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Asymptotic Solution of the Wang-Uhlenbeck Recurrence Time Problem
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A Langevin particle is initiated at the origin with positive velocity. Its trajectory is terminated when it
returns to the origin. In 1945, Wang and Uhlenbeck posed the problem of finding the joint probability
density function (PDF) of the recurrence time and velocity, naming it ‘‘the recurrence time problem.’’ We
show that the short-time asymptotics of the recurrence PDF is similar to that of the integrated Brownian
motion, solved in 1963 by McKean. We recover the long-time t�3=2 decay of the first arrival PDF of
diffusion by solving asymptotically an appropriate variant of McKean’s integral equation.

DOI: 10.1103/PhysRevLett.95.110601 PACS numbers: 05.40.Jc, 02.50.2r, 83.10.Mj
The recurrence problem of a free Brownian particle was
posed in [1] and has appeared since in different variants in
such diverse physical applications as the inelastic collapse
of a randomly forced particle in granular media [2–8] and
the simulation of permeation of ions in protein channels of
biological membranes [9,10], to name but a few. The
problem can be formulated as follows. The one-
dimensional Brownian motion in the gravitational field is
described by the Langevin equation [11]

�x� � _x � �g�
���������
2�"

p
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where � is the friction (damping) parameter, " is the noise
strength (temperature), g is the gravitational acceleration,
and _w is a �-correlated white (Gaussian) noise. Wang and
Uhlenbeck (1945) [1] posed, among others, the reccur-
rence time problem (RT), to find the joint probability
density function (PDF) of the time and velocity of first
return of the Brownian motion to the origin. Another
problem is that of finding the PDF of the first passage
time to the origin from a point x0 > 0. The latter problem
was first solved in [12], whereas the former is solved here.

The PDF to find the diffusive particle at time t at position
x with velocity v, given it was initiated at time t � 0 at
location x0 � 0, with initial velocity v0, denoted
p�x; v; tjx0; v0�, satisfies the Fokker-Planck equation [11]
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with the initial condition

p�x; v; 0jx0; v0� � ��x� x0���v� v0�; (3)

and the absorbing boundary condition

p�0; v; t� � 0; v > 0: (4)

The absorbing boundary condition reflects the fact that the
first passage time of particles with and without absorption
is the same. The motion after this time is irrelevant, so we
may assume that the particle is absorbed, and there are no
incoming trajectories from left to right (characterized by
positive velocity) at the origin. In the RT problem x0 � 0,
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that is, the particle is initiated at the location of the absorb-
ing boundary with a positive velocity v0 > 0, whereas the
first passage time to the origin problems are identified by
x0 > 0 and the initial velocity is not necessarily positive. In
both problems the goal is to find the PDF p�x; v; tjx0; v0�.

Titulaer et al. ([13], and references therein) used several
numerical approximation methods to solve the steady state
problem. The RT and the first passage time problems were
renamed the albedo and the Milne (in analogy to transport
theory) problems, respectively. The mean exit time and the
stationary exit distribution were calculated by Marshall
and Watson [14]; Hagan, Doering, and Levermore [15];
and Kłosek [16] for the strip �A< x < B, �1< v<1
in the phase plane in the limit of large �. A simplified
calculation of the mean first-passage time (MFPT) and the
asymptotic distribution of passage times for large t in the
presence of an attracting field were presented in [17].

The distribution of the first passage time (the time-
dependent Milne problem) was first determined in [12],
where a uniform expansion for both short and long times
was found. The analysis in [12] is based on constructing an
initial time layer of size t0 � 2=�. The probability to exit
before t0 is transcendentally small in �, as the particle is
initiated away from the absorbing boundary. The above
mentioned references contain the solution to Wang and
Uhlenbeck’s first passage time problem, yet the RT prob-
lem of Wang and Uhlenbeck remained unresolved.
Marshall and Watson [14] computed the Laplace transform
of the RT distribution in terms of infinite weighted sum of
eigenfunctions. However, quoting ([14], p. 3542) ‘‘The
Laplace inversion . . . appears to be out of question.’’ The
initial time layer method [12] cannot be applied in the RT
problem, because, as seen below, particles are absorbed in
arbitrarily short times with non-negligible probabilities.

The RT of a trajectory x�t� is the first time it returns to
the origin (or to any other point),

� � inf
t>0
ft:x�t� � 0g:

The probability density of returning to the origin for the
first time with a given velocity,
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f�v; tjv0� � Prf� � t; v��� � vjx0 � 0; v0g; (5)

is called the joint recurrence density. Obviously, for v > 0,
v0 > 0, and for v < 0, v0 < 0

f�v; tjv0� � 0: (6)

The Wang-Uhlenbeck RT problem is to determine
f�v; tjv0� for v0 > 0 and v < 0 for the problem (1), which
we denote fc�v; tjv0�.

A closely related RT problem for the integrated
Brownian motion (IBM),

�x �
���������
2�"

p
_w; (7)

was solved in [18] (see also [19–22]), where the explicit
expression

fIBM�v; tjv0� �
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is given.
For both the free Brownian particle and the IBM the

recurrence density f�v; tjv0� can be understood as follows.
A trajectory of a particle that starts at the origin with v0 >
0, and that diffuses on the entire line, returns to the origin
with alternating negative and positive velocities any num-
ber of times. This means that for t > 0, v0 > 0, and for all
v the recurrence density satisfies the integral equation [18–
22].

vpi�0;v; tj0;v0� ��fi�v; tjv0��v
Z t

0
ds

	
Z 0

�1
d�fi��;sjv0�pi�0;v; t� sj0;��;

(9)

where i � c, IBM. Indeed, consider the unidirectional flux
density of particles that cross the origin x � 0 with veloc-
ity v at time t. On the one hand, this unidirectional flux
is vpi�0; v; tj0; v0� [9]; on the other hand, it has two differ-
ent contributions. The contribution �fi�v; tjv0� is due to
the trajectories that return to the origin for the first time
exactly at time t with velocity v, and the second contri-
bution in (9) is due to trajectories that return to the ori-
gin at time t with velocity v after previous returns to the
origin (at any previous times with any velocities). More
specifically, due to the Markov property of the pair
�x�t�; v�t��, the unidirectional flux density of trajectories
that cross the origin at time t with velocity v, given that it
started with a positive velocity v0, is the probability den-
sity fi��; sjv0� that it returns to the origin for the first time
at �i � s < t with some negative velocity �, and then it
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returns to the origin with velocity v (with probability den-
sity pi�0; v; t� sj0; ���.

Next, we construct an approximate solution by truncat-
ing the Neumann series for (9). We write the equation as

�I �L�fc � �vpc; (10)

where the linear integral operator L is defined as

L fc � v
Z t

0
ds
Z 0

�1
d�fc��; sjv0�pc�0; v; t� sj0; ��:

(11)

Marching in sufficiently small time steps, we can assume
that k L k <1, so the Neumann series expansion

fc � ��I �L�L2 � 
 
 
�vpc (12)

converges. The terms of the series (12) are readily comput-
able numerically, but the short- and long-time asymptotics
have to be evaluated analytically.

We note that the short-time (�t� 1) asymptotics of the
exact solution of the Fokker Planck equation (2) and (3) for
a free Brownian motion on the entire line [11] is given by

pc�x;v;tjx0;v0��
X1
n�1

tn�3Zn�x;v�

	exp
�
�
 0�x�� t 1�x;v�� t2 2�x;v�

"�t3

�
;

(13)

(the dependence of the eikonals  i on x0, v0 is suppressed),
where

 0�x� � 3�x� x0�
2;  1�x; v� � �3�x� x0��v� v0�;

 2�x; v� � v2 � vv0 � v
2
0 �

3

10
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2; (14)

and
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2
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�
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Setting x � x0 � 0 in Eqs. (14), we find that both eiko-
nals  0 and  1 vanish. Therefore, the short-time asymp-
totics is governed by the first nonvanishing eikonal
 2�0; v� � v2 � vv0 � v

2
0, so that

pc�0; v; tj0; v0� � exp
�
v2

0 � v
2

4"
� g

v0 � v
2"�

� ���
3
p

2�"�t2

	 exp
�
�
v2 � vv0 � v2

0

"�t

�
: (16)

We note that the corresponding density for the IBM is
1-2



FIG. 1 (color online). Numerical and asymptotics of Prf�c �
tjv0g, with � � 1, " � 1, v0 � 1, g � 0. Black/noisy, simula-
tion of 106 Langevin trajectories with �t � 10�3. Blue/circles,
short-time asymptotics of the marginal density from (19).
Red/crosses, long-time asymptotics (29). Green/boxes, first
term of the Neumann series (12). Magenta/solid curve, numeri-
cal evaluation of two terms of the Neumann series.
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pIBM�0; v; tj0; v0� �
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(17)

so that

pc�0; v; tj0; v0� � exp
�
v2

0 � v
2

4"
� g

v0 � v
2"�

�
	 pIBM�0; v; tj0; v0�: (18)

To find the short-time asymptotics of fc�v; tjv0�, we use
(18) in (9) with i � c. The resulting equation is identical to
that for IBM, but instead of fIBM�v; tjv0�, we have
fc�v; tjv0� expfv2

0=4"� gv0=2"�g. We conclude that the
short-time expansion of fc�v; tjv0� is given by

fc�v; tjv0� � exp
�
v2

0 � v
2

4"
� g

v0 � v
2"�

�
fIBM�v; tjv0�:

(19)

To find the long-time asymptotics of fc�v; tjv0�, we first
Laplace transform (9) with respect to t,

vp̂c�0;v;�j0;v0���f̂c�v;�jv0�

�v
Z 0

�1
d�f̂c��;�jv0�p̂c�0;v;�j0;��;

(20)

where � is the Laplace time coordinate. The long-time
asymptotics of pc�0; v; tj0; v0� is obtained from [11] (for
g � 0) as

pc�0; v; tj0; v0� �
�

2�"
��������
2�t
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�
�
v2
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�
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�
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Hence, the small � asymptotics is
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Expanding

f̂ c�v;�jv0��f0�v;v0��f1�v;v0�

����
�
�

s
�f2�v;v0�

�
�
� . . . ;

(23)

and equating leading order terms, we find thatZ 0

�1
f0��; v0�d� � 1; (24)

which means that the free particle is recurrent, and atO�1�,
we find that

f0�v; v0� �
v expf� v2

2"g

2
�������
2�
p

"

Z 0

�1
f1��; v0�d�: (25)

Equations (24) and (25) give
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f0�v; v0� � �
v expf� v2

2"g

"
: (26)

Similarly, f1�v; v0� is determined by comparing terms of

order O�
���
�
�

q
�, as

f1�v; v0� � 2
�������
2�
p v expf� v2

2"g

"
: (27)

We conclude that the half-integer power series (23) is self
consistent. Note that d

d� f̂c �
1��
�
p is singular for � � 0.

Therefore, the mean time of return is infiniteZ 1
0
tfc�v; tjv0�dt � �

d
d�
f̂c�v; 0jv0� � 1;

which is the Gambler’s ruin paradox [23]. Moreover,
d
d� f̂c �

1��
�
p means that the asymptotic behavior of

tfc�
; tj
� for large t is the inverse Laplace transform of
1��
�
p , which is proportional to 1��

t
p , hence

fc�v; tjv0� � �
v expf� v2

2"g

"
����������
2�t3

p ; for �t
 1: (28)

Note that (28) means that at long times the return proba-
bility is to leading order independent of the initial velocity
v0, because the initial velocity is thermalized for times
longer than relaxation time. The PDFs of the RT are the
marginal densities
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Prf�i � tjv0g �
Z 0

�1
fi�v; tjv0�dv; i � c; IBM

The long-time PDF of the RT is independent of v0 and is
simply the marginal of (28),

Prf�c � tg �
1����������

2�t3
p ; for �t
 1: (29)

Note that the decay rate of the RT density is faster than that
of the IBM, which is O�t�5=4� [21].

We have three different approximations to Prf�c � tg:
the marginal of the truncated Neumann series (12), the
marginal of the short-time approximation (19), and the
long-time approximation (29). Figure 1 shows the three
approximations together with results of simulations of
Langevin trajectories. The Neumann series is truncated at
one term (green, boxes) and at two terms (magenta, solid
curve).

The approximate solutions of the RT problem can be
used in the above mentioned applications, e.g., for the
computation of the critical restitution coefficient and the
collapse time for the case of the damped Brownian mo-
tion [2].
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