Combinatorial Spanning Tree Models for Knot Homologies

Adam Simon Levine

Brandeis University

Knots in Washington XXXIII

Joint work with John Baldwin (Princeton University)
Given a diagram D for a knot or link $K \subset S^3$, form the Tait graph or black graph $B(D)$:

- Vertices correspond to black regions in checkerboard coloring of D.
- Edges between two vertices correspond to crossings incident to those regions.
Spanning tree models for knot polynomials

Given a diagram D for a knot or link $K \subset S^3$, form the Tait graph or black graph $B(D)$:

- Vertices correspond to black regions in checkerboard coloring of D.
- Edges between two vertices correspond to crossings incident to those regions.
Spanning tree models for knot polynomials

Given a diagram D for a knot or link $K \subset S^3$, form the Tait graph or black graph $B(D)$:

- Vertices correspond to black regions in checkerboard coloring of D.
- Edges between two vertices correspond to crossings incident to those regions.

A *spanning tree* is a connected, simply connected subgraph of $B(D)$ containing all the vertices.

![Diagram showing examples of spanning trees]

Adam Simon Levine
Spanning Tree Models
The Alexander polynomial and Jones polynomials of K can be computed as sums of monomials corresponding to spanning trees: e.g.,

$$\Delta_K(t) = \sum_{s \in \text{Trees}(B(D))} (-1)^{a(s)} t^{b(s)}$$

where $a(s)$ and $b(s)$ are integers determined by s.
Knot Floer homology (Ozsváth–Szabó, Rasmussen): for a link $K \subset S^3$, bigraded, finitely generated abelian group.

$$\widehat{HFK}(K) = \bigoplus_{a, m} \widehat{HFK}_m(K, a)$$
Knot Floer homology (Ozsváth–Szabó, Rasmussen): for a link $K \subset S^3$, bigraded, finitely generated abelian group.

\[\widehat{HFK}(K) = \bigoplus_{a,m} \widehat{HFK}_m(K, a) \]

- Defined in terms of counts of holomorphic curves in a symmetric product of a Riemann surface.
Knot Floer homology (Ozsváth–Szabó, Rasmussen): for a link $K \subset S^3$, bigraded, finitely generated abelian group.

$$\text{HFK}(K) = \bigoplus_{a,m} \text{HFK}_m(K, a)$$

- Defined in terms of counts of holomorphic curves in a symmetric product of a Riemann surface.
- Categorifies the Alexander polynomial:

$$\Delta_K(t) = \sum_{a,m} (-1)^m t^a \text{rank} \text{HFK}_m(K, a)$$
Knot Floer homology (Ozsváth–Szabó, Rasmussen): for a link \(K \subset S^3 \), bigraded, finitely generated abelian group.

\[
\widehat{\text{HFK}}(K) = \bigoplus_{a,m} \widehat{\text{HFK}}_m(K, a)
\]

- Defined in terms of counts of holomorphic curves in a symmetric product of a Riemann surface.
- Categorifies the Alexander polynomial:

\[
\Delta_K(t) = \sum_{a,m} (-1)^m t^a \text{rank} \widehat{\text{HFK}}_m(K, a)
\]

- Detects the genus of the knot (Ozsváth–Szabó):

\[
g(K) = \max\{a \mid \widehat{\text{HFK}}_* (K, a) \neq 0\} = -\min\{a \mid \widehat{\text{HFK}}_* (K, a) \neq 0\} \]
Knot Floer homology (Ozsváth–Szabó, Rasmussen): for a link \(K \subset S^3 \), bigraded, finitely generated abelian group.

\[
\hat{HF}_K(K) = \bigoplus_{a,m} \hat{HF}_m(K, a)
\]

- Defined in terms of counts of holomorphic curves in a symmetric product of a Riemann surface.
- Categorifies the Alexander polynomial:

\[
\Delta_K(t) = \sum_{a,m} (-1)^m t^a \text{rank} \hat{HF}_m(K, a)
\]

- Detects the genus of the knot (Ozsváth–Szabó):

\[
g(K) = \max\{a \mid \hat{HF}_f(K, a) \neq 0\} = -\min\{a \mid \hat{HF}_f(K, a) \neq 0\}
\]

- Detects fiberedness: \(K \) is fibered if and only if \(\hat{HF}_f(K, g(K)) \cong \mathbb{Z} \).
Reduced Khovanov homology:

$$\tilde{\text{Kh}}(K) = \bigoplus_{i,j} \tilde{\text{Kh}}^{i,j}(K)$$
Reduced Khovanov homology:

\[\widetilde{Kh}(K) = \bigoplus_{i,j} \widetilde{Kh}^{i,j}(K) \]

- Categorifies the reduced Jones polynomial.
Reduced Khovanov homology:

\[\widetilde{Kh}(K) = \bigoplus_{i,j} \widetilde{Kh}^{i,j}(K) \]

- Categorifies the reduced Jones polynomial.
- Defined as the homology of a complex that is completely combinatorial in its definition, related to representation theory.
Reduced Khovanov homology:

\[\widetilde{Kh}(K) = \bigoplus_{i,j} \widetilde{Kh}^{i,j}(K) \]

- Categorifies the reduced Jones polynomial.
- Defined as the homology of a complex that is completely combinatorial in its definition, related to representation theory.
- (Ozsváth–Szabó) There is a spectral sequence whose \(E_2 \) page is \(\widetilde{Kh}(\overline{K}) \) and whose \(E_\infty \) page is \(\hat{HF}(\Sigma(K)) \), the Heegaard Floer homology of the branched double cover of \(K \). Hence \(\text{rank } \widetilde{Kh}(\overline{K}) \geq \text{rank } \hat{HF}(\Sigma(K)) \).
Khovanov homology

Reduced Khovanov homology:

\[\tilde{\text{Kh}}(K) = \bigoplus_{i,j} \tilde{\text{Kh}}^{i,j}(K) \]

- Categorifies the reduced Jones polynomial.
- Defined as the homology of a complex that is completely combinatorial in its definition, related to representation theory.

(Ozsváth–Szabó) There is a spectral sequence whose \(E_2 \) page is \(\tilde{\text{Kh}}(\overline{K}) \) and whose \(E_\infty \) page is \(\hat{\text{HF}}(\Sigma(K)) \), the Heegaard Floer homology of the branched double cover of \(K \). Hence \(\text{rank} \tilde{\text{Kh}}(\overline{K}) \geq \text{rank} \hat{\text{HF}}(\Sigma(K)) \).

(Kronheimer–Mrowka) Similar spectral sequence from \(\tilde{\text{Kh}}(K) \) to the \textbf{instanton knot Floer homology} of \(K \), which detects the unknot. Hence \(\tilde{\text{Kh}}(K) \cong \mathbb{Z} \) iff \(K \) is the unknot.
The δ grading

Often, it’s helpful to collapse the two gradings into one, called the δ grading.

$$\hat{HFK}^\delta(K) = \bigoplus_{a-m=\delta} \hat{HFK}_m(K, a) \quad \hat{Kh}_\delta(K) = \bigoplus_{i-2j=\delta} \hat{Kh}^{i,j}(K)$$
The δ grading

Often, it’s helpful to collapse the two gradings into one, called the δ grading.

$$\widehat{\text{HFK}}^{\delta}(K) = \bigoplus_{a-m=\delta} \widehat{\text{HFK}}_{m}(K, a) \quad \widetilde{\text{Kh}}^{\delta}(K) = \bigoplus_{i-2j=\delta} \widetilde{\text{Kh}}^{i,j}(K)$$

Theorem (Manolescu–Ozsváth)

If K is a (quasi-)alternating link, then $\widehat{\text{HFK}}(K; \mathbb{F})$ and $\widetilde{\text{Kh}}(K; \mathbb{F})$ are both supported in a single δ grading, namely $\delta = -\sigma(K)/2$, where $\mathbb{F} = \mathbb{Z}/2\mathbb{Z}$.
The δ grading

Often, it's helpful to collapse the two gradings into one, called the δ grading.

$$\widehat{\text{HFK}}^{\delta}(K) = \bigoplus_{a-m=\delta} \widehat{\text{HFK}}_m(K, a) \quad \widehat{\text{Kh}}_{\delta}(K) = \bigoplus_{i-2j=\delta} \widehat{\text{Kh}}^{i,j}(K)$$

Theorem (Manolescu–Ozsváth)

*If K is a (quasi-)alternating link, then $\widehat{\text{HFK}}(K; F)$ and $\widehat{\text{Kh}}(K; F)$ are both supported in a single δ grading, namely $\delta = -\sigma(K)/2$, where $F = \mathbb{Z}/2\mathbb{Z}$.***

Conjecture

For any ℓ-component link K,

$$2^{\ell-1} \text{ rank } \widehat{\text{Kh}}_{\delta}(K; F) \geq \text{ rank } \widehat{\text{HFK}}^{\delta}(K; F).$$
Can we find explicit spanning tree complexes for $\widehat{\text{HFK}}(K)$ and $\widetilde{\text{Kh}}(K)$? Specifically, want to find a complex C such that:

- Generators of C correspond to spanning trees of $B(D)$;
- The homology of C is $\widehat{\text{HFK}}(K)$ or $\widetilde{\text{Kh}}(K)$;
- The differential on C can be written down explicitly.
Can we find explicit spanning tree complexes for $\hat{\text{HFK}}(K)$ and $\hat{\text{Kh}}(K)$? Specifically, want to find a complex C such that:

- Generators of C correspond to spanning trees of $B(D)$;
- The homology of C is $\hat{\text{HFK}}(K)$ or $\hat{\text{Kh}}(K)$;
- The differential on C can be written down explicitly.

Theorem (Baldwin–L., Roberts, Jaeger, Manion)

Yes.
Ozsváth and Szabó constructed a Heegaard diagram compatible with K, such that the generator of the knot Floer complex correspond to spanning trees, the differential depends on counting holomorphic disks, which is hard.
Earlier results

- Ozsváth and Szabó constructed a Heegaard diagram compatible with K, such that the generator of the knot Floer complex correspond to spanning trees, the differential depends on counting holomorphic disks, which is hard.

- Wehrli and Champarnerkar-Kofman showed that the standard Khovanov complex reduces to a complex generated by spanning trees, but they weren’t able to describe the differential explicitly.
Label the crossings c_1, \ldots, c_n. For $I = (i_1, \ldots, i_n) \in \{0, 1\}^n$, let D_I be the diagram gotten by taking the i_j-resolution of c_j:
Label the crossings c_1,\ldots,c_n. For $I = (i_1,\ldots,i_n) \in \{0,1\}^n$, let D_I be the diagram gotten by taking the i_j-resolution of c_j:

Let $|I| = i_1 + \cdots + i_n$, and let $\ell_I = \ldots$ be the number of components of D_I.
Resolutions correspond to spanning subgraphs of $B(D)$, and connected resolutions correspond to spanning trees.
Resolutions correspond to spanning subgraphs of $B(D)$, and connected resolutions correspond to spanning trees.
Resolutions correspond to spanning subgraphs of $B(D)$, and connected resolutions correspond to spanning trees.

Let $R(D) = \{ l \in \{0, 1\}^n \mid \ell_l = 1 \}$. For $l, l' \in R(D)$, we say l' is a double successor of l if l' is gotten by changing two 0s to 1s.
Let $\mathbb{F}(T)$ be the ring of rational functions in a formal variable T.
Let $\mathbb{F}(T)$ be the ring of rational functions in a formal variable T.

Label the edges of $D e_1, \ldots, e_{2n}$. For each $I \in R(D)$, we define Y_I to be a vector space over $\mathbb{F}(T)$ with generators y_1, \ldots, y_{2n}, satisfying a single linear relation whose coefficients are powers of T depending on the order in which e_1, \ldots, e_{2n} occur in D_I.
Let $\mathbb{F}(T)$ be the ring of rational functions in a formal variable T.

Label the edges of D e_1, \ldots, e_{2n}. For each $I \in R(D)$, we define Y_I to be a vector space over $\mathbb{F}(T)$ with generators y_1, \ldots, y_{2n}, satisfying a single linear relation whose coefficients are powers of T depending on the order in which e_1, \ldots, e_{2n} occur in D_I.

Let

$$C(D) = \bigoplus_{I \in R(D)} \Lambda^*(Y_I).$$

Declare the grading of $\Lambda^*(Y_I)$ to be $\frac{1}{2}(|I| - n_-(D))$.

Adam Simon Levine
Spanning Tree Models
For each double successor pair, we define a linear map

$$f_{I, I'} : \Lambda^*(Y_I) \rightarrow \Lambda^*(Y_{I'})$$

which is (almost always) a vector space isomorphism. Let

$$\partial_D : C(D) \rightarrow C(D)$$

be the sum of all the maps $f_{I, I'}$.
For each double successor pair, we define a linear map

\[f_{I,I'} : \Lambda^*(Y_I) \rightarrow \Lambda^*(Y_{I'}) , \]

which is (almost always) a vector space isomorphism. Let

\[\partial_D : C(D) \rightarrow C(D) \]

be the sum of all the maps \(f_{I,I'} \).

\[\Lambda^*(Y_{000}) \xrightarrow{f_{000,101}} \Lambda^*(Y_{101}) \]

\[\Lambda^*(Y_{000}) \xrightarrow{f_{000,110}} \Lambda^*(Y_{110}) \]

\[\text{gr} = -1 \]

\[\text{gr} = 0 \]
Spanning tree model for \hat{HFK}

Theorem (Baldwin–L. 2011)

For any diagram D of an ℓ-component link K, $(C(D), \partial_D)$ is a chain complex, and

$$H_*(C(D), \partial_D) \cong \hat{HFK}(K; F) \otimes F(T)^{2n-\ell}$$

where $\hat{HFK}(K)$ is equipped with its δ grading.
Roberts defined a complex consisting of a copy of $F(X_1, \ldots, X_{2n})$ for each $I \in R(D)$, and a nonzero differential for each double successor pair I, I', which is multiplication by some element of the field determined by the two two-component resolutions in between I and I'. The grading is the same as in our complex.
Roberts defined a complex consisting of a copy of \(\mathbb{F}(X_1, \ldots, X_{2n}) \) for each \(I \in R(D) \), and a nonzero differential for each double successor pair \(I, I' \), which is multiplication by some element of the field determined by the two two-component resolutions in between \(I \) and \(I' \). The grading is the same as in our complex.

Jaeger proved that when \(K \) is a knot, the homology of this complex is \(\tilde{\text{Kh}}(K; \mathbb{F}) \otimes \mathbb{F}(X_1, \ldots, X_{2n}) \), with its \(\delta \) grading.
Roberts defined a complex consisting of a copy of $\mathbb{F}(X_1, \ldots, X_{2n})$ for each $I \in R(D)$, and a nonzero differential for each double successor pair I, I', which is multiplication by some element of the field determined by the two two-component resolutions in between I and I'. The grading is the same as in our complex.

Jaeger proved that when K is a knot, the homology of this complex is $\widetilde{Kh}(K; \mathbb{F}) \otimes \mathbb{F}(X_1, \ldots, X_{2n})$, with its δ grading.

Manion showed how to do this with coefficients in \mathbb{Z} rather than \mathbb{F}. The resulting homology theory is odd Khovanov homology.
Khovanov associates a vector space V_I of dimension 2^{ℓ_I-1} to each resolution, and a map $d_{I,I'} : V_I \to V'_I$ whenever I' is an immediate successor of I. Let ∂_{Kh} be the differential of this complex.
Khovanov associates a vector space V_I of dimension $2^{\ell_I - 1}$ to each resolution, and a map $d_{I,I'} : V_I \to V_{I'}$ whenever I' is an immediate successor of I. Let ∂_{Kh} be the differential of this complex.

$\tilde{\text{Kh}}(K)$ is defined to be $H_*(\partial_{Kh})$.
Roberts: Let $\mathcal{F} = \mathbb{F}(X_1, \ldots, X_{2n})$, and let $\mathcal{V}_l = V_l \otimes \mathcal{F}$. Define an internal differential ∂_l on \mathcal{V}_l such that

$$H_*(\mathcal{V}_l, \partial_l) = \begin{cases} V_l & l_l = 1 \\ 0 & l_l > 1. \end{cases}$$

Let $\partial_V = \sum_l \partial_l$. By choosing ∂_l carefully, we can arrange that $\partial_V \partial_{\text{Kh}} = \partial_{\text{Kh}} \partial_V$, so that $(\partial_V + \partial_{\text{Kh}})^2 = 0$.
Twisted Khovanov homology
Twisted Khovanov homology

The filtration by $|I|$ induces a spectral sequence.
The filtration by $|I|$ induces a spectral sequence.

- The d_0 differential is ∂_V, which kills all V_i with $\ell_i > 1$, so the E_1 page consists of a copy of F for each spanning tree.
The filtration by $|l|$ induces a spectral sequence.

- The d_0 differential is ∂_V, which kills all V_l with $\ell_l > 1$, so the E_1 page consists of a copy of \mathcal{F} for each spanning tree.
- The d_1 differential is zero, since no two connected resolutions are connected by an edge, so $E_2 = E_1$.
Twisted Khovanov homology

The filtration by $|l|$ induces a spectral sequence.

- The d_0 differential is ∂_V, which kills all V_l with $\ell_l > 1$, so the E_1 page consists of a copy of F for each spanning tree.
- The d_1 differential is zero, since no two connected resolutions are connected by an edge, so $E_2 = E_1$.
- The d_2 differential has a nonzero component for every pair of double successors.
Twisted Khovanov homology

The filtration by $|I|$ induces a spectral sequence.

- The d_0 differential is ∂_V, which kills all \mathcal{V}_I with $\ell_I > 1$, so the E_1 page consists of a copy of \mathcal{F} for each spanning tree.
- The d_1 differential is zero, since no two connected resolutions are connected by an edge, so $E_2 = E_1$.
- The d_2 differential has a nonzero component for every pair of double successors.
- All higher differentials vanish for grading reasons, so $H_*(E_2, d_2) \cong E_\infty$.

Adam Simon Levine
Spanning Tree Models
The filtration by $|I|$ induces a spectral sequence.

- The d_0 differential is ∂_V, which kills all V_i with $\ell_i > 1$, so the E_1 page consists of a copy of \mathcal{F} for each spanning tree.
- The d_1 differential is zero, since no two connected resolutions are connected by an edge, so $E_2 = E_1$.
- The d_2 differential has a nonzero component for every pair of double successors.
- All higher differentials vanish for grading reasons, so $H_*(E_2, d_2) \cong E_\infty$.

Roberts showed that the resulting homology is a link invariant. Jaeger showed that if K is a knot, this homology is isomorphic to $\tilde{\text{Kh}}(K) \otimes \mathcal{F}$.
Twisted Khovanov homology
Twisted Khovanov homology
Let V be a \mathbb{F}-vector space of rank 2. Manolescu showed that there is an unoriented skein sequence for $\widehat{\text{HFK}}$:

$$
\begin{align*}
\widehat{\text{HFK}}(K) \otimes V^\otimes m - \ell &\longrightarrow \widehat{\text{HFK}}(K_0) \otimes V^\otimes m - \ell_0 \\
\widehat{\text{HFK}}(K_1) \otimes V^\otimes m - \ell_1
\end{align*}
$$
Let V be a \mathbb{F}-vector space of rank 2. Manolescu showed that there is an unoriented skein sequence for $\widehat{\text{HFK}}$:

$$
\begin{align*}
\widehat{\text{HFK}}(K) \otimes V^\otimes m - \ell & \longrightarrow \widehat{\text{HFK}}(K_0) \otimes V^\otimes m - \ell_0 \\
\widehat{\text{HFK}}(K_1) \otimes V^\otimes m - \ell_1
\end{align*}
$$

Essentially, we need these extra powers of V because $\widehat{\text{HFK}}$ of a link is “too big.” For example, $\widehat{\text{HFK}}$ of the Hopf link has rank 4, while both resolutions at a crossing are unknots, for which $\widehat{\text{HFK}}$ has rank 1. This is the big difference between $\widehat{\text{HFK}}$ and other invariants ($\widetilde{\text{Kh}}(K)$, $\widehat{\text{HF}}(\Sigma(K))$, instanton knot Floer homology, etc.)
Iterating this (à la Ozsváth–Szabó), we get a cube of resolutions for $\widehat{\text{HFK}}$: a differential on

$$\bigoplus_{l \in \{0,1\}^n} \widehat{\text{HFK}}(K_l) \otimes V^{m-\ell_l}$$

consisting of a sum of maps

$$f_l: \widehat{\text{HFK}}(K_l) \otimes V^{\otimes m-\ell_l} \rightarrow \widehat{\text{HFK}}(K_{l'}) \otimes V^{\otimes m-\ell_{l'}}$$

for every pair l, l', whose homology is $\widehat{\text{HFK}}(K) \otimes V^{\otimes m-\ell}$.
The E_1 page of the resulting spectral sequence can be described explicitly, but the homology is not an invariant of K.
The E_1 page of the resulting spectral sequence can be described explicitly, but the homology is not an invariant of K.

If we use twisted coefficients instead, with coefficients in $\mathbb{F}(T)$, we can arrange that $\widehat{\text{HFK}}(K_I) = 0$ whenever $\ell_I > 0$. And then a similar analysis goes through as with Khovanov homology.
The E_1 page of the resulting spectral sequence can be described explicitly, but the homology is not an invariant of K.

If we use twisted coefficients instead, with coefficients in $\mathbb{F}(T)$, we can arrange that $\hat{HFK}(K_I) = 0$ whenever $\ell_I > 0$. And then a similar analysis goes through as with Khovanov homology.

Can also do something similar for the spectral sequence from $\tilde{Kh}(K)$ to $\hat{HF}(\Sigma(-K))$. The only problem is that we don’t have the grading argument that would imply the spectral sequence collapses after E_2. But E_3 is an invariant (Kriz–Kriz).