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Abstract. The cryo-electron microscopy (EM) reconstruction problem is to find the three-
dimensional structure of a macromolecule given noisy samples of its two-dimensional projection
images at unknown random directions. Present algorithms for finding an initial 3D structure model
are based on the “Angular Reconstitution” method in which a coordinate system is established
from three projections, and the orientation of the particle giving rise to each image is deduced from
common lines among the images. However, a reliable detection of common lines is difficult due to
the low signal-to-noise ratio of the images. In this paper we describe two algorithms to find the
unknown imaging directions of all projections by minimizing global self consistency errors. In the
first algorithm, the minimizer is obtained by computing the three largest eigenvectors of a specially
designed symmetric matrix derived from the common-lines, while the second algorithm is based
on semidefinite programming (SDP). Compared with existing sequential algorithms, the advantages
of our algorithms are four-fold: first, they correctly find all orientations at very low common-line
detection rates; second, they are extremely fast, as they involve only the computation of a few top
eigenvectors or a sparse SDP; third, they are non-sequential and use the information in all common-
lines at once; finally, they are amenable to rigorous mathematical analysis using harmonic analysis
and random matrix theory. As an example, we show a successful recovery from 500 projection images
that only 10% of the common lines between them were correctly identified.

Key words. Cryo electron-microscopy, angular reconstitution, random matrices, semi-circle
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1. Introduction. Electron cryomicroscopy (cryo-EM) is a technique by which
biological macromolecules are imaged in an electron microscope. The molecules are
rapidly frozen in a thin (∼ 100nm) layer of vitreous ice, trapping them in a nearly-
physiological state [1, 2]. Cryo-EM images, however, have very low contrast, due
to the absence of heavy-metal stains or other contrast enhancements, and have very
high noise due to the small electron doses that can be applied to the specimen. Thus
to obtain a reliable three-dimensional density map of a macromolecule, the informa-
tion from thousands of images of identical molecules must be combined. When the
molecules are arrayed in a crystal, the necessary signal-averaging of noisy images is
straightforwardly performed. More challenging is the problem of single-particle recon-
struction (SPR) where a three-dimensional density map is to be obtained from images
of individual molecules present in random positions and orientations in the ice layer
[1]. Because it does not require the formation of crystalline arrays of macromolecules,
SPR is a very powerful and general technique, which has been successfully used for 3D
structure determination of many protein molecules and complexes roughly 500 kDa or
larger in size. In some cases, sufficient resolution (∼ 0.4nm) has been obtained from
SPR to allow tracing of the polypeptide chain and identification of residues in proteins
[3, 4, 5]; however, even with lower resolutions many important features can be identi-
fied [6]. A particular challenge is the ab initio estimation of the 3D structure from a
set of cryo-EM images. If no other information is available, the matching of common
Fourier lines in three averaged images, a technique called “Angular Reconstitution”
[7] allows a coordinate system to be established, and the orientation of the particles
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giving rise to other images are then deduced by further matching of common lines.
This method fails however when the particles are too small or the signal-to-noise ratio
is too low.

The common lines between three projections determine uniquely their relative
orientations up to handedness (chirality). This is the basis of the angular reconstitu-
tion method of Van Heel [7], which was also developed independently by Vainshtein
and Goncharov [8]. Farrow and Ottensmeyer [9] used quaternions to obtain the rela-
tive orientation of a new projection in a least square sense. The main problem with
such sequential approaches is that they are sensitive to false detection of common
lines which leads to the accumulation of errors. Penczek et al. [10] tried to obtain
the rotations corresponding to all projections simultaneously by minimizing a global
energy functional. Unfortunately, minimization of the energy functional requires a
brute force search in a huge parametric space of all possible orientations for all pro-
jections. Mallick et al. [11] suggested an alternative Bayesian approach, in which the
common line between a pair of projections can be inferred from their common lines
with different projection triplets. The problem with this particular approach is that
it requires too many (at least seven) common lines to be correctly identified simul-
taneously. Therefore, it is not suitable in cases where the detection rate of correct
common lines is low. In [12] we introduced an improved Bayesian approach based on
voting that requires only two common lines to be correctly identified simultaneously
and performs at much lower detection rates.

In this paper we introduce two algorithms that find the unknown imaging di-
rections of all projections in a globally consistent way. Both algorithms are based
on relaxations of a global minimization problem of a particular self consistent error
(SCE) that takes into account the matching of common lines between all pairs of
images. A similar SCE was used in [9] to asses the quality of their angular reconsti-
tution techniques. Our approach is different in the sense that we actually minimize
the SCE in order to find the imaging directions. The precise definition of our global
self consistency error is given in Section 2.

In Section 3 we present our first recovery algorithm in which the global minimizer
is approximated by the top three eigenvectors of a specially designed symmetric matrix
derived from the common-lines data. We describe how the unknown rotations are
recovered from these eigenvectors.

In Section 4 we use a different relaxation of the global optimization, which leads to
our second recovery method based on semidefinite programming (SDP) [13] drawing
similarities to the Goemans-Williamson max-cut algorithm [14].

Compared with existing sequential algorithms, the main advantage of our meth-
ods is that they correctly find the orientations of all projections at amazingly low
common-line detection rates as they take into account all the geometric information
in all common-lines at once. In Section 5 we describe the results of several numeri-
cal experiments using the two algorithms, showing successful recoveries at very low
common-line detection rates. For example, both algorithms successfully recover a
meaningful ab-initio coordinate system from 500 projection images when only 10%
of the common lines are correctly identified. The eigenvector method is extremely
efficient, and the estimated 500 rotations were obtained in a manner of seconds on a
standard laptop machine.

In Section 6 we show that in the limit of infinite number of projection images,
the symmetric matrix that we design converges to a convolution integral operator on
the rotation group SO(3). This observation explains many of the spectral properties
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that the matrix exhibits. Moreover, in Section 7 we show that the effect of the
misidentified common-lines is equivalent to a random matrix perturbation. Thus,
using random matrix theory, we demonstrate that the top three eigenvalues are stable

as long as the detection rate of common lines exceeds
√

2√
N

, where N is the number of

images. From the practical point of view, this result implies that 3D reconstruction is
possible even at extreme levels of noise, provided that enough projections were taken.
Even if reconstruction is not possible from the raw noisy images, the eigenvector
method would allow reconstructions from noisy class averages obtained from averaging
together fewer projections.

2. The global self consistency error. Suppose we collect N two-dimensional
digitized projection images P1, . . . , PN of a 3D object taken at unknown random
orientations. To each projection image Pi (i = 1, . . . , N) there corresponds a 3 × 3
unknown rotation matrix Ri describing its orientation (see Figure 2.1). Excluding the
contribution of noise, the pixel intensities correspond to line integrals of the electric
potential induced by the molecule along the path of the imaging electrons, that is,

Pi(x, y) =

∫ ∞

−∞
φi(x, y, z) dz, (2.1)

where φ(x, y, z) is the electric potential of the molecule in some fixed ‘laboratory’
coordinate system and φi(r) = φ(R−1

i r) with r = (x, y, z). The projection opera-
tor (2.1) is also known as the X-ray transform [15]. Our goal is to find all rotation
matrices R1, . . . , RN given the dataset of noisy images.

Fig. 2.1. Schematic drawing of the imaging process: every projection image corresponds to
some unknown 3D rotation of the unknown molecule.

The Fourier-projection slice theorem (see, e.g., [15, p. 11]) says that the 2D
Fourier transform of a projection image, denoted P̂ , is the restriction of the 3D Fourier
transform of the projected object φ̂ to the central plane (i.e., going through the origin)
θ⊥ perpendicular to the imaging direction, that is,

P̂ (η) = φ̂(η), η ∈ θ⊥. (2.2)

As every two non-parallel planes intersect at a line, it follows from the Fourier-
projection slice theorem that any two projection images have a common line of inter-
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section in the Fourier domain. Therefore, if P̂i and P̂j are the two-dimensional Fourier

transforms of projections Pi and Pj , then there must be a central line in P̂i and a

central line in P̂j on which the two transforms agree (see Figure 2.2). This pair of
lines is known as the common-line. We parameterize the common-line by (ωxij , ωyij)

in P̂i and by (ωxji, ωyji) in P̂j , where ω ∈ R is the radial frequency and (xij , yij) and
(xji, yji) are two unit vectors for which

P̂i(ωxij , ωyij) = P̂j(ωxji, ωyji), for all ω ∈ R. (2.3)

It is instructive to consider the unit vectors (xij , yij) and (xji, yji) as three-dimensional
vectors by zero-padding: Let cij and cji be unit vectors in the direction of the common

line between P̂i and P̂j , respectively, given coordinate-wise by

cij = (xij , yij , 0)T , (2.4)

cji = (xji, yji, 0)T . (2.5)

Being the common-line of intersection, the mapping of cij by Ri must coincide with
the mapping of cji by Rj :

Ricij = Rjcji, for 1 ≤ i < j ≤ N. (2.6)

These can be viewed as
(

N
2

)

linear equations for the 6N variables corresponding
to the first two columns of the rotation matrices (as cij and cji have a zero third
entry, the third column of each rotation matrix does not contribute in (2.6)). Such
overdetermined systems of linear equations are usually solved by the least squares
method [10]. Unfortunately, the least squares approach is inadequate in our case due
to the typically large proportion of falsely detected common lines that will dominate
the sum of squares error in

min
R1,...,RN

∑

i6=j

‖Ricij − Rjcji‖2. (2.7)

Moreover, the global least squares problem (2.7) is extremely difficult to solve if one
requires the matrices Ri to be rotations, that is, when adding the constraints

RiR
T
i = I, det(Ri) = 1, for i = 1, . . . , N, (2.8)

where I is the 3×3 identity matrix. A relaxation method that neglects the constraints
(2.8) will simply collapse to the trivial solution R1 = . . . = RN = 0 which obviously
does not satisfy the constraint (2.8). Such a collapse is easily prevented by fixing
one of the rotations, for example, by setting R1 = I, but this would not make the
robustness problem of the least squares method to go away. We therefore take a
different approach for solving the global optimization problem.

Since ‖cij‖ = ‖cji‖ = 1 are three-dimensional unit vectors, their rotations are
also unit vectors, that is, ‖Ricij‖ = ‖Rjcji‖ = 1. It follows that the minimization
problem (2.7) is equivalent to the maximization problem of the sum of dot products

max
R1,...,RN

∑

i6=j

Ricij · Rjcji, (2.9)

subject to the constraints (2.8). For the true assignment of rotations, the dot product
Ricij ·Rjcji equals 1 whenever the common line between images i and j was correctly
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Fig. 2.2. Fourier projection-slice theorem

detected. Dot products corresponding to misidentified common lines can take any
value between −1 to 1, and if we assume that such misidentified lines have random
directions, then such dot products can be considered as identically independently
distributed (i.i.d) zero-mean random variables taking values in [−1, 1]. The objective
function in (2.9) is the summation over all possible dot products. Summing up dot
products that correspond to misidentified common lines results in many cancelations,
whereas summing up dot products of correctly identified common lines is simply
a sum of ones. We may consider the contribution of the falsely detected common
lines as a random walk on the real line, where steps to the left and to the right
are equally probable. From this interpretation it follows that the total contribution
of the misidentified common lines to the objective function (2.9) is proportional to
the square root of the number of misidentifications, whereas the contribution of the
correctly identified common lines is linear. This square-root diminishing effect of
the misidentifications makes the global optimization (2.9) extremely robust compared
with the least squares approach, which is much more sensitive because its objective
function is dominated by the misidentifications.

These intuitive arguments regarding the statistical attractiveness of the optimiza-
tion problem (2.9) will be later put on a firm mathematical ground using random
matrix theory as elaborated in Section 7. Still, in order for the optimization problem
(2.9) to be of any practical use, we must show that its solution can be efficiently com-
puted. We note that our objective function is closely related to the SCE of Farrow
and Ottensmeyer [9, p. 1754, eq. (6)], given by

SCE =
∑

i6=j

arccos (Ricij · Rjcji) . (2.10)

This SCE was introduced and used in [9] to measure the success of their quaternion-
based sequential iterative angular reconstitution methods. At the little price of delet-
ing the well-behaved monotonic nonlinear arccos function in (2.10) we arrive at (2.9),
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which, as we will soon show, has the great advantage of being amenable to efficient
global non-sequential optimization by either spectral or semidefinite programming
relaxations.

3. Eigenvector relaxation. The objective function in (2.9) is quadratic in the
unknown rotations R1, . . . , RN , which means that if the constraints (2.8) are properly
relaxed, then the solution to the maximization problem (2.9) would be related to
the top eigenvectors of the matrix defining the quadratic form. In this section we
give a precise definition of that matrix, and show how the unknown rotations can be
recovered from its top three eigenvectors.

We first define the following four N ×N matrices S11, S12, S21, and S22 using all
available common-line data (2.4)-(2.5) as follows:

S11
ij = xijxji, S12

ij = xijyji, S21
ij = yijxji, S22

ij = yijyji, (3.1)

for 1 ≤ i 6= j ≤ N , while their diagonals are set to zero

S11
ii = S12

ii = S21
ii = S22

ii = 0, i = 1, . . . , N.

Clearly, S11 and S22 are symmetric matrices (S11 = S11T
and S22 = S22T

), while

S12 = S21T
. It follows that the 2N × 2N matrix S given by

S =

(

S11 S12

S21 S22

)

(3.2)

is symmetric (S = ST ) and storing all available common line information. More
importantly, the top eigenvectors of S will reveal all rotations in a manner we describe
below.

We denote the columns of the rotation matrix Ri by R1
i , R2

i and R3
i , and write

the rotation matrices as

Ri =





| | |
R1

i R2
i R3

i

| | |



 =





x1
i x2

i x3
i

y1
i y2

i y3
i

z1
i z2

i z3
i



 , i = 1, . . . , N. (3.3)

Only the first two columns of the Ri’s need to be recovered, because the third columns
are given by the cross product: R3

i = R1
i × R2

i . We therefore need to recover the six
N -dimensional coordinate vectors x1, y1, z1, x2, y2, z2 that are defined by

x1 = (x1
1 x1

2 · · · x1
N )T , y1 = (y1

1 y1
2 · · · y1

N )T , z1 = (z1
1 z1

2 · · · z1
N )T , (3.4)

x2 = (x2
1 x2

2 · · · x2
N )T , y2 = (y2

1 y2
2 · · · y2

N )T , z2 = (z2
1 z2

2 · · · z2
N )T . (3.5)

Alternatively, we need to find the following three 2N -dimensional vectors x, y and z

x =

(

x1

x2

)

, y =

(

y1

y2

)

, z =

(

z1

z2

)

. (3.6)

Using this notation we rewrite the objective function (2.9) as

∑

i6=j

Ricij · Rjcji = xT Sx + yT Sy + zT Sz, (3.7)
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which is a result of the following index manipulation

∑

i6=j

Ricij · Rjcji =
∑

i6=j

xijxjiR
1
i · R1

j + xijyjiR
1
i · R2

j + yijxjiR
2
i · R1

j + yijyjiR
2
i · R2

j

=
∑

i6=j

S11
ij R1

i · R1
j + S12

ij R1
i · R2

j + S21
ij R2

i · R1
j + S22

ij R2
i · R2

j (3.8)

=
∑

i,j

S11
ij (x1

i x
1
j + y1

i y1
j + z1

i z1
j ) + S12

ij (x1
i x

2
j + y1

i y2
j + z1

i z2
j ) +

S21
ij (x2

i x
1
j + y2

i y1
j + z2

i z1
j ) + S22

ij (x2
i x

2
j + y2

i y2
j + z2

i z2
j )

= x1T
S11x1 + y1T

S11y1 + z1T
S11z1 +

x1T
S12x2 + y1T

S12y2 + z1T
S12z2 +

x2T
S21x1 + y2T

S21y1 + z2T
S21z1 +

x2T
S22x2 + y2T

S22y2 + z2T
S22z2

= xT Sx + yT Sy + zT Sz. (3.9)

The equality (3.7) shows that the maximization problem (2.9) is equivalent to the
maximization problem

max
R1,...,RN

xT Sx + yT Sy + zT Sz, (3.10)

subject to the constraints (2.8). In order to make this optimization problem tractable,
we relax the constraints and look for the solution of the proxy maximization problem

max
‖x‖=1

xT Sx. (3.11)

The connection between the solution to (3.11) and that of (3.10) will be made shortly.
Since S is a symmetric matrix it has a complete set of orthonormal eigenvectors
{v1, . . . , v2N} satisfying

Svn = λnvn, n = 1, . . . , 2N,

with real eigenvalues

λ1 ≥ λ2 ≥ . . . ≥ λ2N .

The solution to the maximization problem (3.11) is therefore given by the top eigen-
vector v1 with largest eigenvalue λ1

v1 = argmax
‖x‖=1

xT Sx. (3.12)

If the unknown rotations are sampled from the uniform distribution (Haar measure)
over SO(3), that is, when the molecule has no preferred orientation, then the largest
eigenvalue should have multiplicity three, corresponding to the vectors x, y and z, as
the symmetry of the problem in this case suggests that there is nothing special about
x. We therefore expect to recover the first two columns of the rotation matrices
R1, . . . , RN from the top three eigenvectors v1, v2, v3 of S. This recovery is performed
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by constructing for every i = 1, . . . , N a 3× 3 matrix Ai =





| | |
A1

i A2
i A3

i

| | |



 whose

columns are given by

A1
i =





v1
i

v2
i

v3
i



 , A2
i =





v1
N+i

v2
N+i

v3
N+i



 , A3
i = A1

i × A2
i . (3.13)

The matrix Ai is not necessarily a rotation, so we recover Ri as its closest rotation
matrix via the well know procedure [16]: Ri = UiV

T
i , where Ai = UiΣiV

T
i is the

singular value decomposition of Ai.
From the computational point of view, we note that a simple way of computing

the top three eigenvectors is using the iterative power method, where three initial
randomly chosen vectors are repeatedly multiplied be the matrix S and then or-
thonormalized by the Gram-Schmidt (QR) procedure until convergence. The number
of iterations required by such a procedure is determined by the spectral gap between
the third and forth eigenvalues. The spectral gap is further discussed in Sections 5
and 7. In practice, for large values of N we use MATLAB’s eigs function to compute
the few top eigenvectors, while for small N we compute all eigenvectors using MAT-
LAB’s eig function. We remark that the computational bottleneck for large N is the
storage of the 2N × 2N matrix S rather than the time complexity of computing the
top eigenvectors.

4. Relaxation by a semidefinite program. In this Section we present an al-
ternative relaxation of (2.9) using semidefinite programming (SDP) [13], which draws
similarities with the Goemans-Williamson SDP for finding the maximum cut in a
weighted graph [14]. The relaxation of the SDP is tighter than the eigenvector relax-
ation and does not require the assumption that the rotations are uniformly sampled
over SO(3).

The SDP formulation begins with the introduction of two 3×N matrices R1 and
R2 defined by concatenating the first columns and second columns of the N rotation
matrices, respectively,

R1 =





| | |
R1

1 R1
2 · · · R1

N

| | |



 , R2 =





| | |
R2

1 R2
2 · · · R2

N

| | |



 . (4.1)

We also concatenate R1 and R2 to define a 3 × 2N matrix R given by

R = (R1 R2) =





| | | | | |
R1

1 R1
2 · · · R1

N R2
1 R2

2 · · · R2
N

| | | | | |



 . (4.2)

The Gram matrix G for the matrix R is a 2N ×2N matrix of inner products between
the three-dimensional column vectors of R, that is,

G = RT R. (4.3)

Clearly, G is a rank-3 semidefinite positive matrix (G � 0), which can be conveniently
written as a block matrix

G =

(

G11 G12

G21 G22

)

=

(

R1T
R1 R1T

R2

R2T
R1 R2T

R2

)

. (4.4)
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The orthogonality of the rotation matrices (RT
i Ri = I) implies that

G11
ii = G22

ii = 1, i = 1, 2, . . . , N, (4.5)

and

G12
ii = G21

ii = 0, i = 1, 2, . . . , N. (4.6)

From equation (3.8) it follows that the objective function (2.9) is the trace of the
matrix product SG:

∑

i6=j

Ricij · Rjcji = trace(SG). (4.7)

A natural relaxation of the optimization problem (2.9) is thus given by the SDP

max
G∈R2N×2N

trace(SG) (4.8)

s.t. G � 0, (4.9)

G11
ii = G22

ii = 1, G12
ii = G21

ii = 0, i = 1, 2, . . . , N. (4.10)

The only constraint missing in this SDP formulation is the non-convex rank-3 con-
straint on the Gram matrix G. The matrix R is recovered from the Cholesky de-
composition of the solution G of the SDP (4.8)-(4.10). If the rank of G is greater
than 3, then we project the rows of R onto the subspace spanned by the top three
eigenvectors of G, and recover the rotations using the procedure that was detailed in
the previous section in (3.13). We note that except for the orthogonality constraint
(4.6), the semidefinite program (4.8)-(4.10) is identical to the Goemans-Williamson
SDP for finding the maximum cut in a weighted graph [14].

From the complexity point of view, SDP can be solved in a polynomial time to any
given precision, but even the most sophisticated SDP solvers that exploit the sparsity
structure of the max cut problem are not competitive with the much faster eigenvector
method. At first glance it may seem that the SDP (4.8)-(4.10) should outperform the
eigenvector method in terms of producing more accurate rotation matrices. However,
our simulations show that the accuracy of both methods is almost identical when
the rotations are uniformly sampled over SO(3). As the eigenvector method is much
faster, it should also be the method of choice, whenever the rotations are a-priori
known to be uniformly sampled.

5. Numerical simulations. We performed several numerical experiments that
illustrate the robustness of the eigenvector and the SDP methods to false identifi-
cations of common-lines. All simulations were performed in MATLAB on a Lenovo
Thinkpad X300 laptop with Intel(R) Core(TM)2 CPU L7100 1.2GHz with 4GB RAM
running Windows Vista.

5.1. Experiments with simulated rotations. In the first series of simula-
tions we tried to imitate the experimental setup by using the following procedure. In
each simulation, we randomly sampled N rotations from the uniform distribution over
SO(3). This was done by randomly sampling N vectors in R

4 whose coordinates are
i.i.d Gaussians, followed by normalizing these vectors to the unit three-dimensional
sphere S3 ⊂ R

4. The normalized vectors are viewed as unit quaternions which we
converted into 3 × 3 rotation matrices R1, . . . , RN . We then computed all pairwise
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common-line vectors cij = R−1
i

R3
i ×R3

j

‖R3
i
×R3

j
‖ and cji = R−1

j

R3
i ×R3

j

‖R3
i
×R3

j
‖ (see also the discus-

sion following (6.2)). For each pair of rotations, with probability p we kept the values
of cij and cji unchanged, while with probability 1− p we replaced cij and cji by two
random vectors that were sampled from the uniform distribution over the unit circle
in the plane. The parameter p ranges from 0 to 1 and indicates the proportion of the
correctly detected common lines. For example, p = 0.1 means that only 10% of the
common lines are identified correctly, and all other 90% entries of the matrix S are
filled in with random entries corresponding to some randomly chosen unit vectors.

Figure 5.1 shows the distribution of the eigenvalues of the matrix S for two dif-
ferent values of N and four different values of the probability p. It took a matter of
seconds to compute each of the eigenvalue histograms shown in Figure 5.1. Evident
from the eigenvalue histograms is the spectral gap between the three largest eigen-
values and the remaining eigenvalues, as long as p is not too small. As p decreases,
the spectral gap narrows down, until it completely disappears at some critical value
pc, which we call the threshold probability. Figure 5.1 indicates that the value of
the critical probability for N = 100 is somewhere between 0.1 and 0.25, whereas for
N = 500 it is bounded between 0.05 and 0.1. As a result, the algorithm can cope
with a higher percentage of misidentifications by using more images (larger N). In
particular, for N = 500 it can deal with as many as 90% misidentified common lines.

When p decreases, not only does the gap narrows, but also the histogram of the
eigenvalues becomes smoother. The smooth part of the histogram seems to follows
the semi-circle law of Wigner [17, 18], as illustrated in Figure 5.1. The support of
the semi-circle gets larger as p decreases. In the next sections we will provide a
mathematical explanation for the numerically observed eigenvalue histograms and for
the emergence of Wigner’s semi-circle.
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(h) N = 500, p = 0.05

Fig. 5.1. Eigenvalue histograms for the matrix S for different values of N and p.

A further investigation into the results of the numerical simulations also revealed
that the rotations that were recovered by the top three eigenvectors were highly corre-
lated with the sampled rotations, as long as p was above the threshold probability pc.
The correlation between the rotations estimated by the eigenvector method, denoted
R̂1, . . . , R̂N , and the true sampled rotations R1, . . . , RN , is defined in the following
manner. First, note that (2.6) implies that the true rotations can be recovered only
up to a fixed 3 × 3 orthogonal transformation O, since if Ricij = Rjcji, then also
ORicij = ORjcji. In other words, a completely successful recovery is a recovery for

which R̂−1
i Ri = O, for all i = 1, . . . , N for some fixed orthogonal matrix O. The
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success of the recovery procedure can therefore be measured by the closeness of the
matrix

Ô =
1

N

N
∑

i=1

R̂T
i Ri (5.1)

to being an orthogonal matrix, and we define the 3 × 3 “correlation” matrix ρ+ by

ρ+ = ÔÔT =
1

N2

(

N
∑

i=1

R̂T
i Ri

)(

N
∑

i=1

R̂T
i Ri

)T

. (5.2)

The recovery is considered successful if ρ+ is close to the 3 × 3 identity matrix I.
However, there is another degree of freedom which amounts to a global reflection,

which the cryo-EM expert may immediately recognize as the chirality ambiguity of
the reconstructed molecule. Indeed, since the third coordinate of all cij ’s is zero,
multiplying the third column of the Ri’s by −1 leads to yet another valid solution of
the maximization problem solved by the eigenvector method. We therefore define a
second set of matrices R̃1, . . . , R̃N by

R̃i = R̂i





1
1

−1



 , i = 1, . . . , N, (5.3)

and their corresponding correlation matrix ρ− by

ρ− =
1

N2

(

N
∑

i=1

R̃T
i Ri

)(

N
∑

i=1

R̃T
i Ri

)T

. (5.4)

Indeed, in all of our successful experiments one of the correlation matrices, either ρ+

or ρ− was close to the identity matrix and so we define the correlation matrix ρ as

ρ = argmax
ρ+,ρ−

{trace(ρ+), trace(ρ−)}. (5.5)

Table 5.1 compares the correlation matrices that were obtained by the eigenvector
method with the ones obtained by the SDP method for N = 100 with the same
common lines input data. Table 5.2 gives a similar comparison for N = 500. The
SDP was solved using SDPT3 [19, 20] in MATLAB.

5.2. Experiments with simulated noisy projections. In the second series of
experiments, we tested the eigenvector method on simulated noisy projection images
of a ribosome, for different numbers of projections (N = 100, 500, 1000) and different
levels of noise. For each N , we generated N noise-free centered projections of the
ribosome, whose corresponding rotations were uniformly distributed on SO(3). Each
projection was of size 129 × 129 pixels. Next, we fixed a signal-to-noise ratio (SNR),
and added to each clean projection additive Gaussian white noise of the prescribed
SNR. The SNR in all our experiments is defined by

SNR =
Var(Signal)

Var(Noise)
, (5.6)

where Var is the variance (energy), Signal is the clean projection image and Noise

is the noise realization of that image. Figure 5.2 shows one of the projections at

11



p ρeig ρsdp

1





0.9960 0.0011 0.0014
0.0011 0.9926 0.0011
0.0014 0.0011 0.9930









1.0000 0.0000 0.0000
0.0000 1.0000 0.0000
0.0000 0.0000 1.0000





0.5





0.9692 −0.0016 −0.0001
−0.0016 0.9717 −0.0003
−0.0001 −0.0003 0.9712









0.9723 −0.0015 −0.0004
−0.0015 0.9718 −0.0012
−0.0004 −0.0012 0.9721





0.25





0.6796 0.0088 −0.0356
0.0088 0.6538 −0.0296
−0.0356 −0.0296 0.6356









0.7108 0.0029 −0.0427
0.0029 0.6419 −0.0323
−0.0427 −0.0323 0.6414





0.15





0.0868 0.0077 0.0290
0.0077 0.1220 −0.0561
0.0290 −0.0561 0.1470









0.0657 0.0155 0.0001
0.0155 0.0739 −0.0772
0.0001 −0.0772 0.1648





Table 5.1

Correlation matrices for N = 100 and different values of p using the eigenvector method and
the SDP method.

p ρeig ρsdp

1





0.9994 0.0000 −0.0001
0.0000 0.9996 −0.0001
−0.0001 −0.0001 0.9995









1.0000 0.0000 0.0000
0.0000 1.0000 0.0000
0.0000 0.0000 1.0000





0.5





0.9946 −0.0000 −0.0003
−0.0000 0.9945 −0.0002
−0.0003 −0.0002 0.9947









0.9952 −0.0001 −0.0001
−0.0001 0.9951 −0.0002
−0.0001 −0.0002 0.9950





0.1





0.5946 0.0045 −0.0121
0.0045 0.6175 0.0144
−0.0121 0.0144 0.5981









0.3084 −0.0676 0.0116
−0.0676 0.3597 0.0882
0.0116 0.0882 0.3421





0.05





0.0047 −0.0057 −0.0069
−0.0057 0.0197 −0.0066
−0.0069 −0.0066 0.0307









0.0097 −0.0068 −0.0014
−0.0068 0.0215 0.0019
−0.0014 0.0019 0.0003





Table 5.2

Correlation matrices for N = 500 and different values of p using the eigenvector method and
the SDP method.

different SNR levels. The SNR values used throughout this experiment were 2−k with
k = 0, . . . , 9. Clean projections were generated by setting SNR = 220.

We computed the 2D Fourier transform of all projections on a polar grid dis-
cretized into L = 72 central lines, corresponding to an angular resolution of 360◦/72 =
5◦. We constructed the matrix S according to (3.1)-(3.2) by comparing all

(

N
2

)

pairs
of projection images; for each pair we detected the common line by computing all
L2/2 possible different correlations between their Fourier central lines, of which the
pair of central lines having the maximum correlation was declared as the common-
line. Table 5.3 shows the proportion p of the correctly detected common lines as a
function of the SNR (we consider a common line as correctly identified if each of the
estimated direction vectors (xij , yij) and (xji, yji) is within 10◦ of its true direction).
As expected, the proportion p is a decreasing function of the SNR.

We used MATLAB’s eig function to compute the eigenvalue histograms of all
S matrices as shown in Figures 5.3-5.5. There is a clear resemblance between the
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(a) Clean (b) SNR=1 (c) SNR=1/2 (d) SNR=1/4 (e) SNR=1/8

(f) SNR=1/16 (g) SNR=1/32 (h) SNR=1/64 (i) SNR=1/128 (j) SNR=1/256

Fig. 5.2. Simulated projection with various levels of additive Gaussian white noise.

(a) N = 100

log2(SNR) p
20 0.997
0 0.968
-1 0.930
-2 0.828
-3 0.653
-4 0.444
-5 0.247
-6 0.108
-7 0.046
-8 0.023
-9 0.017

(b) N = 500

log2(SNR) p
20 0.997
0 0.967
-1 0.922
-2 0.817
-3 0.639
-4 0.433
-5 0.248
-6 0.113
-7 0.046
-8 0.023
-9 0.015

(c) N = 1000

log2(SNR) p
20 0.997
0 0.966
-1 0.919
-2 0.813
-3 0.638
-4 0.437
-5 0.252
-6 0.115
-7 0.047
-8 0.023
-9 0.015

Table 5.3

The proportion p of correctly detected common lines as a function of the SNR. As expected, p

is not a function of the number of images N .

eigenvalue histograms of the noisy S matrices shown in Figure 5.1 and those shown
in Figures 5.3-5.5. One noticeable difference is that the top three eigenvalues in
Figures 5.3-5.5 tend to spread (note, for example, the spectral gap between the top
three eigenvalues in Figure 5.3(e)), whereas in Figure 5.1 they tend to stick together.
We attribute this spreading effect to the fact that the model used in Section 5.1
is too simplified. First, the detection of common lines tends to be more successful
when computed between projections that have more pronounced signal features. This
means that the assumption that each common line is detected correctly with a fixed
probability p is too restrictive. Second, falsely detected common lines are far from
being random. The correct common line is often confused with a Fourier central line
that is similar to it; it is not just confused with any Fourier central line with equal
probability. Still, despite the simplified assumptions that were made in Section 5.1 to
model the matrix S, the resulting eigenvalue histograms are very similar. We note that
a related spreading effect of eigenvalues was recently examined in [21], where it was
shown that the top singular values of low-rank matrices undergo similar spreading
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Fig. 5.3. Eigenvalue histograms of S for N = 100 and different levels of noise.
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Fig. 5.4. Eigenvalue histograms of S for N = 500 and different levels of noise.

when replacing randomly chosen entries of the low-rank matrix by zeros (see, for
example, [21, page 3, Figure 1]).

Perhaps the most important consequence of our numerical simulations is that in-
creasing the number of projections N distinguishes the top three eigenvalues from the
bulk of the spectrum (the semi-circle). For example, for N = 100 the top eigenvalues
are clearly distinguished from the bulk for SNR = 1/32, while for N = 500 they can
be distinguished for SNR = 1/128 (maybe even at SNR = 1/256), and for N = 1000
they are distinguished even at the most extreme noise level of SNR = 1/512. From the
practical point of view, this means that 3D reconstruction is possible even at extreme
levels of noise, provided that enough projections are available. Even if reconstruction
is not possible from the raw noisy images, the eigenvector and SDP methods should
allow to use class averages consisting of fewer images.

6. The matrix S as a convolution operator on SO(3). Taking an even
closer look into the numerical distribution of the eigenvalues of the “clean” 2N × 2N
matrix S corresponding to p = 1 (all common-lines detected correctly) reveals that
its eigenvalues have the exact same multiplicities as the spherical harmonics, which
are the eigenfunctions of the Laplacian on the unit sphere S2 ⊂ R

3. In particular,
Figure 6.1(a) is a bar plot of the largest 50 eigenvalues of S with N = 1000 and
p = 1, and is clearly showing numerical multiplicities of 3, 7, 11, . . ., corresponding
to the multiplicity 2l + 1 (l = 1, 3, 5, . . .) of the odd spherical harmonics. Moreover,
Figure 6.1(b) is a bar plot of the magnitude of the most negative eigenvalues of S.
The multiplicities 5, 9, 13, . . . corresponding to the multiplicity 2l + 1 (l = 2, 4, 6, . . .)
of the even spherical harmonics are evident (the first even eigenvalue corresponding
to l = 0 is missing).
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Fig. 5.5. Eigenvalue histograms of S for N = 1000 and different levels of noise.

0 10 20 30 40 50 60
0

100

200

300

400

500

600

(a) Positive Eigenvalues

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

180

(b) Negative Eigenvalues (in absolute value)

Fig. 6.1. Bar plot of the positive (left) and the absolute values of the negative (right) eigenvalues
of S with N = 1000 and p = 1. The numerical multiplicities 2l + 1 (l = 1, 2, 3, . . .) of the spherical
harmonics are evident, with odd l values corresponding to positive eigenvalues, and even l values
(except l = 0) corresponding to negative eigenvalues.

The numerically observed multiplicities motivate us to examine S in more detail.
To that end, it is more convenient to reshuffle the 2N × 2N matrix S defined in
(3.1)-(3.2) into an N ×N matrix K whose entries are 2× 2 rank-1 matrices given by

Kij =

(

xijxji xijyji

yijxji yijyji

)

=

(

1 0 0
0 1 0

)

cijc
T
ji

(

1 0 0
0 1 0

)T

, i, j = 1, . . . , N,

(6.1)
with cij and cji given in (2.4)-(2.5). From (2.6) it follows that the common line is
given by the normalized cross product of R3

i and R3
j , that is,

Ricij = Rjcji = ±
R3

i × R3
j

‖R3
i × R3

j‖
, (6.2)

because Ricij is a linear combination of R1
i and R2

i (perpendicular to R3
i ), while

Rjcji is a linear combination of R1
j and R2

j (perpendicular to R3
j ); a unit vector

perpendicular to R3
i and R3

j must be given by either
R3

i ×R3
j

‖R3
i
×R3

j
‖ or − R3

i ×R3
j

‖R3
i
×R3

j
‖ . Equations

(6.1)-(6.2) imply that Kij is a function of Ri and Rj given by

Kij = K(Ri, Rj) =

(

1 0 0
0 1 0

)

R−1
i

(R3
i × R3

j )(R
3
i × R3

j )
T

‖R3
i × R3

j‖2
Rj

(

1 0 0
0 1 0

)T

,

(6.3)
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for i 6= j regardless of the choice of the sign in (6.2), and Kii =

(

0 0
0 0

)

.

The eigenvalues of K and S are the same, with the eigenvectors of K being
vectors of length 2N obtained from the eigenvectors of S by reshuffling their entries.
We therefore try to understand the operation of matrix-vector multiplication of K
applied to some arbitrary vector f of length 2N . It is convenient to view the vector f
as N vectors in R

2 obtained by sampling the function f : SO(3) → R
2 at R1, . . . , RN ,

that is,

fi = f(Ri), i = 1, . . . , N. (6.4)

The matrix-vector multiplication is thus given by

(Kf)i =

N
∑

j=1

Kijfj =

N
∑

j=1

K(Ri, Rj)f(Rj), i = 1, . . . , N. (6.5)

If the rotations R1, . . . , RN are i.i.d random variables uniformly distributed over
SO(3), then the expected value of (Kf)i conditioned on Ri is

E [(Kf)i |Ri] = (N − 1)

∫

SO(3)

K(Ri, R)f(R) dR, (6.6)

where dR is the Haar measure (recall that by being a zero matrix, K(Ri, Ri) does
not contribute to the sum in (6.5)). The eigenvectors of K are therefore discrete
approximations to the eigenfunctions of the integral operator K given by

(Kf)(R) =

∫

SO(3)

K(R, S)f(S) dS, (6.7)

due to the law of large numbers, with the kernel K : SO(3) × SO(3) → R
2×2

given by (6.3). We are thus interested in the eigenfunctions of the integral opera-

tor K : L2 (SO(3), dR)
2 → L2 (SO(3), dR)

2
given by (6.7).

The integral operator K is a convolution operator over SO(3). Indeed, note that
K given in (6.3) satisfies

K(gR, gS) = K(R, S), for all g ∈ SO(3), (6.8)

because (gR3)× (gS3) = g(R3 × S3) and gg−1 = g−1g = I. It follows that the kernel
K depends only upon the “ratio” R−1S, because we can choose g = R−1 so that

K(R, S) = K(I, R−1S),

and the integral operator K of (6.7) becomes

(Kf)(R) =

∫

SO(3)

K(I, R−1S)f(S) dS. (6.9)

We will therefore define the convolution kernel K̃ : SO(3) → R
2×2 as

K̃(U−1) ≡ K(I, U) =

(

1 0 0
0 1 0

)

(I3 × U3)(I3 × U3)T

‖I3 × U3‖2
U

(

1 0 0
0 1 0

)T

, (6.10)
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where I3 = (0 0 1)T is the third column of the identity matrix I. We rewrite the
integral operator K from (6.7) in terms of K̃ as

(Kf)(R) =

∫

SO(3)

K̃(S−1R)f(S) dS =

∫

SO(3)

K̃(U)f(RU−1) dU, (6.11)

where we used the change of variables U = S−1R. Equation (6.11) implies that K is
a convolution operator over SO(3) given by [22, page 158]

Kf = K̃ ∗ f. (6.12)

Similar to the convolution theorem for functions over the real line, the Fourier trans-
form of a convolution over SO(3) is the product of their Fourier transforms, where
the Fourier transform is defined by a complete system of irreducible matrix valued
representations of SO(3) (see, e.g., [22, Theorem (4.14), page 159]).

Let ρθ ∈ SO(3) be a rotation by the angle θ around the z axis, and ρ̃θ ∈ SO(2)
be a planar rotation by the same angle

ρθ =





cos θ − sin θ 0
sin θ cos θ 0

0 0 1



 , ρ̃θ =

(

cos θ − sin θ
sin θ cos θ

)

.

The kernel K̃ satisfies the invariance property

K̃((ρθUρα)−1) = ρ̃θK̃(U−1)ρ̃α, for all θ, α ∈ [0, 2π). (6.13)

To that end, we first observe that ρθI
3 = I3 and (Uρα)3 = U3 so

I3 × (ρθUρα)3 = (ρθI
3) × (ρθUρα)3 = ρθ(I

3 × (Uρα)3) = ρθ(I
3 × U3), (6.14)

from which it follows that

‖I3 × (ρθUρα)3‖ = ‖ρθ(I
3 × U3)‖ = ‖I3 × U3‖, (6.15)

because ρθ preserves length, and it also follows that

(I3 × (ρθUρα)3)(I3 × (ρθUρα)3)T = ρθ(I
3 × U3)(I3 × U3)T ρ−1

θ . (6.16)

Combining (6.15) and (6.16) yields

(I3 × (ρθUρα)3)(I3 × (ρθUρα)3)T

‖I3 × (ρθUρα)3‖2
ρθUρα = ρθ

(I3 × U3)(I3 × U3)T

‖I3 × U3‖2
Uρα, (6.17)

which together with the definition of K̃ in (6.3) and (6.10) demonstrate the invariance
property (6.13).

The fact that K is a convolution satisfying the invariance property (6.13) im-
plies that the eigenfunctions of K are related to the spherical harmonics Ylm (l =
0, 1, 2, . . . , m = −l, . . . , l) whose eigenvalues have multiplicities 2l + 1. This relation,
as well as the exact computation of the eigenvalues will be established in a separate
publication [23]. We note that the spectrum of K would have been much easier to
compute if the normalization factor ‖I3 ×U3‖2 did not appear in the kernel function
K̃ of (6.10). Indeed, in such a case, K̃ would have been a third-order polynomial, and
all eigenvalues corresponding to higher order representations must have vanished.
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7. Wigner’s semi-circle law and the threshold probability. As indicated
by the numerical experiments of Section 5, false detections of common-lines due to
noise lead to the emergence of what seems to be Wigner’s semi-circle for the dis-
tribution of the eigenvalues of S. In this section we provide a simple mathematical
explanation for this phenomenon.

Consider the simplified model of Section 5.1 that assumes that every common
line is detected correctly with probability p, independently of all other common-lines,
and with probability 1 − p the common lines are falsely detected and are uniformly
distributed over the unit circle. Let Sclean be the matrix S when all common-lines are
detected correctly without any errors, that is, Sclean corresponds to the case p = 1. It
follows that the expected value of the noisy matrix S, whose entries are correct with
probability p, is given by

ES = pSclean, (7.1)

because the contribution of the falsely detected common lines to the expected value
vanishes by the assumption that their directions are distributed uniformly on the unit
circle. From (7.1) it follows that S can be decomposed as

S = pSclean + W, (7.2)

where W is a 2N × 2N zero-mean random matrix whose entries are given by

Wij =

{

(1 − p)Sclean
ij with probability p,

−pSclean
ij + XijXji w.p. 1 − p,

(7.3)

where Xij and Xji are two independent random variables obtained by projecting two
independent random vectors uniformly distributed on the unit circle onto the x-axis.
For small values of p, the variance of Wij is dominated by the variance of the term
XijXji. Symmetry implies that EX2

ij = EX2
ji = 1

2 , from which we have that

EW 2
ij = EX2

ijX
2
ji + O(p) =

1

4
+ O(p). (7.4)

The eigenvalues of W are therefore distributed according to Wigner’s semi-circle law
whose support, up to small O(p) terms, is [−

√
2N,

√
2N ]. In other words, the spectral

norm, which is also the top eigenvalue of W , denoted λ1(W ), is given by

λ1(W ) =
√

2N(1 + O(p)). (7.5)

This prediction is in full agreement with the numerically observed supports in Figure
5.1 and in Figures 5.3-5.5, noting that for N = 100 the right edge of the support
is located near

√
200 = 14.14 . . ., for N = 500 near

√
1000 = 31.62 . . ., and for

N = 1000 near
√

2000 = 44.72 . . .. The agreement is striking especially for Figures
5.3-5.5 that were obtained from simulated noisy projections without imposing the
artificial probabilistic model of Section 5.1 that was used here to actually derive (7.5).

In order to find the threshold probability pc, we need to compute the top eigen-
value of the clean S matrix, that is, we need to compute λ1(S

clean). As noted in [24]
(following the random matrix results of [25, 26, 27]), the top eigenvalues of S will be
pushed away from the semi-circle with high probability if the condition

pλ1(S
clean) >

1

2
λ1(W ) (7.6)
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is satisfied. Before turning to the exact computation of λ1(S
clean), we note that (6.6)

implies that it scales linearly with N , that is, with high probability,

λ1(S
clean) = Nλ1(K) + O(

√
N), (7.7)

where the O(
√

N) term is the standard deviation of the sum in (6.5). Moreover, from
the top eigenvalues observed in Figures 5.1(a), 5.1(e) and Figures 5.3(a), 5.4(a), and
5.5(a) corresponding to p = 1 and p values close to 1, it is safe to speculate that

λ1(K) =
1

2
, (7.8)

as the top eigenvalues are approximately 50, 250 and 500 for N = 100, 500, and
1000, respectively (the proof for (7.8) is detailed below). Combining (7.5)-(7.8), we
conclude that the threshold probability pc is given by

pc =

√
2√
N

+ O(N−1). (7.9)

For example, the threshold probabilities predicted for N = 100, N = 500, and N =
1000, are pc ≈ 0.14, pc ≈ 0.063, and pc ≈ 0.045, respectively. These values are
in correspondence with the numerical results of Section 5.1. As for the numerical
experiments with the noisy projections presented in subsection 5.2, the prediction
(7.9) is in the right ballpark, though it seems to be a bit too pessimistic, as we
observe spectral gaps for p values below this threshold. This is perhaps a result of the
fact that the falsely detected common lines are not random when considering noisy
images.

We end this section by calculating λ1(K) analytically by showing that the top
three eigenfunctions of K are given by

f(U) =

(

1 0 0
0 1 0

)

U−1. (7.10)

Plugging (7.10) in (6.11) and employing (6.10) give

(Kf)(R) =

∫

SO(3)

(

1 0 0
0 1 0

)

(I3 × U3)(I3 × U3)T

‖I3 × U3‖2
U





1 0 0
0 1 0
0 0 0



U−1R−1 dU.

(7.11)
From UU−1 = I it follows that

U





1 0 0
0 1 0
0 0 0



U−1 = UIU−1 − U





0 0 0
0 0 0
0 0 1



U−1 = I − U3U3T
. (7.12)

Combining (7.12) with the fact that (I3 × U3)T U3 = 0, we obtain

(I3 × U3)(I3 × U3)T

‖I3 × U3‖2
U





1 0 0
0 1 0
0 0 0



U−1 =
(I3 × U3)(I3 × U3)T

‖I3 × U3‖2
. (7.13)

Letting U3 = (x y z)T , the cross product I3 × U3 is given by

I3 × U3 = (−y x 0)T , (7.14)
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whose squared norm is

‖I3 × U3‖2 = x2 + y2 = 1 − z2, (7.15)

and

(I3 × U3)(I3 × U3)T =





y2 −xy 0
−xy x2 0

0 0 0



 . (7.16)

It follows from (7.11) and identities (7.13)-(7.16) that

(Kf)(R) =

∫

SO(3)

1

1 − z2

(

y2 −xy 0
−xy x2 0

)

dUR−1. (7.17)

The integrand in (7.17) is only a function of the axis of rotation U3. The integral
over SO(3) therefore collapses to an integral over the unit sphere S2 with the uniform
measure dµ (satisfying

∫

S2 dµ = 1) given by

(Kf)(R) =

∫

S2

1

1 − z2

(

y2 −xy 0
−xy x2 0

)

dµR−1. (7.18)

From symmetry it follows that
∫

S2

xy
1−z2 dµ = 0, and that

∫

S2

x2

1−z2 dµ =
∫

S2

y2

1−z2 dµ.

As x2

1−z2 + y2

1−z2 = 1 on the sphere, we conclude that
∫

S2

x2

1−z2 dµ =
∫

S2

y2

1−z2 dµ = 1
2 ,

and

(Kf)(R) =
1

2

(

1 0 0
0 1 0

)

R−1 =
1

2
f(R). (7.19)

This shows that the three functions defined by (7.10) are three eigenfunctions of K
with the corresponding eigenvalue λ1(K) = 1

2 , as was speculated before in (7.8) based
on the numerical evidence. The remaining spectrum is analyzed in [23], where it is

shown that the eigenvalues of K are λn(K) = (−1)n+1

n(n+1) with multiplicities 2n + 1 for

n = 1, 2, 3, . . .. An explicit expression for all eigenfunctions is also given in [23].

8. Summary and discussion. In this paper we presented efficient methods for
computing the rotations of all cryo-EM particles from common lines information in a
globally consistent way. Our algorithms, one based on a spectral method (computation
of eigenvectors) and the other based on semidefinite programming (a version of max-
cut) are able to find the correct set of rotations even at very low common lines
detection rates. Using random matrix theory and harmonic analysis on SO(3) we
showed that rotations obtained by the eigenvector method can lead to a meaningful ab-

initio model as long as the proportion of correctly detected common lines exceeds
√

2√
N

.

It remains to be seen how these algorithms will perform on real raw projection images
or on their class averages, and to compare their performance to the recently proposed
voting recovery algorithm [12], whose usefulness has already been demonstrated on
real datasets.

We note that the techniques and analysis applied here to solve the cryo-EM prob-
lem can be translated to the computer vision problem of structure from orthographic
images at unknown directions, where lines perpendicular to the epipolar lines play the
role of the common-lines. This particular application will be the subject of a separate
publication [28].
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