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Questions of flux regulation in biological cells raise a renewed interest in the narrow escape problem. The
determination of a higher order asymptotic expansion of the narrow escape time depends on determining the
singularity behavior of the Neumann Green’s function for the Laplacian in a three-dimensional �3D� domain
with a Dirac mass on the boundary. In addition to the usual 3D Coulomb singularity, this Green’s function also
has an additional weaker logarithmic singularity. By calculating the coefficient of this logarithmic singularity,
we calculate the second term in the asymptotic expansion of the narrow escape time and in the expansion of the
principal eigenvalue of the Laplace equation with mixed Dirichlet-Neumann boundary conditions, with small
Dirichlet and large Neumann parts. We also determine the leakage flux of Brownian particles that diffuse from
a source to an absorbing target on a reflecting boundary of a domain, if a small perforation is made in the
reflecting boundary.
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I. INTRODUCTION

The narrow escape problem in diffusion theory, which
goes back to Lord Rayleigh �1�, is to calculate the mean first
passage time, also called the narrow escape time �NET�, of a
Brownian particle to a small absorbing window on the oth-
erwise reflecting boundary of a bounded domain. The re-
newed interest in the small hole problem is due to its rel-
evance in molecular biology and biophysics. The small hole
often represents a small target on a cellular membrane, such
as a protein channel, which is a target for ions �2�, a receptor
for neurotransmitter molecules in a neuronal synapse �3�, a
narrow neck in the neuronal spine, which is a target for cal-
cium ions �4�, and so on. The physiological role of the small
hole is often to regulate flux, which carries a physiological
signal. For example, the NMDA channels in the post synap-
tic membrane in the neuronal cleft are small targets for dif-
fusing glutamate molecules released from a vesicle at the pre
synaptic membrane. The leakage problem here is to deter-
mine the fraction of the released molecules that reach the
channels before being irreversibly absorbed by the surround-
ing medium �e.g., glia transporters� �5,6�. The position and
the number of the NMDA and AMPA receptors regulate syn-
aptic transmission and is believed to be a part of coding
memory �3,7�.

The narrow escape problem is connected to that of calcu-
lating the principal eigenvalue of the mixed Dirichlet-
Neumann problem for the Laplace equation in a bounded

domain, whose Dirichlet boundary is only a small patch on
the otherwise Neumann boundary. Specifically, the principal
eigenvalue is asymptotically the reciprocal of the narrow es-
cape time in the limit of shrinking patch radius.

The recent history of the problem begins with the work of
Ward, Keller, Henshaw, Van De Velde, Kolokolnikov, and
Titcombe �8–11� on the principal eigenvalue and is based on
boundary layer theory and matched asymptotics, in which
the boundary layer equation is the classical electrified disk
problem, solved explicitly by Weber in 1873 �12,13�. The
work of Holcman, Singer, Schuss, and Eisenberg �14–21� on
the NET for diffusion with and without a force field and for
several small windows and its applications in biology, is
based on the known structure of the singularity of Neu-
mann’s function at the boundary �13,22–24� and on the
Helmholtz integral equation �25� �see Ref. �26��. The most
recent work of Bénichou and Voituriez �27� on the NET in
diffusion and anomalous diffusion finds the dependence of
the NET on the initial point inside the boundary layer and
finds the scaling laws for subdiffusions. In these papers the
leading term in the asymptotic expansion was calculated in
the shrinking window limit.

Neither the second term, nor its order of magnitude were
calculated for the three-dimensional problem, except in the
case of a spherical domain with a small circular absorbing
window, where an explicit solution was constructed by a
generalization of Collins’ method �an error in the coefficient
of the second term, given in Ref. �15�, is corrected here�. The
difficulty in finding, or even estimating, the second term can
be attributed to the practically unknown �to mathematicians
and physicists� structure of the singularity of Neumann’s
function on the boundary. While classical texts in partial dif-
ferential equations and in classical mathematical physics
�13,22–24� mention only the leading order singularity of the
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Newtonian potential and a regular correction, Ref. �23�
shows �in an exercise� that Neumann’s function for a sphere
has a logarithmic singularity at the boundary. The logarith-
mic boundary singularity of Neumann’s function for the
Laplace equation in a general regular domain seems to have
been discovered by Popov �28� and elaborated by Silbergleit,
Mandel, and Nemenman �29� �which cites neither Ref. �23�
nor Ref. �28��.

Another small window problem is that of a leaky conduc-
tor of Brownian particles, which is a bounded domain with a
source of particles on the boundary or in the interior, and a
�big� target, which is an absorbing part of the boundary. The
remaining boundary is reflecting. If the boundary has a small
absorbing patch �a hole�, some of the Brownian particles
may leak out and never make it to the big absorbing target.
The calculation of the leakage flux is not the same as that in
the narrow escape problem, because the total flux on the
boundary remains bounded as the small hole shrinks. The
calculation of the leakage flux was attempted in Ref. �30� for
diffusion in a flat cylinder with a source at the reflecting top
and a small absorbing window at the reflecting bottom, and
absorbing lateral envelop. The three-dimensional diffusion in
the cylinder was assumed to be well approximated by radial
diffusion in a circular disk.

In this paper, we determine the structure of the boundary
singularity of the Neumann function for the Poisson equation
and of the Green-Neumann function for the mixed problem
�with Dirichlet and Neumann boundary conditions� in a gen-
eral bounded domain �, whose boundary �� is sufficiently
smooth. Our calculations use the method of Refs. �28,29�.
We find that for z���, y�����, the structure of the Neu-
mann function �in dimensionless variables� is

N�y,z� =
1

2��y − z�
−

1

8�
�L�z� + N�z��ln�y − z� + vS�y,z� ,

�1�

where L�z� and N�z� are the principal curvatures of �� at z
and vS�y ,z� is a bounded function of x ,y in �. If � is a ball
of radius R, the abovementioned result of Kellog �23� is re-
covered, because L�z�=N�z�= 1

R .
We find that the NET through a circular disk of �dimen-

sionless� radius a, centered at 0 on the boundary, is

E� =
���

4aD�1 +
L�0� + N�0�

2�
a ln a + o�a ln a�� , �2�

where D is the diffusion coefficient. If � is a ball of radius
R, then

E� =
���
4aD

�1 +
a

�R
ln

R

a
+ o� a

R
ln

R

a
	� . �3�

The result �3� corrects that given in Ref. �15�, where � is
missing from the prelogarithmic factor. The case of an ellip-
tic window is handled in a straightforward manner, as in Ref.
�15�.

The principal eigenvalue �1�a�
 1
E� of the Laplace equa-

tion in � with Dirichlet conditions given on a circular disk of

dimensionless radius a and Neumann boundary conditions
elsewhere has the asymptotic expansion

�1�a� =
4aD

��� �1 +
L�0� + N�0�

2�
a ln a + o�a ln a��

for a → 0. �4�

The result �4� provides the missing second term and estimate
of the remainder, which was not given in Ref. �8� or �15�.

For a leaky conductor, we find that the leakage flux
through a circular hole of small �dimensionless� radius �,
centered at 0, is

J� = 4�Du0�0��1 + O�� ln ��� , �5�

where u0�0� is the solution of the unperturbed problem �with-
out the leak� at the center of where the hole is to be located.

Equation �5� can be viewed as a generalization of Eq. �4�
in the sense that the factor ���−1 in Eq. �4� can be interpreted
as the uniform concentration of the Brownian particle in �.
The uniform concentration is the solution of the stationary
diffusion equation problem with Neumann conditions on the
entire boundary, which is the unperturbed problem for nar-
row escape. Thus the concentration u0�x� is a generalization
of the fixed concentration ���−1 in Eq. �4�.

II. THE SINGULARITY OF NEUMANN’S FUNCTION

Consider a bounded domain ��R3, given by �= �x
�R3 :F�x��0�, where F�C3�R3�. Our purpose is to deter-
mine the singularity of Green’s function for the Laplace
equation in � with Neumann boundary conditions �called
Neumann’s function� and of Green’s function for the mixed
Dirichlet and Neumann boundary conditions. The calculation
in this section is a modification of that of Popov �Ref. �28�,
Lemma 1.1�.

The Neumann function N�x ,y� for this domain is the so-
lution of the boundary value problem

�xN�x,y� = − 	�x − y� +
1

���
, for x,y � � , �6�

�N�x,y�
�
x

= 0, for x � ��, y � � , �7�

where ��x� is the outer unit normal to the boundary ��. If x
or y �or both� are in ��, then only a half of any sufficiently
small ball about a boundary point is contained in �, which
means that the singularity of Neumann’s function is 1

2��x−y� .
Therefore Neumann’s function for y��� is written as

N�x,y� =
1

2��x − y�
+ v�x,y� , �8�

where v�x ,y� satisfies

�xv�x,y� =
1

���
for x � �, y � �� �9�

and the boundary condition
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�v�x,y�
�
x

=
1

2�

��x� · �x − y�
�x − y�3

for x,y � �� . �10�

Green’s identity requires the evaluation of two integrals. The
first is the volume integral, which by Eq. �6� is


�

�N�x,y��xv�x,z� − v�x,z��xN�x,y��dx

= 
�

N�x,y�
1

���
dx + v�y,z� −

1

����

v�x,z�dx ,

and the second is the surface integral, which by Eq. �7� is

�
��
�N�x,y�

�v�x,z�
�
x

− v�x,z�
�N�x,y�

�
x
�dSx

= �
��
� 1

2��x − y�
+ v�x,y����x� · �x − z�

2��x − z�3
dSx.

Thus, for z��� Green’s identity gives

v�y,z� = −
1

����

�N�x,y� − v�x,z��dx

+ �
��
� 1

2��x − y�
+ v�x,y����x� · �x − z�

2��x − z�3
dSx.

�11�

To determine the singularity of this integral when y ap-
proaches z, we use the method of successive approximations
to expand v�x ,y� as

v�x,y� 
 v0�x,y� + v1�x,y� + v2�x,y� + ¯ , �12�

where vi+1�x ,y� is more regular than vi�x ,y� �see Ref. �29��.
For y or z �or both� in ��, the first term is the most singular
part

v0�y,z� =
1

4�2�
��

��x� · �x − z�
�x − y��x − z�3

dSx. �13�

To extract its dominant part, we reproduce here, for com-
pleteness, the analysis of Ref. �28� with only minor modifi-
cations. We consider z��� and assume that the boundary
near z is sufficiently smooth. Moving the origin to z, we set
z=0. Taking a sufficiently small patch ��z about z, we as-
sume that it can be projected orthogonally onto a circular
disk Da of radius a in the tangent plane to �� at z. We can
assume, therefore, that ��z can be represented as

x3 = fz�x1,x2� =
1

2
L�z�x1

2 +
1

2
N�z�x2

2 + o�x1
2 + x2

2�

for �x1,x2� � Da. �14�

If a is sufficiently small, then o�x1
2+x2

2��Lx1
2+Nx2

2. This ca-
nonical representation �14� assumes that ��z has at least one
nonzero curvature and that the quadratic part in Taylor’s ex-
pansion of f�x1 ,x2� about the origin is represented in princi-
pal axes.

The asymptotically dominant part as y→z is determined
by the integral over the patch ��z, which we write as

v0�y,0� 

1

4�2
��z

��x� · xdSx

��x1 − y1�2 + �x2 − y2�2 + �x3 − y3�2�x1
2 + x2

2 + x3
2�3/2 . �15�

In the representation �14�,

��x� =
�L�z�x1,N�z�x2,− 1� + o��x1

2 + x2
2�

�1 + L2�z�x1
2 + N2�z�x2

2
,

��x� · x =
L�z�x1

2 + N�z�x2
2 − x3

�1 + L2�z�x1
2 + N2�z�x2

2
,

dSx = �1 + ��fz�2dx1dx2 
 �1 + L2�z�x1
2 + N2�z�x2

2dx1dx2,

so that

v0�y,0� 

1

4�2
Da

�L�z�x1
2 + N�z�x2

2 − x3�dx1dx2

��x1 − y1�2 + �x2 − y2�2 + �x3 − y3�2�x1
2 + x2

2 + x3
2�3/2 . �16�
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The patch ��z is represented in polar coordinates in Da as

�x1,x2,x3� = �r cos �,r sin �,r2

�L�z�
2

cos2 � +
N�z�

2
sin2 � + o�1�	� ,

�17�

so transforming y into spherical coordinates

�y1,y2,y3� = �y��sin � cos �0,sin � sin �0,cos �� .

we can write Eq. �16� as

v0�y,0� 

1

4�2
0

2�

I��y�,�,��d� , �18�

where

I��y�,�,�� = 
0

a �1

2
Lr2 cos2 � +

1

2
Nr2 sin2 � + o�r2��rdr

�r2 + �y�2 − 2r�y�sin � cos�� − �0� + O�r2�y� + r4��1/2�r2 + O�r4��3/2



1

2
�L cos2 � + N sin2 ��

0

a dr

�r2 + �y�2 − 2r�y�sin � cos�� − �0��1/2 . �19�

Integration with respect to r gives


0

a dr

�r2 + �y�2 − 2r�y�sin � cos�� − �0��1/2 = ln
a − �y�sin � cos�� − �0� + �a2 + �y�2 − 2a�y�sin � cos�� − �0�

�y��1 − sin � cos�� − �0��
= ln

1

�y�
+ O�1�

for y�0. It follows from Eq. �18� that for y�z the leading
order singularity is

v0�y,z� 

1

8�
�L�z� + N�z��ln

1

�y − z�
+ O�1� . �20�

For further analysis of the O�1� term, see Ref. �29�.
The canonical representation �14� of a hemisphere of �di-

mensionless� radius R at the south pole is x3=R
−�R2− �x1

2+x2
2�, so L�z�=N�z�= 1

R . Therefore, for �z�=R,

N�y,z� =
1

2��y − z�
+

1

4�R
ln

1

�y − z�
+ O�1� , �21�

in agreement with Ref. �23�, p.247, Exercise 4.

III. APPLICATION TO THE NARROW ESCAPE PROBLEM

A. Escape through a small circular hole

As mentioned in the Introduction, the narrow escape
problem �8–11,14–18� is to calculate the mean escape time
of a Brownian particle from a bounded domain �, whose
boundary is reflecting, except for a small absorbing patch �or
patches �19,20�� ��a. We assume here that ��a is a circular
disk of radius a� ���1/3 and that a ball of radius R�a can be
rolled on �� inside �. This means that there are no narrow
passages in �. We denote ��r=��−��a and �=a / ���1/3

and investigate the limit �→0. We assume that all coordi-
nates have been scaled with ���1/3, so that all variables and
parameters are dimensionless.

The MFPT u�x� from a point x�� to ��a is the solution
of the mixed boundary value problem

�u�x� = −
1

D
for x � � , �22�

u�x� = 0 for x � ��a, �23�

�u�x�
�
x

= 0 for x � ��r, �24�

where D is the diffusion coefficient. The compatibility con-
dition


��a

�u�x�
�
x

dSx = −
���
D

�25�

is obtained by integrating Eq. �22� over � and using Eqs.
�23� and �24�.

Green’s identity and the boundary conditions �7�, �23�,
and �24� give

u�y� −
1

D


�

N�x,y�dx = 
��

N�x,y�
�u�x�

�

dSx + C , �26�

where
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C =
1

����

u�x�dx . �27�

Following the argument in Ref. �15�, we note that N�x ,y� is
an integrable function independent of ��a, whose integral is
uniformly bounded, whereas C→� as �→0. Setting g�x�
= �u�x�

�
x
for x���a and using the boundary condition �23�, we

obtain from Eq. �26� the integral equation for the flux density
g�x� in ��a,


��a

N�x,y�g�x�dSx = − C for y � ��a, �28�

which, in view of Eqs. �8� and �20� now becomes the gener-
alized Helmholtz equation �25,15�


��a

g�x�� 1

2��x − y�
+ H�x,y�ln�x − y� + O�1��dSx

= − C for y � ��a,

H�x,y� = −
1

8�
�L�y� + N�y�� 
 −

1

8�
�L�0� + N�0��,

for x,y � ��a for � → 0, �29�

where L�0� ,N�0� are the principal curvatures at the center 0
of ��a. To solve Eq. �29�, we expand g�x�=g0�x�+g1�x�
+g2�x�+¯, where gi+1�x��gi�x� for �→0 and choose

g0�x� =
− 2C

a��1 −
�x�2

a2

. �30�

It was shown in Refs. �1,26,15� that if ��a is a circular disk
of radius a, then

1

2�


��a

g0�x�
�x − y�

dSx = C for all y � ��a. �31�

It follows that g1�x� satisfies the integral equation

1

2�


��a

g1�x�
�x − y�

dSx =
2C

a�


��a

H�x,y�ln�x − y�

�1 −
�x�2

a2

dSx. �32�

Setting y=a�, x=a�, and changing to polar coordinates in
the integral on the right-hand side of Eq. �32�, we obtain

1

2�


��a

g1�x�
�x − y�

dSx =
2Ca2

a�


0

2�

d�


0

1 H�a�,a���ln a + ln�� − ���
�1 − r2

rdr ,

�33�

which gives in the limit �→0 �e.g., keeping ��� fixed and
a→0� that

1

2�


��a

g1�x�
�x − y�

dSx = −
C�L�0� + N�0��

2�
a ln a + o�a ln a� .

�34�

As in the pair �30� and �31�, we obtain that

g1�x� =
− C�L�0� + N�0��

�2�1 −
�x�2

a2

ln a + o�ln a� . �35�

Finally, to determine the asymptotic value of the constant C,
we recall that g�x�= �u�x�

�
x
and use in Eq. �25� the approxima-

tion

g�x� 
 g0�x� + g1�x� 

− 2C

a��1 −
�x�2

a2

�1 +
L�0� + N�0�

2�
a ln a� . �36�

We obtain the narrow escape time E�=C �in dimensionless
variables� as

E� =
���

4aD�1 +
L�0� + N�0�

2�
a ln a + o�a ln a�� . �37�

The principal eigenvalue �1�a�
 1
E� of the Laplace equation

in � �31� with the mixed Dirichlet-Neumann boundary con-
ditions �23� and �24� has the asymptotic expansion for �
→0

�1�a� =
4aD

��� �1 +
L�0� + N�0�

2�
a ln a + o�a ln a�� . �38�

The result �38� provides the missing second term and esti-
mate of the remainder, which was not given in Refs.
�8–11,15�.

If � is a ball of radius R, then L�0�+N�0�= 2
R and the

narrow escape time E�=C is given �in dimensional vari-
ables� by

E� =
���

4aD�1 −
a

�R
ln

R

a
+ o� a

R
ln

R

a
	�

=
���

4aD
�1 +

a

�R
ln

R

a
+ o� a

R
ln

R

a
	� . �39�

The result �39� corrects that given in Ref. �15�. Specifically,
Eq. �3.52� in Ref. �15� is missing the factor 1 /� of Eq. �39�,
which should have been carried from Eq. �3.51� in Ref. �15�.
The case of an elliptic window is handled in a straightfor-
ward manner, as in Ref. �15�.

B. Leakage in a conductor of Brownian particles

A conductor of Brownian particles is a bounded domain
�, with a source of particles on the boundary or in the inte-
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rior and a target, which is an absorbing part ��a of ��. The
remaining boundary ��r is reflecting. Some of the Brownian
particles may leak out of � if ��r contains a small absorbing
hole S���. The calculation of the leakage flux is not the same
as that in the narrow escape problem, because the total flux
on the boundary remains bounded as the small hole shrinks.
Our purpose is to find the portion that leaks through the
small hole out of the total flux.

The �dimensionless� stationary density u�x� of the Brown-
ian particles satisfies the mixed boundary value problem

D�u�x� = 0 for x � � ,

� �u�x�
�


�
��r

= 0,

− D� �u�x�
�


�
��s

= ��x� ,

�u�x����a
= �u�x��S��� = 0, �40�

where ��x� is the flux density of the source on the boundary.
Next, we derive an asymptotic expression for the flux
through S���,

J� = D
S���

�u�x�
�


dSx, �41�

in terms of the solution u0�x� of the reduced problem �with-
out S����, thus avoiding the need to construct boundary lay-
ers. First, we find the flux of each eigenfunction and then,
using eigenfunction expansion, we calculate J�. Every eigen-
function u��x� of the homogeneous problem �40� satisfies

− D�u��x� = ����u��x� for x � � , �42�

�u��x�
�


= 0 for x � ��s � ��r, �43�

u��x� = 0 for x � S��� � ��a. �44�

The matched asymptotics method of Refs. �8–11� gives the
expansion of the eigenvalues

���� = ��0� + �1� + o��� , �45�

where ��0� is the eigenvalue of the reduced problem �for �
without any small holes�.

We define the reduced Green function �without the small
hole� as the solution of the mixed boundary value problem
with D=1,

− �G�x,y� = 	�x − y� for x,y � � , �46�

�G

�

�x,y� = 0 for x � ��s � �r, y � � , �47�

G�x,y� = 0, for x � ��a, y � � . �48�

Multiplying Eq. �46� by u��y� and integrating over �, we
get

u��x� =
����

D


�

G�x,y�u��y�dy + 
S���

G�x,y�
�u��y�

�

dSy.

�49�

In view of the boundary condition �44�, we get from Eq. �49�
for all x�S���

����
D


�

G�x,y�u��y�dy = − 
S���

G�x,y�
�u��y�

�

dSy.

�50�

The integral on the left hand side of Eq. �50� can be ex-
panded about the center of S��� in the form


�

����G�x,y�u��y�dy = G0��� + O��x�� for x � S��� ,

�51�

where the origin is assumed to be in the center of S��� and
the �x1 ,x2� plane is that of S���.

As in Sec. III A, Green’s function for the mixed boundary
value problem has the form

G�x,y� =
1

2��x − y�
+ H�x,y�ln�x − y� + vS�x,y� , �52�

for x���, y�����, where H�x ,y� depends locally on
the curvatures of the boundary and vS�x ,y� is a continuous
function of x ,y��, and on ��. We assume that H�x ,y� is
bounded. Using Eq. �52� and the expansion �51� in Eq. �50�,
we obtain the Helmholtz equation

G0���
D

+ O��x�� = − 
S���

� 1

2��x − y�
+ H�x,y�ln�x − y�

+ vS�x,y�� �u��y�
�


dSy. �53�

The leading order singularity of G�x ,y� and Eq. �31� suggest
the expansion

�u��y�
�


=
C0���

�1 −
�y�2

�2

+ O��y�� for y � S��� , �54�

where C0��� is yet an undetermined coefficient, that is,

G0���
D

+ O��x�� = − 
S���

� 1

2��x − y�
+ H�x,y�ln�x − y�

+ vS�x,y��� C0���

�1 −
�y�2

�2

+ O��y���dSy

�55�

which reduces at x=0 to
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G0���
D

=
− C0�����

2
+ 

S���
O��y��� 1

2��y�
+ H�0,y�ln�y��dSy

− 
S���

C0����H�0,y�ln�y� + vS�0,y��dSy

�1 −
�y�2

�2

+ 
S���

O��y��dSy.

It follows that

G0���
D

= − ���

2
+ O��2 ln ��	C0��� + O��2 ln �� ,

so that

C0��� = −
G0��� + O��2 ln ��

D���

2
+ O��2 ln ��� . �56�

Now, Eq. �54� gives the flux through S��� as

− D
S���

�u��y�
�


dSy =
G0��� + O��2 ln ��

��

2
+ O��2 ln ��


S���

dSy

�1 −
�y�2

�2

+ 
S���

O��y��dSy

= 4�
G0��� + O��2 ln ��

1 + O�� ln ��
+ O��2 ln �� .

�57�

To determine G0���, we integrate Eq. �42�, to get the total
flux condition

����
�

u��x�dx = D
S���

�u��y�
�


dSy + D
��a

�u��y�
�


dSy.

�58�

We also recall that Eq. �48� implies that


��a

G�x,y�
�u��y�

�

dSy = 0 for x � ��a,

hence, using Eqs. �50� and �58�, we get the two equations

����
�

u��x�dx = 4�
G0��� + O��2 ln ��

1 + O�� ln ��
+ O��2 ln ��

+ D
��a

�u��y�
�


dSy,

����
�

G�0,y�u��y�dy = G0��� . �59�

This gives

����
�

u��x�dx =

4�����
�

G�0,y�u��y�dy + O��2 ln ��

1 + O�� ln ��

+ O��2 ln �� + D
��a

�u��y�
�


dSy.

Solving for ����, we find that

���� =

D
��a

�u��y�
�


dSy + O��2 ln ��


�

u��x�dx −
4�

1 + O�� ln ���

G�0,y�u��y�dy + O��2 ln ��
=

D
��a

�u��y�
�


dSy


�

u��x�dx �1 +

4�
�

G�0,y�u��y�dy


�

u��x�dx �
+ O��2 ln �� . �60�

Note that

D
��a

�u��y�
�


dSy


�

u��x�dx

= ��0� + O��� , �61�

due to the contribution of the boundary layer near S���.
Obviously, u�→u0 as �→0, where u0 is the correspond-

ing eigenfunction of the reduced problem �in the absence of
the small hole, see also Ref. �8��, so

lim
�→0


�

G�x,y�u��y�dy

= 
�

G�x,y�u0�y�dy, lim
�→0


��a

�u��y�
�


dSy

= 
��a

�u0�y�
�


dSy.

Therefore, using Eqs. �59�–�61� in Eq. �57�, we find that the
flux of u��x� through the small hole is

NARROW ESCAPE AND LEAKAGE OF BROWNIAN PARTICLES PHYSICAL REVIEW E 78, 051111 �2008�

051111-7



J��� = − D
S���

�u��y�
�


dSy

= 4���0�
�

G�0,y�u0�y�dy + O��2 ln ��

= 4�Du0�0� + O��2 ln �� . �62�

Finally, expanding the solution u�x� of Eq. �40� in eigenfunc-
tions, we obtain from Eq. �62�

J� = 4�Du0�0��1 + O�� ln ��� , �63�

where u0�x� is the solution of the reduced problem �40�. In
dimensional variables, we obtain

J� = 4aDp0�0� + O� a2

���2/3 ln
a

���1/3	 , �64�

where p0�0� is the value of the reduced stationary density
�without the perforation� at the hole.

IV. SUMMARY AND DISCUSSION

The main results of this paper are �i� the explicit calcula-
tion of the second term in the expansion of the NET, which

can be quite significant, and which also provides a bound for
the remainder in the expansion; �ii� an explicit expression for
the leakage flux through a small opening in the impermeable
envelope of a conductor of ions. The leakage is often a key
control mechanism of physiological function, such as in the
synaptic cleft of a neuron, as mentioned in the Introduction.
The leakage formula �64� can give explicit expressions for
the flux when the reduced problem is explicitly solvable,
e.g., in simple geometries. If there are several leaks, at xi,
then Eq. �64� gives

J� = 4aD�
i

p0�xi� + O� a2

���2/3 ln
a

���1/3	 , �65�

which demonstrates the role of clustering or unclustering of
the leaks in regulating flux �19,20�. Specific applications of
the results of this paper to molecular biology and biophysics
will be published in a separate paper.
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