troduction The Wave Equation Conservation Laws The Main Result

Stability and Instability of Extremal Black Holes

Stefanos Aretakis

 ${\sf Cambridge/Princeton/IAS}$

July 2, 2012 13th Marcel Grossmann Meeting, Stockholm Introduction The Wave Equation Conservation Laws The Main Result

Summary

Part 1: Introduction to extremal black holes

Part 2: The wave equation; new features (conservation laws)

Part 3: The main theorems

Introduction The Wave Equation Conservation Laws The Main Results

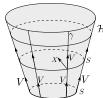
Null Hypersurfaces and the Surface Gravity κ

• Null hypersurface $H \subset \mathcal{M} \colon \forall p \in H$ the tangent plane $T_pH = \langle V \rangle^{\perp}$ and V is null (hence T_pH is degenerate). Then, $X \in T_pH$ is null if $X \in \langle V \rangle$ and spacelike otherwise.

• $g(\nabla_V V, X) = -g(V, \nabla_V X) = -g(V, \nabla_X V) - g(V, [V, X]) = -\frac{1}{2} X \big(g(V, V) \big) = 0$, hence

$$\nabla_V V = \kappa V$$

and so the integral curves γ of V are geodesics (κ : surface gravity).



- Killing horizon H: V Killing and so κ is constant along γ .
- Z.L.o.B.H.M.: If (\mathcal{M},g) satisfies Ric(g)=0 (and V is Killing) then κ is globally constant on H.
- Extremal horizon: Killing horizon with $\kappa=0$ (subextremal: $\kappa>0$). Null generators are affinely parametrized. No bifurcate sphere.

Introduction The Wave Equation Conservation Laws The Main Result

The Main Examples

- Extremal Kerr-Newman
- \rightarrow Extremal Kerr
- $\rightarrow \ \, \mathsf{Extremal} \,\, \mathsf{Reissner}\text{-}\mathsf{Nordstr\"{o}m}$

Majumda–Papapetrou multi black holes

Introduction The Wave Equation Conservation Laws The Main Results

Importance of Extremal Black Holes/Known Results

- ullet Classical Physics: No redshift effect along the event horizon ${\cal H}.$
- Quantum Physics: Zero temperature and hence extremal black holes do not radiate.
- Geometry/Analysis:
 - No static vacuum extremal horizons with spherical topology (Chruściel, Reall, Tod).
 - Static electrovacuum spacetime with many black holes ⇒ all black holes are extremal (Chruściel, Tod). Example: Majumdar–Papapetrou.
 - **3** Rigidity of geometry of (electro-)vacuum axisymmetric extremal horizons: Induced geometry coincides with that of the horizon of extremal Kerr–Newman horizons (Hájíček, Lewandowski and Pawlowski, Kunduri and Lucietti). Specifically, $\oint f(x), \, \rho, \, \sigma$ are fully determined (after fixing a gauge).
 - ① If $\underline{\chi}$ is the transversal second fundamental form of the sections of a vacuum extremal horizon \mathcal{H} , then $\mathcal{L}_V\underline{\chi}=0$. Furthermore, the torsion η satisfies an elliptic system.

The Wave Equation

• We initiate the study of the wave equation

$$\Box_g \psi = 0$$

in the exterior region of extremal black holes up to and including the event horizon.

- No previous (mathematical, numerical or heuristic) results known for asymptotics of waves along extremal horizons.
- We start by considering extremal Reissner-Nordström backgrounds.

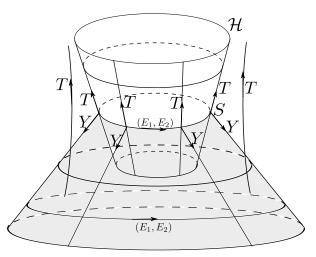
troduction The Wave Equation Conservation Laws The Main Result:

New features of Extremal Horizons

- There exists a conservation law along the event horizon for the spherical mean.
- This law had not been previously observed.
- For the case of extremal Reissner-Nordström, the proof of this law is relatively simple and so we will present essentially all the details.
- We first introduce a frame that will be very useful for our analysis.

Local Geometry of Extremal Reissner–Nordström

The T-propagated frame (T,Y,E_1,E_2) : (If r is the radius of the spheres of symmetry, then $Y=\partial_r$.)



A Conservation Law for Extremal Reissner–Nordström

Let M>0 denote the mass. Then $\mathcal{H}=\{r=M\}$. If we write the wave equation using the (T,Y,E_1,E_2) frame we obtain

$$D \cdot (YY\psi) + 2(TY\psi) + \frac{2}{r} \cdot (T\psi) + \left(D' + \frac{2D}{r}\right) \cdot (Y\psi) + \not \Delta \psi = 0,$$

where

$$D = g(T, T) = \left(1 - \frac{M}{r}\right)^2.$$

Assume $\Delta \psi = 0$. Then, since D = D' = 0 on the horizon ${\mathcal H}$, we have

$$T\left(Y\psi + \frac{1}{M}\psi\right) = 0$$

and since T is tangential to \mathcal{H} , the quantity

$$H[\psi] = Y\psi + \frac{1}{M}\psi$$

is conserved along the event horizon ${\mathcal H}$ for all spherically symmetric solutions $\psi.$

Generalisations?

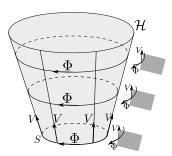
 What about, for example, extremal Kerr or Majumdar–Papapetrou spacetime? troduction The Wave Equation Conservation Laws The Main Results

Generalised Conservation Law

Theorem (S.A.)

Let (\mathcal{M},g) be a 4-dimensional Lorentzian manifold containing an extremal axisymmetric horizon \mathcal{H} .

Let also V denote the Killing field null and normal to $\mathcal H$ and Φ denote the axial Killing Φ tangential to $\mathcal H$ and such that $[V,\Phi]=0$. If the distribution of the planes orthogonal to the planes spanned by V and Φ is integrable, then we have a conservation law on the horizon $\mathcal H$.



troduction The Wave Equation Conservation Laws The Main Resul

Applications

- The conservation law holds for the spherical mean of an expression of ψ and first order derivatives of ψ .
- Theorem holds for extremal Kerr. Explicitly, the quantity

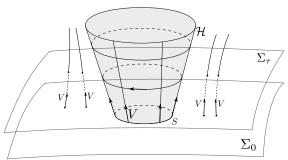
$$H^{\mathsf{Kerr}}[\psi](\tau) = \int_{S_{\tau}} \left(M \sin^2 \theta \left(T \psi \right) + 4 M \left(Y \psi \right) + 2 \psi \right)$$

is conserved along the event horizon \mathcal{H} .

Theorem holds for Majumdar–Papapetrou multi black holes.

Initial Value Problem

- The conservation laws are completely determined by the local properties of extremal horizons (namely, by the induced metric ϕ and the Christoffel symbols Γ on \mathcal{H}) and hence do not depend on global aspects of the spacetime.
- Hence we have not discussed global hyperbolicity or well-posedeness of the wave equation or other properties (behaviour of the geodesic flow etc.).
- Initial value problem for extremal Reissner–Nordström and extremal Kerr.



Instability Results

Theorem (S.A.)

For generic solutions ψ to the wave equation on extremal

Reissner-Nordström or extremal Kerr backgrounds we have:

Non-Decay:

The translation-invariant transversal to $\mathcal H$ derivative $Y\psi$ does not decay along $\mathcal H$.

Pointwise Blow-up:

$$|Y^k\psi|\to +\infty,$$

along \mathcal{H} as advanced time tends to infinity $k \geq 2$.

Energy Blow-up:

$$\left\|Y^k\psi\right\|_{L^2(R_\tau)}\to+\infty$$

as $\tau \to +\infty$ for all k > 2.

This result is in stark contrast with the subextremal case

ntroduction The Wave Equation Conservation Laws The Main Results

Stability Results

Theorem (S.A.)

For all solutions ψ (with sufficiently regular initial data on Σ_0) to the wave equation on extremal Reissner–Nordström and all axisymmetric solutions on extremal Kerr we have

Pointwise Decay: $|\psi(\tau,\cdot)| \to 0$

as $\tau \to +\infty$ up to and including the event horizon \mathcal{H} .

troduction The Wave Equation Conservation Laws **The Main Results**

THANK YOU!