ≤ λ1.

(2.10)

Then using (2.9) and the expansion (2.6) of v(x) at ∞, we conclude that there
exists λ2 ≤ λ1 such that

v(x) > v(xλ) for all x ∈ Σ
′
λ, λ ≤ λ2. (2.11)

Next, wλ(x) satisfies

Δwλ(x) = v(xλ)− v(x) ≤ 0 for all x ∈ Σ
′
λ, (2.12)

and λ ≤ λ2. The expansion (2.5) of u(x) at ∞ implies that

wλ(x) → 0 as x → ∞. (2.13)

Using (2.12), (2.13), wλ(x) = 0 for all x ∈ Tλ, and the observation that wλ(x) =
u(x) − u(xλ) ≥ −u(xλ) is bounded below in a neighborhood of Γ and the infor-

mation that cap(Γ) = 0, we conclude that wλ(x) ≥ 0 for all x ∈ Σ
′
λ, λ ≤ λ2.

In the situation of (i), the completeness assumption on g and Ω �= Sn imply
that wλ(x) cannot be ≡ 0, so with the strong maximum principle, we conclude
that

wλ(x) > 0 for all x ∈ Σ
′
λ, (2.14)

and λ ≤ λ2.
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We now define

λ∗ = sup{λ ≤ λ0 : v(xμ) < v(x) for all x ∈ Σ
′
μ, and all μ ≤ λ,}

and proceed to prove that λ∗ = λ0.
By continuity (together with strong maximum principle and completeness of

g), (2.12) and (2.14) continue to hold for λ∗ replacing λ. We now have, using (2.14)
for λ∗ replacing λ, that

Δ
[
v(xλ∗)− v(x)

]
= u

n+4
n−4 (x) − u

n+4
n−4 (xλ∗) ≥ 0 for all x ∈ Σ

′
λ∗ . (2.15)

v(xλ∗) − v(x) ≤ 0 for all x ∈ Σ
′
λ∗ . Now strong maximum principle, (2.14) and

(2.15) imply that v(xλ∗)− v(x) < 0 for all x ∈ Σ
′
λ∗ – the Q ≡ 0 case would need

a modified argument to rule out v(xλ∗)− v(x) ≡ 0 using the Liouville theorem on
the harmonic function v(x) and (2.6). Furthermore, using cap(Γ) = 0, there exists
some δ∗ > 0 such that

v(xλ∗)− v(x) ≤ −δ∗ for x in a neighborhood of Γ.

This, together with (2.15) and Lemma 2.4 in [CGS89], implies that λ∗ = λ0,
and concludes the case for (i).

In the Ω = Sn subclass of (ii), the set up in the proof of (i) is used to
prove, in a more standard fashion as in [CY97], that u(x) is rotationally symmetric
about some point; then in the Q ≡ 1 case the argument in [L98] proves that u(x)
is of the standard form; while in the Q ≡ 0 case standard properties on entire
positive harmonic functions implies that u(x) must be a positive constant, but the
associated metric would not be a smooth metric over Ω = Sn, so this latter case
cannot occur.

In the remaining case of (ii): Ω = Sn \ {a point}, the set up in the proof of
(i) works identically, and proves that the solution is rotationally symmetric about
the image point of ∞ under the inversion used in the set up. But the sphere with
respect to which the inversion is done can be chosen arbitrarily, so the solution
is shown to be rotationally symmetric about any point, therefore is a positive
constant. This cannot happen in the Q ≡ 1 case, and in the Q ≡ 0 case leads to
the conclusion that the metric is the flat one on Ω = Sn \ {a point}.

We now indicate the modifications needed for the n = 3 case. (2.2) turns into

ux1 < 0 for all x ∈ Tλ0 ; (2.16)

(2.3) turns into

∇θu(x)− u(x)

2r
< 0; (2.17)

The condition Rg ≥ 0 turns into

Δu(x)− 2|∇u(x)|2
u(x)

≥ 0; (2.18)

and the three-dimensional version of (1.6) for Q = 2 is

(−Δ)2u = −u−7, x ∈ Ω ⊂ R3. (2.19)
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Setting ṽ(x) = Δu(x), we find that under (2.18), ṽ(x) ≥ 0; and η(x) := ṽ(x)−ṽ(xλ)
satisfies η(x) ≥ −Δu(xλ), as well as Δη(x) ≤ 0 whenever u(x) ≤ u(xλ). The
version of (2.7) that we need to establish in 3 dimension is

u(x)−u(xλ) < 0 and η(x) = ṽ(x)− ṽ(xλ) > 0 for all x ∈ Σ
′
λ and λ ≤ λ0. (2.20)

Given (2.19) and the information on η above, (2.20) is established in almost iden-
tical way as in the n > 4 case.

For the n = 4 case, we use g(x) = e2w(x)|dx|2; (2.18) is replaced by Δw(x) +
|∇w(x)|2 ≤ 0; (2.3) is replaced by ∂w

∂r + 1
r ≥ 0; in place of (2.5), we have a similar

expansion for ew(x) at ∞ (in an appropriately chosen stereographic coordinate)
whose leading order term is 2|x|−2, or equivalently, an expansion for w(x) whose
leading order term is −2 ln |x| – the expansions for wxj (x) and Δw(x) come as
consequences of the expansion for w(x). Our objective in this set up is still to
establish (2.7) with w(x) replacing u(x) there. (2.9) is established in the same way
for v(x) = −Δw(x), as we still have Δw(x) ≤ 0 (< 0 in fact) based on Rg ≥ 0,
and Δv(x) ≤ 0 in R4 \ Γ. The analog of (2.14) we need is w(x) − w(xλ) > 0 for
x ∈ Σ′

λ and all λ ≤ λ0, and one key ingredient in proving this is a lower bound for
w(x) in a neighborhood of Γ. This is done using

Δew(x) = ew(x)
[
Δw(x) + |∇w(x)|2] ≤ 0 for x ∈ R4 \ Γ,

from which it follows from the extended maximum principle applied to ew(x) over
BR \Γ for a fixed, sufficiently large R > 0 that ew(x) has a positive lower bound in
BR \Γ, which then implies a lower bound for w(x) in BR \Γ. These modifications
suffice to complete a proof for the n = 4 case.

For the n = 4 and Γ = {one point} case, we can arrange coordinates such
that Γ = {0}. The argument in the above paragraph applies, except that it is
possible that w(x)−w(xλ) ≡ 0 for some λ – in fact, this will always happen. Then
it’s easy to see that g must be the round metric, and as a consequence, (1.5) holds.
If (1.5) is assumed in place of (1.9), then it follows from [L98] that g must be the
round metric, and as a consequence, (1.9) holds. Thus in this context, (1.9) and
(1.5) are equivalent. �

Remark 2.4. An examination of the proof shows three crucial ingredients for com-
pleting the proof for Theorem 1:

(i) (2.9) for initiating of the relation that v(x)− v(xλ) = −Δu(x) +Δu(xλ) ≥ 0
for x ∈ Σ′

λ and λ ≤ λ1 for |λ1| large (for the n > 4 cases; the n = 3, 4 cases
can be formulated appropriately);

(ii) u(x)− u(xλ) ≡ 0 cannot happen in Σ′
λ; and

(iii) once u(x)− u(xλ) ≥ 0 in Σ′
λ is established, there exists δ > 0 such that

u(x)− u(xλ) > δ and −Δu(x) + Δu(xλ) ≥ δ in a neighborhood of Γ.

(2.9) is proved using the equation for v(x) = −Δu(x), the property v(x) ≥ 0,
which follows from Rg ≥ 0, and cap(Γ) = 0; (iii) also relies on Rg ≥ 0 and
cap(Γ) = 0 crucially; while (ii) relies on the assumption that g is a complete metric
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on Ω = Sn \ Γ – this assumption, together with Rg ≥ 0 (and locally conformal
flatness of g), implies cap(Γ) = 0, based on [SY88]. Based on this examination, the
assumption in Theorem 1 that g is a complete metric on Sn \ Γ can be replaced
by the assumption that g cannot be extended as a smooth metric over Γ and that
cap(Γ) = 0.

Remark 2.5. Here is another illustration why the assumption that Rg ≥ 0 cannot
be dropped: in the case of Q ≡ 0 on Sn \ {a point}, which we identify as Rn,
we would be studying positive solutions u(x) on Rn to Δ2u(x) = 0. A simple
argument using the Green’s formula to Δu(x):

Δu(x) =
1

|Br(x)|
∫
Br(x)

Δu(y)dy

=
1

|Br(x)|
∫
∂Br(x)

∂u(y)

∂ν(y)
dσ(y) =

n

r
∂r

(∫
Sn−1

u(x+ rω)dω

)
,

and u > 0 on Rn shows that Δu(x) ≥ 0. This then makes Δu(x) a non-negative
entire harmonic function, so Δu(x) = c for some non-negative constant c. u(x) =
u0 +

∑n
j=1 ajx

2
j , for u0 > 0 and appropriately chosen aj ≥ 0, are positive so-

lutions. These solutions have reflection symmetries, but do not have rotational
symmetry unless aj ’s are all equal; and, in any case, do not satisfy the conclusions
of Theorem 1.1 unless aj ’s are all 0.

Unless c = 0, these solutions do not correspond to metrics with Rg ≥ 0. If we
were to follow the set up in the proof of (i) of Theorem 1.1, we would work with

uQ;0,1(x) = |x|4−nu(
x

|x|2 ) = u0|x|4−n + |x|−n
n∑

j=1

ajx
2
j .

But ΔuQ;0,1(x) may become unbounded near x = 0 when aj �= ak for some j �= k.
This would prevent an estimate like (2.9) for v(x) := −ΔuQ;0,1(x), which is needed
for the initiation of step (i) alluded to in the previous remark.

Proof of Corollary 1.2. It suffices to prove that, when Sl \ {∞} is represented via
a stereographic projection as Rl = {x ∈ Rn : xl+1 = · · · = xn = 0}, and for any
x ∈ Rn \ Rl, and for any (unit) vector e = (0, . . . , 0, el+1, . . . , en) ⊥ x, we have
∇eu(x) = 0 – this set up would require n−l ≥ 2, which we have from l ≤ (n−2)/2.
This would imply that, in this set up, u = u(x1, . . . , xn) depends on xl+1, . . . , xn

only through
√
x2
l+1 + · · ·+ x2

n.

For any r > 0, we see that B(x − re, r) ⊂⊂ Rn \ Rl, so the conclusion of
Theorem 1 is valid on ∂B(x − re, r). In particular, for the n > 4 case and at
x ∈ ∂B(x− re, r), we have, by (2.3)

∇eu(x) +
n− 4

2r
u(x) > 0. (2.21)
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Since we can take r > 0 arbitrarily large, we conclude that ∇eu(x) ≥ 0. Repeating
this argument with −e replacing e, we obtain ∇−eu(x) ≥ 0, and therefore conclude
that ∇eu(x) = 0. The n = 3, 4 cases need only minor modifications. �

Sketch of proof of Theorem 1.10. Here we will express the metric g in the form of
e2w(x)|dx|2, and express the equation in the form of f(λ(A[w])) = 1, where A[w] =

−∇2w+∇w⊗∇w− |∇w|2
2 I denotes the matrix representing the Schouten tensor,

and λ(A[w]) refers to the eigenvalues of A[w]. Again we have set up coordinates
such that Γ ⊂ Rn, and that w(x) has an expansion at ∞ in the spirit of (2.5), but
with −2 ln |x| as the leading order term. w(xλ) satisfies the same equation.

To initiate the moving plane method, we need a positive lower bound for
ew(x) near Γ. This is provided for by assumption (c). Then traditional method is
used to establish w(x) − w(xλ) ≥ 0 for x ∈ Σ′

λ for λ ≤ λ1 for some large |λ1|. To
carry through the moving plane method, namely, to establish the above inequality
for all expected range of λ, we use the equations for w(x) and w(xλ) to obtain
a linear, second-order, elliptic equation for w(x) − w(xλ): L[w(x) − w(xλ)] = 0
in Σ′

λ, thanks to assumption (b). Using assumption (c), w(x) − w(xλ) ≥ 0, and
the strong maximum principle, we obtain w(x) − w(xλ) > 0 – the version used
here is for non-negative solutions, which can be derived from Lemma 3.4 in [GT],
and does not require a condition on the sign of the coefficient of the zeroth-order
term in L; an explicitly formulated version for such a setting appears, e.g., as
Lemma 3.5 in [CY97]; it is for this reason that the argument for Theorem 1.10
does not distinguish between the solutions in Γ+

k class from those in the Γ−
k class.

Assumption (c) further implies that there exists δ > 0 such that w(x)−w(xλ) > δ
in a neighborhood of Γ. This, the Hopf Lemma and Lemma 2.4 in [CGS89], imply
that w(x) − w(xλ) > 0 holds for all expected range of λ. �

3. Proof of Theorem 1.12

Proof of Theorem 1.12 . We may assume that g itself satisfies that its Schouten
tensor Ag is non-positive point wise on M . For any point z0 ∈ F (M) ⊂ Sn, using
stereographic coordinates, there is a smooth function u on Sn such that u > 0

on Sn \ {z0}, u(z0) = 0, and u−2g0 is flat. Writing F ∗(u−2g0) = v−2g
def
= ĝ on

M \ F−1(z0), then ĝ is flat. Hence, on M \ F−1(z0), Ê = 0, R̂ = 0.

Under a (pointwise) conformal change of the metric g, ĝ = v−2g, the Einstein
tensor and scalar curvature transform as follows.

Ê = E +
n− 2

v

{
∇2v − Δv

n
g

}
, (3.1)

R̂ = v2
{
R+ 2(n− 1)

Δv

v
− n(n− 1)

|∇v|2
v2

}
. (3.2)
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Thus in the situation here, we have, by (3.1) and (3.2),

E = −n− 2

v

{
∇2v − Δv

n
g

}
, (3.3)

R = −(n− 1)

{
2
Δv

v
− n

|∇v|2
v2

}
. (3.4)

It now follows that

A = −∇2v

v
+

|∇v|2
2v2

g. (3.5)

Under our assumption that A ≤ 0, we therefore have

∇2v ≥ |∇v|2
2v

g, (3.6)

on M \F−1(z0). By a limiting argument, v(γ(s)) is a non-negative convex function
along any geodesic (in metric g) γ(s) on M .

If P0 �= P1 ∈ M are such that F (P0) = F (P1), we set z0 = F (P0) = F (P1)
and carry out the computations in the paragraph above. Since (M, g) is assumed to
be complete, we may joint P0 and P1 by a geodesic (in metric g) γ(s) parametrized
over s ∈ [0, 1] with γ(0) = P0 and γ(1) = P1, then v(γ(0)) = v(γ(1)) = 0. Since
v > 0 on M \ F−1(z0), this would imply that γ(s) ∈ F−1(z0) for all s ∈ [0, 1],
using the convexity of v. But this is not possible, and this contradiction implies
that F must be an imbedding. �

Proof of Corollary 1.13. We just need to establish the algebraic property that
σ1(Ag) ≤ 0 and (1.14) imply Ag ≤ 0. Since E is trace free, we have the sharp
inequality

−
√

n− 1

n
||Eg||g ≤ E ≤

√
n− 1

n
||Eg||g. (3.7)

Thus, when (1.14) holds, we have (1.17), as remarked earlier, which then implies
that

||Eg||
(n− 2)

≤ |σ1(Ag)|√
n(n− 1)

. (3.8)

It now follows from (3.8), (1.15) and (3.7) that Ag ≤ 0. �
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