Goal: Find size of maximal IS of random graph.

Definition: \(I \subseteq V \) is an independent set (IS) of \(G=(V,E) \) if \(\forall u,v \in I, (u,v) \notin E \).

- Useful to consider a random IS \(\sigma \in \{0,1\}^V \) of \(G \).

\[
P[\sigma] = \frac{1}{Z} \prod_{u,v} I(\sigma_u \sigma_v = 0)
\]

\[
Z = \# \text{IS} = \prod_{u,v} I(\sigma_u \sigma_v = 0)
\]

Definition: Hardcore Model with fugacity \(\lambda > 0 \),

\[
P[\sigma] = \frac{1}{Z_\lambda} \lambda^{\# \sigma} \prod_{u,v} I(\sigma_u \sigma_v = 0)
\]

- weights independent sets by size.

Spin System: \(\sigma \in \{0,1\}^V \), weights \(\psi_u, \psi_{uv} \) such that

\[
P[\sigma] = \frac{1}{Z_\psi} \prod_{u \in v} \psi_u(\sigma_u) \prod_{(u,v) \in E} \psi_{uv}(\sigma_u, \sigma_v)
\]

Example:
Example:

- **Ising Model** with inverse temperature β and external field h. \(\sigma \in \{ -1, 1 \} \),

\[
\Pi[\sigma] = \frac{1}{Z} \exp \left(\beta \sum_{\text{nn}} \sigma_n \sigma_m + h \sum \sigma_n \right)
\]

- **Random k-Colouring**

\[
\Pi[\sigma] = \frac{1}{Z} \prod_{\text{nn}} \mathbb{1} (\sigma_n \neq \sigma_m).
\]

Markov Random Field Properties

\[
\Pi[\sigma_A = x_A \mid \sigma_A^c = x_A^c] = \Pi[\sigma_A = x_A \mid \sigma_\partial A = x_\partial A]
\]

Proof:

\[
\Pi[\sigma_A = x_A \mid \sigma_A^c = x_A^c] = \frac{\Pi[\sigma_A = x_A \mid \sigma_A^c = x_A^c]}{\Pi[\sigma_A = x_A^c \mid \sigma_A^c = x_A^c]}
\]

\[
= \frac{\frac{1}{2} \prod_u \psi(x_u) \prod_{\text{nn}} \psi_{\text{nn}}(x_n, x_m)}{\frac{1}{2} \prod_u \psi(x_u^c) \prod_{\text{nn}} \psi_{\text{nn}}(x_u^c, x_m^c)}
\]

\[
= \prod_u \psi(x_u) \prod_{\text{nn}} \psi_{\text{nn}}(x_n, x_m)
\]
\[\prod_{\mathbf{u} \in A} \Psi(x_{\mathbf{u}}) \prod_{(\mathbf{u},\mathbf{v}) \in E(\text{AVA})} \Psi(y_{\mathbf{v}}(x_{\mathbf{v}}, x_{\mathbf{u}})) \]

So the states outside AVA do not affect the calculation. The distribution is the spin system on AVA with the spins of DA fixed.

Definition: We call a spin system permissive if, given any boundary condition on DA, there is a configuration of A with weight > 0.

Infinite Graphs

How to define it for an infinite graph?

A measure \(\mu \) on \(X^A \) is a Gibbs measure for a spin system with weights \(\Psi \) if

\[M(\sigma_A = x_A | \sigma_{\partial A} = x_{\partial A}) = M(\sigma_A = x_A | \sigma_{\partial A} = x_{\partial A}) \]
Existence (for permissive systems)

Let $D_i \subseteq V$ be an increasing subsequence of sets $D_i \uparrow V$. Choose T_i a B.C. on ∂D_i.

$$\lim \mu(\{\omega_A \mid \omega_{\partial D_i} = T_i\})$$

may not exist but subsequential limits exist.

To get full set of measures take random T_i.

Non-Uniqueness

Using model at low temperature, β large, $h = 0$.

Peirce's argument

If $u = -$, \exists a dual contour C with

- u in inside, $+u$ on exterior.

- Let $x_n = \{ -x_\mu, u \in b_b(C) \}$
\[
\frac{m_+ (xu)}{m (xu)} = e^{\beta |C|}.
\]

\[
M_+ (C \text{ a contour}) \leq \sum_x m_+ (x u) I (C)
\]

\[
\leq \sum_x e^{-\beta |c|} m_+ (x u) I (x u | C)
\]

\[
\leq e^{-\beta |C|}.
\]

There are \(\leq \lambda^4 \cdot 3^{d-1}\) contours of length containing \(u\) so

\[
M_+ (\sigma_v = -1) \leq \sum_C e^{-\beta |C|}
\]

\[
\leq \sum_x e^{-\beta |c|} \cdot 4 \cdot 3^{d-1}
\]

\[
\leq 12 e^{-\beta} \left(3 e^{-\beta} - 1 \right)^2
\]

\[
\leq \frac{1}{3} \text{ if } \beta \text{ large.}
\]

But \(M_- (\sigma_v = -1) = 1 - M_+ (\sigma_v = -1) \geq \frac{2}{3}\)

- For \(d=2\) all Gibbs measures are mixing of \(M_+\) and \(M_-\) for \(\beta > \beta_c > 0\).
- For \(d \geq 3\) more complicated states, e.g. Dobrushin states

\[
\lambda (\gamma) = \sin (\pi \lambda) + 1 + \beta (\gamma) = \sin (\pi \lambda) + 1 + 12 e^{-\beta} \left(3 e^{-\beta} - 1 \right)^2
\]
\[B.C. \ x_u = \text{sign}(x_u(0)) \]

- **Unique Gibbs measures:**

If interactions are weak enough the measure is unique.

We say \(\mu \) stochastically dominates \(\mu' \), \(\mu \geq \mu' \), if for all \(A \) increasing,

\[M(A) \geq M'(A). \]

There exists a coupling \(\sigma \sim \mu, \sigma' \sim \mu' \) such that \(\sigma \geq \sigma' \).

- **Ising model has a monotonicity property:**

- if \(T \leq T' \) are B.C. or \(\partial A \),
 then \(M_T \leq M_{T'} \).

Proof: True for \(A = \{v, \bar{v} \} \).

\[\ln \left[\mathbb{P}(\sigma_v = 1 \mid \sigma_{\partial v} = z) \right] = \frac{e^{\beta \sum_u \nu_u}}{e^{\beta \sum_u \nu_u} + e^{-\beta \sum_u \nu_u}} \]
Glauber dynamics: Markov chain X_τ on $\Omega_{\mathbb{Z}^d}$

Each step

- Pick $v \in A$ uniformly at random.

- Update $X_{\tau v}(w)$ with a with probability

$$-M \left[\sigma_v = a \mid \sigma_{\tau v} = X_\tau(\tau v) \right]$$

Then X_τ is reversible w.r.t. μ.

Let $X_0(A) = Y_0(A)$, $X_\tau(\partial A) = \tau$, $Y_\tau(\partial A) = \tau'$

So X_τ is Glauber dynamics on A with B.C. τ

Y_τ " " " " " " " " " " τ'

Couple so that $X_\tau \leq Y_\tau$.

Since $X_\tau \leq \sigma^2$, $Y_\tau \leq \sigma^{2'}$

$\sigma^2 \leq \sigma^{2'}$

For any Gibbs measure μ,

$$\mu_- \leq \mu \leq \mu_+$$

Enough to prove $\mu_- = \mu_+$.

-
Ex: Ising Model with β small.

- FK model: q-state
 $\mathbb{Z} \in \{0, 1\}^V$

\[
P[\mathbb{Z}] = \frac{1}{Z} \exp \left(\sum_{\mathcal{E}} (1 - p) |\mathcal{E}| - E_{\mathcal{E}} \right),
\]
where $C(\mathcal{E})$ = # connected components of \mathcal{E}.

Claim: $\mathbb{Z} \ll$ Percolation (p). For $q \geq 1$.

Edwards-Sokal Coupling:

Choose a uniform spin for each component to form σ.

\[
P[\mathbb{Z}, \sigma] = \frac{1}{Z} \exp \left(\sum_{\mathcal{E}} (1 - p) |\mathcal{E}| - E_{\mathcal{E}} \right),
\]
\[
P[\sigma] = \frac{1}{Z} \exp \left(\sum (1 - p) \Sigma_{\mathcal{E}} \right),
\]
\[P[\sigma] = \frac{1}{Z} \sum_{\text{compatible with } \sigma} \left(\frac{p}{1-p} \right)^{\sum_{\sigma_{uv}} I(\sigma_{uv} = \sigma_{uv})} \]

\[= \frac{1}{Z} \exp \left(\frac{-1}{2} \log(1-p) \sum_{\sigma_{uv}} \sum_{\sigma_{uv}} I(\sigma_{uv} = \sigma_{uv}) \right) \]

\[= \frac{1}{Z} \exp \left(-\log(1-p) \sum_{\sigma_{uv}} \sigma_{uv} \sigma_{uv} \right) \]

\[= \frac{1}{Z} \exp (\beta \sum_{\sigma_{uv}} \sigma_{uv}) \]

\[\beta = -\frac{1}{2} \log(1-p) \Rightarrow p = 1 - e^{-\beta} \]

Bd + D with + B.C.

\[F_k - \text{Wired B.C.} \]

\[\text{Boundary set to } t. \]

\[P[\sigma_u = + | \sigma_{D} = +] = P[u \leftarrow D | \text{Wired}] + \frac{1}{2}(1 - P_c) \]
\[= \frac{1}{2} + \frac{1}{2} \mathbb{P}[C \leftrightarrow \partial D \mid \text{Wired}] \]

\[\leq \frac{1}{2} + \frac{1}{2} \mathbb{P}[C \leftrightarrow \partial D] \text{ in percolation} \]

\[\rightarrow \frac{1}{2} \text{ as } D \to \infty \text{ if } \beta \text{ small.} \]

So \[M_+(\sigma_u = +) = M_-(\sigma_u = +) = \frac{1}{2} \]

and so for the coupling \[\sigma^+ \equiv \sigma^- \]

\[\mathbb{P}[\sigma^+_v = \sigma^+_w \mid \sigma^+_u = \sigma^-_v] = M_+(\sigma_u = +) - M_+(\sigma_u = +) = 0 \]

So \[\sigma^+ \equiv \sigma^- \Rightarrow M_+ \equiv M_- \]

Alternative Proof: General spin system, maximum degree \(d \), if

\[\max_{u,v,w} \mathbb{P}(M(x_u, x_v, x_w), \mathbb{P}(x_u, x_v, x_w)) \leq \frac{1-\epsilon}{d} \]

then unique Gibbs measure.

Proof: Couple \(X, Y \) as Glauber dynamics with B.C. \(T \) and \(T' \).

- Mixes in time \(O(n \log n) \)
- Time for disagreement to propagate \(\sim \) \(O(n^{2/3}) \)
\[\text{propogate} \sim \alpha n^{21} \]