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ANGULAR SYNCHRONIZATION BY EIGENVECTORS AND

SEMIDEFINITE PROGRAMMING: ANALYSIS AND APPLICATION

TO CLASS AVERAGING IN CRYO-ELECTRON MICROSCOPY

A. SINGER∗ AND Y. SHKOLNISKY†

Abstract. The angular synchronization problem is to obtain an accurate estimation (up to
a constant additive phase) for a set of unknown angles θ1, . . . , θn from m noisy measurements of
their offsets θi − θj mod 2π. Of particular interest is angle recovery in the presence of many outlier
measurements that are uniformly distributed in [0, 2π) and carry no information on the true offsets.

We introduce an efficient recovery algorithm for the unknown angles from the top eigenvector
of a specially designed Hermitian matrix. The eigenvector method is extremely stable and succeeds
even when the number of outliers is exceedingly large. For example, we successfully estimate n = 400
angles from a full set of m =

`

400

2

´

offset measurements of which 90% are outliers in less than a second
on a commercial laptop. We use random matrix theory to prove that the eigenvector method gives

meaningful results whenever the proportion of good offset measurements is greater than
q

n
2m

. We

show that the eigenvector method is asymptotically nearly optimal in the sense that it achieves the
information theoretic Shannon bound up to a multiplicative factor that depends on the discretization
error of the measurements 2π/L, but not on m and n.

The angular synchronization problem is related to the combinatorial optimization problem Max-

2-Lin mod L for maximizing the number of satisfied linear equations mod L with exactly 2 variables
in each equation. There already exist known polynomial-time semidefinite programming (SDP)
approximation algorithms to Max-2-Lin mod L, but in practice we find such algorithms to be
limited to relatively small size problems. We also present other SDP relaxations for angle recovery,
drawing similarities with the Goemans-Williamson algorithm for finding the maximum cut in a
weighted graph. Our experiments show that the angle recovery by the eigenvector method and
by the different SDP relaxations are comparable in their quality, making the eigenvector method
preferable due to its much faster running time.

We formulate and analyze the problem of finding class averages for the three-dimensional struc-
ture determination of macromolecules from cryo-electron microscopy as a particular angular synchro-
nization problem. The angular synchronization problem in class averaging is special in the sense that
the underlying graph of offset measurements is a “small-world” graph on the real projective plane
RP

2, a case we analyze in detail.

In the angular synchronization problem, the angles can be viewed as elements of the rotation
group SO(2) and the offsets as relations among the group elements. We discuss extensions of the
eigenvector method to other synchronization problems that involve different group structures and
their applications, such as the time synchronization problem in distributed networks and the surface
reconstruction problems in computer vision and optics.

1. Introduction. The angular synchronization problem is to estimate n un-
known angles θ1, . . . , θn ∈ [0, 2π) from m noisy measurements δij of their offsets θi−θj

mod 2π. In general, only a subset of all possible
(

n
2

)

offsets are measured. The set E
of pairs {i, j} for which offset measurements exist can be realized as the edge set of
a graph G = (V,E) with vertices corresponding to angles and edges corresponding to
measurements.

When all offset measurements are exact with zero measurement error, it is possible
to solve the angular synchronization problem iff the graph G is connected. Indeed,
if G is connected then it contains a spanning tree and all angles are sequentially
determined by traversing the tree while summing the offsets modulo 2π. The angles
are uniquely determined up to an additive phase, e.g., the angle of the root. On the
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other hand, if G is disconnected then it is impossible to determine the offset between
angles that belong to disjoint components of the graph.

Sequential algorithms that integrate the measured offsets over a particular span-
ning tree of the graph are very sensitive to measurement errors, due to accumulation
of the errors. It is therefore desirable to integrate all offset measurements in a glob-
ally consistent way. The need for such a globally consistent integration method comes
up in a variety of applications. One such application is the time synchronization of
distributed networks [1, 2], where clocks measure noisy time offsets ti − tj from which
the determination of t1, . . . , tn ∈ R is required. Other applications include the surface
reconstruction problems in computer vision [3, 4] and optics [5], where the surface
is to be reconstructed from noisy measurements of the gradient to the surface and
the graph of measurements is typically the two-dimensional regular grid. The most
common approach in the above mentioned applications for a self consistent global
integration is the least squares approach. The least squares solution is most suitable
when the offset measurements have a small Gaussian additive error. The least squares
solution can be efficiently computed and also mathematically analyzed in terms of the
Laplacian of the underlying measurement graph.

There are many possible models for the measurement errors, and we are mainly
interested in models that allow many outliers. An outlier is an offset measurement
that has a uniform distribution on [0, 2π) regardless of the true value for the offset. In
addition to outliers that carry no information on the true angle values, there also exist
of course good measurements whose errors are relatively small. We have no a-priori
knowledge, however, which measurements are good and which are bad (outliers).

The many-outlier error model arises naturally in the class averaging problem in
cryo-electron microscopy (EM) [6]. Cryo-EM is an imaging technique for determining
three-dimensional structures of macromolecules that defy crystallization. A short
exposition of cryo-EM and the class averaging problem is the subject of Section 2. In
Section 3 we show that the measurement graph in the class averaging problem is a
“small-world” graph [7], while in Section 4 we formulate the class averaging problem
as an angular synchronization problem.

The least squares method is not suitable for problems with a large number of
outliers, such as the class averaging problem in cryo-EM, because the sum of squared
errors will be dominated by the many outliers. The recently popular and more robust
ℓ1 convex minimization approach should perform better than the ℓ2 minimization of
least squares, but it is also expected to be limited to a relatively small number of
outliers. Another approach that turns out to be problematic is the maximum likeli-
hood approach, because it leads to a non-convex optimization problem that cannot
be efficiently solved for large scale problems.

In this paper we take a different approach and introduce two different estimators
for the angles, the first one is based on an eigenvector computation while the second
one on a semidefinite program (SDP) [8]. Our eigenvector estimator θ̂1, . . . , θ̂n is
obtained by the following two-step recipe . In the first step, we construct an n × n
complex-valued matrix H whose entries are

Hij =

{

eıδij {i, j} ∈ E
0 {i, j} 6∈ E

, (1.1)

where ı =
√
−1. The matrix H is Hermitian, i.e. Hij = H̄ji, because the offsets are

skew-symmetric δij = −δji mod 2π. As H is Hermitian, its eigenvalues are real. The
second step is to compute the top eigenvector v1 of H with maximal eigenvalue, and
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to define the estimator in terms of this top eigenvector as

eıθ̂i =
v1(i)

|v1(i)|
, i = 1, . . . , n. (1.2)

The philosophy leading to the eigenvector method is explained in Section 5.
The second estimator is based on the following SDP

max
Θ∈Cn×n

trace(H̄Θ) (1.3)

s.t.Θ � 0 (1.4)

Θii = 1 i = 1, 2, . . . , n, (1.5)

where Θ � 0 is a shorthand notation for Θ being a Hermitian semidefinite positive ma-
trix. The only difference between this SDP and the Goemans-Williamson algorithm
for finding the maximum cut in a weighted graph [9] is that the maximization is taken
over all semidefinite positive Hermitian matrices with complex-valued entries rather
than just the real-valued symmetric matrices. The SDP-based estimator θ̂1, . . . , θ̂n is
derived from the normalized top eigenvector v1 of Θ by the same rounding procedure
(1.2). Our numerical experiments show that the accuracy of the eigenvector method
and the SDP method are comparable. Since the eigenvector method is much faster,
we prefer using it for large scale problems. The eigenvector method is also numer-
ically appealing, because in the useful case the spectral gap is large, rendering the
simple power method an efficient and numerically stable way of computing the top
eigenvector.

In Section 7 we use random matrix theory to analyze the eigenvector method
for two different measurement graphs: the small-world graph in the cryo-EM class
averaging problem and the complete graph. Our analysis shows that the top eigen-
vector of H has a non-trivial correlation with the vector of true angles as soon as the
proportion p of good offset measurements becomes greater than

√

n
2m . In particular,

the correlation goes to 1 as 2mp2

n → ∞, meaning a successful recovery of the angles.
Our numerical simulations confirm these results and demonstrate the robustness of
the estimator (1.2) to outliers.

In Section 8 we prove that the eigenvector method is asymptotically nearly op-
timal in the sense that it achieves the information theoretic Shannon bound up to a
multiplicative factor that depends only on the discretization error of the measurements
2π/L, but not on m and n. In other words, no method whatsoever can accurately es-
timate the angles if the proportion of good measurements is o(

√

n
m ). The connection

between the angular synchronization problem and Max-2-Lin mod L [10] is explored
in Section 9. Finally, Section 10 is a summary and discussion of further applications
of the eigenvector method to other synchronization problems over different groups.

2. The Class Averaging Problem in Cryo-Electron Microscopy. Our in-
terest in the angular synchronization problem originates in structural biology, specif-
ically the class averaging problem in cryo-electron microscopy (EM) [6]. The goal in
cryo-EM is to determine 3D macromolecular structures from noisy projection images
taken at unknown random orientations by an electron microscope, i.e., a random Com-
putational Tomography (CT). Determining 3D macromolecular structures for large
biological molecules remains vitally important, as witnessed, for example, by the 2003
Chemistry Nobel Prize, co-awarded to R. MacKinnon for resolving the 3D structure of
the Shaker K+ channel protein [11, 12]. The standard procedure for structure deter-
mination of large molecules is X-ray crystallography; the challenge in this method is
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often more in the crystallization itself than in the interpretation of the X-ray results:
many large proteins have so far withstood all attempts to crystallize them.

In cryo-EM, an alternative to X-ray crystallography, the sample of macromolecules
is rapidly frozen in an ice layer so thin that their tomographic projections are typi-
cally disjoint; this seems the most promising alternative for molecules that defy crys-
tallization. The cryo-EM imaging process produces a large collection of tomographic
projections of the same molecule, corresponding to different and unknown projec-
tion orientations. The goal is to reconstruct the three-dimensional structure of the
molecule from such unlabeled projection images, where data sets typically range from
104 to 105 projection images whose size is roughly 100 × 100 pixels. The intensity of
the pixels in a given projection image is proportional to the line integrals of the electric
potential induced by the molecule along the path of the imaging electrons (see Figure
2.1). The highly intense electron beam destroys the frozen molecule and it is therefore
impractical to take projection images of the same molecule at known different direc-
tions as in the case of classical CT. In other words, a single molecule can be imaged
only once, rendering an extremely low signal-to-noise ratio (SNR) for the images (see
Figure 2.2 for a sample of real microscope images), mostly due to shot noise induced
by the maximal allowed electron dose (other sources of noise include the varying width
of the ice layer and partial knowledge of the contrast function of the microscope). In
the basic homogeneity setting considered hereafter, all imaged molecules are assumed
to have the exact same structure; they differ only by their spatial rotation. Every
image is a projection of the same molecule but an unknown random three-dimensional
rotation and the cryo-EM problem is to find the three-dimensional structure of the
molecule from a collection of noisy projection images.

Fig. 2.1. Schematic drawing of the imaging process: every projection image corresponds to
some unknown 3D rotation of the unknown molecule.

Any 3D rotation can be expressed as a rotation about some axis. The axis is a
three-dimensional unit vector ν (unique except for sign) which remains unchanged
by the rotation. The magnitude θ of the rotation angle is also unique, with its sign
being determined by the sign of the rotation axis. We refer to the axis ν as the
viewing angle, and since it is normalized, it has only two degrees of freedom and
can be realized as a point on the unit sphere S2. The angle θ between 0 to 2π is
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Fig. 2.2. A collection of four real electron microscope images of the E. coli ribosome.

a point on the unit circle S1 that adds the third degree of freedom to this rotation
representation. Axis-angle gives parameters in S2 × S1; However, as ν and −ν give
the same axis line, the set of viewing angles becomes RP

2, the real projective plane
rather than S2.

As projection images in cryo-EM have extremely low SNR, a crucial initial step
in all reconstruction methods is “class averaging” [6]. Class averaging is the grouping
of a large data set of noisy raw projection images P1, . . . , Pn into clusters, such that
images within a single cluster have similar viewing angles. Averaging rotationally
aligned noisy images within each cluster results in “class averages”; these are images
that enjoy a higher SNR and are used in later cryo-EM procedures such as the angular
reconstitution procedure that requires better quality images. Finding consistent class
averages is challenging due to the high level of noise in the raw images as well as their
large number. A sketch of the class averaging procedure is shown in Figure 2.3.

(a) (b) (c) (d)

Fig. 2.3. The class averaging problem is to find, align and average images with similar viewing
angles: (a) A clean simulated projection image of the E. coli. ribosome generated from its known
volume; (b) Noisy instance of (a), obtained by the addition of white Gaussian noise. The SNR is
much better than that of experimental images in order for image features to be clearly visible; (c)
Noisy projection of the ribosome at the same viewing angle but with a different in-plane rotation
(θ = π/2); 2.3(d) Averaging the noisy images (b) and (c) after in-plane rotational alignment by
π/2. The class average of the two images has a higher SNR than that of the noisy images (b) and
(c), and it has better similarity with the clean image (a).

Penczek, Zhu and Frank [13] introduced the rotationally invariant K-means clus-
tering procedure to identify images that have similar viewing angles. Their invariant
distance dij between image Pi and image Pj is defined as the Euclidean distance be-
tween the images when they are optimally aligned with respect to in-plane rotations
(assuming the images are centered)

dij = min
θ∈[0,2π)

‖Pi −R(θ)Pj‖, (2.1)
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where R(θ) is the rotation operator of an image by an angle θ. Prior to computing the
invariant distances of (2.1), a common practice is to center all images by correlating
them with their total average 1

n

∑n
i=1 Pi, which is approximately radial due to the

randomness in the rotations. The resulting centers usually miss the true centers by
only a few pixels (as can be validated in simulations during the refinement procedure).
Therefore, like [13], we also choose to focus first on the more challenging problem of
rotational alignment. Later in the paper we will address some possible improvements
to the centering procedure.

It is worth noting that the specific choice of metric to measure proximity between
images can make a big difference in class averaging. The cross-correlation or Euclidean
distance (2.1) are by no means optimal measures of proximity. In practice, it is
common to denoise the images prior to computing their pairwise distances. A popular
smoothing scheme is to convolve the images with a Gaussian kernel, and other linear
and non-linear filters are also used in practice. Although the discussion which follows
is independent of the particular choice of filter or distance metric, we stress again that
filtering can have a dramatic effect on finding meaningful class averages.

The invariant distance (2.1) is invariant to in-plane rotations and as such it fac-
tors out the circle S1 from the three-dimensional parameterization of rotations given
by RP

2 × S1. It follows that the invariant distance induces a metric on the two-
dimensional viewing angle space RP

2. The invariant distance between images that
share the same viewing angle (with perhaps a different in-plane rotation) is expected
to be small. Ideally, all neighboring images of some reference image Pi in a small in-
variant distance ball centered at Pi should have similar viewing angles, and averaging
such neighboring images (after proper rotational alignment) would amplify the signal
and diminish the noise.

Unfortunately, due to the low SNR, it often happens that two images of com-
pletely different viewing angles have a small invariant distance. This can happen
when the realizations of the noise match well for some random aligning angle, leading
to spurious neighbor identification. Therefore, averaging the nearest neighbor images
can sometimes yield a poor estimate of the true signal in the reference image.

Clustering algorithms, such as the K-means algorithm, perform much better than
this näıve nearest neighbors averaging, because they take into account all pairwise
distances, not just distances to the reference image. Such clustering procedures are
based on the philosophy that images that share a similar viewing angle with the ref-
erence image are expected to have a small invariant distance not only to the reference
image but also to all other images with similar viewing angles. This observation was
utilized in the rotationally invariant K-means clustering algorithm [13]. Such clus-
tering algorithms make it harder for spurious neighbors to sneak their way into the
neighborhood. Still, noise is our enemy, and the rotationally invariant K-means clus-
tering algorithm may suffer from misidentifications at the low SNR values present in
the experimental data.

Is it possible to further improve the detection of neighboring images at even lower
SNR values? In this paper we provide a positive answer to this question. First, we note
that the rotationally invariant distance neglects an important piece of information,
namely, the optimal angle that realizes the best rotational alignment in (2.1). Second,
we observe that the optimal rotation angles must satisfy a global system of consistency
relations that can be formulated as an angular synchronization problem, for which
our eigenvector-based estimator (1.2) is mostly suitable due to the large amount of
false detections of neighboring images.
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3. A small world graph on RP
2. As mentioned earlier, the information in

the optimal rotation angles has yet to be used in existing class averaging algorithms.
We incorporate this additional information as follows. When computing the optimal
alignment of images Pi and Pj and their invariant distance dij , we also record the
rotation angle δij that brings the distance between the two images to a minimum

δij = argmin
θ∈[0,2π)

‖Pi −R(θ)Pj‖, i, j = 1, . . . , n. (3.1)

Note that

δij = −δji mod 2π, (3.2)

as the optimal rotation from Pj to Pi is in the opposite direction to that from Pi to
Pj . By making a histogram of all

(

n
2

)

distances dij , one can choose some threshold
value ε, such that dij ≤ ε is indicative that perhaps Pi and Pj share similar viewing
angles. The threshold ε defines an undirected graph G = (V,E) with n vertices
corresponding to the projection images, with an edge between nodes i and j iff their
invariant distance is smaller than ε:

{i, j} ∈ E ⇐⇒ dij ≤ ε. (3.3)

In an ideal noiseless world the topology of the graph is that of RP
2: the viewing

angle of every image is a unit vector in three-space realized as a point on the sphere,
where antipodal points correspond to the same viewing angle and are therefore being
identified; if all invariant distances were trustworthy such that small distances imply
similar viewing angles, then the edges of G would link neighboring points on RP

2.
It is much easier to visualize the sphere S2 rather than RP

2, as the sphere can be
isometrically embedded in R3 while the projective plane requires the much harder
to visualize R5. The drawing of such a graph in five-dimensional space would show
scattered points (vertices) on the two dimensional manifold of RP

2 connected by
short chords (edges). The analogy to the sphere is instructive because it is easier
to imagine scattered points on the sphere in three-space connected by short edges.
The experimental world, however, is far from ideal and is ruled by noise, giving rise
to false edges that shortcut the manifold by long chords. Such graphs are known as
“small-world” graphs [7], a popular model to describe social network phenomena such
as the six degrees of separation: our social network consists of people living in our own
town (neighboring edges), but also of some other family and friends that live across
the world (shortcut edges). Planar drawings of a ring graph and its corresponding
small world graph are given in Figure 3.1.

Can we tell the good edges (short chords) from the bad edges (long chords)? It
is possible to denoise small world graphs based on the fact that they have many more
“triangles” than random graphs: two images Pi and Pj that have similar viewing
angles should have common neighboring images Pk whose viewing angles are close to
theirs. All three edges {i, j}, {j, k}, and {k, i} are in E forming a triangle (i, j, k).
On the other hand, shortcut edges are not expected to be sides of as many triangles.
This cliquishness property of small-world graphs was used by Goldberg and Roth [14]
to denoise protein-protein interaction maps by thresholding edges that appear in only
a few triangles.

4. Class averaging as an angular synchronization problem. In the class
averaging problem of cryo-EM, we can further test for the consistency of the triangles.
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(a) (b)

Fig. 3.1. (a) A ring graph with 20 vertices each of which is connected to its 6 nearest neighbors
with short edges; (b) A small-world graph obtained by randomly rewiring the edges of the ring graph
with probability 0.2 leading to about 20% of shortcut edges.

Indeed, if the three images Pi, Pj and Pk have similar viewing angles then the three
corresponding rotation angles δij , δjk and δki must satisfy

δij + δjk + δki = 0 mod 2π, (4.1)

because rotating first from Pi to Pj , followed by a rotation from Pj to Pk, and finally a
rotation from Pk to Pi together complete a full circle. Equation (4.1) is a consistency
relation that enables us to detect image triplets with similar viewing angles and to
identify good triangles. Similarly, we may write consistency relations that involve
four or more images.

The triplet consistency relation is a byproduct of an underlying angular synchro-
nization problem. Theoretically, all projection images can be initially rotated such
that they are optimally rotationally aligned. Let θi be the rotation angle of image
Pi that brings it in sync will all other images. The mutual rotation angles δij should
satisfy the difference equations

θi − θj = δij mod 2π, (4.2)

from which the consistency relation (4.1) immediately follows:

δij + δjk + δki = θi − θj + θj − θk + θk − θi = 0 mod 2π.

There is no hope to properly align two images of completely different viewing angles,
thus, the angle difference equations (4.2) make sense only for images of similar viewing
angles. We therefore write a linear system of difference angle equations only for pairs
{i, j} ∈ E

θi − θj = δij mod 2π, for {i, j} ∈ E, (4.3)

as the condition dij ≤ ε is a proxy for the proximity of the viewing angles. Still,
in practice, many of the inferred equations in (4.3) are faulty, due to noise and false
detection of neighbors (shortcut edges). The edges of E can be split into a set of good
edges and a set of bad edges. A good edge {i, j} corresponds to a successful rotational
alignment of Pi and Pj and a reliable measurement of δij in the sense that (4.2) is
satisfied, whereas a bad edge corresponds to a rotational alignment of Pi and Pj at
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some spurious angle. We denote the set of good edges by Egood and the set of bad
edges by Ebad, and their sizes by mgood = |Egood| and mbad = |Ebad|, respectively.
Clearly, E is the disjoint union of Egood and Ebad, that is, E = Egood ∪ Ebad and
m = mgood +mbad, with m = |E| being the total number of edges. Assuming that the
spurious angle offsets for the bad edges are uniformly distributed on [0, 2π), we write

δij = θi − θj for {i, j} ∈ Egood

δij ∼ Uniform ([0, 2π)) for {i, j} ∈ Ebad.
(4.4)

Perhaps it would be more realistic to allow a small discretization error for the good
offsets, for example, by letting them have the wrapped normal distribution on the
circle with mean θi−θj and variance σ2 (where σ is a typical discretization error). This
discretization error can be incorporated into the mathematical analysis of Section 7
with a little extra difficulty. However, the effect of the discretization error is negligible
compared to that of the outliers, so we choose to ignore it in order to make the
presentation as simple as possible.

It is trivial to find a solution to (4.3) if some oracle whispers to our ears which
equations are good and which are bad (in fact, all we need in that case is that Egood

contains a spanning tree of G). In reality, we have to be able to tell the good from
the bad on our own.

The overdetermined system of equations modulo 2π in (4.3) can be solved by the
method of least squares as follows. Introducing the complex-valued variables zi = eıθi ,
the system (4.3) becomes

zi − eıδijzj = 0, {i, j} ∈ E, (4.5)

which is an overdetermined system of homogeneous linear equations over C. To pre-
vent the solution from collapsing to the trivial solution z1 = z2 = · · · = zn = 0, we set
z1 = 1 (recall that the angles are determined up to a global additive phase, so we may
choose θ1 = 0), and look for the solution with minimal ℓ2-norm residual. However,
it is expected that the sum of squares errors would be overwhelmingly dominated by
the large number of outlier equations, making least squares least favorable to succeed
(see numerical results involving least squares in Table 7.3). We therefore have to look
for a solution method which is more robust to outliers.

Maximum likelihood is an obvious step in that direction. The maximum likelihood
solution to (4.4) is simply the set of angles θ1, . . . , θn that satisfies as many equations
of (4.3) as possible. We may therefore define the self consistency error (SCE) of
θ1, . . . , θn as the number of equations not being satisfied

SCE(θ1, . . . , θn) = #{{i, j} ∈ E : θi − θj 6= δij mod 2π}. (4.6)

As even the good equations contain some error (due to angular discretization and
noise), a more suitable self consistency error is SCEf that incorporates some penalty
function f

SCEf (θ1, . . . , θn) =
∑

{i,j}∈E

f(θi − θj − δij), (4.7)

where f : [0, 2π) → R is a smooth periodic function with f(0) = 0 and f(θ) = 1 for
|θ| > θ0, where θ0 is the allowed discretization error. The minimization of (4.7) is
equivalent to maximizing the log likelihood with a different probabilistic error model.
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The maximum likelihood approach suffers from a major drawback though. It is
virtually impossible to find the global minimizer θ1, . . . , θn when dealing with large
scale problems (n ≫ 1), because the minimization of either (4.6) or (4.7) is a non-
convex optimization problem in a huge parameter space. It is like finding a needle
in a haystack. We therefore take an alternative approach in which instead of max-
imizing the likelihood function we maximize a different function that measures the
self-consistency of the solution. The new maximization has the advantage that it can
be efficiently and effectively computed.

5. The Eigenvector Method. Our approach to finding the self consistent so-
lution for θ1, . . . , θn starts with forming the following n× n matrix H

Hij =

{

eıδij {i, j} ∈ E
0 {i, j} 6∈ E

, (5.1)

where ı =
√
−1. Note that Hij = H̄ji due to (3.2), where for any complex number

z = a+ ıb we denote by z̄ = a− ıb its complex conjugate. The matrix H is therefore
Hermitian, i.e., H∗ = H .

Next, we consider the maximization problem

max
θ1,...,θn∈[0,2π)

n
∑

i,j=1

e−ıθiHije
ıθj , (5.2)

and explain the philosophy behind it. For the correct set of angles θ1, . . . , θn, each
good edge contributes

e−ıθieı(θi−θj)eıθj = 1

to the sum in (5.2). The total contribution of the good edges is just the sum of ones,
piling up to be exactly the total number of good edges mgood. On the other hand,
the contribution of each bad edge will be uniformly distributed on the unit circle in
the complex plane. Adding up the terms due to bad edges can be thought of as a
discrete planar random walk where each bad edge corresponds to a unit size step at a
uniformly random direction. These random steps mostly cancel out each other, such
that the total contribution of the mbad edges is only O(

√
mbad). It follows that the

objective function in (5.2) has the desired property of diminishing the contribution
of the faulty alignments by a square root relative to the linear contribution of the
correct alignments.

Still, the maximization problem (5.2) is a non-convex maximization problem
which is quite difficult to solve in practice. We therefore introduce the following
relaxation of the problem

max
z1, . . . , zn ∈ C
∑n

i=1 |zi|2 = n

n
∑

i,j=1

z∗i Hijzj . (5.3)

That is, we replace the previous n individual constraints for each of the variables
zi = eıθi to have a unit magnitude, by a single and much weaker constraint, requiring
the sum of squared magnitudes to be n. The maximization problem (5.3) is that of a
quadratic form whose solution is simply given by the top eigenvector of the Hermitian
matrix H . Indeed, the spectral theorem implies that the eigenvectors v1, v2, . . . , vn of
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H form an orthonormal basis for Cn with corresponding real eigenvalues λ1 ≥ λ2 ≥
. . . ≥ λn satisfying Hvi = λivi. Rewriting the constrained maximization problem
(5.3) as

max
‖z‖2=n

z∗Hz, (5.4)

it becomes clear that the maximizer z is given by z = v1, where v1 is the normalized
top eigenvector satisfying Hv1 = λ1v1 and ‖v1‖2 = n, with λ1 being the largest eigen-
value. The components of the eigenvector v1 are not necessarily of unit magnitude,
so we normalize them and define the estimated rotation angles by

eıθ̂i =
v1(i)

|v1(i)|
, for i = 1, . . . , n (5.5)

(see also equation (1.2)).
The top eigenvector can be efficiently computed by the power iteration method

that starts from a randomly chosen vector b0 and iterates bn+1 = Hbn

‖Hbn‖ . Each

iteration requires just a matrix-vector multiplication that takes O(n2) operations for
dense matrices, but only O(m) operations for sparse matrices, where m = |E| is the
number of non-zero entries of H corresponding to edges in the graph. In our case, the
number of edges is controlled by the threshold ε. The number of iterations required by
the power method decreases with the spectral gap that indeed exists and is analyzed
in detail in Section 7.

A closer look into the power iteration method reveals that multiplying the matrix
H by itself integrates the information in the consistency relation of the triplets (4.1),
while higher order iterations exploit consistency relations of longer cycles. Indeed,

H2
ij =

n
∑

k=1

HikHkj =
∑

k:{i,k},{j,k}∈E

eıδikeıδkj =
∑

k:{i,k},{j,k}∈E

e−ı(δjk+δki) (5.6)

= # {k : {i, k} and {j, k} ∈ Egood} eı(θi−θj) (5.7)

+
∑

k:{i,k} or {j,k}∈Ebad

e−ı(δjk+δki),

where we employed (3.2) in (5.6), and (4.1) in (5.7).
The top eigenvector therefore gives a self-consistent rotational alignment of the

raw images. The computation of the eigenvector is not only efficient but also takes
all the global information into account.

6. The semidefinite program approach. A different natural relaxation of
the optimization problem (5.2) is using SDP. Indeed, the objective function in (5.2)
can be written as

n
∑

i,j=1

e−ıθiHije
ıθj = trace(H̄Θ), (6.1)

where Θ is the n× n complex-valued rank-one Hermitian matrix

Θij = eı(θi−θj). (6.2)

Note that Θ has ones on its diagonal

Θii = 1, i = 1, 2, . . . , n. (6.3)
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Except for the non-convex rank-one constraint implied by (6.2), all other constraints
are convex and lead to the natural SDP relaxation (1.3)-(1.5). This program is almost
identical to the Goemans-Williamson SDP for finding the maximum cut in a weighted
graph. The only difference is that here we maximize over all possible complex-valued
Hermitian matrices, not just the symmetric real matrices. The SDP-based estimator
corresponding to (1.3)-(1.5) is then obtained from the best rank-one approximation
of the optimal matrix Θ using the Cholesky decomposition.

The SDP method may seem favorable to the eigenvector method as it explicitly
imposes the unit magnitude constraint for eıθi . Our numerical experiments show that
the two methods give similar results (see Table 7.3). Since the eigenvector method is
much faster, it is also the method of choice for large scale problems.

7. Connections with random matrix theory and spectral graph theory.

In this section we analyze the eigenvector method using tools from random matrix
theory and spectral graph theory.

7.1. Analysis of the complete graph angular synchronization problem.

We first consider the angular synchronization problem in which all
(

n
2

)

angle differ-
ences of the form (4.2) are given, so that the corresponding graph is the complete
graph of n vertices. We also assume that the probability for each edge to be good is
p, independently of all other edges. This probabilistic model for the graph of good
edges is known as the Erdős-Rényi random graph G(n, p) [15]. We refer to this model
as the complete graph angular synchronization model.

Although the angular synchronization problem in class averaging is different, as
it involves a particular small-world graph rather than the complete graph, this re-
lated model allows us to gain some mathematical insight and understanding of the
eigenvector method, before analyzing the more realistic small world graph model.

The elements of H in the complete graph angular synchronization model are
random variables given by the following mixture model. With probability p the edge
{i, j} is good and Hij = eı(θi−θj), whereas with probability 1− p the edge is bad and
Hij ∼ Uniform

(

S1
)

. It is convenient to define the diagonal elements as Hii = p.
The matrix H is Hermitian and the expected value of its elements is

EHij = p eı(θi−θj). (7.1)

In other words, the expected value of H is the rank-one matrix

EH = npzz∗, (7.2)

where z is the normalized vector (‖z‖ = 1) given by

zi =
1√
n
eıθi , i = 1, . . . , n. (7.3)

The matrix H can be decomposed as

H = npzz∗ +R, (7.4)

where R = H−EH is a random matrix whose elements have zero mean, with Rii = 0,
and for i 6= j

Rij =

{

(1 − p)eı(θi−θj) with probability p

eıϕ − peı(θi−θj) w.p. 1 − p and ϕ ∼ Uniform([0, 2π))
. (7.5)
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The variance of Rij is

E|Rij |2 = (1 − p)2p+ (1 + p2)(1 − p) = 1 − p2 (7.6)

for i 6= j and 0 for the diagonal elements. Note that for p = 1 the variance vanishes
as all edges become good.

The distribution of the eigenvalues of the random matrix R follows Wigner’s
semi-circle law [16, 17] whose support is [−2

√

n(1 − p2), 2
√

n(1 − p2)]. The largest
eigenvalue of R, denoted λ1(R), is concentrated near the right edge of the support
[18] and the universality of the edge of the spectrum [19] implies that it follows the
Tracy-Widom distribution [20] even when the entries of R are non-Gaussian. For our
purposes, the approximation

λ1(R) ≈ 2
√

n(1 − p2) (7.7)

will suffice, with the probabilistic error bound given in [18].
The matrix H = npzz∗ + R can be considered as a rank-one perturbation to a

random matrix. The distribution of the largest eigenvalue of such perturbed random
matrices was investigated in [21, 22, 23] for the particular case where z is propor-
tional to the all-ones vector (1 1 · · · 1)T . Although our vector z given by (7.3) is
different, without loss of generality, we can assume θ1 = θ2 = . . . = θn = 0, since this
assumption does not change the statistical properties of the random matrix R. Thus,
adopting [22, Theorem 1.1] to H gives that for

np >
√

n(1 − p2) (7.8)

the largest eigenvalue λ1(H) jumps outside the support of the semi-circle law and is
normally distributed with mean µ and variance σ2 given by

λ1(H) ∼ N (µ, σ2), µ =
np

√

1 − p2
+

√

1 − p2

p
, σ2 =

(n+ 1)p2 − 1

np2
(1 − p2), (7.9)

whereas for np <
√

n(1 − p2), λ1(H) still tends to the right edge of the semicircle

given at 2
√

n(1 − p2).
Note that the factor of 2 that appears in (7.7) has disappeared from (7.8), which

is perhaps somewhat non-intuitive: it is expected that λ1(H) > λ1(R) whenever
np > λ1(R), but the theorem guarantees that λ1(H) > λ1(R) also for 1

2λ1(R) < np <
λ1(R).

The condition (7.8) also implies a lower bound on the correlation between the
normalized top eigenvector v1 of H and the vector z. To that end, consider the
eigenvector equation satisfied by v1:

λ1(H)v1 = Hv1 = (npzz∗ +R)v1. (7.10)

Taking the dot product with v1 yields

λ1(H) = np |〈z, v1〉|2 + v∗1Rv1. (7.11)

From v∗1Rv1 ≤ λ1(R) we obtain the lower bound

|〈z, v1〉|2 ≥ λ1(H) − λ1(R)

np
, (7.12)
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with λ1(H) and λ1(R) given by (7.7) and (7.9). Thus, if the spectral gap λ1(H)−λ1(R)
is large enough then v1 must be close to z, in which case the eigenvector method
successfully recovers the unknown angles. Since the variance of the correlation of two
random unit vectors in Rn is 1/n, the eigenvector method would give above random
correlation values whenever

λ1(H) − λ1(R)

np
>

1

n
. (7.13)

Replacing in (7.13) λ1(H) by µ from (7.9) and λ1(R) by (7.7) and multiplying by
p
√
n yields the condition

√
np

√

1 − p2
+

√

1 − p2

√
np

− 2
√

1 − p2 >
p√
n
. (7.14)

Since
√

np√
1−p2

+

√
1−p2

√
np

≥ 2, it follows that (7.14) is satisfied for

p >
1√
n
. (7.15)

Thus, already for p > 1√
n

we should obtain above random correlations between the

vector of angles z and the top eigenvector v1. We therefore define the threshold
probability pc as

pc =
1√
n
. (7.16)

When np ≫ λ1(R), the correlation between v1 and z can be predicted by using
regular perturbation theory for solving the eigenvector equation (7.10) in an asymp-

totic expansion with the small parameter ǫ = λ1(R)
np . Such perturbations are derived in

standard textbooks on quantum mechanics aiming to find approximations to the en-
ergy levels and eigenstates of perturbed time-independent Hamiltonians (see, e.g., [24,
Chapter 6]). In our case, the resulting asymptotic expansions of the non-normalized
eigenvector v1 and of the eigenvalue λ1(H) are given by

v1 ∼ z +
1

np
[Rz − (z∗Rz)z] + . . . , (7.17)

and

λ1(H) ∼ np+ z∗Rz + . . . . (7.18)

Note that the first order term in (7.17) is perpendicular to the leading order term z,
from which it follows that the angle α between the eigenvector v1 and the vector of
true angles z satisfies the asymptotic relation

tan2 α ∼ ‖Rz‖2 − (z∗Rz)2

(np)2
+ . . . , (7.19)

because ‖Rz− (z∗Rz)z‖2 = ‖Rz‖2 − (z∗Rz)2. The expected values of the numerator
terms in (7.19) are given by

E‖Rz‖2 = E

n
∑

i=1

∣

∣

∣

∣

∣

∣

n
∑

j=1

Rijzj

∣

∣

∣

∣

∣

∣

2

=

n
∑

i,j=1

Var(Rijzj) =

n
∑

i=1

∑

j 6=i

|zj|2(1−p2) = (n−1)(1−p2),

(7.20)
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and

E(z∗Rz)2 = E





n
∑

i,j=1

Rij z̄izj





2

=

n
∑

i,j=1

Var(Rij z̄izj) = (1 − p2)
∑

i6=j

|zi|2|zj |2

= (1 − p2)





(

n
∑

i=1

|zi|2
)2

−
n
∑

i=1

|zi|4


 = (1 − p2)

(

1 − 1

n

)

, (7.21)

where we used that Rij are i.i.d zero mean random variables with variance given by
(7.6) and that |zi|2 = 1

n . Substituting (7.20)-(7.21) into (7.19) results in

E tan2 α ∼ (n− 1)2(1 − p2)

n3p2
+ . . . , (7.22)

which for p≪ 1 and n≫ 1 reads

E tan2 α ∼ 1

np2
+ . . . . (7.23)

This expression shows that as np2 goes to infinity, the angle between v1 and z goes
to zero and the correlation between them goes to 1. For np2 ≫ 1, the leading order
term in the expected squared correlation E cos2 α is given by

E cos2 α = E
1

1 + tan2 α
∼ 1

1 +
1

np2

+ . . . . (7.24)

We conclude that even for very small p values, the eigenvector method successfully
recovers the angles if there are enough equations, that is, if np2 is large enough.

Figure 7.1 shows the distribution of the eigenvalues of the matrix H for n = 400
and different values of p. The spectral gap decreases as p is getting smaller. From
(7.8) we expect a spectral gap for p ≥ pc where the critical value is pc = 1√

400
= 0.05.

The experimental values of λ1(H) also agree with (7.9). For example, for n = 400 and
p = 0.15, the expected value of the largest eigenvalue is µ = 67.28 and its standard
deviation is σ = 0.93, while for p = 0.1 we get µ = 50.15 and σ = 0.86; these value are
in full agreement with the location of the largest eigenvalues in Figures 7.1(a)-7.1(b).
Note that the right edge of the semi-circle is smaller than 2

√
n = 40, so the spectral

gap is significant even when p = 0.1.
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Fig. 7.1. Histogram of the eigenvalues of the matrix H in the complete graph model for n = 400
and different values of p: (a) p = 0.15; (b) p = 0.1; (c) p = 0.05.

The skeptical reader may wonder whether the existence of a visible spectral gap
necessarily implies that the normalized top eigenvector v1 correctly recovers the orig-
inal set of angles θ1, . . . , θn (up to a constant phase). To that end, we compute the
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following two measures of correlation ρ1 and ρ2 for the correlation between the vector
of true angles z and the computed normalized top eigenvector v1:

ρ1 =

∣

∣

∣

∣

∣

1

n

n
∑

i=1

e−iθi
v1(i)

|v1(i)|

∣

∣

∣

∣

∣

, ρ2 =

∣

∣

∣

∣

∣

1√
n

n
∑

i=1

e−iθiv1(i)

∣

∣

∣

∣

∣

= |〈z, v1〉|. (7.25)

The correlation ρ1 takes into account the rounding procedure (5.5), while ρ2 is simply
the dot product between v1 and z without applying any rounding. Clearly, ρ1, ρ2 ≤
1 (Cauchy-Schwartz), and ρ1 = 1 iff the two sets of angles are the same up to a
rotation. Note that it is possible to have ρ1 = 1 with ρ2 < 1. This happens when
the angles implied by v1(i) are all correct, but the magnitudes |v1(i)| are not all
the same. Table 7.1 summarizes the experimentally obtained correlations ρ1, ρ2 for
different values of p with n = 100 (Table 7.0(a)) and n = 400 (Table 7.0(b)). The
experimental results show that for large values of np2 the correlation is very close to 1,
indicating a successful recovery of the angles. The third column, indicating the values

of
(

1 + 1
np2

)− 1

2

is motivated by the asymptotic expansion (7.24) and seems to provide

a very good approximation for ρ2 when np2 ≫ 1, with deviations attributed to higher
order terms of the asymptotic expansion and to statistical fluctuations around the
mean value. Below the threshold probability (ending rows of Tables 7.0(a) and 7.0(b)
with np2 < 1), the correlations take values near 1√

n
, as expected from the correlation

of two unit random vectors in Rn ( 1√
100

= 0.1 and 1√
400

= 0.05).

From the practical point of view, most important is the fact that the eigenvector
method successfully recovers the angles even when a large portion of the offset mea-
surements consists of just outliers. For example, for n = 400, the correlation obtained
when 85% of the offset measurements were outliers (only 15% are good measurements)
was ρ1 = 0.97.

(a) n = 100

p np2
(

1 + 1
np2

)− 1

2

ρ1 ρ2

0.4 16 0.97 0.99 0.98
0.3 9 0.95 0.97 0.95
0.2 4 0.89 0.90 0.88
0.15 2.25 0.83 0.75 0.81
0.1 1 0.71 0.34 0.35
0.05 0.25 0.45 0.13 0.12

(b) n = 400

p np2
(

1 + 1
np2

)− 1

2

ρ1 ρ2

0.2 16 0.97 0.99 0.97
0.15 9 0.95 0.97 0.95
0.1 4 0.89 0.90 0.87

0.075 2.25 0.83 0.77 0.76
0.05 1 0.71 0.28 0.32
0.025 0.25 0.45 0.06 0.07

Table 7.1

Correlations between the top eigenvector v1 of H and the vector z of true angles for different
values of p in the complete graph model.

7.2. Analysis of the small world graph angular synchronization prob-

lem. The underlying graph in class averaging is a small-world graph obtained by
randomly rewiring the edges of a neighborhood graph on the projective plane RP

2.
This small-world graph is different from the complete graph considered earlier and
requires a separate mathematical analysis. In the complete graph case, equation (7.4)
gives the decomposition of H into a sum of a rank-one matrix and a Wigner random
matrix. The small-world graph leads to a different decomposition that we derive be-
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low. This decomposition is general in the sense that it can be applied to any graph,
not just to small world graphs.

Let A be the adjacency matrix for the set of good edges Egood:

Aij =

{

1 {i, j} ∈ Egood

0 {i, j} 6∈ Egood
. (7.26)

As the matrix A is symmetric, it has a complete set of real eigenvalues λ1 ≥ λ2 ≥
. . . ≥ λn and corresponding real orthonormal eigenvectors ψ1, . . . , ψn such that

A =

n
∑

l=1

λlψlψ
T
l . (7.27)

Let Z be an n×n diagonal matrix whose diagonal elements are Zii = eıθi . Clearly,
Z is a unitary matrix (ZZ∗ = I). Define the Hermitian matrix B by conjugating A
with Z

B = ZAZ∗. (7.28)

It follows that the eigenvalues of B are equal to the eigenvalues λ1, . . . , λn of A, and
the corresponding eigenvectors {φl}n

l=1 of B are given by

φl = Zψl, l = 1, . . . , n. (7.29)

From (7.28) it follows that

Bij =

{

eı(θi−θj) {i, j} ∈ Egood

0 {i, j} 6∈ Egood
. (7.30)

We are now ready to decompose the matrix H defined in (5.1) as

H = B +R, (7.31)

where R is a random matrix whose elements are given by

Rij =

{

eıδij {i, j} ∈ Ebad

0 {i, j} 6∈ Ebad
, (7.32)

where δij ∼ Uniform([0, 2π) for {i, j} ∈ Ebad. The decomposition (7.31) is extremely
useful, because it reveals the eigen-structure of H in terms of the much simpler eigen-
structures of B and R.

First, consider the matrix B defined in (7.28), which shares the same spectrum
with A and whose eigenvectors φ1, . . . , φn are phase modulations of the eigenvectors
ψ1, . . . , ψn of A. If the graph of good measurements is connected, as it must be in
order to have a unique solution for the angular synchronization problem (see second
paragraph of Section 1), then the Perron-Frobenius theorem (see, e.g., [25, Chapter
8]) for the non-negative matrix A implies that the entries of ψ1 are all positive

ψ1(i) > 0, for all i = 1, 2, . . . , n, (7.33)

and therefore the complex phases of the coordinates of the top eigenvector φ1 = Zψ1 of

B are identical to the true angles, that is, eıθi = φ1(i)
|φ1(i)| . Hence, if the top eigenvector of
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H is highly correlated with the top eigenvector of B then the angles will be recovered
correctly. We will shortly derive the precise condition that guarantees such a high
correlation between the eigenvectors of H and B.

The largest eigenvalue λ1(A) = λ1(B) is squeezed between the maximal degree
and the averaged degree of the good graph, that is

d̄ ≤ λ1(B) ≤ dmax, (7.34)

where

di =

n
∑

j=1

Aij , d̄ =
1

n

n
∑

i=1

di, dmax = max
i=1,...,n

di. (7.35)

Indeed, the lower bound in (7.34) follows from the min-max Courant-Fischer theorem
using the Rayleigh-Ritz quotient of the normalized all-ones vector 1√

n
(1 1 · · · 1)T

λ1(B) = max
‖x‖2=1

x∗Ax ≥ 1

n

n
∑

i,j=1

Aij = d̄, (7.36)

while the upper bound is a consequence of the Perron-Frobenius theorem. From the
lower bound in (7.34) we conclude that

λ1(B) ≥ 2mgood

n
. (7.37)

An even better understanding of the eigen-structure of B can be achieved by
looking at the normalized Laplacian matrix L of the good graph, defined as L =
I − D−1A where I is the n × n identity matrix and D is a diagonal matrix with
the vertex degrees on its diagonal, i.e., Dii = di [26]. In the particular case of the
class averaging angular synchronization problem, the good graph is a neighborhood
graph on RP

2 and the n vertices of the graph can be viewed as n sample points on
RP

2. If the vertices are sampled from the uniform distribution on RP
2, as it happens

to be the case when the molecule has no preferred orientation, then in the limit of a
large number of vertices/projection images n→ ∞, the discrete normalized Laplacian
matrix L converges to the continuous Laplacian over the two dimensional manifold
RP

2, denoted ∆RP2 [27, 28, 29, 30]. In particular, the eigenvectors and eigenvalues
of the graph Laplacian matrix L converge to the eigenfunctions and eigenvalues of
the Laplacian on RP

2 which are the spherical harmonics of even degree. Indeed, the
eigenfunctions of the (positively defined) Laplacian operator on the sphere S2 are
known to be the spherical harmonics Y m

l [31, p.195] (also known as the eigenstates
of the angular momentum operator in quantum mechanics)

∆S2Y m
l = l(l + 1)Y m

l , l = 0, 1, 2, . . . , m = −l,−l+ 1, . . . , l. (7.38)

The (non-normalized) spherical harmonics are given in terms of the associated Legen-
dre polynomials of the zenith angle and trigonometric polynomials of the azimuthal
angle. The eigenspaces are degenerated so that the eigenvalue l(l+1) has multiplicity
2l+ 1. Alternatively, the l’th eigenspace corresponds to homogeneous polynomials of
degree l restricted to S2 (i.e., modulo x2 + y2 + z2 = 1). Since the projective plane
RP

2 is obtained by identifying antipodal points on S2, only the even-degree homoge-
nous polynomials are well defined on RP

2 (the odd-degree polynomials change their
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sign under the transformation (x, y, z) 7→ (−x,−y,−z)). It follows that the eigen-
functions of the Laplacian on RP

2 are the even spherical harmonics (l = 0, 2, 4, . . .)
with multiplicities 1, 5, 9, 13, . . ..

Now that we have a good understanding of the spectrum of B we turn to analyze
the spectrum of the random matrix R given in (7.32). There are only mbad nonzero
elements in R, which makes R a sparse matrix with an average number of 2mbad/n
nonzero entries per row. The nonzero entries of R have zero mean and unit variance.
The spectral norm of such sparse random matrices was studied in [32, 33] where it was

shown that with probability 1, lim supn→∞
√

n√
2mbad

λ1(R) ≤ 2 as long as mbad

n log n → ∞
as n→ ∞. The implication of this result is that we can approximate λ1(R) with

λ1(R) ≈ 2

√
2mbad√
n

. (7.39)

Similar to the spectral gap condition (7.8), requiring

λ1(B) >
1

2
λ1(R), (7.40)

and employing equations (7.37) and (7.39), lead to the condition

2mgood

n
>

√
2mbad√
n

, (7.41)

or equivalently

mgood >

√

nmbad

2
. (7.42)

Again, the condition (7.42) signifies the square-root diminishing effect of the outliers
compared to the linear contribution of the good measurements.

As the original m edges of the small world graph are rewired with probability
1 − p, the expected number of bad edges Embad and the expected number of good
edges Emgood are given by

Emgood = pm, Embad = (1 − p)m, (7.43)

with relatively small fluctuations of O(
√

mp(1 − p)). Plugging (7.43) in (7.42) results
in the following condition for a non-trivial correlation between the top eigenvectors
of H and B:

2mp2 > n(1 − p). (7.44)

The threshold probability peigc satisfies the quadratic equation

2m(peigc )2 = n(1 − peigc ), (7.45)

and in the limit m/n≫ 1, peigc is asymptotically given by

peigc =

√

n

2m
+O(n/m). (7.46)

Note that (7.46) reduces to the threshold probability (7.16) of the complete graph
case by setting m =

(

n
2

)

.
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Figure 7.2 shows the histogram of the eigenvalues for the matrix H in the small-
world RP

2 class averaging problem. We generated random small-world graphs on
RP

2 with n vertices as follows. First, we sampled n points ν1, . . . ,νn on the unit
sphere S2 in R3 from the uniform distribution. We put an edge between i and j
iff |νi · νj | > 1 − ε, where ε is a small parameter that determines the connectivity
(average degree) of the graph. The resulting graph is a neighborhood graph on RP

2.
We then rewire edges with probability 1− p, so that the expected proportion of good
edges is p. We used two different sets of parameters: n = 400 with ε = 0.2 for which
there were about m = 16250 edges in the graph, and n = 100 with ε = 0.3 for which
there were about m = 1500 edges.

The histograms of Figure 7.2 for the eigenvalues ofH seem to be much more exotic
than the ones obtained in the complete graph case shown in Figure 7.1. In particular,
there seems to be a long tail of large eigenvalues, rather than a single eigenvalue that
stands out from all the others. But now we understand that these eigenvalues are
nothing but the top eigenvalues of the adjacency matrix of the good graph, related to
the even spherical harmonics. This behavior is better visible in Figure 7.3.

The expected threshold probability (7.45) for n = 400 and m = 16250 is peigc ≈
√

400
2·16250 = 0.105, while for n = 100 and m = 1500 it is peigc ≈ 0.167. This threshold

values are in agreement with the experimental correlations given in Table 7.2, indi-
cated by jumps in correlation that occurs between p = 0.15 and p = 0.2 for n = 100
and between p = 0.1 and p = 0.12 for n = 400. Also evident from Table 7.2 is that the
correlation goes to 1 as 2mp2/n → ∞. We remark that using regular perturbation
theory and the relation of the eigenstructure of B to the even spherical harmonics,
it is possible to obtain an asymptotic series for the correlation in terms of the large
parameter 2mp2/n, similar to the asymptotic expansion (7.24).

(a) n = 100, m = 1500

p 2mp2

n ρ1

0.8 19.2 0.994
0.6 10.8 0.971
0.4 4.8 0.86
0.3 2.7 0.84
0.2 1.2 0.32
0.15 0.68 0.06

(b) n = 400, m = 16250

p 2mp2

n ρ1

0.8 52 0.999
0.4 13 0.977
0.2 3.25 0.75
0.15 1.82 0.5
0.12 1.17 0.34
0.1 0.81 0.09

Table 7.2

Correlations between the top eigenvector of H and the vector of true angles for different values
of p in the small-world RP

2 model.
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Fig. 7.2. Histogram of the eigenvalues of the matrix H in the small-world RP
2 class averaging

model for n = 400, ε = 0.2 and different values of p: (a) p = 1; (b) p = 0.7; (c) p = 0.4; (d) p = 0.1.
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Fig. 7.3. Bar plot of the 30 largest eigenvalues of the matrix H in the small-world RP
2 class

averaging model for n = 400, ε = 0.2 and different values of p. The multiplicities 1, 5, 9, 13, . . .
corresponding to the even spherical harmonics are evident as long as p is not too small. As p
decreases the high-oscillatory spherical harmonics are getting “swallowed” by the semi-circle. (a)
p = 1; (b) p = 0.7; (c) p = 0.4; (d) p = 0.1.

We also compared the correlations obtained by the eigenvector method and the
SDP method. To solve the SDP (1.3)-(1.5) we used CVX, a package for specifying and
solving convex programs [34, 35], which is mainly used for prototyping and not suitable
for large scale problems that exploit the sparse block structure of the constraint (1.5).
The comparison was therefore performed with n = 200 and ε = 0.3 (number of edges
m ≈ 6000), with an expected threshold peigc ≈ 0.12. The results are summarized in
Table 7.3. Although the SDP is slightly more accurate, the eigenvector method runs
much faster.

p ρlsqr ρeig ρsdp rankΘ
1 1 1 1 1

0.7 0.879 0.997 0.997 1
0.4 0.515 0.977 0.977 1
0.3 0.396 0.922 0.933 2
0.2 0.097 0.767 0.803 4
0.15 0.068 0.418 0.521 4
0.1 0.059 0.203 0.213 5

Table 7.3

Comparison between the correlations obtained by the eigenvector method ρeig , by the SDP
method ρsdp and by the least squares method ρlsqr for different values of p (small world graph on
RP

2, n = 200, ε = 0.3, m ≈ 6000). The SDP tends to find low-rank matrices despite the fact that the
rank-one constraint on Θ is not included in the SDP. The rightmost column gives the rank of the Θ
matrices that were found by the SDP. The least squares solution was obtained using MATLAB’s lsqr

function. As expected, the least squares method yields poor correlations compared to the eigenvector
and the SDP methods.

8. Information Theoretic Analysis. The optimal solution to the angular syn-
chronization problem can be considered as the set of angles that maximizes the log-
likelihood. Unfortunately, the log-likelihood is a non-convex function and the maxi-
mum likelihood cannot be found in a polynomial time. Both the eigenvector method
and the SDP method are polynomial-time relaxations of the maximum log-likelihood
problem. In the previous section we showed that the eigenvector method fails to re-
cover the true angles when p is below the threshold probability peigc . It is clear that
even the maximum likelihood solution would fail to recover the correct set of angles
below some (perhaps lower) threshold. It is therefore natural to ask if the threshold
value of the polynomial eigenvector method gets close to the optimal threshold value
of the exponential-time maximum likelihood exhaustive search. In this section we
provide a positive answer to this question using the information theoretic Shannon
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bound [36]. Specifically, we show that the threshold probability for the eigenvec-
tor method is asymptotically larger by just a multiplicative factor compared to the
threshold probability of the optimal recovery algorithm. The multiplicative factor is a
function of the angular discretization resolution, but not a function of n and m. The
eigenvector method becomes less optimal as the discretization resolution improves.

We start the analysis by recalling that from the information theoretic point of
view, the uncertainty in the values of the angles is measured by their entropy. The
noisy offset measurements carry some bits of information on the angle values, therefore
decreasing their uncertainty, which is measured by the conditional entropy that we
need to estimate.

The angles θ1, . . . , θn can take any real value in the interval [0, 2π). However, an
infinite number of bits is required to describe real numbers, and so we cannot hope
to determine the angles with an arbitrary precision. Moreover, the offset measure-
ments are also discretized, as each of the cryo-EM projection images is made of a
finite number of pixels. We therefore seek to determine the angles only up to some
discretization precision 2π

L , where L is the number of subintervals of [0, 2π) obtained
by dividing the unit circle is into L equally sized pieces.

Before observing any of the offset measurements, the angles are uniformly dis-
tributed on {0, 1, . . . , L− 1}, that is, each of them falls with equal probability 1/L to
any of the L subintervals. It follows that the entropy of the i’th angle θi is given by

H(θi) = −
L−1
∑

l=0

1

L
log2

1

L
= log2 L, for i = 1, 2, . . . , n. (8.1)

We denote by θ
n = (θ1, . . . , θn) the vector of angles. Since θ1, . . . , θn are independent

(the orientations of the molecules are random), their joint entropy H(θn) is given by

H(θn) =

n
∑

i=1

H(θi) = n log2 L, (8.2)

reflecting the fact that the configuration space is of size Ln = 2n log
2

L.
Let δij be the random variable for the outcome of the noisy offset measure-

ment of θi and θj . The random variable δij is also discretized and takes values in
{0, 1, . . . , L − 1}. We denote by δ

m = (δi1j1 ,. . . ,δimjm
) the vector of all offset mea-

surements. Conditioned on the values of θi and θj , the random variable δij has the
following conditional probability distribution

Pr{δij | θi, θj} =

{ 1−p
L δij 6= θi − θj mod L,

p+ 1−p
L δij = θi − θj mod L,

(8.3)

because with probability 1 − p the measurement δij is an outlier that takes each
of the L possibilities with equal probability 1

L , and with probability p it is a good
measurement that equals θi − θj . It follows that the conditional entropy H(δij |θi, θj)
is

H(δij |θi, θj) = −(L− 1)
1 − p

L
log2

1 − p

L
−
(

p+
1 − p

L

)

log2

(

p+
1 − p

L

)

. (8.4)

We denote this entropy by H(L, p) and its deviation from log2 L by I(L, p), that is,

H(L, p) ≡ −(L− 1)
1 − p

L
log2

1 − p

L
−
(

p+
1 − p

L

)

log2

(

p+
1 − p

L

)

. (8.5)
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and

I(L, p) ≡ log2 L−H(L, p). (8.6)

Without conditioning, the random variable δij is uniformly distributed on {0, . . . , L−
1} and has entropy

H(δij) = log2 L. (8.7)

It follows that the mutual information I(δij ; θi, θj) between the offset measurement
δij and the angle values θi and θj is

I(δij ; θi, θj) = H(δij) −H(δij |θi, θj) = log2 L−H(L, p) = I(L, p). (8.8)

This mutual information measures the reduction in the uncertainty of the random
variable δij from knowledge of θi and θj. Due to the symmetry of the mutual infor-
mation,

I(δij ; θi, θj) = H(δij) −H(δij |θi, θj) = H(θi, θj) −H(θi, θj |δij), (8.9)

the mutual information is also the reduction in uncertainty of the angles θi and θj

given the noisy measurement of their offset δij . Thus,

H(θi, θj |δij) = H(θi, θj) − I(δij ; θi, θj). (8.10)

Similarly, given all m offset measurements δ
m, the uncertainty in θ

n is given by

H(θn|δm) = H(θn) − I(δm; θn), (8.11)

with

I(δm; θn) = H(δm) −H(δm|θn). (8.12)

A simple upper bound for this mutual information is obtained by explicit evaluation of
the conditional entropy H(δm|θn) combined with a simple upper bound on the joint
entropy termH(δm). First, note that given the values of θ1, . . . , θn, the offsets become
independent random variables. That is, knowledge of δi1j1 (given θi1 , θj1) does not give
any new information on the value of δi2j2 (given θi2 , θj2). The conditional probability
distribution of the offsets is completely determined by (8.3), and the conditional
entropy is therefore the sum of m identical entropies of the form (8.4)

H(δm|θn) = mH(L, p). (8.13)

Next, bounding the joint entropy H(δm) by the logarithm of its configuration space
size Lm yields

H(δm) ≤ m log2 L. (8.14)

Note that this simple upper bound ignores the dependencies among the offsets which
we know to exist, as implied, for example, by the triplet consistency relation (4.1). As
such, (8.14) is certainly not a tight bound, but still good enough to prove our claim
about the nearly optimal performance of the eigenvector method.
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Plugging (8.13) and (8.14) in (8.12) yields the desired upper bound on the mutual
information

I(δm; θn) ≤ m log2 L−mH(L, p) = mI(L, p). (8.15)

Now, substituting the bound (8.15) and the equality (8.2) in (8.11) gives a lower
bound for the conditional entropy

H(θn|δm) ≥ n log2 L−mI(L, p). (8.16)

We may interpret this bound in the following way. Before seeing any offset measure-
ment the entropy of the angles is n log2 L, and each of the m offset measurements can
decrease the conditional entropy by at most I(L, p), the information that it carries.

The bound (8.16) demonstrates, for example, that for fixed n, p and L, the
conditional entropy is bounded from below by a linear decreasing function of m. It
follows that unless m is large enough, the uncertainty in the angles would be too
large. Information theory says that a successful recovery of all θ1, . . . , θn is possible
only when their uncertainty, as expressed by the conditional entropy, is small enough.
The last statement can be made precise by Fano’s inequality and Wolfowitz’ converse,
also known as the weak and strong converse theorems to the coding theorem that
provide a lower bound for the probability of the error probability in terms of the
conditional entropy, see, e.g., [36, Chapter 8.9, pages 204-207] and [37, Chapter 5.8,
pages 173-176].

In the language of coding, we may think of θ
n as a codeword that we are trying

to decode from the noisy vector of offsets δ
m which is probabilistically related to θ

n.
The codeword θ

n is originally uniformly distributed on {1, 2, . . . , 2n log
2

L} and from

δ
m we estimate θ

n as one of the 2n log
2

L possibilities. Let the estimate be θ̂
n

and
define the probability of error as Pe = Pr{θ̂n 6= θ

n}. Fano’s inequality [36, Lemma
8.9.1, page 205] gives the following lower bound on the error probability

H(θn|δm) ≤ 1 + Pen log2 L. (8.17)

Combining (8.17) with the lower bound for the conditional entropy (8.16) we obtain
a weak lower bound on the error probability

Pe ≥ 1 − m

n

I(L, p)

log2 L
− 1

n log2 L
. (8.18)

This lower bound for the probability of error is applicable to all decoding algorithms,
not just for the eigenvector method. For large n, we see that for any β < 1,

m

n

I(L, p)

log2 L
< β =⇒ Pe ≥ 1 − β + o(1). (8.19)

We are mainly interested in the limit m,n → ∞ and p → 0 with L being fixed. The
Taylor expansion of I(L, p) (given by (8.5)-(8.6)) near p = 0 reads

I(L, p) =
1

2
(L− 1)p2 +O(p3). (8.20)

Combining (8.19) and (8.20) we obtain that

p =

√

n

m

2 log2 L

(L − 1)
β =⇒ Pe ≥ 1 − β + o(1), as n,m→ ∞, n/m→ 0. (8.21)
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Note that n/m→ 0, because m ≥ n logn in order to ensure with high probability the
connectivity of the measurement graph G. The bound (8.21) was derived using the
weak converse theorem (Fano’s inequality). It is also possible to show that the prob-
ability of error goes exponentially to 1 (using the Wolfowitz’ converse and Chernoff
bound, see [37, Theorem 5.8.5, pages 173-176]).

The above discussion shows that there does not exist a decoding algorithm with
a small probability for the error for values of p below the threshold probability pinf

c

given by

pinf
c =

√

n

m

2 log2 L

L− 1
. (8.22)

Note that for L = 2, the threshold probability of the eigenvector method (7.46) is 2
times smaller than pinf

c . This is not a violation of information theory, because the fact
that the top eigenvector has a non-trivial correlation with the vector of true angles
does not mean that all angles are recovered correctly by the eigenvector. The fact that
the eigenvector method gives non-trivial correlations below the information theoretic
bound is just another evidence to its effectiveness.

We turn to shed some light on why it is possible to partially recover the angles
below the information theoretic bound. The main issue here is that it is perhaps too
harsh to measure the success of the decoding algorithm by Pe = Pr{θ̂n 6= θ

n}. For
example, when the decoding algorithm decodes 999 angles out of n = 1000 correctly
while making just a single mistake, we still count it as a failure. It may be more
natural to consider the probability of error in the estimation of the individual angles.
We proceed to show that this measure of error leads to a threshold probability which
is smaller than (8.22) by a constant factor.

Let P
(1)
e = Pr{θ̂1 6= θ1} be the probability of error in the estimation of θ1. Again,

we want to use Fano’s inequality to bound the probability of the error by bounding
the conditional entropy. A simple lower bound to the conditional entropy H(θ1|δm)
is obtained by conditioning on the remaining n− 1 angles

H(θ1|δm) ≥ H(θ1|δm, θ2, θ3, . . . , θn). (8.23)

Suppose that there are d1 noisy offset measurements of the form θ1 − θj , that is, d1

is the degree of node 1 in the measurement graph G. Let the neighbors of node 1
be j1, j2, . . . , jd1

with corresponding offset measurements δ1j1 , . . . , δ1jd1
. Given the

values of all other angles θ2, . . . , θn, and in particular the values of θj1 , . . . , θjd1
, these

d1 equations become noisy equations for the single variable θ1. We denote these
transformed equations for θ1 alone by δ̃1, . . . , δ̃d1

. All other m− d1 equations do not
involve θ1 and therefore do not carry any information on its value. It follows that

H(θ1|δm, θ2, θ3, . . . , θn) = H(θ1|δ̃1, . . . , δ̃d1
). (8.24)

We have

H(δ̃1, . . . , δ̃d1
|θ1) = d1H(L, p), (8.25)

because given θ1 these d1 equations are i.i.d random variables with entropy H(L, p).
Also, a simple upper bound on the d1 equations (without conditioning) is given by

H(δ̃1, . . . , δ̃d1
) ≤ d1 log2 L, (8.26)
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ignoring possible dependencies among the outcomes. From (8.25)-(8.26) we get an
upper bound for the mutual information between θ1 and the transformed equations

I(θ1; δ̃1, . . . , δ̃d1
) ≤ d1 [log2 L−H(L, p)] = d1I(L, p). (8.27)

Combining (8.23),(8.24) (8.27) and (8.1) we get

H(θ1|δm) ≥ H(θ1|δm, θ2, θ3, . . . , θn) (8.28)

= H(θ1|δ̃1, . . . , δ̃d1
)

= H(θ1) − I(θ1; δ̃1, . . . , δ̃d1
)

≥ log2 L− d1I(L, p).

This lower bound on the conditional entropy translates, via Fano’s inequality, to a

lower bound on the probability of error P
(1)
e , and it follows that

d1I(L, p) > log2 L (8.29)

is a necessary condition for having a small P
(1)
e . Similarly, the condition for a small

probability of error in decoding θi is

diI(L, p) > log2 L, (8.30)

where di is the degree of vertex i in the measurement graph. This condition suggests
that we should have more success in decoding angles of high degree. The average
degree d̄ in a graph with n vertices and m edges is d̄ = 2m

n . The condition for
successful decoding of angles with degree d̄ is

2m

n
I(L, p) > log2 L. (8.31)

In particular, this would be the condition for all vertices in a regular graph, or in a
graph whose degree distribution is concentrated near d̄. Recall that in class averaging
of cryo-EM images, we can simply discard images with a small vertex degree, thus
making the graph G more balanced. In light of (8.30), it may make sense to trim

vertices whose degree is smaller than log
2

L
I(L,p) .

Substituting the Taylor expansion (8.20) into (8.31) results in the condition

p >

√

n

m

log2 L

L− 1
. (8.32)

This means that successful decoding of the individual angles may be possible already
for p > pind

c , where

pind
c =

√

n

m

log2 L

L− 1
, (8.33)

but the estimation of the individual angles must contain some error when p < pind
c .

Note that pind
c < pinf

c , so while for p values between pind
c and pinf

c it is impossible to
successfully decode all angles, it may still be possible to decode some angles.

Comparing the threshold probability of the eigenvector method peigc given by
(7.46) and the information theoretic threshold probability pind

c (8.33) below which
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no algorithm can successfully recover individual angles, we find that their ratio is
asymptotically independent of n and m:

peigc

pind
c

=

√

L− 1

2 log2 L
+ o(1). (8.34)

Note that the threshold probability peigc is smaller than pind
c for L ≤ 6. Thus, we may

regard the eigenvector method as an optimal recovery algorithm for offset equations
with a small modulo L.

For L ≥ 7, equation (8.34) implies a gap between the threshold probabilities peigc

and pind
c , suggesting that the exhaustive exponential search for the maximum like-

lihood would perform better than the polynomial time eigenvector method. Note,
however, that the gap would be significant only for very large values of L that corre-
spond to very fine angular resolutions. For example, the angular resolution of 100×100
pixel images is about L = 100, and the threshold probability of the eigenvector method

would only be
√

99
2 log

2
100 ≈ 2.73 times larger than that of the maximum likelihood.

The exponential complexity of O(mLn) of the exhaustive search for the maximum
likelihood makes it impractical even for moderate-scale problems. On the other hand,
the eigenvector method has a polynomial running time and it can handle large scale
problems with relative ease.

9. Connection with Max-2-Lin mod L and Unique Games. The angular
synchronization problem is related to the combinatorial optimization problem Max-2-

Lin mod L for maximizing the number of satisfied linear equations mod L with exactly
2 variables in each equation, because the discretized offset equations θi − θj = δij
mod L are exactly of this form. Max-2-Lin mod L is a problem mainly studied in
theoretical computer science, where we prefer using the notation “mod L” instead of
the more common “mod p”, to avoid confusion between the size of the modulus and
the proportion of good measurements.

Note that a random assignment of the angles would satisfy a 1
L fraction of the

offset equations. Andersson, Engebretsen, and H̊astad [10] considered SDP based al-
gorithms for Max-2-Lin mod L, and showed that they could obtain an 1

L (1 + κ(L))-
approximation algorithm, where κ(L) > 0 is a constant that depends on L. In par-
ticular, they gave a very weak proven performance guarantee of 1

L (1 + 10−8), though
they concluded that it is most likely that their bounds can be improved significantly.
Moreover, for L = 3 they numerically find the approximation ratio to be 1

1.27 ≈ 0.79,
and later Goemans and Williamson [38] proved a 0.793733-approximation. The SDP
based algorithms in [10] are similar in their formulation to the SDP based algorithm
of Frieze and Jerrum for Max-k-Cut [39], but with a different rounding procedure.
In these SDP models, L vectors are assigned to each of the n angle variables, so that
the total number of vectors is nL. The resulting nL × nL matrix of inner products
is required to be semidefinite positive, along with another set of O(n2L2) linear and
inequality constraints. Due to the large size of the inner product matrix and the
large number of constraints, our numerical experiments with these SDP models were
limited to relatively small size problems (such as n = 20 and L = 7) from which it was
difficult to get a good understanding of their performance. In the small scale problems
that we did manage to test, we did not find any supporting evidence that these SDP
algorithms perform consistently better than the eigenvector method, despite their ex-
tensive running times and memory requirements. For our SDP experiments we used
the software SDPT3 [40, 41] and SDPLR [42] in MATLAB. In [10] it is also shown that it
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is NP-hard to approximate Max-2-Lin mod L within a constant ratio, independent
of L. Thus, we should expect an L-dependent gap similar to (8.34) for any polynomial
time algorithm, not just for the eigenvector method.

Max-2-Lin is an instance of what is known as unique games [43], described
below. One distinguishing feature of the offset equations is that every constraint
corresponds to a bijection between the values of the associated variables. That is, for
every possible value of θi, there is a unique value of θj that satisfies the constraint
θi − θj = δij . Unique games are systems of constraints, a generalization of the offset
equations, that have this uniqueness property, so that every constraint corresponds
to some permutation.

As in the setting of offset equations, instances of unique games where all con-
straints are satisfiable are easy to handle. Given an instance where 1 − ε fraction of
constraints are satisfiable, the Unique Games Conjecture (UGC) of Khot [44] says
that it is hard to satisfy even a δ fraction of the constraints. The UGC has been
shown to imply a number of inapproximability results for fundamental problems that
seem difficult to obtain by more standard complexity assumptions. Note that in
our angular synchronization problem the fraction of constraints that are satisfiable is
1 − ε = p+ 1−p

L .
Charikar, Makarychev and Makarychev [45] presented improved approximation

algorithms for unique games. For instances with domain size L where the optimal
solution satisfies 1 − ε fraction of all constraints, their algorithms satisfy roughly
L−ε/(2−ε) and 1 −O(

√
ε logL) fraction of all constraints. Their algorithms are based

on SDP, also with an underlying inner products matrix of size nL × nL, but their
constraints and rounding procedure are different than those of [10]. Given the results
of [46], the algorithms in [45] are near optimal if the UGC is true, that is, any im-
provement (beyond low order terms) would refute the conjecture. We have not tested
their SDP based algorithm in practice, because, like the SDP of [10] it is also expected
to be limited to relatively small scale problems.

10. Summary and Further Applications. In this paper we presented an
eigenvector method and an SDP approach for solving the angular synchronization
problem, and in particular for finding a self consistent rotational alignment of a large
data set of noisy cryo-EM projection images. We used random matrix theory to prove
that the eigenvector method finds an accurate estimate for the rotation angles even
in the presence of a large number of outlier measurements.

The idea of synchronization by eigenvectors goes beyond the class averaging prob-
lem of cryo-EM images, and can be applied to other problems exhibiting a group
structure and noisy measurements of relations of group elements. In this paper we
specialized the class averaging problem of cryo-EM, in which images that share the
same view angle were viewed as points on the unit circle S1 which has the group
structure of SO(2). If two projections Pi and Pj share the same viewing angle then
the optimal rotation angle δij satisfies the group relation

eıδij = eıθie−ıθj . (10.1)

If, however, Pi and Pj do not share a similar viewing angle then the measurement of
δij is just a random angle.

In the general case we may consider a group G other than SO(2) for which we
have good and bad measurements of the group relations

gij = gigj
−1, gi, gj ∈ G. (10.2)
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For example, in the general case, the triplet consistency relation (4.1) simply reads

gijgjkgki = gigj
−1gjgk

−1gkgi
−1 = e, (10.3)

where e is the identity element of G.
Whenever the group G is compact and has a complex or real representation (for

example, the rotation group SO(3) has a real representation using 3 × 3 rotation
matrices), we may construct an Hermitian matrix whose ij element is the matrix
representation of the measurement gij and look for its top eigenvectors. In some cases
the eigenvector method can be applied even when there is only partial information
about the group relations as we demonstrated in constructing a self-consistent solution
to the angular reconstitution problem in cryo-EM that admits the group structure of
SO(3) and where the common-lines give only partial information about the group
relations [47]. The generalization of the eigenvector method to the distance geometry
problem in NMR spectroscopy [48, 49], to localization of sensor networks [50, 51] and
to the problem of low-rank matrix completion [52], as well as the formulation of such
problems as d-to-1 games [45], will be discussed in a separate publication.

The eigenvector method can also be applied to non-compact groups that can
be compactified. For example, consider the group of real numbers R with addition.
One may consider the synchronization problem of clocks that measure noisy time
differences of the form

ti − tj = tij , ti, tj ∈ R. (10.4)

We compactify the group R by mapping it to the unit circle t 7→ eıωt, where ω ∈ R

is a parameter to be chosen not too small and not too big, as we now explain. There
may be two kinds of measurement errors in (10.4). The first kind of error is a small
discretization error (e.g., a small Gaussian noise) of typical size ∆. The second type of
error is a large error that can be regarded as an outlier. For example, in some practical
application an error of size 10∆ may be considered as an outlier. We therefore want
ω to satisfy ω ≫ (1/10)∆−1 (not too small) and ω ≪ ∆−1 (not too large), so that
when constructing the matrix

Hij =

{

eıωtij {i, j} ∈ E,
0 {i, j} 6∈ E,

(10.5)

each good equation will contribute approximately 1, while the contribution of the
bad equations will be uniformly distributed on the unit circle. One may even try
several different values for the “frequency” ω in analogy to the Fourier transform. An
overdetermined linear system of the form (10.4) can also be solved using least squares.
However, the contribution of outlier equations will dominate the sum of squares error.
For example, each outlier equation with error 10∆ contributes to the sum of squares
error the same as 100 good equations with error ∆. The compactification of the
group combined with the eigenvector method has the appealing effect of reducing
the impact of the outlier equations. This technique can also be used to center the
raw projection images with respect to in-plane shifts in both directions. Each pair
of images can be optimally aligned not only with respect to rotations but also with
respect to translations in the x and y in-plane directions, yielding optimal shifts of
the form xij and yij , each of which can be used to construct a matrix of the form
(10.5). We do not expect the top eigenvectors of the translation “H” matrices to
be as significant as the top eigenvector of the rotation H matrix, since images are
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already roughly centered, and translations span only a few pixels in each direction
(left-right, up-down). The eigenvector method based on (10.5) may also be useful for
the surface reconstruction problems in computer vision [3, 4] and optics [5] in which
current methods succeed only in the presence of a limited number of outliers.
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