Problem Session 3.

1. Let E be an Hermitian vector bundle over a Riemannian manifold M. Let A, B be two Hermitian connections on E. Show that $d_A^*(A - B) = 0$ if and only if $d_B^*(A - B) = 0$.

2. Suppose V, W are two Banach spaces. Consider a map

$$f : V \to W$$

$$x \mapsto L(x) + Q(x, x),$$

where L is a linear isomorphism, Q is a quadratic map, and there exists a constant $C > 0$ such that $\|Q(x_1, x_2)\| \leq C \cdot \|x_1\| \cdot \|x_2\|$ for all $x_1, x_2 \in V$.

(a) Let $r := \frac{1}{4C \cdot \|L^{-1}\|}$, show that f is injective on the open ball $B(r)$ centered at zero with radius r.

(b) Show that $f^{-1} : f(B(r)) \to B(r)$ is continuous.

(c)* Show that $f^{-1} : f(B(r)) \to B(r)$ is a smooth map. (Hint: By the inverse function theorem, we only need to show that df are isomorphisms.)

3. (a) Suppose P is an SU(2) bundle on a closed oriented 3-manifold M. Consider the associated $\text{SL}_2(\mathbb{C})$ bundle

$$\tilde{P} := P \times_{\text{SU}(2)} \text{SL}_2(\mathbb{C})$$

and the associated Lie algebra bundle

$$\text{ad} P := P \times_{\text{SU}(2)} \mathfrak{su}(2).$$

Suppose A is a connection on P and ϕ is a section of $T^*M \otimes \text{ad} P$, then $A + i\phi$ defines a connection on \tilde{P} by adding the T^*M–valued matrices in local coordinates.

Show that every connection \hat{A} of \tilde{P} decomposes uniquely as

$$\hat{A} = A + i\phi$$

as described above.

(b) Let $\hat{A} = A + i\phi$ be an $\text{SL}_2(\mathbb{C})$–connection. Show that $F_{\hat{A}} = 0$ if and only if

$$F_A = \phi \wedge \phi,$$

$$d_A \phi = 0.$$

1
(c)* Let \((A_n, \phi_n)\) be a sequence of solutions to the following system of equations:

\[
F_A = \phi \wedge \phi,
\]

\[
d_A \phi = 0,
\]

\[
d^\ast_A \phi = 0.
\]

Suppose \(U\) is a small open ball on \(M\), and suppose that after choosing a local trivialization and applying suitable gauge transformations, we have

\[
d^\ast A_n = 0,
\]

\[
\|A_n\|_{L^3(U)} \leq C,
\]

\[
\|\phi_n\|_{L^3(U)} \leq C,
\]

for all \(n\). Show that \((A_n, \phi_n)\) has a convergent subsequence in \(C^\infty\) on compact subsets of \(U\).