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Abstract

Let H(νu
CL) be the entropy of the Cohen-Lenstra measure on finite abelian p-groups associated to

unit rank 0 ≤ u ∈ N. In this note, we show that 0 < H(νu
CL) < ∞ for all u, H(νu

CL) is a strictly
decreasing function of u ≥ 0, and H(νu

CL)
u→∞−−−−→ 0. In particular, this shows that the groupoid measure

is an entropy maximizer in the class of Cohen-Lenstra measures on finite abelian p-groups.

1 Entropy and statement
Let (X, ν) be a discrete probability space. The Shannon entropy of ν is defined as the expected value of
− log ν

H(ν) := E(log ν) = −
∑
x∈X

ν(x) log ν(x) ≥ 0

and is a measure of the information content of the measure ν [6].
Fix a prime p and let FinAbp denote the category of finite abelian p-groups. The Cohen-Lenstra measure

on FinAbp associated to unit rank 0 ≤ u ∈ N, νuCL, is the groupoid measure on FinAbp quotiented by u
randomly-chosen elements. Alternatively, νuCL is characterized by the property

νuCL(A) ∝ 1

#Au#AutA

for all finite abelian p-groups A.
The purpose of this note is to show that H(νuCL) is finite for all u, strictly decreasing as a function of u,

and converges to 0 as u approaches ∞.

Theorem 1. Let H(νuCL) denote the entropy of the Cohen-Lenstra measure νuCL on finite abelian p-groups
associated to unit rank 0 ≤ u ∈ N. Then

I) H(νuCL) < ∞ for all u;

II) H(νuCL) is a strictly decreasing function of u ≥ 0; and,

III) H(νuCL)
u→∞−−−−→ 0.

We view our statement as a first step in introducing the Principle of Maximum Entropy in the study of
Cohen-Lenstra measures. Such a principle has been profitably exploited in probability, see for instance the
information theoretic proofs of the Central Limit Theorem [4, 1]. In particular, Theorem 1 shows that the
groupoid measure is an entropy maximizer for Cohen-Lenstra measures on finite abelian p-groups.

Remark 1. There exists variants of the Cohen-Lenstra measures when the parameter u can be taken to
any real number > −1. Our proof shows that items I) and III) of Theorem 1 hold for these variants of
Cohen-Lenstra measures. We do not yet know whether item II also does.

We also obtain an explicit formula for the relative entropy between Cohen-Lenstra measures. The precise
definition will be given in §3.
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Theorem 2. Let νu1

CL and νu2

CL be Cohen-Lenstra measures on finite abelian p-groups associated to unit ranks
u1 ≥ 0 and u2 ≥ 0 respectively. The relative of νu1

CL from νu2

CL is given by:

DKL (ν
u1

CL || νu2

CL) = log

(
Fu1

Fu2

)
+ (u2 − u1)

∞∑
i=1

log(p)

pu1+i − 1

where Fu is the normalizing constant
∏

i≥1+u(1− p−i) for the Cohen-Lenstra measure νuCL.

The proof exploits explicit formulas for the Cohen-Lenstra zeta functions ζ
(p)
k (s).

Remark 2. Unlike for the relative entropy, we do not have an explicit formula for the Shannon entropy
of Cohen-Lenstra measures. The most straightforward approach would be to gain a good understanding of a
variant on the Cohen-Lenstra zeta function ζ

(p)
k (s) with a power of s on the 1/#Aut terms instead of the

1/#A terms. An explicit expression for the entropy would then fall out by taking the derivative of this new
zeta function.

2 Proof of Theorem 1

2.1 Preliminaries
Phillips Hall’s Strange Formula for finite abelian p-groups states that∑′

A

1

#AutA
=
∑′

A

1

#A
=
∑
n

π(n)

pn
=
∏
i≥1

(1− p−i)−1 < ∞

where the sums
∑′ run over isomorphism classes of finite abelian p-groups and π is the partition function

[3, 7]. This formula, and its variants, imply the following description of the Cohen-Lenstra measures

νuCL(A) =
1

#Au#AutA

∏
i≥1

(1− p−u−i).

We denote by Fu the normalizing constant
∏

i≥1(1− p−u−i) =
∏

j≥u+1(1− p−j) (see [2]) and note that Fu

is a strictly increasing function of u.
The following lemma will be useful. The number of automorphisms of a finite abelian group is comparable,

and often much larger, than the size of the group. The following is a lower bound expressing this fact.

Lemma 1. For a finite abelian p-group A of size pn we have

#Aut(A) ≥ #A(1− p−1) ≥ pn−1.

In fact, #AutA ≥ #A whenever rankp(A) ≥ 2.

Proof. Denote by Aλ′ =
∏

i Zp/p
λ′
iZp the finite abelian p-group of associated to the partition λ′ = (λ′

i)i =
(λ′

1 ≥ λ′
2 ≥ . . .). Recall that the number of automorphisms of a finite abelian p-group of type λ′ is

#AutA = p|λ
′|+2n(λ′)

∏
j≥1

λj−λj+1∏
k=1

(1− p−k)

where λ denotes the dual partition of λ′, |λ′| =
∑

j≥1 λj = n, and n(λ′) =
∑

i(i − 1)λ′
i =

∑(
λj

2

)
[5]. To

extract the lower bound for #Aut(A) when #A = pn, we rewrite this expression as follows

#AutA = pnp
∑

j≥1(λ
2
j−λj)−

(λj−λj+1)2

2 −
(λj−λj+1)

2

∏
j≥1

λj−λj+1∏
k=1

(pk − 1) (1)
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Let’s analyze the exponent. We use the notation λ2 to denote the partition where each component of λ is
squared and we denote mj := λj − λj+1. We have:

∑
j≥1

(λ2
j − λj)−

(λj − λj+1)
2

2
− (λj − λj+1)

2

= |λ2| − |λ| − |λ2|
2

−
(
|λ2|
2

− λ2
1

2

)
− |λ|

2
+

(
|λ|
2

− λ1

2

)
+
∑
j≥1

λjλj+1

=
λ2
1

2
− λ1

2
− |λ|+

∑
j≥1

λjλj+1

=
λ2
1

2
− λ1

2
− |λ|+

∑
j≥1

(λj+1 +mj)λj+1

=
λ2
1

2
− λ1

2
− |λ|+ |λ2| − λ2

1 +
∑
j≥1

mjλj+1

=
λ2
1

2
− 3λ1

2
+ (|λ2| − λ2

1)− (|λ| − λ1) +
∑
j≥1

mjλj+1.

The only term which can be negative is λ2
1

2 − 3λ1

2 . It is in fact non-negative, except for λ1 = 1, 2 in which
case it is equal to −1.

Now to prove that #AutA ≥ #A whenever rankp(A) ≥ 2, we simply note that when λ1 ≥ 2, then either
one of the λj − λj+1 ≥ 2 or at least two of them are ≥ 1. In either case p−1 times the corresponding terms∏λj−λj+1

k=1 (pk − 1) in Equation (1) is ≥ 1.
If λ1 = 1, then A is cyclic p-group, whence #AutA = (pn − pn−1) = pn(1− p−1) = #A(1− p−1)

2.2 The proof
With these preliminaries in hand, we turn to the proof.

I) To show that H(νuCL) is finite for all u ≥ 0, it will suffice to show that H(ν0CL) is finite as we will show
in II) that H(νuCL) is strictly decreasing in u. Now, using log(x) ≪ε x

ε, we have the following estimates

H(ν0CL) = −
∑′ F0

#AutA
log

(
F0

#AutA

)
≪ε − log(F0) +

∑′

A ̸=1

1

(#AutA)1−ε

= − log(F0) +
∑
n≥1

∑′

#A=pn

1

(#AutA)1−ε

≤ − log(F0) +
∑
n≥1

π(n)

(pn−1)1−ε
< ∞

where π(·) is the partition function. The sum on the last line is finite by the root test since

π(n)

(pn−1)1−ε
∼

1
4n

√
3
eπ
√

2n
3

(pn−1)
1−ε

as n → ∞, implying that
(

π(n)
(pn−1)1−ε

) 1
n n→∞−−−−→ 1

p1−ϵ < 1.
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II) We have:

H(νuCL) = −
∑′

νuCL

= −
∑′ Fu

#Au#AutA
log

(
Fu

#Au#AutA

)
= −

∑′ Fu

#Au#AutA
log(Fu) +

∑′ Fu

#Au#AutA
log(#Au#AutA)

= − log(Fu) + Fu

∑′

A̸=1

log(#Au#AutA)

#Au#AutA

Since Fu is a strictly increasing function of u, the term − log(Fu) is strictly decreasing. It would then
be sufficient to show that the terms Fu

log(#Au#AutA)
#Au#AutA are individually decreasing (note the tension since

Fu is strictly increasing). This reduces to proving:

#Au+1#AutA ≤ (#Au#AutA)(1−p−(u+1))#A (2)

for A ̸= 1 and u ≥ 0.
When p ≥ 3 and u ≥ 1 we have:

#Au+1#AutA ≤ (#Au#AutA)p−1 ≤ (#Au#AutA)(1−p−(u+1))#A.

When p = 2 and u ≥ 1, we have:

#Au+1#AutA ≤ (#Au#AutA)
3
4#A ≤ (#Au#AutA)(1−p−(u+1))#A.

except when A = Z/2 and u = 1.
Now, when u = 0, we need to show that:

#A#AutA ≤ (#AutA)(1−p−1)#A.

The reduces to
#A ≤ (#AutA)#A−1−#A/p

Using Lemma 1, we see that this is true except: if A = Z/2, for which (#AutA)#A−1−#A/p = 1, if
A = Z/4, for which (#AutA)#A−1−#A/p = 2, or if A = Z/3, for which (#AutA)#A−1−#A/p = 2.
Thus, we have that each term is individually decreasing with the following four exception:

(a) when A = Z/2 and u = 0;
(b) when A = Z/4 and u = 0;
(c) when A = Z/2 and u = 1;
(d) when A = Z/3 and u = 0.

For these, one checks directly that:

log(F0) + F0
log(#AutZ/2)

#AutZ/2
+ F0

log(#AutZ/4)

#AutZ/4
− log(F1)− F1

log(#Z/2#AutZ/2)

#Z/2#AutZ/2
− F1

log(Z/4#AutZ/4)

Z/4#AutZ/4
≥ 0.44

log(F1) + F1
log(#Z/2#AutZ/2)

#Z/2#AutZ/2
− log(F2)− F2

log((#Z/2)2#AutZ/2)

(#Z/2)2#AutZ/2
≥ 0.21

log(F0) + F0
log(#AutZ/3)

#AutZ/3
− log(F1)− F1

log(#Z/3#AutZ/3)

#Z/3#AutZ/3
≥ 0.34

by using the bound (1− p−k)p/(p−1) ≤
∏∞

j=k(1− p−j) ≤ 1 (obtained using the concavity of log(1− t))
to estimate the Fu terms.
We conclude that H(νuCL) is a strictly decreasing function of u ∈ N.
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III) By the expression for H(νuCL) obtained in the proof of item II) above, and the fact that log(x) ≤ x, we
have the bound

H(νuCL) = − log(Fu) + Fu

∑′

A̸=1

log(#Au#AutA)

#Au#AutA
≤ − log(Fu) + Fu

∑′

A̸=1

u

#Au−1#AutA
+ Fu

∑′

A̸=1

1

#Au

for u ≥ 2. Now, since #A ≥ p for A ̸= 1, we obtain

H(νuCL) ≤ − log(Fu) +
uFu

pu−1

∑′

A ̸=1

1

#AutA
+

Fu

pu−1

∑′

A̸=1

1

#A

=
∑
k≥1

1

k

1

(pk − 1)pku
+

uFu

pu−1

∑′

A̸=1

1

#AutA
+

Fu

pu−1

∑′

A̸=1

1

#A

u→∞−−−−→ 0.

The entropy always being non-negative, we get H(νuCL)
u→∞−−−−→ 0.

3 Relative entropy and the proof of Theorem 2
Let ν and µ be two discrete probability measures on X with the property that µ is absolutely continuous
with respect to µ, µ ≪ ν. The relative entropy, also called the Kullback–Leibler divergence, of ν from µ
is defined as the expected value of log(ν/µ)

DKL(µ || ν) := Eµ

(
log(µ/ν)

)
=
∑
x∈X

µ(x) log

(
µ(x)

ν(x)

)
≥ 0

where we interpret contributions of terms with µ(x) = 0 as 0. The relative entropy is non-negative by Gibbs’
inequality. The relative entropy measures the informational content of ν from the point of view of µ.

Theorem 3. Let νu1

CL and νu2

CL be Cohen-Lenstra measures on finite abelian p-groups associated to unit ranks
u1 ≥ 0 and u2 ≥ 0 respectively. The relative of νu1

CL from νu2

CL is given by:

DKL (ν
u1

CL || νu2

CL) = log

(
Fu1

Fu2

)
+ (u2 − u1)

∞∑
i=1

log(p)

pu1+i − 1

where Fu denotes the normalizing constant
∏

i≥1+u(1− p−i).

Proof. The definition of DKL (ν
u1

CL || νu2

CL) gives

DKL (ν
u1

CL || νu2

CL) =
∑′

A

νu1

CL(A) log

(
νu1

CL(A)

νu2

CL(A)

)
(3)

=
∑′

A

Fu1

#Au1#AutA
log

(
Fu1

#Au2

Fu2#Au1

)
(4)

= log

(
Fu1

Fu2

)
+ Fu1(u2 − u1)

∑′

A

log(#A)

#Au1#AutA
(5)

= log

(
Fu1

Fu2

)
+ (u2 − u1)Fu1

(
− lim

k→∞

d

ds
ζ
(p)
k (s)

∣∣∣∣
s=u1

)
(6)

where ζ
(p)
k (s) denotes the Cohen-Lenstra zeta function. Recall that ζ

(p)
k (s) is defined as

ζ
(p)
k (s) :=

∑′

A

wk(A)

#As
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with w(G) := 1
#Aut(G) and

wk(G) =

{
w(G)

∏k
i=k−r+1(1− p−i) if k ≥ r := rank(G),

0 else
.

Note that wk(G) is increasing in k, wk(G) is bounded by w(G), and wk(G)
k→∞−−−−→ w(G) := 1

#AutG .The
Cohen-Lenstra zeta function converges for ℜ(s) > −1 and satisfies the following explicit formula

ζ
(p)
k (s) =

k∏
i≥1

(1− p−s−i)−1. (7)

We compute its derivative in two ways. Using the definition, we first find

d

ds
ζ
(p)
k (s) = −

∑′

A

wk(A) log#A

#As

since the series
∑′

A

wk(A) log#A
#As is absolutely uniformly convergent for s ∈ [t,∞) for any t > −1. This

follows by comparing it to ∑′

A

1

#As−ε#AutA

and using the proof of item I) of Theorem 1. The limit interchange giving line (6) follows from Lebesgue’s
Dominated Convergence Theorem and the same comparison.

On the other hand, by formula (7), we have:

d

ds
ζ
(p)
k (s) = ζ

(p)
k (s) · d

ds

(
log ζ

(p)
k (s)

)
=

(
k∏

i=1

(1− p−s−i)−1

)(
−

k∑
i=1

log(p)

ps+i − 1

)
.

It follows that

lim
k→∞

− d

ds
ζ
(p)
k (s)

∣∣∣∣
s=u1

=
1

Fu1

∞∑
i=1

log(p)

pu1+i − 1
,

which completes the proof.
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