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Introduction

Summary

Part 1: Introduction to extremal black holes
Part 2: The wave equation; new features (conservation laws)

Part 3: The main theorems



Null Hypersurfaces and the Surface Gravity x

o Null hypersurface H C M: Vp € H the tangent plane T,H = <V>L
and V is null (hence T,H is degenerate). Then, X € T,H is null if
X € (V) and spacelike otherwise.

@ g(VvV,X) = —g(V,VvX) = —g(V,VxV) — g(V, [V, X]) = =1 X (g9(V,V)) = 0,
hence

VvV =gV

and so the integral curves v of V' are geodesics (k: surface gravity).

e Killing horizon H: V Killing and so « is constant along ~.

e Z.L.o.B.H.M.: If (M, g) satisfies Ric(g) = 0 (and V is Killing) then
K is globally constant on H.

@ Extremal horizon: Killing horizon with x = 0 (subextremal: xk > 0).
Null generators are affinely parametrized. No bifurcate sphere.



Introduction

The Main Examples

@ Extremal Kerr—-Newman

— Extremal Kerr

— Extremal Reissner—Nordstrom

@ Majumda—Papapetrou multi black holes



Introduction

Importance of Extremal Black Holes/Known Results

o Classical Physics: No redshift effect along the event horizon H.

@ Quantum Physics: Zero temperature and hence extremal black holes
do not radiate.

o Geometry/Analysis:

@ No static vacuum extremal horizons with spherical topology (Chrusciel,
Reall, Tod).

@ Static electrovacuum spacetime with many black holes = all black
holes are extremal (Chrusciel, Tod). Example: Majumdar—Papapetrou.

© Rigidity of geometry of (electro-)vacuum axisymmetric extremal hori-
zons: Induced geometry coincides with that of the horizon of extremal
Kerr—Newman horizons (H&ji¢ek, Lewandowski and Pawlowski, Kun-
duri and Lucietti). Specifically, ¢,7n, p,o are fully determined (after
fixing a gauge).

@ |If x is the transversal second fundamental form of the sections of a
vacuum extremal horizon H, then Ly x = 0. Furthermore, the torsion
7 satisfies an elliptic system. N



The Wave Equation

The Wave Equation

@ We initiate the study of the wave equation
gy =0

in the exterior region of extremal black holes up to and including the
event horizon.

@ No previous (mathematical, numerical or heuristic) results known for
asymptotics of waves along extremal horizons.

@ We start by considering extremal Reissner—Nordstrom backgrounds.



Conservation Laws

New features of Extremal Horizons

@ There exists a conservation law along the event horizon for the spher-
ical mean.

@ This law had not been previously observed.

o For the case of extremal Reissner—Nordstrém, the proof of this law is
relatively simple and so we will present essentially all the details.

@ We first introduce a frame that will be very useful for our analysis.



Conservation Laws

Local Geometry of Extremal Reissner—Nordstrom

The T-propagated frame (T,Y, E1, E>):
(If 7 is the radius of the spheres of symmetry, then Y = 9,..)




Conservation Laws

A Conservation Law for Extremal Reissner—Nordstrom

Let M > 0 denote the mass. Then H = {r = M}. If we write the wave
equation using the (T,Y, E1, E5) frame we obtain

D (rye)+2(rve)+ 2 @)+ (04 22 (vu) + o =

where )
M
D:g(T,T):(l—) .

r

Assume A = 0. Then, since D = D’ =0 on the horizon H, we have
T(vy+ iw) —0
Y =
and since T is tangential to H, the quantity
1
HY) =Yy + —
Wl =Yy + 779

is conserved along the event horizon H for all spherically symmetric solu-
tions .



Conservation Laws

Generalisations?

o What about, for example, extremal Kerr or Majumdar—Papapetrou
spacetime?



Conservation Laws
Generalised Conservation Law

Theorem (S.A.)

Let (M, g) be a 4-dimensional Lorentzian manifold containing an extremal
axisymmetric horizon H.

Let also V' denote the Killing field null and normal to H and ® denote the
axial Killing ® tangential to H and such that [V, ®] = 0. If the distribution
of the planes orthogonal to the planes spanned by V' and ® is integrable,
then we have a conservation law on the horizon H.

v




Conservation Laws
Applications

@ The conservation law holds for the spherical mean of an expression of
1 and first order derivatives of 1.

@ Theorem holds for extremal Kerr. Explicitly, the quantity
HKr[](r) = / (M sin? 0 (T4) +4M (Y) + 20
S,

is conserved along the event horizon H.

@ Theorem holds for Majumdar—Papapetrou multi black holes.



The Main Results

Initial Value Problem

@ The conservation laws are completely determined by the local prop-
erties of extremal horizons (namely, by the induced metric ¢ and the
Christoffel symbols I" on H) and hence do not depend on global as-
pects of the spacetime.

@ Hence we have not discussed global hyperbolicity or well-posedeness
of the wave equation or other properties (behaviour of the geodesic
flow etc.).

@ Initial value problem for extremal Reissner—Nordstrom and extremal
Kerr.

Eo:“:



The Main Results

Instability Results

Theorem (S.A.)

For generic solutions 1) to the wave equation on extremal
Reissner—Nordstrom or extremal Kerr backgrounds we have:
Non-Decay:

The translation-invariant transversal to H derivative Y1) does not decay
along H.

Pointwise Blow-up:

|Yk4p| = oo,

along H as advanced time tends to infinity k > 2.
Energy Blow-up:

‘}Yk¢”L2(RT) — +00

as T — +oo for all k > 2.

Thic rectilt is in stark contrast with the <itbhextremal cace



The Main Results

Stability Results

Theorem (S.A.)

For all solutions 1 (with sufficiently regular initial data on X ) to the
wave equation on extremal Reissner—Nordstrom and all axisymmetric
solutions on extremal Kerr we have

Pointwise Decay: [1/(,-)| — 0

as T — +oo up to and including the event horizon H.
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