Random walk on a group
G_∞ IID group elements

$x_n = G_n \ldots G_0 \cdot x_0 = G_n x_{n-1}.$

π is uniform distribution.

Lazy RW on Hypercube $G = \{0, 1\}^n$, \mathbb{Z}^n_2

- Pick $i \in \{1, \ldots, n\}$
- $x_t(i) = x_{t-1}(i) + Z_i \quad P[Z_i = 1] = P[Z_i = 0] = \frac{1}{2}.$

Coordinates are random after update.

$\Delta TV \left(X_t, \pi \right) \leq 1$ if all coordinates updated by t

Coupon collector problem

Sample U_1, \ldots, U_∞ IID with dist $U(\{1, \ldots, n\}$. Let T be the first time such that all $j \in \{1, \ldots, n\}$ have appeared. Then

$$\lim_{n \to \infty} \frac{T_n}{n \log n} = 1 \quad \text{in probability}.$$

Let $S_k = \text{time until } k \text{ distinct } U_i \text{ chosen.}$
Then \(S_k - S_{k-1} \sim \text{Geom} \left(\frac{n+1-k}{n} \right) \) independent.

\[\mathbb{E} S_k - S_{k-1} = \frac{n}{n+1-k} \]

So \(\mathbb{E} T = \mathbb{E} S_n = \sum_{k=1}^{n} \frac{n}{n+1-k} = n \sum_{k=1}^{n} \frac{1}{k} \approx n \log n. \)

\[\text{Var} T = \sum \text{Var} (S_k - S_{k-1}) = \frac{(k-1)n}{(n+1-k)^2/n^2} \]

\[\text{Var} \text{ Geom} (p) = \frac{1-p}{p^2} \]

Now \(\frac{(k-1)n}{(n+1-k)^2/n^2} \leq \frac{n^2}{(n+1-k)^2} \) so

\[\text{Var} T \leq n^2 \sum_{k} \frac{1}{(n+1-k)^2} = n^2 \sum_{k} \frac{1}{k^2} = O(n^2). \]

So by Chebyshev's inequality,

\[P \left(|T - \mathbb{E} T| \geq C n \log n \right) \leq \frac{C n^2}{\epsilon^2 n^2 \log^2 n} \rightarrow 0. \]

So \(\frac{T}{n \log n} \xrightarrow{p} 1. \)

So \(d_{TV} (X_{(1+\varepsilon)n \log n}, \pi) \rightarrow 0. \)

Lower Bound: Homework.
Split into two decks of size $\text{Bin}(n, \frac{1}{2})$.

- Interlace drop with probability $\frac{M_L}{M_L + M_R}$.

New permutation

If g corresponds to one such split into $N_L + N_R = n - N_L$ deck and a choice of $(L, L, R, R, \ldots, L, R)$ or interleaving, the interleavings have equal probability $\frac{1}{(n)}$. sina
\[\text{IPC} (L, L, R, R, \ldots) | N_L \]
\[= \frac{N_L}{n} \cdot \frac{N_L - 1}{n-1} \cdot \frac{N_R}{n-2} \cdot \frac{N_R - 1}{n-3} \ldots \cdot \frac{1}{1} \]
\[= \frac{N_L! \cdot N_R!}{n!} = \binom{n}{N_L}^{-1} \]

\[\text{IPC} (g) = \text{IPC} \text{ Bin} (n, \frac{1}{2}) = N_L \] \[\cdot \binom{n}{N_L}^{-1} \]
\[= \binom{n}{N_L} \left(\frac{1}{2}\right)^{n-N_L} \cdot \binom{n}{N_L}^{-1} = 2^{-n} \]

Inverse Map

Assign each card L or R.

Split into L & R decks preserving the order.

Place L deck on top.

For the same sequence (L, L, R, \ldots) this operation is \(g^{-1} \) easier to analyze.
Claim: Random walk and inverse walk have the same distribution.

\[X_t = g_t, g_{t-1}, \ldots, g_1, \]
\[Y_t = H_t, \ldots, H_1. \]

\[\mathbb{P}(X_t = x) = \sum_{g_1, \ldots, g_t} \mathbb{P}(X_t = g_1, \ldots, g_t = x) \]
\[= \sum_{g_1, \ldots, g_t} \mathbb{P}(g_t = g_t, \ldots, g_1 = g_1) \mathbb{P}(g_t = x) \]
\[= \sum_{g_1, \ldots, g_t} \mathbb{P}(Y_t = g_t, \ldots, H_1 = g_1) \mathbb{P}(g_t = x) \]
\[= \mathbb{P}(Y_t = x). \]

\[d_{TV}(X_t, Y_t) = \frac{1}{2} \sum_x |\mathbb{P}(X_t = x) - \frac{1}{1+1}| \]
\[= \frac{1}{2} \sum_x |\mathbb{P}(Y_t = x) - \frac{1}{1+1}| \]
\[= \frac{1}{2} \sum_x |\mathbb{P}(Y_t = y) - \frac{1}{1+1}| \]
\[= d_{TV}(Y_t, \pi). \]

Analysis of inverse chain:

\[\text{Suiten R/L with I/O.} \]
Will be mixed once each card has a unique string.

\[P[A, B \text{ same string}] = 2^{-6} \]

Union bound over \(\binom{n}{2} \) pairs,

\[d_{tv}(\alpha, \pi) \leq P[\text{all strings unique}] \leq \binom{n}{2} 2^{-6} \]

\[\Rightarrow 0 \quad \text{if} \quad \ell = (2 + \epsilon) \log_2 n. \]

Right bound \(\ell = \frac{3}{2} \log_2 n. \)

For 52 cards:

<table>
<thead>
<tr>
<th>\ell</th>
<th>1</th>
<th>...</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_{tv}(\alpha, \pi))</td>
<td>1.000</td>
<td>1.000</td>
<td>0.924</td>
<td>0.611</td>
<td>0.334</td>
<td>0.167</td>
<td>...</td>
</tr>
</tbody>
</table>