L-spaces, Taut Foliations, Left-Orderability, and Incompressible Tori

Adam Simon Levine

Brandeis University

47th Annual Spring Topology and Dynamics Conference
March 24, 2013
Heegaard Floer homology: invariants for closed 3-manifolds, defined by Ozsváth and Szabó in the early 2000s.
Heegaard Floer homology

- Heegaard Floer homology: invariants for closed 3-manifolds, defined by Ozsváth and Szabó in the early 2000s.
- Most basic version (over $\mathbb{F} = \mathbb{Z}_2$):
 \[Y \text{ closed, oriented 3-manifold } \implies \widehat{\text{HF}}(Y), \text{ f.d. vector space} \]
Heegaard Floer homology: invariants for closed 3-manifolds, defined by Ozsváth and Szabó in the early 2000s.

Most basic version (over $\mathbb{F} = \mathbb{Z}_2$):

Let Y be a closed, oriented 3-manifold. Denote $\hat{\text{HF}}(Y)$ as the Heegaard Floer homology, a finite-dimensional vector space.

A cobordism $W: Y_1 \to Y_2$ induces a map $F_W: \hat{\text{HF}}(Y_1) \to \hat{\text{HF}}(Y_2)$.

This framework provides a rich structure for studying 3-manifolds and their topological properties.
Heegaard Floer homology

- Heegaard Floer homology: invariants for closed 3-manifolds, defined by Ozsváth and Szabó in the early 2000s.

- Most basic version (over $\mathbb{F} = \mathbb{Z}_2$):

 Y closed, oriented 3-manifold $\Rightarrow \hat{HF}(Y)$, f.d. vector space

 $W : Y_1 \to Y_2$ cobordism $\Rightarrow F_W : \hat{HF}(Y_1) \to \hat{HF}(Y_2)$

- Defined in terms of a chain complex $\hat{CF}(\mathcal{H})$ associated to a Heegaard diagram \mathcal{H} for Y:
 - Generators correspond to tuples of intersection points between the two sets of attaching curves.
Heegaard Floer homology

\[\hat{\text{HF}}(Y) \] decomposes as a direct sum of pieces corresponding to spin\(^c\) structures on \(Y \):

\[\hat{\text{HF}}(Y) \cong \bigoplus_{s \in \text{Spin}^c(Y)} \hat{\text{HF}}(Y, s). \]

Spin\(^c\) structures on \(Y \) are in 1-to-1 correspondence with elements of \(H^2(Y; \mathbb{Z}) \).
Heegaard Floer homology

- \(\hat{HF}(Y) \) decomposes as a direct sum of pieces corresponding to spin\(^c\) structures on \(Y \):

\[
\hat{HF}(Y) \cong \bigoplus_{s \in \text{Spin}^c(Y)} \hat{HF}(Y, s).
\]

Spin\(^c\) structures on \(Y \) are in 1-to-1 correspondence with elements of \(H^2(Y; \mathbb{Z}) \).

Theorem (Ozsváth–Szabó)

If \(Y \) is a 3-manifold with \(b_1(Y) > 0 \), the collection of spin\(^c\) structures \(s \) for which \(\hat{HF}(Y, s) \) is nontrivial detects the Thurston norm on \(H_2(Y; \mathbb{Z}) \). Specifically, for any nonzero \(x \in H_2(Y; \mathbb{Z}) \),

\[
\xi(x) = \max \{ \langle c_1(s), x \rangle \mid s \in \text{Spin}^c(Y), \hat{HF}(s) \neq 0 \}.
\]
Let Y be a rational homology sphere: a closed 3-manifold with $b_1(Y) = 0$. The nontriviality theorem above doesn’t tell us anything since $H_2(Y; \mathbb{Z}) = 0$.
L-spaces

- Let Y be a rational homology sphere: a closed 3-manifold with $b_1(Y) = 0$. The nontriviality theorem above doesn’t tell us anything since $H_2(Y; \mathbb{Z}) = 0$.
- For any rational homology sphere Y and any $s \in \text{Spin}^c(Y)$,

$$\dim \widehat{HF}(Y, s) \geq \chi(\widehat{HF}(Y, s)) = 1.$$
Let Y be a rational homology sphere: a closed 3-manifold with $b_1(Y) = 0$. The nontriviality theorem above doesn’t tell us anything since $H_2(Y; \mathbb{Z}) = 0$.

For any rational homology sphere Y and any $s \in \text{Spin}^c(Y)$,

$$\dim \widehat{HF}(Y, s) \geq \chi(\widehat{HF}(Y, s)) = 1.$$

Y is called an **L-space** if equality holds for every spinc structure, i.e., if

$$\dim \widehat{HF}(Y) = \left| H^2(Y; \mathbb{Z}) \right|.$$
Examples of L-spaces:

- S^3
- Lens spaces (whence the name)
- All manifolds with finite fundamental group
- Branched double covers of (quasi-)alternating links in S^3
Examples of L-spaces:

- S^3
- Lens spaces (whence the name)
- All manifolds with finite fundamental group
- Branched double covers of (quasi-)alternating links in S^3

Question

Can we find a topological characterization (not involving Heegaard Floer homology) of which manifolds are L-spaces?
A taut foliation on a 3-manifold Y is a foliation of Y by surfaces (the leaves) so that there exists a curve γ that intersects every leaf transversally.
A taut foliation on a 3-manifold Y is a foliation of Y by surfaces (the leaves) so that there exists a curve γ that intersects every leaf transversally.

When $b_1(Y) > 0$, taut foliations always exist: if F is a surfaces that minimizes the Thurston norm in its homology class, then F is a leaf of a taut foliation (Gabai).
A **taut foliation** on a 3-manifold Y is a foliation of Y by surfaces (the **leaves**) so that there exists a curve γ that intersects every leaf transversally.

When $b_1(Y) > 0$, taut foliations always exist: if F is a surfaces that minimizes the Thurston norm in its homology class, then F is a leaf of a taut foliation (Gabai).

Theorem (Ozsváth–Szabó)

If Y is an L-space, then Y does not admit any taut foliation.
A taut foliation on a 3-manifold Y is a foliation of Y by surfaces (the leaves) so that there exists a curve γ that intersects every leaf transversally.

When $b_1(\ Y\) > 0$, taut foliations always exist: if F is a surfaces that minimizes the Thurston norm in its homology class, then F is a leaf of a taut foliation (Gabai).

Theorem (Ozsváth–Szabó)

If Y is an L-space, then Y does not admit any taut foliation.

Conjecture

If Y is an irreducible rational homology sphere that does not admit any taut foliation, then Y is an L-space.
A left-ordering on a group G is a total order $<$ such that for any $g, h, k \in G$,

$$g < h \implies kg < kh.$$

G is left-orderable if it is nontrivial and admits a left-ordering.
A left-ordering on a group G is a total order \prec such that for any $g, h, k \in G$,

$$g \prec h \implies kg \prec kh.$$

G is left-orderable if it is nontrivial and admits a left-ordering.

If Y is a 3-manifold with $b_1(Y) > 0$, then $\pi_1(Y)$ is left-orderable.
A left-ordering on a group G is a total order $<$ such that for any $g, h, k \in G$,

$$g < h \implies kg < kh.$$

G is left-orderable if it is nontrivial and admits a left-ordering.

If Y is a 3-manifold with $b_1(Y) > 0$, then $\pi_1(Y)$ is left-orderable.

Conjecture (Boyer–Gordon–Watson, et al.)

Let Y be an irreducible rational homology sphere. Then Y is an L-space if and only if $\pi_1(Y)$ is not left-orderable.
L-spaces and left-orderability

Theorem (L.–Lewallen, arXiv:1110.0563)

If Y is a strong L-space — i.e., if it admits a Heegaard diagram H such that $\dim \hat{CF}(H) = |H^2(Y; \mathbb{Z})|$ — then $\pi_1(Y)$ is not left-orderable.
Theorem (L.–Lewallen, arXiv:1110.0563)

If Y is a strong L-space — i.e., if it admits a Heegaard diagram H such that $\dim \hat{\text{CF}}(H) = |H^2(Y; \mathbb{Z})|$ — then $\pi_1(Y)$ is not left-orderable.

Theorem (Greene–L.)

For any N, there exist only finitely may strong L-spaces with $|H^2(Y; \mathbb{Z})| = n$.
Conjecture

If Y is an irreducible 3-manifold with $\dim \widehat{HF}(Y) = 1$, then Y is homeomorphic to either S^3 or the Poincaré homology sphere.
Conjecture

If Y is an irreducible 3-manifold with $\dim \widehat{HF}(Y) = 1$, then Y is homeomorphic to either S^3 or the Poincaré homology sphere.

This is known for all Seifert fibered spaces (Rustamov), graph manifolds (Boileau–Boyer, via taut foliations), and manifolds obtained by Dehn surgery on knots in S^3 (Ozsváth–Szabó).
Conjecture

If Y is an irreducible 3-manifold with $\dim \widehat{HF}(Y) = 1$, then Y does not contain an incompressible torus.
Incompressible tori

Conjecture

If Y is an irreducible 3-manifold with $\dim \widehat{HF}(Y) = 1$, then Y does not contain an incompressible torus.

By geometrization and Rustamov’s work, this would imply that it suffices to look at hyperbolic 3-manifolds for the L-space homology sphere conjecture.
If $K_1 \subset Y_1$, $K_2 \subset Y_2$ are knots in homology spheres, let

$$M(K_1, K_2) = (Y_1 \setminus \text{nbd } K_1) \cup_{\phi} (Y_2 \setminus \text{nbd } K_2)$$

where $\phi: \partial(Y_1 \setminus \text{nbd } K_1) \to \partial(Y_2 \setminus \text{nbd } K_2)$ is an orientation-reversing diffeomorphism taking

- meridian of $K_1 \to$ 0-framed longitude of K_2
- 0-framed longitude of $K_1 \to$ meridian of K_2.

Adam Simon Levine

L-spaces, Taut Foliations, Left-Orderability, and Incomp. Tori
If \(K_1 \subset Y_1, K_2 \subset Y_2 \) are knots in homology spheres, let

\[
M(K_1, K_2) = (Y_1 \setminus \text{nbd } K_1) \cup_\phi (Y_2 \setminus \text{nbd } K_2)
\]

where \(\phi: \partial(Y_1 \setminus \text{nbd } K_1) \rightarrow \partial(Y_2 \setminus \text{nbd } K_2) \) is an orientation-reversing diffeomorphism taking

- meridian of \(K_1 \rightarrow 0\)-framed longitude of \(K_2 \)
- 0-framed longitude of \(K_1 \rightarrow \) meridian of \(K_2 \).

If \(Y \) is a homology sphere and \(T \subset Y \) is a separating torus, then \(Y \cong Y(K_1, K_2) \) for some \(K_1 \subset Y_1, K_2 \subset Y_2 \), knots in homology spheres, and \(T \) is incompressible if and only if \(K_1 \) and \(K_2 \) are both nontrivial knots.

If Y_1 and Y_2 are homology sphere L-spaces, and $K_1 \subset Y_1$ and $K_2 \subset Y_2$ are nontrivial knots, then

$$\dim \hat{HF}(M(K_1, K_2)) > 1.$$

If Y_1 and Y_2 are homology sphere L-spaces, and $K_1 \subset Y_1$ and $K_2 \subset Y_2$ are nontrivial knots, then

$$\dim \widehat{HF}(M(K_1, K_2)) > 1.$$

Removing the hypothesis that Y_1 and Y_2 are L-spaces will complete the proof of the incompressible torus conjecture.
Lipshitz, Ozsváth, and Thurston define invariants of 3-manifolds with parametrized boundary:

Surface $F \mapsto$ DG algebra $\mathcal{A}(F)$
Lipshitz, Ozsváth, and Thurston define invariants of 3-manifolds with parametrized boundary:

Surface $F \mapsto$ DG algebra $\mathcal{A}(F)$

3-manifold M_1, $\phi_1 : F \xrightarrow{\simeq} \partial M_1 \mapsto$ Right \mathcal{A}_∞-module $\widehat{\text{CFA}}(M_1)$
Lipshitz, Ozsváth, and Thurston define invariants of 3-manifolds with parametrized boundary:

Surface $F \mapsto$ DG algebra $\mathcal{A}(F)$

3-manifold M_1, $\phi_1 : F \xrightarrow{\cong} \partial M_1 \mapsto$ Right \mathcal{A}_∞-module $\widehat{\text{CFA}}(M_1)$

3-manifold M_2, $\phi_2 : F \xrightarrow{\cong} -\partial M_2 \mapsto$ Left DG module $\widehat{\text{CFD}}(M_2)$
Theorem (Lipshitz–Ozsváth–Thurston)

\[\widehat{\text{CFA}}(M_1) \text{ and } \widehat{\text{CFD}}(M_2) \text{ are invariants up to chain homotopy equivalence.} \]
Theorem (Lipshitz–Ozsváth–Thurston)

1. $\hat{\text{CFA}}(M_1)$ and $\hat{\text{CFD}}(M_2)$ are invariants up to chain homotopy equivalence.

2. If $Y = M_1 \cup_{\phi_2 \circ \phi_1^{-1}} M_2$, then

$$\hat{\text{HF}}(Y) \cong H_*(\hat{\text{CFA}}(M_1) \otimes A(F) \hat{\text{CFD}}(M_2)).$$
If $K \subset Y$ is a knot in a homology sphere, the bordered invariants of $X_K = Y \setminus \text{nbd}(K)$ are related to the knot Floer homology of K, $\widehat{\text{HFK}}(Y, K)$, which detects the genus of K.
If \(K \subset Y \) is a knot in a homology sphere, the bordered invariants of \(X_K = Y \setminus \text{nbd}(K) \) are related to the knot Floer homology of \(K, \widehat{\text{HF}}(Y, K) \), which detects the genus of \(K \).

If \(K_1 \) and \(K_2 \) are nontrivial knots in L-space homology spheres, we can explicitly identify at least two cycles in

\[
\widehat{\text{CF}}A(X_{K_1}) \otimes_{A(T^2)} \widehat{\text{CFD}}(X_{K_2})
\]

that survive in homology.
If $K \subset Y$ is a knot in a homology sphere, the bordered invariants of $X_K = Y \setminus \text{nbd}(K)$ are related to the knot Floer homology of K, $\widehat{\text{HFK}}(Y, K)$, which detects the genus of K.

If K_1 and K_2 are nontrivial knots in L-space homology spheres, we can explicitly identify at least two cycles in

$$\widehat{\text{CFA}}(X_{K_1}) \otimes_{\mathcal{A}(T^2)} \widehat{\text{CFD}}(X_{K_2})$$

that survive in homology.

Hope to extend this approach for knots in general homology spheres.