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ACTIVATION THROUGH A NARROW OPENING∗

A. SINGER† AND Z. SCHUSS‡

Abstract. The escape of a Brownian motion through a narrow absorbing window in an otherwise
reflecting boundary of a domain is a rare event. In the presence of a deep potential well, there are
two long time scales, the mean escape time from the well and the mean time to reach the absorbing
window. We derive a generalized Kramers formula for the mean escape time through the narrow
window.
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1. Introduction. Kramers’ theory [12], [6] concerns the thermal activation of
a Brownian particle over a high potential barrier. It assumes that the barrier height
is much larger than the thermal energy. Its application to the theory of chemical
kinetics [20] gives the activation rate of the stochastic dynamics of a reactant molecule
over a potential barrier ΔE as the Arrhenius law

(1.1) k = Ae−ΔE/kBT ,

where A is a function of temperature, friction, and the potential landscape. A similar,
but different situation arises, if the chemical reaction can be described as the diffusion
of a Brownian particle through a small opening in the boundary of a domain, whose
remaining boundaries are practically reflecting. Such a situation can occur, if the
reflecting boundaries are due to a high potential barrier with a small opening, whose
energy is not necessarily much higher than the thermal energy. This can happen, for
example, if the reflecting boundaries are due to a dielectric barrier, as in biological
membranes, and the small opening is a protein channel embedded in an otherwise
impenetrable membrane [7]. The small absorbing window setup is also a model for
the forward rate of chemical reactions, in which there are small binding sites for the
diffusing reacting molecule in the boundary of the domain [9]. The same setup also
describes the process of trafficking receptors on biological membranes [8]. The escape
of a free Brownian motion (without drift) through a small window was discussed in
[17], [18], [19]. Here we consider the narrow escape problem for a Brownian motion
in a field of force. The closely related problem of computing the principal eigenvalue
of the Laplace operator for mixed boundary conditions on large and small pieces of
the boundary was considered in [22], [23], [24], [11] (see section 6 for discussion).

We derive an Arrhenius-like formula (1.1) for the activation rate through narrow
openings. Specifically, we consider the diffusion of a Brownian particle in a potential
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ACTIVATION THROUGH A NARROW OPENING 99

field in a bounded domain Ω, where activation occurs if the particle goes through a
small opening ∂Ωa in the boundary ∂Ω of the domain. We assume that the remain-
ing boundary ∂Ωr reflects the Brownian trajectories. We find the dependence of the
rate constant on the potential, specific geometry of the opening and on the volume
or surface area of the domain. As in Kramers’ theory, we obtain different rate con-
stants for low and high barriers. The activation rates for the different geometries are
summarized in (4.6)–(4.13).

2. Formulation. As in classical theories [12], [6], [20], our point of departure is
the Langevin dynamics in R

n (n = 2, 3),

(2.1) mẍ + ηẋ + ∇Φ(x) =
√

2ηkBT ẇ,

where m is the mass, η is the friction coefficient, Φ(x) is the potential, T is temper-
ature, kB is Boltzmann’s constant, and ẇ is a vector of n independent δ-correlated
Gaussian white noises. In the Smoluchowski (Kramers) limit of large friction, the
Langevin dynamics (2.1) reduces to the Smoluchowski equation [16], [4], [6]

(2.2) ẋ +
1

γ
∇φ(x) =

√
2kBT

mγ
ẇ,

where γ = η/m is the dynamics viscosity and φ = Φ/m is the potential per unit mass.
The motion of the Brownian particle is confined to a bounded domain Ω, whose

boundary ∂Ω is reflecting, but for a small absorbing window ∂Ωa (∂Ω = ∂Ωa ∪ Ωr).
The assumption that the window is small means that

(2.3) δ =

(
|∂Ωa|
|∂Ω|

)1/(n−1)

� 1

(δ is a small parameter).
The probability density function (pdf) pδ(x, t) of finding the Brownian particle

at location x at time t satisfies the Fokker–Planck equation

(2.4) γ
∂pδ
∂t

= εΔpδ + ∇ · (pδ∇φ) ≡ Lδpδ,

with the initial condition

(2.5) pδ(x, 0) = p0(x),

and the mixed Dirichlet–Neumann boundary conditions for t > 0

pδ = 0 for x ∈ ∂Ωa,(2.6)

ε
∂pδ
∂n

+ pδ
∂φ

∂n
= 0 for x ∈ ∂Ωr,(2.7)

where ε = kBT/m, n is the unit outer normal at the boundary, and p0(x) is the
initial pdf (e.g., p0(x) = 1

|Ω| for a uniform distribution). The function

(2.8) uδ(x) =

∫ ∞

0

pδ(x, t) dt,
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100 A. SINGER AND Z. SCHUSS

which is the mean time the particle spends at x before it escapes through the narrow
window, is the solution of the boundary value problem

Lδuδ = −γp0 for x ∈ Ω,(2.9)

uδ = 0 for x ∈ ∂Ωa,(2.10)

ε
∂uδ

∂n
+ uδ

∂φ

∂n
= 0 for x ∈ ∂Ωr.(2.11)

The function gδ = uδe
φ/ε is the solution of the adjoint problem

L∗
δgδ = −γp0e

φ/ε for x ∈ Ω,(2.12)

∂gδ(x)

∂n
= 0 for x ∈ ∂Ωr,

gδ(x) = 0 for x ∈ ∂Ωa.
(2.13)

Equation (2.12) can be written in the divergence form

(2.14) ∇
(
e−φ/ε∇gδ

)
= −γp0

ε
.

The adjoint operators Lδ and L∗
δ , defined by (2.4), (2.9), (2.10), (2.11), and

(2.12), (2.13), respectively, have biorthogonal systems of normalized eigenfunctions,
{ψi(x, δ)} and {ϕi(x, δ)} (i = 0, 1, . . .), and we can expand

(2.15) pδ(x, t) =

∞∑
i=0

ai(δ)ψi(x, δ)e
−λi(δ)t/γ ,

where λi(δ) are the eigenvalues of Lδ. The ai(δ) are the Fourier coefficients of the
initial function p0(x). In the limit δ → 0 the Dirichlet part of the boundary conditions,
(2.6), is dropped, so that λ0(δ) → 0 (the first eigenvalue of the problem (2.4), (2.7)
with ∂Ωr = ∂Ω), with the normalized eigenfunction

(2.16) ψ0(x, 0) =
exp{−φ(x)/ε}∫

Ω

exp{−φ(x)/ε} dx
,

and a0(δ) → 1. It follows from (2.8) and (2.15) that for all x ∈ Ω

(2.17) uδ(x) = γ

∞∑
i=0

ai(δ)ψi(x, δ)

λi(δ)
→ ∞ as δ → 0.

In particular, the first passage time τδ = inf{t > 0 | x(t) ∈ ∂Ωa} diverges. That is,
limδ→0 τδ = ∞ on almost every trajectory x(t). Obviously, the mean first passage
time,

(2.18) 〈τδ〉 =

∫
Ω

uδ(x) dx = γ

∞∑
i=0

ai(δ)

λi(δ)
,

also diverges as δ → 0. It is the purpose of this paper to find the orders of magnitude
of uδ(x) and 〈τδ〉 for small δ.
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ACTIVATION THROUGH A NARROW OPENING 101

3. The Neumann function. The Neumann function for Ω is the solution of
the boundary value problem

ΔyN(x,y) = −δ(x− y) for x,y ∈ Ω,

∂N(x,y)

∂ny
= − 1

|∂Ω| for x ∈ Ω, y ∈ ∂Ω,
(3.1)

with N(x,y) fixed at a given point, to ensure uniqueness. Using Green’s identity and
the boundary conditions (2.10)–(2.11) and (3.1) gives∫

Ω

N(x,y)Δyuδ(y) dy(3.2)

=

∫
Ω

uδ(y)ΔyN(x,y) dy +

∫
∂Ω

(
N(x,y)

∂uδ(y)

∂ny
− uδ(y)

∂N(x,y)

∂ny

)
dSy

= −uδ(x) +

∫
∂Ωa

N(x,y)
∂uδ(y)

∂ny
dSy − 1

ε

∫
∂Ωr

N(x,y)uδ(y)
∂φ(y)

∂ny
dSy

+
1

|∂Ω|

∫
∂Ωr

uδ(y) dSy.

On the other hand, (2.9) gives∫
Ω

N(x,y)Δyuδ(y) dy(3.3)

=

∫
Ω

N(x,y)

[
−γp0

ε
− 1

ε
∇ · (uδ∇φ)

]
dy

= −γ

ε

∫
Ω

N(x,y)p0(y) dy − 1

ε

∫
Ω

∇y · [N(x,y)uδ(y)∇yφ(y)] dy

+
1

ε

∫
Ω

uδ(y)∇yφ(y) · ∇yN(x,y) dy

= −γ

ε

∫
Ω

N(x,y)p0(y) dy − 1

ε

∫
∂Ωr

N(x,y)uδ(y)
∂φ(y)

∂n
dSy

+
1

ε

∫
Ω

uδ(y)∇yφ(y) · ∇yN(x,y) dy.

Combining (3.2) and (3.3) yields

−uδ(x) +
1

|∂Ω|

∫
∂Ωr

uδ(y) dSy +

∫
∂Ωa

N(x,y)
∂uδ(y)

∂ny
dSy(3.4)

= −γ

ε

∫
Ω

N(x,y)p0(y) dy +
1

ε

∫
Ω

uδ(y)∇yφ(y) · ∇yN(x,y) dy.

In view of (2.17), the integral
∫
Ω
N(x,y)p0(y) dy can be neglected to leading

order, because it is uniformly bounded for smooth initial distributions1 p0 as δ → 0,
while all other terms in (3.4) are unbounded. For x ∈ Ω, at a distance O(1) away
from the window, the Neumann function is uniformly bounded.

1For nonsmooth p0 the integral is not uniformly bounded. For example, for p0 = δ(x − x0)
we have

∫
Ω N(x, y)p0(y) dy = N(x,x0), which becomes singular as x → x0. However, this is an

integrable singularity, and as such it does not affect the leading order asymptotics in δ.
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102 A. SINGER AND Z. SCHUSS

Note that integrating (2.14) and using the boundary conditions (2.13), we obtain
the compatibility condition

(3.5)

∫
∂Ωa

∂uδ

∂n
dS = −γ

ε
.

Because of the fact that the normal derivative ∂uδ(y)
∂ny

is negative on ∂Ωa, (3.5) implies

that
∫
∂Ωa

N(x,y)∂uδ(y)
∂ny

dSy is uniformly bounded. It follows that for x ∈ Ω, at a

distance O(1) (with respect to δ) away from the window, the integral equation (3.4)
is to leading order

(3.6) uδ(x) ∼ 1

|∂Ω|

∫
∂Ω

uδ(y) dSy − 1

ε

∫
Ω

uδ(y)∇yφ(y) · ∇N(x,y) dy,

which is the integral representation of the boundary value problem Lδuδ = 0 with
the no flux boundary condition (2.11) on the entire boundary (i.e., with ∂Ωr = ∂Ω),
whose solution is the Boltzmann distribution

(3.7) uδ(x) ∼ Cδe
−φ(x)/ε.

Equation (3.7) represents the averaged time the particle spent at a point x at a
distance O(1) away from the absorbing window prior to absorption.

Due to the absorbing boundary condition (2.10), (3.4) reduces to∫
∂Ωa

N(x,y)
∂uδ(y)

∂ny
dSy(3.8)

=

{
−1

|∂Ω|

∫
∂Ωr

uδ(y) dSy +
1

ε

∫
Ω

uδ(y)∇yφ(y) · ∇yN(x,y) dy

}
(1 + o(1))

for all x ∈ ∂Ωa. Substituting (3.7) into (3.8) yields an integral equation for the flux
∂uδ

∂n into the absorbing window,

(3.9)

∫
∂Ωa

N(x,y)
∂uδ(y)

∂ny
dSy = −Cδe

−φ(x)/ε(1 + o(1)) for δ � 1.

If φ(x) does not change much in the window, we can use the constant approximation
φ(x) ≈ φ(window) = φ0.

In three dimensions

(3.10) N(x,y) =
1

4π|x− y| + vS(x,y),

where vS is a regular harmonic function [10], and so the leading order contribution
to (3.9) is due to the singular part of the Neumann function. Thus the leading order
approximation ∂u0

∂n to the absorption flux is the solution of

(3.11)
1

2π

∫
∂Ωa

∂u0(y)

∂ny

dSy

|x− y| = −Cδe
−φ0/ε.

Note that the singularity of the Neumann function at the boundary is twice as large
as it is inside the domain, due to the contribution of the regular part (the “image
charge”). For that reason the factor 1

4π in (3.10) was replaced by 1
2π .
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4. Narrow escape. von Helmholtz [21] (see also Rayleigh [1] and others, e.g.,
[13]) solved the integral equation (3.11) analytically for the case of an elliptical ab-
sorbing window ∂Ωa,

(4.1)
∂u0(y1, y2)

∂n
= − Cδe

−φ0/ε√
1 − y2

1

a2
− y2

2

b2

,

where a and b are the ellipse semiaxes, and y = (y1, y2) are local Cartesian coordinates
in the ellipse. The value of the constant Cδ is calculated using the compatibility
condition (3.5) to be

(4.2) Cδ =
γK(e)

2πεa
eφ0/ε,

where e is the eccentricity of the ellipse and K(·) is the complete elliptic integral of
the first kind. In a three-dimensional domain, the averaged time spent at point x
before escape through an elliptical absorbing window is given by (see (3.7))

(4.3) uδ(x) ≈ γK(e)

2πεa
exp

{
φ0 − φ(x)

ε

}
.

Equations (2.18) and (4.3) now give the mean escape time as

(4.4) 〈τδ〉 =
γK(e)eφ0/ε

2πεa

∫
Ω

exp

{
−φ(x)

ε

}
dx.

If the barrier is sufficiently high, we evaluate the integral in (4.4) by the Laplace
method, assuming that φ has a single global minimum φm at xm,

(4.5)

∫
Ω

exp

{
−φ(x)

ε

}
dx ≈ (2πε)n/2

n∏
i=1

ωi

exp

{
−φm

ε

}
,

where ωi are the frequencies at the minimum xm. For reactions that consist in passing
through a small elliptical window (assuming no returns are possible), the reaction rate
is the modified Kramers formula

(4.6) κδ =
1

〈τδ〉
∼ aω1ω2ω3√

2πε γK(e)
e−ΔE/ε,

where ΔE = φ0 − φm. In the special case of a circular window, we obtain

(4.7) κδ ∼ 4aω1ω2ω3

(2π)3/2γ
√
ε
e−ΔE/ε,

where a is the radius of the window. Note that ΔE is not the barrier height. We
conclude that the activation rate is of Arrhenius form and has two contributions. The
first is due to the potential, while the second is due to geometry of the absorbing
window alone. Unlike the free diffusion case [17], [18], [19], geometrical properties of
the domain, such as its volume, are not included in the leading order asymptotics of
the reaction rate.
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Second, in the limit of large ε, the power series approximation

e−(φ(x)−φ0)/ε = 1 − φ(x) − φ0

ε
+

(φ(x) − φ0)
2

2ε2
. . .

in (4.4) gives

(4.8) k ∼ 2πεa

γK(e)|Ω|

(
1 − 〈φ〉 − φ0

ε
+ O

(
ε−2

))−1

,

where 〈φ〉 = 1
|Ω|

∫
Ω
φ(x) dx is the spatial average of the potential. The rate can also

be rewritten into an Arrhenius form as

(4.9) k ∼ 2πεa

γK(e)|Ω| e
−〈ΔE〉/ε,

where 〈ΔE〉 = φ0 − 〈φ〉. In the case of large ε the reaction rate depends not merely
on the geometry of the window but also on the geometry of the domain itself through
its volume. Large ε means that the motion is diffusion limited; therefore, fine details
of the potential are less important and the spatial averaged potential has only an
O(ε−1) effect.

Finally, we give rate functions for small and large ε for several geometries. For
the case of diffusion in a ball of radius R, the results of [17] show that

k ∼ 4εa

γ|Ω|

[
1 +

a

R
ln

R

a
+ O

( a

R

)]−1

e−〈ΔE〉/ε for ε � ΔE,

k ∼ 4εaω1ω2ω3

γ(2π)3/2

[
1 +

a

R
ln

R

a
+ O

( a

R

)]−1

e−ΔE/ε for ε � ΔE.

(4.10)

We conjecture that the second order term is O(δ ln δ) also for a general three-
dimensional domain, though we were unable to prove it so far.

In two dimensions the singularity of the Neumann function is logarithmic, and so
the leading order approximation to the activation rate is

k ∼ πε

γ|Ω|
e−〈ΔE〉/ε[

ln
1

δ
+ O(1)

] for ε � ΔE,

k ∼ ε
√
ω1ω2

2γ

e−ΔE/ε[
ln

1

δ
+ O(1)

] for ε � ΔE.

(4.11)

The remainder O(1) is important, because in real life applications even if δ is small,
ln 1

δ is not necessarily large. In [18], [19] we have calculated the O(1) term for diffusion
in a circular disk, in a circular annulus, and on a sphere. These results extend in a
straightforward way to domains that can be mapped conformally onto these shapes
(e.g., all simply connected planar domains).

If the boundary of the absorbing window contains a singular point of ∂Ω, such as
a corner or a cusp, the order of magnitude of the activation rate may change. Thus,
if the window is at a corner of angle α, then the rate is [19]
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k ∼ αε

γ|Ω|
e−〈ΔE〉/ε[

ln
1

δ
+ O(1)

] for ε � ΔE,

k ∼ αε
√
ω1ω2

2πγ

e−ΔE/ε[
ln

1

δ
+ O(1)

] for ε � ΔE.

(4.12)

If the absorbing window is near a cusp, then 〈τδ〉 grows algebraically rather than
logarithmically. For example, in the domain bounded between two tangent circles,
the activation rate is

k ∼ (d−1 − 1)ε

γ|Ω|
[
δ + O(δ2)

]
e−〈ΔE〉/ε for ε � ΔE,

k ∼ (d−1 − 1)ε
√
ω1ω2

2πγ

[
δ + O(δ2)

]
e−ΔE/ε for ε � ΔE,

(4.13)

where d < 1 is the ratio of the radii.

5. Deep well—a Markov chain model. The modified Kramers formulas (4.6)
or (4.11) can be explained by coarse-graining the diffusive motion into a simplified
3-state Markov model, when the domain contains a deep well ΩW ⊂ Ω. The three
states of the Markov process are (i) state W—the trajectory is trapped in the deep
well; (ii) state D—the trajectory diffuses in the domain ΩD = Ω − ΩW , outside the
well; (iii) state A—the trajectory is absorbed into the small hole. Once the trajectory
is absorbed into the small hole, its motion is terminated, and so A is a terminal state
of the Markov chain. For simplicity, we assume Ω ⊂ R

2.
Not all transition times between the different states are finite with probability 1,

and so not all mean transition times are finite. The particle leaves the well to the
outer in finite mean time, that is,

(5.1) Pr{τW→D < ∞} = 1, EτW→D < ∞.

For small ε, the mean time spent in the well, EτW→D, is exponentially large and is
given by [14]

(5.2) EτW→D ∼
2π

√
∂2φ(xS)

∂s2√
−∂2φ(xS)

∂ν2

√
H(xW )

exp

{
φ(xS) − φ(xW )

ε

}
,

where ν and s are the distance to and arclength on ∂ΩW , respectively, xW is the
deepest point of the well, xS is the point on ∂ΩW , where φ achieves its minimum,
and H is the Hessian of φ.

The time τD→W , however, is not finite with probability 1, because there is a
finite probability Pr{τD→A < τD→W } of termination at A without returning to W ,
and there is no return from A to W . Consequently, EτD→W = ∞. However, EτD→A

and E[τD→W | τD→W < τD→A] are finite. For small ε, δ, the conditional mean time
E[τD→W | τD→W < τD→A] is asymptotically the same as EτD→W for a problem
without the small absorbing window, because the conditioning changes the drift only
near A, to repel the trajectory from the window, and so the effect on the conditional
mean time is small, regardless of whether this mean time is long or short. The
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transition probabilities from the outer domain to the absorbing window and to the
well are

Pr{τD→A < τD→W } ∼ E[τD→W | τD→W < τD→A]

E[τD→W | τD→W < τD→A] + E[τD→A | τD→A < τD→W ]
,

(5.3)

Pr{τD→W < τD→A} ∼ E[τD→A | τD→A < τD→W ]

E[τD→W | τD→W < τD→A] + E[τD→A | τD→A < τD→W ]
,

respectively. The conditional mean transition time E[τD→W | τD→W < τD→A] from
ΩD to ΩW is similar to (5.2),

(5.4) E[τD→W | τD→W < τD→A] ∼
2π

√
∂2φ(xS)

∂s2√
−∂2φ(xS)

∂ν2

√
H(xD)

exp

{
φ(xS) − φ(xD)

ε

}
,

where xD is the deepest point of the potential in the outer domain, φ(xW ) < φ(xD) <
φ(xS). The mean transition time E[τD→A | τD→A < τD→W ] from ΩD to the absorbing
window is given by (4.11)

(5.5) E[τD→A | τD→A < τD→W ] ∼ 2γ ln δ−1

ε
√
H(xD)

exp

{
φ0 − φ(xD)

ε

}
.

If we assume that the effect of the small window on the mean escape time, ln δ−1 (or
1/δ in three dimensions), is larger than that of the energy barrier, exp{[φ0−φ(xS)]/ε},
then, according to our assumption that the potential is relatively flat outside the deep
well, E[τD→W | τD→W < τD→A] � E[τD→A | τD→A < τD→W ], and so (5.3) implies

(5.6) Pr{τD→A < τD→W } ∼ E[τD→W | τD→W < τD→A]

E[τD→A | τD→A < τD→W ]
.

The mean absorption times Eτi→A are finite for i = D,W . They satisfy the
renewal equations

EτD→A = Pr{τD→A < τD→W }E [τD→A | τD→A < τD→W ]

+ Pr{τD→W < τD→A}EτW→A,(5.7)

EτW→A = EτW→D + EτD→A(5.8)

(see [15]). Adding (5.7) and (5.8), and dividing by Pr{τD→A < τD→W } = 1 −
Pr{τD→W < τD→A}, we obtain

(5.9) EτW→A = E [τD→A | τD→A < τD→W ] +
EτW→D

Pr{τD→A < τD→W } .

Both E[τD→A | τD→A < τD→W ] and 1/Pr{τD→A < τD→W } have the same order of
magnitude as functions of δ; however, EτW→D is exponentially large. Therefore,

(5.10) EτW→A ∼ EτW→D

Pr{τD→A < τD→W } .
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Now, by (5.8), we have

(5.11) EτD→A ∼ EτW→D

(
1

Pr{τD→A < τD→W } − 1

)
∼ EτW→D

Pr{τD→A < τD→W } ,

because Pr{τD→A < τD→W } → 0 as δ → 0. The meaning of (5.10) and (5.11) is that
for each realization of the Markov chain, e.g., DWDWDWDWDWDWDWDA,
the number of visits in state D is larger by 1, or equal to the number of visits at
state W . The mean time that the particle spends at state W is exponentially larger
than the mean time spent at state D. Therefore, the mean time to absorption is
approximately the average number of visits at state D times the average time of
a single visit in the deep well. The average number of visits in state D prior to
absorption is 1/Pr{τD→A < τD→W }, as in a geometric distribution, and (5.10) follows.
We conclude that

(5.12) EτD→A ∼ EτW→A;

i.e., the initial state (or location) of the particle has no (leading order) significance
for the mean absorption time 〈τδ〉, which by (5.6) and (5.10) is

(5.13) 〈τδ〉 ∼ EτW→A ∼ EτW→D

Pr{τD→W < τD→A}
.

Substituting (5.2), (5.4)–(5.6) into (5.13) yields

(5.14) 〈τδ〉 =
2γ ln

1

δ
ε
√
H(xW )

exp

{
φ0 − φ(xW )

ε

}
,

in agreement with (4.11).

6. Summary and discussion. The narrow escape problem of a Brownian par-
ticle through a small absorbing window in an otherwise reflecting boundary was dis-
cussed in [8], [17], [18], and [19]. Here we solve the narrow escape problem for a
Brownian particle in a force field. In cases where there is a deep potential well inside
the domain, there are two time scales in the problem, the mean time to escape the
well and the mean time to reach the small window. We give explicit asymptotic ex-
pressions for the mean escape time when the time scales are comparable and in the
case where one is much longer than the other.

Matched asymptotics of two- and three-dimensional problems [22], [23], [24], [11]
yield the leading term in the expansion of the principal eigenvalue in three dimensions
and a full expansion in two dimensions. For the special case of the mixed Neumann
problem with a small Dirichlet window in the boundary, the leading term obtained
in [17], [18], [19] can be obtained by the application of the matched asymptotics
expansion to this problem. In this paper we generalize the method of [17], [18], [19]
to obtain the leading term for the corresponding boundary value problem for the
Fokker–Planck operator, though matched asymptotics can be applied to this problem
as well. The advantage of our method, as demonstrated in [17], is that it reveals
the order of magnitude of the second term in three dimensions, while the matched
asymptotics method does not indicate this in a simple way. In the particular case of
a ball with a small Dirichlet cap, the application of the special functions method of
Collins [2], [3] gave in [17] the unexpected estimate on the remainder term O(δ2 log δ)
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to the expected leading term O(δ). Another advantage of the present method is the
Helmholtz integral equation (3.11) for the flux and capacity of the small window. This
equation is easier to solve numerically than the mixed Neumann–Dirichlet problem for
a half space, as required in the boundary layer equation of the matched asymptotics
expansion.
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