Stationary distributions

A Markov chain with transition matrix $P_{x,y}$ has stationary distribution π if,

$$\pi P = \pi$$

To interpret this if $X_0 \sim \nu$, that is $\mathbb{P}(X_0 = k) = \nu_k$, then

$$\mathbb{P}(X_t = j) = \sum_k \mathbb{P}(X_t = j \mid X_0 = k) \mathbb{P}(X_0 = k) = \sum_k \nu_k \cdot P_{kj} = \nu P_j.$$

So $X_t \sim \nu P$. In general $X_n \sim \nu P^n$.

So if π is stationary then $X_n \sim \pi$ for all n if $X_0 \sim \pi$.

Example: RW on a graph.

$$\pi_i = \frac{d_i}{2|E|} \text{ where } d_i \text{ is degree of } i.$$

$$\pi P_j = \sum_i \frac{d_i}{2|E|} \cdot P_{ij} = \sum_i \frac{d_i}{2|E|} \cdot \frac{1}{d_i} \mathbb{I}(\text{in}_j) = \frac{1}{2|E|} \sum_i \mathbb{I}(\text{in}_j) = \frac{d_j}{2|E|}$$

- Random to top shuffle

Let $g_k = (1,2,\ldots,k)$ and G_n uniform on $\{g_k : 1 \leq k \leq n\}$.

Then $X_n = G_n X_{n-1}$ is a top to random shuffle.
Let $\pi(\sigma) = \frac{1}{n}$ be the uniform permutation.

Questions: Is π unique? Does $X_n \rightarrow \pi$. How fast?

- Example: RW on disconnected graph

\[
\begin{pmatrix}
\frac{1}{2} & 0 \\
\frac{1}{2} & 0
\end{pmatrix}
\]

A Markov chain is irreducible if for all i,j there is n such that $(P^n)_{i,j} > 0$, that is $P[X_n = j | X_0 = i] > 0$.

Perron-Frobenius Theorem

If P is a stochastic matrix then it has a left eigenvector μ with $\mu P = \mu$ and $\sum \mu_i = 1$. The entries of μ are positive. If P is irreducible then μ is unique.

Proof: Linear Algebra.

Probabilistic Existence proof:
Let $M_n = \frac{1}{n} \sum_{i=1}^{n} M P^n_i$.

Now $M_n P - M_n = \frac{1}{n} M (P^n - P) \to 0$

$M \subset \{ v \in [0, I] : \frac{j}{n}, i = 1 \}$ compact set so

$\exists n_k$ such that $M_{n_k} \to \tilde{M}$.

Since $M_{n_k} (P - I) \to 0$, $\tilde{M} (P - I) = 0$

$\Rightarrow \tilde{M}$ is stationary

Positivity: We must have $M_i > 0$ for some i.

For any i, $\exists n_k$ such that $(P^n)_i > 0$.

$M_j = (M P^n)_j \Rightarrow M_i P^n_i > 0$.

Uniqueness: Let $S = \inf \{ n \geq 1 : X_n = i \}$.

Then $M_i = (E[S | X_0 = i])^-$.

Suppose $X_0 \sim v$ and v is stationary.

Let T_k be k-th visit to i. Then

$T_k - T_{k-1}$ IID

$\Rightarrow \frac{T_k}{n} \to E[S] = \frac{1}{M_i}$ a.s.

If $N_n = \# \{ 1 \leq s \leq n : X_s = i \}$ then

$\frac{N_n}{n} \to M_i$ a.s.
\[S_0 \text{ E}(X_1|X_0) \rightarrow m; \]
But \[\text{E}X_i = \sum_{k=1}^{n} P(X_k = i) = n \mu_i; \]
\[\rightarrow \mu_i = \lambda_i. \]

Periodicity:
\[\overset{\circ}{x} \overset{\circ}{x} \overset{\circ}{x} \]
\[\tau(x) = \frac{1}{3} \text{ uniform} \]

\[P(X_{3n} = 1 | X_0 = 13) = 1 \]
\[P(X_{3n+1} = 2 | X_0 = 1) = 1 \quad \Rightarrow \quad X_n \xrightarrow{d} \tau. \]

A state \(x \) in a Markov Chain is aperiodic if \(\text{GCD}(S) = 1 \) where \(S = \{ n \geq 1 : P(X_n = x | X_0 = x) > 0 \} \).

Claim: Closed under Addition: \[\text{If } n, m \in S \text{ then } n + m \in S \]
\[P^{n+m} = \sum \limits_y P^n \overset{x}{y} P^m \overset{y}{x} \geq P^n \overset{x}{x} P^m \overset{x}{x} > 0. \]

Fact: If \(\text{GCD}(A) = 1 \) and \(A \) closed under addition then \(|N \setminus A| < \infty \), i.e. \(N \) such that \(\forall n \geq n', n \in A. \)

Defn: A Markov chain is ergodic if it is irreducible and aperiodic.

Claim: If \(X_n \) is ergodic then \(\exists N \) such that \(\forall x, y, n \geq N \text{ then } P^n_{x,y} > 0. \)

Proof: Suppose \(Z \) is aperiodic so \(\forall m \geq M \text{ } P^m_{Z,Z} > 0. \) Now for some \(k, k \)
\[P_{x_1} > 0, \ P_{y_1} > 0. \]
\[\forall n \geq k + l + M, \ P_{x_2} \leq P_{x_2}^k \ P_{x_2}^{n-k} \ e^{-e} P_{y_2} \geq 0. \]

Theorem: If \(X_n \) is ergodic with stationary distribution \(\Pi \), then \(X_n \to \Pi \) for any initial \(X_0 \).

Coupling: If \(X \) and \(Y \) are two R.V.

a **coupling** \((X', Y')\) is a joint distribution defined on the same probability space such that \(X \equiv X' \), \(Y \equiv Y' \).

We often define a coupling with one of two goals

a) \(X' \leq Y' \) stochastic domination

b) minimize \(\|P[X' \neq Y']\) to compare \(X \sim Y \).

Example: \(X \sim \text{Bin}(n, p), \ Y \sim \text{Bin}(m, p) \) for \(m > n \).

Show that \(\|P[X \geq x]\) \leq \(\|P[Y \geq x]\)

Let \(W_i \) be \IID \(\text{Ber}(p) \),

\[X' = \sum_{i=1}^{n} W_i \equiv X, \quad Y' = \sum_{i=1}^{m} W_i \equiv Y \]

So \(Y' = X' + \sum_{i=n+1}^{m} W_i \geq X' \).

\(\|P[Y \geq x]\) = \(\|P[Y' \geq x]\) \geq \|P[X' \geq x]\) = \(\|P[X \geq x]\). \)
Let \(X_0 = x_0 \), we will prove that \(X_n \xrightarrow{d} \pi \).

Let \(Y_n \) be an independent copy of the chain, \(Y_0 \sim \pi \). Let \(T = \min \{ n \geq 0 : X_n = Y_n \} \).

Let \(Z_n = \begin{cases} X_n & T \leq n \\ Y_n & T > n \end{cases} \)

Then \(Z_n \) is a Markov chain with the same distribution as \(X_n \) and \(\Pr[X_n = x] = \Pr[Z_n = x] \).

For some large \(M \), \(\min_{x, y} P_{xy}^M = \alpha > 0 \).

We can check every \(M \) steps to see if \(T \) has happened.

Then \(\Pr[T > (l+1)M \mid T > 2M] \)

\[\leq \max_{x \neq x'} \Pr[X_{(l+1)M} = X_{(l+1)M} \mid X_{(l+1)M} = x, Y_{(l+1)M} = y] \]

\[\leq 1 - \min_{x \neq x'} \Pr[X_{(l+1)M} = Y_{(l+1)M} = x \mid X_{(l+1)M} = x, Y_{(l+1)M} = y] \]

\[\leq 1 - \min_{x \neq x'} \Pr[X_{(l+1)M} = Y_{(l+1)M} = x \mid X_{(l+1)M} = x, Y_{(l+1)M} = y] \]
\[1 - \min_{x \neq y} P_{X,Y}(x, y) \leq 1 - \min_{x \neq y} P_{X}^{-1} P_{Y}^{-1} \leq 1 - \alpha^2 \]

So \(\Pr[T > 2M] \leq (1 - \alpha)^2 \).

\[\Rightarrow \Pr[T > n] \to 0. \]

Now \(|\Pr[X_n = x] - \pi(x)| = |\Pr[Z_n = x] - \Pr[X_n = x]| \)

\[\leq \Pr[Z_n \neq X_n] \]

\[\leq \Pr[T > n] \to 0 \]

So \(X_n \xrightarrow{d} \pi \).

Total Variation Distance

\[d_{TV}(M, \nu) = \max_A |M(A) - \nu(A)| \]

\[= \sum_x \frac{1}{2} |M_x - \nu_x| \]

Optimal coupling of \(X \sim M, Y \sim \nu \)

\[\Pr[X' \neq Y'] = d_{TV}(M, \nu) \]

Proof: For any coupling

\[\Pr[X' \neq Y'] \geq \Pr[X \in A] - \Pr[Y \in A] \]

\[= d_{TV}(M, \nu) \text{ for some } A \]
Let \(p = 1 - d_{TV}(\mathcal{M}, \mathcal{N}) \), \(Z \sim \text{Bern}(p) \)

\[
\Theta_1 = \frac{\frac{M + N}{p}}{\frac{M + N}{1 - p}}, \\
\Theta_2 = \frac{M - MN}{1 - p} \quad \text{probability measures}, \\
\Theta_3 = \frac{N - MN}{1 - p}
\]

Let \(U_i \sim \Theta_i \). Then set

\[
X' = Z U_1 + (1 - Z) U_2 \\
Y' = Z U_1 + (1 - Z) U_3
\]

\[
\Pr[X' = Y'] \geq \Pr[Z = 1] = 1 - d_{TV}(\mathcal{M}, \mathcal{N})
\]

so \(\Pr[X' \neq Y'] \leq d_{TV}(\mathcal{M}, \mathcal{N}) \).

Need to check \(X' \sim \mathcal{M}, \ Y' \sim \mathcal{N} \)

Case 1 \(M_k \geq N_k \)

\[
\Pr[X' = k] = \Pr[Z = 1] \cdot \Pr[U_1 = k] + \Pr[Z = 0] \cdot \Pr[U_2 = k] \\
= p \cdot \frac{M_k + N_k}{p} + (1 - p) \frac{M_k - M_k + N_k}{1 - p} \geq M_k \ \checkmark
\]