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The escape of Brownian motion through a narrow absorbing window in an otherwise reflecting boundary of
a domain is a rare event. In the presence of a deep potential well, there are two long time scales, the mean
escape time from the well and the mean time to reach the absorbing window. We derive a generalized Kramers
formula for the mean escape time through the narrow window.
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Many situations in molecular biophysics can be described
as chemical reactions that consist in the diffusion of a
Brownian particle through a small opening in the boundary
of a domain whose remaining boundaries are essentially re-
flecting. This can happen, for example, if the reflecting
boundaries are due to a dielectric barrier, as in biological
membranes, and the small opening may be a protein channel
embedded in an otherwise impenetrable membrane �1�. In
this case the reflecting boundaries are due to a high potential
barrier with a small opening, whose energy is not necessarily
much higher than the thermal energy. The small absorbing
window setup is also a model for the forward rate of chemi-
cal reactions in which there are small binding sites for the
diffusing reacting molecule in the boundary of a domain �2�.
The same setup describes also the process of trafficking re-
ceptors on biological membranes �3�. The escape of free
Brownian motion �without drift� through a small window
was discussed in �3�. Here we consider the narrow escape
problem for Brownian motion in a field of force. Our result
is a generalized multidimensional Kramers formula for the
activation rate constant, which depends on the potential, the
specific geometry of the opening, and the volume or surface
area of the domain �see Eqs. �27�–�31��.

Consider a bounded domain ��Rn, with a small absorb-
ing part ��a of the boundary �� and the remaining boundary
��r reflecting Brownian trajectories, and assume that

� = � ���a�
���� �

1/�n−1�

� 1.

The diffusion is described by the probability density function
p��x , t�, which solves the Fokker-Planck equation

�
�p�

�t
= ��p� + � · �p���� � L�p�, �1�

with the initial condition p��x ,0�= p0�x�, and Dirichlet-
Neumann boundary conditions for t�0,

p� = 0 for x � ��a, �2�

�
�p�

�n
+ p�

��

�n
= 0 for x � ��r, �3�

where �=kBT /m. The function

u��x� = 	
0

	

p��x,t�dt , �4�

which is the mean time the particle spends at x before it
escapes through the narrow window, is the solution of the
boundary value problem

L�u� = − �p0 for x � � , �5�

u� = 0 for x � ��a, �6�

�
�u�

�n
+ u�

��

�n
= 0 for x � ��r. �7�

The function g�=u�e�/� is the solution of the adjoint problem

L�
*g� = − �p0e�/� for x � � , �8�

�g��x�
�n

= 0 for x � ��r,

g��x� = 0 for x � ��a.

�9�

Equation �8� can be written in the divergence form

��e−�/��g�� = −
�p0

�
. �10�

The adjoint operators L� and L�
*, defined by Eqs. �1� and

�5�–�9�, respectively, have biorthogonal systems of normal-
ized eigenfunctions 

i�x ,��� and 
�i�x ,��� �i=0,1 , . . . � and
we can expand

p��x,t� = �
i=0

	

ai���
i�x,��e−�i���t/�, �11�

where �i��� are the eigenvalues of L�. The ai��� are the
Fourier coefficients of the initial function p0�x�. In the limit
�→0 the Dirichlet part of the boundary conditions, �2�, is
dropped, so that �0���→0 �the first eigenvalue of the prob-
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lem �1� and �3� with ��r=���, with the normalized eigen-
function


0�x,0� =
exp
− ��x�/��

	
�

exp
− ��x�/��dx

, �12�

and a0���→1. It follows from Eqs. �4� and �11� that for all
x��

u��x� = ��
i=0

	
ai���
i�x,��

�i���
→ 	 as � → 0. �13�

In particular, the first passage time �=inf
t�0 �x�t����a�
diverges. That is, lim�→0�=	 on almost every trajectory
x�t�. Obviously, the mean first passage time

�� = 	
�

u��x�dx = ��
i=0

	
ai���
�i���

�14�

also diverges as �→0. It is the purpose of this paper to find
the orders of magnitude of u��x� and �� for small �.

The Neumann function for � is the solution of the bound-
ary value problem

�yN�x,y� = − ��x − y� for x,y � � ,

�N�x,y�
�ny

= −
1

����
for x � �, y � �� . �15�

Using Green’s identity, the boundary conditions �5�–�7� and
�15� give �see �4� for detailed calculations�

	
��a

N�x,y�
�u��y�

�ny
dSy − u��x�

= � − 1

����	��r

u��y�dSy +
1

�
	

�

u��y��y��y� · �yN�x,y�dy�
��1 + o�1�� . �16�

In view of �13�, the integral ��N�x ,y�p0�y�dy can be ne-
glected to leading order, because it is uniformly bounded for
smooth initial distributions p0 as �→0, while all other terms
in �16� are unbounded. For x��, at a distance O�1� away
from the absorbing window ��a, the Neumann function is
uniformly bounded.

Note that integrating �10� and using the boundary condi-
tions �9�, we obtain the compatibility condition

	
��a

�u�

�n
dS = −

�

�
. �17�

Due to the fact that the normal derivative �u��y� /�ny is nega-
tive on ��a, Eq. �17� implies that ���a

N�x ,y�
���u��y� /�ny�dSy is uniformly bounded for x outside the
neighborhood of ��a. It follows that for x��, at a distance
O�1� �with respect to �� away from the window, the integral
equation �16� is to leading order

u��x� �
1

����	��

u��y�dSy

−
1

�
	

�

u��y��y��y� · �yN�x,y�dy ,

�18�

which is the integral representation of the boundary value
problem L�u�=0 with the no-flux boundary condition �7� on
the entire boundary �i.e., with ��r=���, whose solution is
the Boltzmann distribution

u��x� � C�e−��x�/�. �19�

Equation �19� represents the averaged time the particle spent
at a point x at a distance O�1� away from the absorbing
window prior to absorbtion.

Substituting �19� in �16� yields an integral equation for
the flux �u� /�n into the absorbing window,

	
��a

N�x,y�
�u��y�

�ny
dSy = − C�e−��x�/��1 + o�1�� for � � 1.

�20�

If ��x� does not change much in the window, we can use the
constant approximation ��x����window�=�0.

In three dimensions

N�x,y� =
1

4��x − y�
+ vS�x,y� , �21�

where vS is a regular harmonic function �5�, so the leading
order contribution to �20� is due to the singular part of the
Neumann function. Thus the leading order approximation
�u0 /�n to the absorption flux is the solution of

1

2�
	

��a

�u0�y�
�ny

dSy

�x − y�
= − C�e−�0/�. �22�

Note that the singularity of the Neumann function at the
boundary is twice as large as it is inside the domain, due to
the contribution of the regular part �the “image charge”�. For
that reason the factor 1 /4� in Eq. �21� was replaced by
1/2�.

Helmholtz �6� �see also Rayleigh �7� and others, e.g., �8��
solved the integral equation �22� analytically for the case of
an elliptical absorbing window ��a,

�u0�y1,y2�
�n

= −
C�e−�0/�

�1 −
y1

2

a2 −
y2

2

b2

, �23�

where a and b are the semiaxes of the ellipse, and y
= �y1 ,y2� are local Cartesian coordinates in the ellipse. The
value of the constant C� is calculated using the compatibility
condition �17� to be
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C� =
�K�e�
2��a

e�0/�, �24�

where e is the eccentricity of the ellipse and K�·� is the
complete elliptic integral of the first kind. In a three-
dimensional domain, the averaged time spent at point x be-
fore escape through an elliptical absorbing window is given
by �see Eq. �19��

u��x� �
�K�e�
2��a

exp��0 − ��x�
�

� . �25�

Equations �14� and �25� give now the mean escape time as

�� =
�K�e�e�0/�

2��a
	

�

exp�−
��x�

�
�dx . �26�

If the barrier is sufficiently high, we evaluate the integral in
�26� by the Laplace method, assuming that � has a single
global minimum �m at xm,

	
�

exp�−
��x�

�
�dx �

�2���n/2

�
i=1

n

�i

exp�−
�m

�
� ,

where �i are the frequencies at the minimum xm. For reac-
tions that consist in passing through a small elliptical win-
dow �assuming no returns are possible� the reaction rate is
the modified Kramers formula

�� =
1

��
�

a�1�2�3

�2���K�e�
e−�E/�, �27�

where �E=�0−�m. In the special case of a circular window,
we obtain

�� �
4a�1�2�3

�2��3/2���
e−�E/�, �28�

where a is the radius of the window. Note that �E is not the
barrier height. We conclude that the activation rate is of
Arrhenius form and has two contributions. The first is due to
the potential, while the second is due to the geometry of the
absorbing window alone. Unlike the free diffusion case �3�,
geometrical properties of the domain, such as its volume, are
not included in the leading order asymptotics of the reaction
rate.

Second, in the limit of large �, the power series approxi-
mation

e−���x�−�0�/� = 1 −
��x� − �0

�
+

���x� − �0�2

2�2 ¯

in �26� gives

k �
2��a

�K�e����
�1 −

�� − �0

�
+ O��−2��−1

, �29�

where ��= �1/ �� � �����x� dx is the spatial average of the
potential. The rate can also be rewritten into an Arrhenius
form as

k �
2��a

�K�e����
e−�E�/�, �30�

where �E�=�0− ��. In the case of large � the reaction rate
depends not merely on the geometry of the window, but also
on the geometry of the domain itself through its volume.
Large � means that the motion is diffusion limited; therefore,
fine details of the potential are less important and the spa-
tially averaged potential has only an O��−1� effect.

In two dimensions the singularity of the Neumann func-
tion is logarithmic, so the leading order approximation to the
activation rate is

k ��
��

����
e−�E�/�

�ln
1

�
+ O�1�� for � � �E ,

���1�2

2�

e−�E/�

�ln
1

�
+ O�1�� for � � �E � �31�

The remainder O�1� is important, because in real life appli-
cations even if � is small, ln�1/�� is not necessarily large. In
�3� we have calculated the O�1� term for diffusion in a cir-
cular disk, in a circular annulus, and on a sphere. These
results extend in a straightforward way to domains that can
be mapped conformally onto these shapes �e.g., all simply
connected planar domains�.

The modified Kramers formulas �27� or �31� can be ex-
plained by coarse-graining the diffusive motion into a sim-
plified three-state Markov model, when the domain contains
a deep well �W��. The three states of the Markov process
are �i� state W, where the trajectory is trapped in the deep
well; �ii� state D, where the trajectory diffuses in the domain
�D=�−�W, outside the well; �iii� state A, where the trajec-
tory is absorbed in the small hole. Once the trajectory is
absorbed in the small hole, its motion is terminated, so A is a
terminal state of the Markov chain. For simplicity, we as-
sume ��R2.

Not all transition times between the different states are
finite with probability 1, so not all mean transition times are
finite. The particle leaves the well for the outer domain in
finite mean time, that is,

Pr
W→D � 	 � = 1 EW→D � 	 . �32�

For small �, the mean time spent in the well, EW→D, is
exponentially large and is given by the multidimensional
Kramers formula �9�.

The time D→W, however, is not finite with probability 1,
because there is a finite probability Pr
D→A�D→W� of ter-
mination at A without returning to W, and there is no return
from A to W. Consequently, ED→W=	. However, ED→A
and E�D→W �D→W�D→A� are finite. For small � ,�, the
conditional mean time E�D→W �D→W�D→A� is asymptoti-
cally the same as ED→W for a problem without the small
absorbing window, because the conditioning changes the
drift only near A, to repel the trajectory from the window, so
the effect on the conditional mean time is small, regardless
of whether this mean time is long or short. The conditional
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mean transition time E�D→W �D→W�D→A� from �D to �W

is also given by an appropriate multidimensional Kramers
formula. The mean transition time E�D→A �D→A�D→W�
from �D to the absorbing window is given by �31�. If we
assume that the effect of the small window on the mean
escape time, ln �−1 �or 1/� in three dimensional�, is
larger than that of the energy barrier, exp
��0−��xS�� /��,
then, according to our assumption that the potential is
relatively flat outside the deep well, E�D→W � D→W

�D→A��E�D→A � D→A�D→W�, so

Pr
D→A � D→W� �
E�D→W�D→W � D→A�
E�D→A�D→A � D→W�

. �33�

The mean absorbtion times Ei→A are finite for i=D ,W.
They satisfy the renewal equations

ED→A = Pr
D→A � D→W�E�D→A�D→A � D→W�

+ Pr
D→W � D→A�EW→A, �34�

EW→A = EW→D + ED→A �35�

�see �10��. Adding Eqs. �34� and �35�, and dividing by
Pr
D→A�D→W�=1−Pr
D→W�D→A�, we obtain

EW→A = E�D→A�D→A � D→W� +
EW→D

Pr
D→A � D→W�
.

�36�

Both E�D→A � D→A�D→W� and 1/Pr
D→A�D→W� have
the same order of magnitude as functions of �; however,
EW→D is exponentially large. Therefore

EW→A �
EW→D

Pr
D→A � D→W�
. �37�

Now, by Eq. �35�, we have

ED→A � EW→D� 1

Pr
D→A � D→W�
− 1�

�
EW→D

Pr
D→A � D→W�
, �38�

because Pr
D→A�D→W�→0 as �→0. The meaning of Eqs.
�37� and �38� is that for each realization of the Markov chain,
e.g., DW DW DW DW DW DW DW DA, the number of visits
to state D is larger by 1, or equal to the number of visits to
state W. The mean time that the particle spends at state W is
exponentially larger than the mean time spent at state D.
Therefore, the mean time to absorption is approximately the
average number of visits to state D times the average time of
a single visit to the deep well. The average number of visits
to state D prior to absorbtion is 1 /Pr
D→A�D→W�, as in a
geometric distribution, and �37� follows. We conclude that

ED→A � EW→A, �39�

i.e., the initial state �or location� of the particle has no �lead-
ing order� significance for the mean absorbtion time ��,
which by Eqs. �33� and �37� is

�� � EW→A �
EW→D

Pr
D→W � D→A�
. �40�

Using the multidimensional Kramers formulas and �33� in
�40� yields �31�.
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