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Abstract

Let G be a compact group and let fi j ∈ C(G). We de�ne the non-unique games
(NUG) problem as �nding g1, . . . , gn ∈ G to minimize

∑n
i, j=1 fi j

(

gig
−1
j

)

. We
introduce a convex relaxation of the NUG problem to a semide�nite program
(SDP) by taking the Fourier transformof fij overG. The NUG framework can be
seen as a generalization of the little Grothendieck problem over the orthogonal
group and the unique games problem and includes many practically relevant
problems, such as the maximum likelihood estimator to registering bandlimited
functions over the unit sphere in d-dimensions and orientation estimation of
noisy cryo-electron microscopy (cryo-EM) projection images. We implement
an SDP solver for the NUG cryo-EM problem using the alternating direc-
tion method of multipliers (ADMM). Numerical study with synthetic datasets
indicate that while our ADMM solver is slower than existing methods, it can
estimate the rotations more accurately, especially at low signal-to-noise ratio

(SNR).
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1. Introduction

We consider problems of the following form:

minimize
g1,...,gn

n
∑

i, j=1

fi j
(

gig
−1
j

)

subject to gi ∈ G,
(1.1)

where G is a compact group and fi j : G →R are suitable functions. We will refer to such
problems as a non-unique game (NUG) problem over G.

Note that the solution to the NUG problem is not unique. If g1, . . . , gn is a solution to (1.1),
then so is g1g, . . . , gng for any g ∈ G. That is, we can solve (1.1) up to a global shift g ∈ G.

In many inverse problems, the goal is to estimate multiple group elements from information
about group offsets, and can be formulated as (1.1). A simple example is angular synchroniza-
tion [1], where one is tasked with estimating angles {θi}i from information about their offsets
θi − θj mod 2π. The problem of estimating the angles can then be formulated as an optimiza-
tion problem depending on the offsets, and thus be written in the form of (1.1). In this case,
G ∼= SO(2).

One of the simplest instances of (1.1) is the Max-Cut problem, where the objective is to
partition the vertices of a graph as to maximize the number of edges (the cut) between the two
sets. In this case, G ∼= Z2, the group of two elements {±1}, and fij is zero if (i, j) is not an edge
of the graph and

fi j(1) = 0 and fi j(−1) = −1,

if (i, j) is an edge. In fact, we take a semide�nite programming based approach toward (1.1)
that is inspired by—and can be seen as a generalization of—the semide�nite relaxation for the
Max-Cut problem by Goemans and Williamson [2].

Another important source of inspiration is the semide�nite relaxation of Max-2-Lin (ZL),
proposed in [3], for the unique games problem, a central problem in theoretical computer sci-
ence [4, 5]. Given integers n and L, an unique-games instance is a system of linear equations
overZL on n variables {xi}ni=1. Each equation constraints the difference of two variables. More
precisely, for each (i, j) in a subset of the pairs, we associate a constraint

xi − x j = bi j mod L.

The objective is then to �nd {xi}ni=1 in ZL that satisfy as many equations as possible. This can
be easily described within our framework by taking, for each constraint,

fi j(g) = −δg≡bi j,

and fij = 0 for pairs not corresponding to constraints. The term ‘unique’ derives from the fact
that the constraints have this special structure where the offset can only take one value to
satisfy the constraint, and all other values have the same score. This motivated our choice
of nomenclature for the framework treated in this paper. The semide�nite relaxation for the
unique games problem proposed in [3] was investigated in [6] in the context of the signal
alignment problem, where the fij are not forced to have a special structure (but G ∼= ZL). The
NUG framework presented in this paper can be seen as a generalization of the approach in [6]
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to other compact groupsG. We emphasize that, unlike [6] that was limited to the case of a �nite
cyclic group, here we consider compact groups that are possibly in�nite and non-commutative.

Besides the signal alignment problem treated in [6] the semide�nite relaxation to the NUG
problem we develop generalizes with other effective relaxations. When G ∼= Z2 it coincides
with the semide�nite relaxations for Max-Cut [2], the little Grothendieck problem over
Z2 [7, 8], recovery in the stochastic block model [9, 10], and synchronization over
Z2 [10–12]. When G ∼= SO(2) and the functions fij are linear with respect to the representation
ρ1 : SO(2)→ C given by ρ1(θ) = eiθ, it coincides with the semide�nite relaxation for angu-
lar synchronization [1]. Similarly, when G ∼= O(d) and the functions are linear with respect
to the natural d-dimensional representation, then the NUG problem essentially coincides with
the little Grothendieck problem over the orthogonal group [13, 14]. Other examples include
the shape matching problem in computer graphics for which G is the permutation group
(see [15, 16]). In addition, it has been shown in [17] that the formulation of NUG and the algo-
rithms presented in this paper can be extended to simultaneous alignment and classi�cation of
a mixture of different signals.

1.1. Orientation estimation in cryo-electron microscopy

A particularly important application of this framework is the orientation estimation problem
in cryo-electron microscopy [18].

Cryo-EM is a technique used to determine the three-dimensional structure of biological
macromolecules. The molecules are rapidly frozen in a thin layer of ice and imaged with an
electron microscope, which gives noisy two-dimensional projections. One of the main dif�cul-
ties with this imaging process is that these molecules are imaged at different unknown orien-
tations in the sheet of ice and each molecule can only be imaged once (due to the destructive
nature of the imaging process). More precisely, each measurement consists of a tomographic
projection of a rotated (by an unknown rotation) copy of the molecule. The task is then to
reconstruct the molecule density from many such noisy measurements. Although in principle
it is possible to reconstruct the three-dimensional density directly from the noisy images with-
out estimation of the rotations [19], or by treating rotations as nuisance parameters [20, 21]
here we consider the problem of estimating the rotations directly from the noisy images. In
section 2, we describe how this problem can be formulated in the form (1.1).

2. Multireference Alignment

In classical linear inverse problems, one is tasked with recovering an unknown element x ∈ X
from a noisy measurement of the form P(x)+ ǫ, where ǫ represents the measurement error
andP is a linear observation operator. There are, however,many problemswhere an additional
dif�culty is present; one class of such problems includes non-linear inverse problems in which
an unknown transformation acts on x prior to the linear measurement. Speci�cally, let X be a
vector space and G be a group acting on X . Suppose we have n measurements of the form

yi = P(gi ◦ x)+ ǫi, i = 1, . . . , n (2.1)

where

• x is a �xed but unknown element of X ,
• g1, . . . , gn are unknown elements of G,
• ◦ is the action of G on X ,
• P : X → Y is a linear operator,
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• Y is the (�nite-dimensional) measurement space,
• ǫi’s are independent noise terms.

If the gi’s were known, then the task of recovering x would reduce to a classical linear inverse
problem, for which many effective techniques exist. While in many situations it is possible to
estimate x directly without estimating g1, . . . , gn, or by treating these as nuisance parameters,
here we focus on the problem of estimating the group elements g1, . . . , gn.

There are several common approaches for inverse problems of the form (2.1). One is moti-
vated by the observation that estimating x knowing the gi’s and estimating the gi’s knowing x
are both considerably easier tasks. This suggests an alternating minimization approach where
each estimation is updated iteratively. Besides a lack of theoretical guarantees, convergence
may also depend on the initial guess. Another approach, which we refer to as pairwise compar-
isons [1], consists in determining, from pairs of observations (yi, yj), the most likely value for
gig
−1
j . Although the problem of estimating the gi’s from these pairwise guesses is fairly well-

understood [1, 22, 23] enjoying ef�cient algorithms and performance guarantees, this method
suffers from loss of information as not all of the information of the problem is captured in this
most likely value for gig−1j and thus this approach tends to fail at low signal-to-noise-ratio.

In contrast, the maximum likelihood estimator (MLE) leverages all information. Assum-
ing that the ǫi’s are i.i.d. Gaussian, the MLE for the observation model (2.1) is given by the
following optimization problem:

minimize
g1,...,gn,x

n
∑

i=1

‖yi − P(gi ◦ x)‖22

subject to gi ∈ G
x ∈ X

(2.2)

We refer to (2.2) as the multireference alignment (MRA) problem. Let us denote the ground
truth signal and group elements by x0 and g01, . . . , g

0
n; the solution to the optimization problem

by x∗ and g∗1, . . . , g
∗
n, which we will also refer to as xMLE and gMLE

1 , . . . , gMLE
n . Unfortunately,

the exponentially large search space and nonconvexnature of (2.2) often render it computation-
ally intractable. However, for several problems of interest, we formulate (2.2) as an instance
of an NUG for which we develop computationally tractable approximations.

Notice that although MLE typically enjoys several theoretical properties, their underlying
technical conditions do not hold in this case. Speci�cally, the number of parameters to be
estimated is not �xed but rather grows inde�nitely with the sample size n: for each sample
yi there is a group element gi that needs to be estimated. As a result, the MLE may not be
consistent in this case. In other words, even in the limit n→∞ the estimator xMLE may not
converge to the ground truth x0. Similarly, the estimated group elements will not converge
to their true values. A different version of MLE, not considered in this paper, in which the
group elements are treated as nuisance parameters and are marginalized would enjoy the nice
theoretical properties.

2.1. Registration of signals on the sphere

Consider the problem of estimating a bandlimited signal on the circle x : S1→ C from noisy
rotated discrete sampled copies of it. In this problem, X = span

{

eikθ
}t

k=−t is the space of
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Figure 1. Illustration of the registration problem in S1. The �rst column consists of
a noiseless signal at three different shifts, the second column represents an instance
for which the template x is known and matched �ltering is effective to estimate the
shifts. However, in the examples we are interested in the template is unknown (last two
columns) rendering the problem of estimating the shifts signi�cantly harder.

bandlimited functions up to degree t on S1, G = SO(2) and the group action is

g ◦ x =
t
∑

k=−t
αkeik(θ−θg),

where x =
∑t

k=−t αke
ikθ and we identi�ed g ∈ SO(2) with θg ∈ [0, 2π].

The measurements are of the form

yi :=P(gi ◦ x)+ ǫi, i = 1, . . . , n

where

• x ∈ X ,
• gi ∈ SO(2),
• P : X → CL samples the function at L equally spaced points in S1,
• ǫi ∼ N (0, σ2IL×L) (i = 1, . . . , n) are independent Gaussians.

Our objective is to estimate g1, . . . , gn and x. Since estimating x knowing the group elements
gi is considerably easier, we will focus on estimating g1, . . . , gn. As shown below, this will
essentially reduce to the problem of aligning (or registering) the observations y1, . . . , yn.

In absence of noise, the problem of �nding the gi’s is trivial (cf �rst column of �gure 1).
With noise, if x is known (as it is in some applications), then the problem of determining the
gi’s can be solved by matched �ltering (cf second column of �gure 1). However, x is unknown
in general. This, together with the high levels of noise, render the problem signi�cantly more
dif�cult (cf last two columns of �gure 1).

We now de�ne the problem of registration in d-dimensions in general. X = span{pk}k∈At
is the space of bandlimited functions up to degree t on Sd where the pk’s are orthonormal
polynomials on Sd, At indexes all pk up to degree t and G = SO(d + 1).

The measurements are of the form

yi :=P(gi ◦ x)+ ǫi, i = 1, . . . , n (2.3)

where

• x ∈ X ,
• gi ∈ SO(d+ 1),
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Figure 2. An illustration of registration in two-dimensions. The left four spheres provide
examples of clean signals yi and the right four spheres are of noisy observations. Note
that the images are generated using a quantization of the sphere.

• P : X → CL samples the function on L points in Sd,
• ǫi ∼ N (0, σ2IL×L) (i = 1, . . . , n) are independent Gaussians.

Again, our objective is to estimate g1, . . . , gn and x. We would like the sampling operator
P to be ‘uniform’. One possible sampling scheme is spherical designs surveyed in [24]. An
illustration of signals on a sphere, sampled at such points, is provided in �gure 2.

The MRA solution for registration in d-dimensions is given by

minimize
g1,...,gn,x

n
∑

i=1

‖yi − P(gi ◦ x)‖22

subject to gi ∈ SO(d + 1)

x ∈ X

(2.4)

We now remove x from (2.4). Let Q : CL→X be the adjoint of P . Q is also an approx-
imate inverse of P (up to normalization), because points are sampled from a t-design which
has the property of exactly integrating polynomials on the sphere. Then, ‖yi − P(gi ◦ x)‖22≈
‖Q(yi)− gi ◦ x‖22 (up to normalization), and the approximation error decreases as L increases.
Since gi preserves the norm ‖·‖2, it follows that (2.4) is equivalent to

minimize
g1,...,gn,x

n
∑

i=1

‖g−1i ◦ Q(yi)− x‖22

subject to gi ∈ SO(d + 1)

x ∈ X .

(2.5)

Since the minimizer x with �xed gi’s is the average, (2.5) is equivalent to

minimize
g1,...,gn

n
∑

i, j=1

‖g−1i ◦ Q(yi)− g−1j ◦ Q(y j)‖22

subject to gi ∈ SO(d + 1).

(2.6)
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Figure 3. Illustration of the cryo-EM imaging process: a molecule is imaged after being
frozen at a random (unknown) rotation and a tomographic two-dimensional projection
is captured. Given a number of tomographic projections taken at unknown rotations,
we are interested in determining such rotations with the objective of reconstructing the
molecule density. Images courtesy of Singer and Shkolnisky [27].

Figure 4. Sample images from the E. coli 50S ribosomal subunit, generously provided
by Dr. Fred Sigworth at the Yale Medical School.

Since gi preserves ‖·‖2 norm, then (2.6) is equivalent to

minimize
g1,...,gn

n
∑

i, j=1

‖Q(yi)− gig−1j ◦ Q(y j)‖22

subject to gi ∈ SO(d + 1).

(2.7)

In summary, (2.4) can be approximated by (2.7), which is an instance of (1.1).

2.2. Orientation estimation in cryo-EM

The task here is to reconstruct the molecule density from many noisy tomographic projection
images (see the right column of �gure 3 for an idealized density andmeasurement dataset). We
assume the molecule does not have any non-trivial point group symmetry. The linear inverse
problemof recovering themolecule density given the rotations �ts in the framework of classical
computerized tomography for which effective methods exist. Thus, we focus on the non-linear
inverse problem of estimating the unknown rotations and the underlying density.

An added dif�culty is the high level of noise in the images. In fact, it is already non-trivial
to distinguish whether a molecule is present in an image or if the image consists only of noise
(see �gure 4 for a subset of an experimental dataset). On the other hand, these datasets consist
of many projection images which renders reconstruction possible.

We formulate the problem of orientation estimation in cryo-EM. Let X be the space of
bandlimited functions that are also essentially compactly supported in R

3 and G = SO(3).

7
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Figure 5. An illustration of the use of the Fourier slice theorem and the common lines
approach to the orientation estimation problem in cryo-EM. Image courtesy of Singer
and Shkolnisky [27].

For perfectly centered images, and ignoring the effect of the microscope’s contrast transfer
function, the measurements are of the form

Ii(x, y) :=P(gi ◦ φ)+ ǫi, i = 1, . . . , n (2.8)

• φ ∈ X ,
• gi ∈ SO(3),
• P(φ) samples

∫∞
−∞ φ(x, y, z) dz (P is called the discrete x-ray transform),

• ǫi’s are i.i.d Gaussians representing noise.
Our objective is to �nd g1, . . . , gn and φ.

The operator P in the orientation estimation problem is different than in the registration
problem. Speci�cally, P is a composition of tomographic projection and sampling. To write
the objective function for the orientation estimation problem, we will use the Fourier slice
theorem [26].

The Fourier slice theorem states that the two-dimensional Fourier transform of a tomo-
graphic projection of a molecular density φ coincides with the restriction to a plane normal to
the projection direction, a slice, of the three-dimensional Fourier transform of the density φ.
See �gure 5.

Let Îi(r, θ) be the Fourier transform of Ii in polar coordinates. We identify Îi and Îj with the
xy-plane inR3, and apply g−1i and g−1j to Îi and Îj, respectively. Then, the directions of the lines

of intersection on Îi and Îj are given, respectively, by unit vectors

ci j
(

gig
−1
j

)

=
gi(g−1i ·~e3 × g−1j ·~e3)
‖gi (g−1i ·~e3 × g−1j ·~e3)‖2

=
~e3 × gig−1j ·~e3
‖~e3 × gig−1j ·~e3‖2

, (2.9)

c ji
(

gig
−1
j

)

=
g j(g−1i ·~e3 × g−1j ·~e3)
‖g j(g−1i ·~e3 × g−1j ·~e3)‖2

=

(

gig
−1
j

)−1 ·~e3 ×~e3
‖
(

gig
−1
j

)−1 ·~e3 ×~e3‖2
. (2.10)

where~e3 := (0, 0, 1)T. See [27] for details.
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Since the noiseless images should agree on their common lines, we consider the following
MRA-like cost function:

minimize
g1,...,gn

n
∑

i, j=1

‖Îi
(

·, ci j
(

gig
−1
j

))

− Î j
(

·, c ji
(

gig
−1
j

))

‖22

subject to gi ∈ SO(3),
(2.11)

where, with a minor abuse of notation, we identify the vector cij with the angle θij of a common
line in the Fourier transform of an image Îi. Equation (2.11) is an instance of (1.1). Note that
we could also use the L1 norm or a weighted L2 norm in the cost function.

Note that for n = 2 images, there is always a degree of freedomalong the line of intersection.
In other words, we cannot recover the true orientation between Î1 and Î2. However, for n > 3,
this degree of freedom is eliminated. It is also worthmentioning several important references in
the context of angular reconstitution [28, 29]. In general, the measurement system suffers from
a handedness ambiguity on the reconstruction (see, for example [27]), this will be discussed in
detail later in the paper.

3. Linearization via Fourier expansion

Let us consider the objective function in the general form

n
∑

i, j=1

fi j
(

gig
−1
j

)

. (3.1)

Note that each fij in (3.1) can be nonlinear and nonconvex. However, since G is compact (and
since fi j ∈ C(G)), we can expand, each fij in Fourier series. More precisely, given the unitary
irreducible representations {ρk} of G, we can write

fi j
(

gig
−1
j

)

=

∞
∑

k=0

dktr
[

f̂ i j(k)ρk
(

gig
−1
j

)

]

=

∞
∑

k=0

dktr
[

f̂ i j(k)ρk(gi)ρ∗k(g j)
]

, (3.2)

where f̂ i j(k) are the Fourier coef�cients of fij and can be computed from fij via the Fourier
transform

f̂ i j(k) :=
∫

G
fi j(g)ρk(g−1)dg

=

∫

G
fi j(g)ρ∗k(g)dg. (3.3)

Above, dg denotes the Haar measure on G and dk the dimension of the representation ρk. See
[30] for an introduction to the representations of compact groups.

9
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We express the objective function (3.1) as

n
∑

i, j=1

fi j
(

gig
−1
j

)

=

n
∑

i, j=1

∞
∑

k=0

dktr
[

f̂ i j(k)ρk(gi)ρ∗k(g j)
]

=

∞
∑

k=0

n
∑

i, j=1

dktr
[

f̂ i j(k)ρk(gi)ρ∗k(g j)
]

,

which is linear in ρk(gi)ρ∗k(g j). This motivates writing (1.1) as linear optimization over the
variables

X(k) :=







ρk(g1)
...

ρk(gn)













ρk(g1)
...

ρk(gn)







∗

.

In other words,

n
∑

i, j=1

fi j
(

gig
−1
j

)

=

∞
∑

k=0

tr
[

C(k)X(k)
]

,

where the coef�cient matrices are given by

C(k) := dk











f̂ 11(k) f̂ 21(k) · · · f̂ n1(k)
f̂ 12(k) f̂ 22(k) · · · f̂ n2(k)
...

...
. . .

...
f̂ 1n(k) f̂ 2n(k) · · · f̂ nn(k)











.

We refer to the dk × dk block of X(k) corresponding to ρk(gi)ρ∗k(g j) = ρk(gig−1j ) as X(k)
i j . We

now turn our attention to constraints on the variables
{

X(k)
}∞
k=0

. It is easy to see that:

X(k) � 0, ∀k (3.4)

X
(k)
ii = Idk×dk , ∀k,i, (3.5)

rank
[

X(k)
]

= dk, ∀k, (3.6)

X
(k)
i j ∈ Im(ρk), ∀k,i, j. (3.7)

Constraints (3.4), (3.5) and (3.6) ensure X(k) is of the form

X(k)
=











X
(k)
1

X
(k)
2
...

X(k)
n





















X
(k)
1

X
(k)
2
...

X(k)
n











∗

,

for some X(k)
i unitary dk × dk matrices. The constraint (3.7) attempts to ensure that X(k)

i is in the
image of the representation of G. Notably, none of these constraints ensures that, for different

10
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values of k, X(k)
i j correspond to the same group element gig−1j . Adding such a constraint would

yield

minimize
X(k)

∞
∑

k=0

tr
[

C(k)X(k)
]

subject to X(k) � 0

X
(k)
ii = Idk×dk

rank
[

X(k)
]

= dk

X
(k)
i j = ρk(gig−1j ),

(3.8)

where gi and gj are elements of G.
Unfortunately, both the rank constraint and the last constraint in (3.8) are, in general, non-

convex.We will relax (3.8) by dropping the rank requirement and replacing the last constraint
by positivity constraints that couple different X(k)’s. We achieve this by considering the Dirac
delta funcion on G. Notice that the Dirac delta funcion δ(g) on the identity e ∈ G can be
expanded as

δ(g) =
∞
∑

k=0

dktr
[

δ̂(k)ρk(g)
]

=

∞
∑

k=0

dktr

[(∫

G
δ(h)ρ∗k(h)dh

)

ρk(g)

]

=

∞
∑

k=0

dktr [ρk(g)] .

If we replace g with g−1
(

gig
−1
j

)

, then we get

δ(g−1gig−1j ) =
∞
∑

k=0

dktr
[

ρk(g−1)ρk
(

gig
−1
j

)]

=

∞
∑

k=0

dktr
[

ρ∗k(g)X
(k)
i j

]

.

To arrive at a convex program,we consider the following convex constraints, that form a natural
convex relaxation for Dirac deltas,

∞
∑

k=0

dktr
[

ρ∗k(g)X
(k)
i j

]

> 0 ∀g ∈ G, (3.9)

∫

G

( ∞
∑

k=0

dktr
[

ρ∗k(g)X
(k)
i j

]

)

dg = 1. (3.10)

11
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This suggests relaxing (3.8) to

minimize
X(k)

∞
∑

k=0

tr
[

C(k)X(k)
]

subject to X(k) � 0

X
(k)
ii = Idk×dk
∞
∑

k=0

dktr
[

ρ∗k(g)X
(k)
i j

]

> 0 ∀g ∈ G

∫

G

( ∞
∑

k=0

dktr
[

ρ∗k(g)X
(k)
i j

]

)

dg = 1.

(3.11)

For a nontrivial irreducible representation ρk, we have
∫

Gρk(g)dg = 0. This means that the
integral constraint in (3.11) is equivalent to the constraint

X
(0)
i j = 1, ∀i, j.

Thus, we focus on the optimization problem

minimize
X(k)

∞
∑

k=0

tr
[

C(k)X(k)
]

subject to X(k) � 0

X
(k)
ii = Idk×dk
∞
∑

k=0

dktr
[

ρ∗k(g)X
(k)
i j

]

> 0 ∀g ∈ G

X
(0)
i j = 1.

(3.12)

When G is a �nite group it has only a �nite number of irreducible representations. This
means that (3.12) is a semide�nite program and can be solved, to arbitrary precision, in polyno-
mial time [31]. In fact, when G ∼= ZL, a suitable change of basis shows that (3.12) is equivalent
to the semide�nite programming relaxation proposed in [6] for the signal alignment problem.

Unfortunately, many of the applications of interest involve in�nite groups. This creates two
obstacles to solving (3.12). One is due to the in�nite sum in the objective function and the other
due to the in�nite number of positivity constraints. In the next section, we address these two
obstacles for the groups SO(2) and SO(3).

4. Finite truncations for SO(2) and SO(3) via Fejér kernels

The objective of this section is to replace (3.12) by an optimization problem depending only
in �nitely many variables X(k). The objective function in (3.12) is converted from an in�nite
sum to a �nite sum by truncating at degree t. That is, we �x a t and set C(k)

= 0 for k > t. This

12
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consists of truncating the Fourier series of
∑n

i, j=1 fi j
(

gig
−1
j

)

. Unfortunately, constraint (3.9)
given by

∞
∑

k=0

dktr
[

ρ∗k(g)X
(k)
i j

]

> 0 ∀g ∈ G,

still involves in�nitely many variables X(k)
i j and consists of in�nitely many linear constraints.

We now address this issue for the groups SO(2) and SO(3).

4.1. Truncation for SO(2)

Since we truncated the objective function at degree t, it is then natural to truncate the in�nite
sum in constraint (3.9) also at t. If we truncated below t, then some variables (such as X(t))
are not constrained; and if we truncated above t, then some variables (such as X(t+1)) do not
affect the cost function. The irreducible representations of SO(2) are {eikθ}, and dk = 1 for all
k. Let us identify g ∈ SO(2) with θg ∈ [0, 2π]. That straightforward truncation corresponds to
approximating the Dirac delta with

δ(g) ≈
t
∑

k=−t
eikθg .

This approximation is known as the Dirichlet kernel, which we denote as

Dt(θ) :=
t
∑

k=−t
eikθ.

However, the Dirichlet kernel does not inherit all the desirable properties of the delta function.
In fact, Dt(θ) is negative for some values of θ.

Instead, we use the Fejér kernel, which is a non-negative kernel, to approximate the Dirac
delta. The Fejér kernel is de�ned as

Ft(θ) :=
1
t

t−1
∑

k=0

Dk =

t
∑

k=−t

(

1− |k|
t

)

eikθ,

which is the �rst-order Cesàro mean of the Dirichlet kernel.
This motivates us to replace constraint (3.9) with

t
∑

k=−t

(

1− |k|
t

)

e−ikθX(k)
i j > 0 ∀θ ∈ [0, 2π],

where, for k > 0, X(−k)
i j denotes

[

X
(k)
i j

]∗
.

13
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This suggests considering

minimize
X(k)

t
∑

k=0

tr
[

C(k)X(k)
]

subject to X(k) � 0

X
(k)
ii = Idk×dk
t
∑

k=−t

(

1− |k|
t

)

e−ikθX(k)
i j > 0 ∀θ ∈ [0, 2π]

X
(0)
i j = 1,

which only depends on the variables X(k)
i j for k = 0, . . . , t.

Unfortunately, the condition that the trigonometric polynomial
∑t

k=−t

(

1− |k|
t

)

e−ikθX(k)
i j

is always non-negative, still involves an in�nite number of linear inequalities. Interestingly,
due to the Fejér–Riesz factorization theorem (see [32]), this condition can be replaced by an
equivalent condition involving a positive semide�nite matrix—it turns out that every nonnega-
tive trigonometric polynomial is a square, meaning that the so called sum-of-squares relaxation
[33, 34] is exact. However, while such a formulation would still be an SDP and thus solvable,
up to arbitrary precision, in polynomial time, it would involve a positive semide�nite variable
for every pair (i, j), rendering it computationally challenging. For this reason we relax the non-

negativity constraint by asking that
∑t

k=−t

(

1− |k|
t

)

e−ikθX(k)
i j is non-negative in a �nite set

Ωt ∈ SO(2). This yields the following optimization problem:

minimize
X(k)

t
∑

k=0

tr
[

C(k)X(k)
]

subject to X(k) � 0

X
(k)
ii = Idk×dk
t
∑

k=−t

(

1− |k|
t

)

e−ikθX(k)
i j > 0 ∀θ ∈ Ωt

X
(0)
i j = 1.

(4.1)

4.2. Truncation for SO(3)

The irreducible representations of SO(3) are the Wigner-D matrices {W(k)(α, β, γ)}, and
dk = 2k+ 1. See [35] for an introduction to Wigner-D matrices. Let us associate g ∈ SO(3)
with Euler (Z–Y–Z) angle (α, β, γ) ∈ [0, 2π]× [0, π]× [0, 2π]. A straightforward truncation
yields the approximation

δ(g) ≈
t
∑

k=0

(2k+ 1)tr
[

W (k)(α, β, γ)
]

.

14
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Observe that the operator tr is invariant under conjugation. ThenW(k) can be decomposed as

W (k)(α, β, γ) = RΛ(k)(θ)R∗

with an R such that

Λ
(k)(θ) =

















e−ikθ

. . .
1

. . .
eikθ

















.

We can think of R as a change of basis and Λ(k)(θ) as a rotation from SO(2) under the basis R.
It follows that

tr
[

W (k)(α, β, γ)
]

= tr
[

Λ
(k)(θ)

]

=

k
∑

m=−k
eimθ = Dk(θ).

The relationship between θ and α, β, γ is

θ = 2 arccos

[

cos

(

β

2

)

cos

(

α+ γ

2

)]

.

This relationship can be obtained by directly evaluating tr
[

W (1)(α, β, γ)
]

using the Wigner-D
matrix w(1):

tr
[

W (1)(α, β, γ)
]

=

1
∑

m=−1
W (1)
m,m(α, β, γ)

=

1
∑

m=−1
e−im(α+γ)w(1)

m,m(β)

= cos(β) (1+ cos(α+ γ))+ cos(α+ γ).

See [35] also for an introduction toWigner-D matrix. This straightforward truncation at t yields

δ(g) ≈
t
∑

k=0

(2k+ 1)Dk(θ),

which, again, inherits the undesirable property that this approximation can be negative for some
θ. Recall that we circumvented this property in the one-dimension case by taking the �rst-order
Cesàro mean of the Dirichlet kernel. In the two-dimension case, we will need the second-order
Cesàro mean. Notice that

Dk(θ) =
sin
[

(2k+ 1) θ2
]

sin
(

θ
2

) .

Fejér proved that [36]

t
∑

k=0

(3)t−k
(t− k)!

(

k +
1
2

)

sin

[

(2k+ 1)
θ

2

]

> 0, 0 6 θ 6 π

15
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where (3)t−k
(t−k)! =

1
2 (t− k + 2)(t− k + 1). It follows that

t
∑

k=0

(3)t−k
(t− k)!

(

k +
1
2

)

Dk(θ)

=

t
∑

k=0

(3)t−k
(t− k)!

(

k +
1
2

)

sin
[

(2k+ 1) θ2
]

sin
(

θ
2

) > 0, −π 6 0 6 π.

Let us de�ne

Ft(g) = Ft(α, β, γ) :=
t
∑

k=0

(3)t−k
(t − k)!

(

k+
1
2

) sin
[

(2k+ 1) θg2

]

sin
(

θg
2

)

where θg = 2 arccos
[

cos
(

β
2

)

cos
(

α+γ
2

)]

.
We replace constraint (3.9) with

Ft(α, β, γ) > 0 ∀(α, β, γ) ∈ [0, 2π]× [0, π]× [0, 2π].

Secondly, we discretize the group SO(3) to obtain a �nite number of constraints. We con-
sider a suitable �nite subset Ωt ⊂ SO(3). In our implementation, we use a Hopf �bration [37]
to discretize SO(3). The quotient space SO(3)/SO(2) is equivalent to S2. We take a uniform
discretization of S1 ≡ SO(2) and a spherical design [24] of S2. It is possible to �nd a spherical
design on S2 with O(r2) points [24]. By [37], we useO(r) points to discretize SO(2). The size
of our SO(3) discretization is O(r3). So, we have to enforceO(r3) inequality constraints. The
choice of r is up to the user to strike a balance between computational speed and accuracy. We
can then relax the non-negativity constraint yielding the following semide�nite program6:

minimize
X(k)

t
∑

k=0

tr
[

C(k)X(k)
]

subject toX(k) � 0

X
(k)
ii = Idk×dk (4.2)

t
∑

k=0

(3)t−k
(t− k)!

(

k +
1
2

)

tr
[

(

W (k)(α, β, γ)
)∗
X
(k)
i j

]

> 0 ∀(α, β, γ) ∈ Ωt

X
(0)
i j = 1.

4.3. An additional constraint on X(1).

In this section, we discuss an additional constraint on X(1), which uses properties of quaternions
to constrain each block X(1)

i j of X(1) in the convex hull of SO(3) more directly.
We consider the standard rotation matrix R and the unit quaternion q = qr + qii+ qjj+ qkk

which represent the same rotation as the block X(1)
i j (whose representation is associated with

6 Similarly to SO(2), it is possible that the non-negativity constraint may be replaced by an SDP or sums-of-squares
constraint [38].
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spherical harmonics), and we consider the outer product Qij of the unit quaternion q

Qi j = qTq. (4.3)

The standard rotation matrix R is related to the block X(1)
i j by the formula

R∗ = M∗
(

T∗X(1)
i j T
)

M,

where,

T :=













− i√
2

0
1√
2

0 1 0

− i√
2

0 − 1√
2













,

and

M :=





0 1 0
0 0 1
−1 0 0



 .

Indeed, one can verify that

T∗X(1)
i j T =







R[22] R[32] −R[12]
R[23] R[33] −R[13]
−R[21] −R[31] R[11]






,

where,

R =







R[11] R[12] R[13]

R[21] R[22] R[23]

R[31] R[32] R[33]






,

andM is used simply to rearrange the elements of T∗X(1)
i j T.

Next, R is mapped to Qij by Rodrigues’ rotation formula (see [39]):

Qi j = R(R) :=
1
4

















1+ R[11]+ R[22]+ R[33] R[32]− R[23] R[13]− R[31] R[21]− R[12]
R[32]− R[23] 1+ R[11]− R[22]− R[33] R[21]+ R[12] R[31]+ R[13]

R[13]− R[31] R[21]+ R[12] 1+ R[22]− R[11]− R[33] R[23]+ R[32]

R[21]− R[12] R[31]+ R[13] R[23]+ R[32] 1+ R[33]− R[11]− R[22]

















.

In summary, the mapping from X
(1)
i j toQij, which we denote byAEq , is given by the formula:

Qi j = AEq

(

X
(1)
i j

)

= R(M∗T∗X(1)
i j TM).

For each Qij, we wish to impose the constraints implied by equation (4.3):

Qi j � 0, tr[Qi j] = 1, rank[Qi j] = 1.
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But since the constraint rank[Qij] = 1 is not convex, we will drop it, giving us the following
SDP in place of (4.2):

minimize
X(k)

t
∑

k=0

tr
[

C(k)X(k)
]

subject to X(k) � 0

X
(k)
ii = Idk×dk
t
∑

k=0

(3)t−k
(t − k)!

(

k+
1
2

)

tr
[

(

W (k)(α, β, γ)
)∗
X
(k)
i j

]

> 0 ∀(α, β, γ) ∈ Ωt

X
(0)
i j = 1

Qi j = AEq

(

X
(1)
i j

)

, Qi j � 0, tr[Qi j] = 1.

(4.4)

5. Applications

In this section, we consider the application of (4.1) to the problem of registration over the unit
circle and the application of (4.4) to registration over the unit sphere and orientation estimation
in cryo-EM. To solve the SDP for each problem, the only parameters we need to determine are
the coef�cient matricesC(k) and the truncation parameter t. The calculations ofC(k) are detailed
in the following pages. As for t, we experimented over a range of values for each problem,
and chose a value that balances computational time with accuracy in the estimated rotations.
The SDP outputs the relative transformations gi j = gig

−1
j , while we need g1, . . . , gn. For each

problem, we describe a rounding procedure to recover g1, . . . , gn from the gij’s.

5.1. Registration in one-dimension

Recall that X is the space of bandlimited functions up to degree t on S1. That is, for x ∈ X , we
can express

x(ω) =
t
∑

l=−t
αleilω.

Again, the irreducible representations of SO(2) are {eikθ}, and dk = 1 for all k. Let us identify
g ∈ SO(2) with θg ∈ [0, 2π], then

g · x(ω) =
t
∑

l=−t
eilθgαle

ilω.

LetP sample the underlying signal x at L = 2t+ 1 distinct points. This way, we can determine
all the αl’s associated with x.

Since yi = P(gi · x)+ ǫi, for the adjointQ, we have

Q(yi)(ω) =
t
∑

l=−t
α(i)
l e

ilω.
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Let us identify gig−1j with θij ∈ [0, 2π]. Then, we can express fij in terms of α(i)
l , α

( j)
l and θij:

fi j
(

gig
−1
j

)

= ‖Q(yi)− gig−1j ◦ Q(y j)‖22

=

∫

S1

∣

∣

∣

∣

∣

t
∑

l=−t

(

α(i)
l − α( j)

l eilθi j
)

eilω

∣

∣

∣

∣

∣

2

dω

=

t
∑

l=−t

∣

∣

∣α
(i)
l − α( j)

l eilθi j
∣

∣

∣

2
.

The Fourier coef�cients of fij are

f̂ i j(k) =
∫ 2π

0

t
∑

l=−t

∣

∣

∣α
(i)
l − α( j)

l eilθi j
∣

∣

∣

2
e−ikθi jdθi j

=

∫ 2π

0

t
∑

l=−t

(

|α(i)
l |2e−ikθi j + |α( j)

l |2e−ikθi j

− α(i)
l α

( j)
l ei(−k−l)θi j − α(i)

l α
( j)
l ei(−k+l)θi j

)

dθi j

=2π















t
∑

l=−t

(

|α(i)
l |2 + |α( j)

l |2
)

− α(i)
0 α

( j)
0 − α(i)

0 α
( j)
0 , k = 0

−α(i)
−kα

( j)
−k − α(i)

k α
( j)
k , k 6= 0

Note that we re-indexed the coef�cients f̂ i j(k)← f̂ i j(k − (t+ 1)).

5.1.1. Rounding. (4.1) gives us the X(k)’s. From the X(k)’s, we want to extract each θi ∈ [0, 2π]
(up to a global transformation). Let us consider X(1). We want X(1) to be of the form













eiθ1

eiθ2

...
eiθn

























eiθ1

eiθ2

...
eiθn













∗

.

Although X(1) is not guaranteed to be rank1, we will simply take the top eigenvector of X(1)

as our estimate of eiθ1 , . . . , eiθn . And from eiθ1 , . . . , eiθn , we can recover θ1, . . . , θn. See [1]
for the reasoning behind this approach. In practice, we �nd using the top eigenvector of X(1)

is a suf�cient estimate of θ1, . . . , θn. We do not need to run additional comparisons against
X(2), . . . ,X(t).

5.2. Registration in two-dimension

Recall that X is the space of bandlimited functions up to degree t on S2. That is, for x ∈ X , we
can express

x(ω) =
t
∑

l=0

l
∑

m=−l
αl,mYl,m(ω),
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where {Ylm} are the spherical harmonics. Again, the irreducible representations of SO(3) are
theWignerD-matrices {W (k)(α, β, γ)}, and dk = 2k+ 1. Let us associate g ∈ SO(3)with Euler
(Z–Y–Z) angle (α, β, γ) ∈ [0, 2π]× [0, π]× [0, 2π], then

g · x(ω) =
t
∑

l=0

l
∑

m,m′=−l
W

(l)
m,m′ (α, β, γ)αl,m′Yl,m(ω).

Let P sample the underlying signal x at L = (t+ 1)2 points. This way, we can determine all
the αlm’s associated with x.

Again, for the adjointQ we have

Q(yi)(ω) =
t
∑

l=0

l
∑

m=−l
α(i)
l,mYl,m(ω).

Let us identify gig−1j ∈ SO(3) with Euler (Z–Y–Z) angle (αij, βij, γij) ∈ [0, 2π]× [0, π]×
[0, 2π]. Then, we can express fij in terms of α(i)

l,m, α
( j)
l,m and (αij, βij, γij):

fi j
(

gig
−1
j

)

= ‖Q(yi)− gig−1j ◦ Q(y j)‖22

=

t
∑

l=0

l
∑

m=−l

(

|α(i)
l,m|2 + |α( j)

l,m|2
)

−
t
∑

l=0

l
∑

m,m′=−l
α(i)
l,mW

(l )
m,m′ (αi j, βi j, γi j)α

( j)
l ,m′

−
t
∑

l=0

l
∑

m,m′=−l
α(i)
l ,mW

(l)
m,m′ (αi j, βi j, γi j)α

( j)
l,m′ .

The Fourier coef�cients are given by

f̂ i j(k) =
∫

SO(3)
fi j(g)

(

W (k)(α, β, γ)
)∗
dg

=
8π2

2k+ 1



















t
∑

l=0

l
∑

m=−l

(

|α(i)
lm|2 + |α( j)

lm |2
)

− α(i)
00α

( j)
00 − α(i)

00α
( j)
00 , k = 0

(

−(−1)m−m′α(i)
k,−m′α

( j)
k,−m − α(i)

k,m′α
( j)
k,m

)k

m,m′=−k
, k 6= 0

Here, we used the orthogonality relationship

∫

SO(3)
W

(k)
m1 ,m2 (α, β, γ)W

(k′)
m′1,m

′
2

(α, β, γ)dg =
8π2

2k+ 1
δk,k′δm1 ,m

′
1
δm2,m

′
2
,

and the property

W
(k)
m,m′ (α, β, γ) = (−1)m−m′W (k)

−m,−m′ (α, β, γ).
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5.2.1. Rounding. Again, (4.4) gives us the X(k)’s. From the X(k)’s, we want to extract each
(α, β, γ) ∈ [0, 2π]× [0, π]× [0, 2π] (up to a global transformation). Let us consider X(1). We
want X(1) to be of the form











W (1)(α1, β1, γ1)
W (1)(α2, β2, γ2)

...
W (1)(αn, βn, γn)





















W (1)(α1, β1, γ1)
W (1)(α2, β2, γ2)

...
W (1)(αn, βn, γn)











∗

,

where each W (1)(αi, βi, γ i) is a 3× 3 matrix. Similarly, X(1) is not guaranteed to be
rank3, but we will simply take the top three eigenvector of X(1) as our estimate of
W (1)(α1, β1, γ1), . . . ,W (1)(αn, βn, γn). And fromW (1)(α1, β1, γ1), . . . ,W (1)(αn, βn, γn), we can
recover (α1, β1, γ1), . . . , (αn, βn, γn).

5.3. Orientation estimation in cryo-EM

We refer to [40] to expand the objective function. We emphasize that the theory holds for
arbitrary basis on the space containing the Îi’s. We choose to construct the C(k)’s using coef-
�cients and parameters from the Fourier–Bessel expansion. Projection Îi can be expanded via
Fourier–Bessel series as

Îi(r, θ) =
∞
∑

k=−∞

∞
∑

q=1

α(i)
kqψ

(c)
kq (r, θ),

where

ψ(c)
kq (r, θ) =







NkqJk

(

Rkq
r

c

)

eikθ , r 6 c,

0 , r > c.

The parameters above are de�ned as follows:

• c is the radius of the disc containing the support of Îi,
• Jk is the Bessel function of integer order k,
• Rkq is the qth root of Jk,
• Nkq = 1

c
√
π|Jk+1(Rkq)| is a normalization factor.

To avoid aliasing, we truncate the Fourier-Bessel expansion as follows.

Îi(r, θ) ≈
kmax
∑

k=−kmax

pk
∑

q=1

α(i)
kqψ

(c)
kq (r, θ).

See [40] for a discussion on kmax and pk. For the purpose of this section, let us assume we have
{α(i)

kq : −kmax 6 k 6 kmax, 1 6 q 6 pk} for each Îi. (These can be computed from the Cartesian
grid sampled images.)
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We shall determine the relationship between Îi(r, θi) and Îj(r, θj), and the lines of intersection
between g−1i · Îi and g−1j · Î j embedded in R3. Recall from (2.9) and (2.10) that the directions

of the lines of intersection between g−1i · Îi and g−1j · Î j are given, respectively, by unit vectors

ci j
(

gig
−1
j

)

=
~e3 × gig−1j ·~e3
‖~e3 × gig−1j ·~e3‖2

,

c ji
(

gig
−1
j

)

=

(

gig
−1
j

)−1 ·~e3 ×~e3
‖
(

gig
−1
j

)−1 ·~e3 ×~e3‖2
.

Let us associate gig
−1
j ∈ SO(3) with Euler (Z–Y–Z) angle (αij, βij, γij) ∈ [0, 2π]× [0, π]

× [0, 2π]. Then

~e3 × gig−1j ·~e3 =





sin γi j sin βi j
− cos γi j sin βi j

0



 ,

(

gig
−1
j

)−1 ·~e3 ×~e3 =





− sin αi j sin βi j
− cos αi j sin βi j

0



 ,

under the rotation matrix RZ(γij)RY(βij)RZ(αij). The directions of the lines of intersection in Îi
and Îj under gig−1j are in the directions, respectively,

θi = arctan
(

sin γi j,− cos γi j
)

= γi j −
π

2
,

θ j = arctan
(

− sin αi j,− cos αi j
)

= −αi j −
π

2
.

We express the fij’s in terms of α(i)
kq, α

( j)
kq , and θi and θj:

fi j(θi, θ j) := fi j
(

gig
−1
j

)

=

∥

∥

∥

∥

∥

∥

kmax
∑

k=−kmax

pk
∑

q=1

(

α(i)
kqψ

(c)
kq (r, θi)− α( j)

kqψ
(c)
kq (r, θ j)

)

∥

∥

∥

∥

∥

∥

2

L2

=
∑

k,k′ ,q,q′
cNkqNk′q′

(

α(i)
kqe

ikθi − α( j)
kq e

ikθ j
)(

α(i)
k′q′e

ik′θi − α( j)
k′q′e

ik′θ j
)∗

·
∫ 1

0
Jk(Rkqr)Jk′ (Rk′q′r)dr.

For each k, k′, q, q′, we approximate the integral

∫ 1

0
Jk(Rkqr)Jk′(Rk′q′r)dr

with a Gaussian quadrature.
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Using the approximation above, we have

fi j(θi, θ j) ≈
∑

k,q,k′ ,q′
bk,q,k′ ,q′

(

α(i)
kqα

(i)
k′q′e

i(k−k′)θi + α( j)
kqα

( j)
k′q′e

i(k−k′)θ j

− α(i)
kqα

( j)
k′q′e

i(kθi−k′θ j) − α( j)
kqα

(i)
k′q′e

i(kθ j−k′θi)
)

,

where

bk,q,k′ ,q′ = cNkqNk′q′
∑

i

wiJk(Rkqri)Jk′ (Rk′q′ri).

In terms of the Euler (Z–Y–Z) angles,

fi j(αi j, γi j) := fi j(θi, θ j)

≈
∑

k,q,k′ ,q′
bk,q,k′ ,q′e

−i π2 (k−k′)
(

α(i)
kqα

(i)
k′q′e

i(k−k′)γi j + α( j)
kqα

( j)
k′q′e

−i(k−k′)αi j

− α(i)
kqα

( j)
k′q′e

ikγi j+ik′αi j − α( j)
kqα

(i)
k′q′e

−ikαi j−ik′γi j
)

.

The Fourier coef�cients are given by

f̂ i j(k) =
∫

SO(3)
fi j(α, γ)

(

W (k)(α, β, γ)
)∗
dg

=

∫ 2π

0

∫ 2π

0
fi j(α, γ)

(∫ π

0
W (k)(−γ + π, β,−α+ π) sin βdβ

)

dαdγ.

Note that
(∫ π

0
W (k)(α, β, γ) sin βdβ

)

m,m′
=

∫ π

0
eimαw(k)

m,m′ (β)e
im′γ sin βdβ,

where w(k) is the Wigner D-matrix. Let us de�ne

Hk(m,m′) := (−1)m+m′
∫ π

0
w(k)
m,m′ (β) sin βdβ

= (−1)m+m′
∫ π

0
im−m

′
k
∑

l=−k
w(k)
l,m(π/2)e

−ilβw(k)
l,m′ (π/2) sin βdβ

= (−1)m+m′im−m′


2w(k)
0,m(π/2)w

(k)
0,m′(π/2)

− iπ
2
w(k)

1,m(π/2)w
(k)
1,m′(π/2)+

iπ
2
w(k)
−1,m(π/2)w

(k)
−1,m′(π/2)

+

k
∑

|l|>2

(

1+ e−ilπ

1− l2
)

w(k)
l,m(π/2)w

(k)
l,m′(π/2)



 .
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The (m,m′)th entry of f̂ i j(k) is approximated by

(

f̂ i j(k)
)

m,m′
= Hk(m,m′)

∫ 2π

0

∫ 2π

0
fi j(α, γ)e−imγe−im

′αdαdγ

= 4π2Hk(m,m′)
∑

k,q,k′ ,q′
bk,q,k′ ,q′

(

α(i)
kqα

(i)
k′q′δ{m=k−k′}δ{m′=0}

+ α( j)
kqα

( j)
k′q′δ{m=0}δ{m′=k′−k} − α(i)

kqα
( j)
k′q′δ{m=k}δ{m′=k′}

−α( j)
kqα

(i)
k′q′δ{m=−k′}δ{m′=−k}

)

.

Here, δ is the Kronecker delta and bk,q,k′,q′ absorbed e−i
π
2 (k−k′).

5.3.1. Handedness ambiguity in cryo-EM. There exists one additional issue speci�cally for
the cryo-EMproblem arising from the handedness ambiguity. Suppose an image was projected
from some molecular density φ and orientation R. Let J be the re�ection operator across the
imaging plane. The molecular density Jφ under orientation JRJ∗ would produce the same pro-
jection. In other words, the set of projection images can belong to different molecular densities
φ and Jφ under different rotations.

We will formalize and deal with the handedness ambiguity in terms of the Wigner
D-matrices. Recall that the Wigner D-matrixW (k)(g) corresponding to (α, β, γ) ∈ SO(3) is

W (k)(g) =
[

eimαw(k)
m,m′ (β)e

imγ
]′

m,m
= −kk.

Let J(k) be the following (2k+ 1)× (2k+ 1) diagonal matrix:

J(k) :=

















. . .
−1

1
−1

. . .

















.

(The diagonal alternates between +1 and −1.) Due to the handedness ambiguity, if
{

W (k)(gi)W (k)(g−1j )
}

k
is a solution to (4.4), then

{

J(k)W (k)(gi)W (k)(g−1j )J(k)
}

k
is also a valid

solution to (4.4). In fact, for any h ∈ [0, 1],
{

hW (k)(gi)W
(k)(g−1j )+ (1− h)J(k)W (k)(gi)W

(k)(g−1j )J(k)
}

k

is a valid solution to (4.4).
Let us remove this extra degree of freedom h. Observe that for h = 1

2 ,

1
2
W (k)(g)+

1
2
J(k)W (k)(g)J(k) =

{

eimαw(k)
m,m′ (β)e

im′γ , m+ m′ ≡ 0 mod 2,

0, otherwise.
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I.e., the odd-indexed entries are 0. For example, in the case of k = 1,

1
2
W (1)(g)+

1
2
J(1)W (1)(g)J(1)

=







e−iαw(1)
−1,−1(β)e

−iγ 0 e−iαw(1)
−1,1(β)e

iγ

0 w(1)
0,0(β) 0

eiαw(1)
1,−1(β)e

−iγ 0 eiαw(1)
1,1(β)e

iγ






,

and in the case of k = 2,

1
2
W (2)(g) +

1
2
J(2)W (2)(g)J(2)

=





















e−2iαw(2)
−2,−2(β)e

−2iγ 0 e−2iαw(2)
−2,0(β) 0 e−2iαw(2)

−2,2(β)e
2iγ

0 e−iαw(2)
−1,−1(β)e

−iγ 0 e−iαw(2)
−1,1(β)e

iγ 0

w(2)
0,−2(β)e

−2iγ 0 w(2)
0,0(β) 0 w(2)

0,2(β)e
2iγ

0 eiαw(2)
1,−1(β)e

−iγ 0 eiαw(2)
1,1(β)e

iγ 0

e2iαw(2)
2,−2(β)e

−2iγ 0 e2iαw(2)
2,0(β) 0 e2iαw(2)

2,2(β)e
2iγ





















.

We constrain the odd-indexed entries of X(k)
i j ’s to be 0 so that the SDP �nds the solution with

h = 1
2 . Note that, in practice, we do not explicitly add this constraint. Instead, we permute X(k)

i j

into two disjoint diagonal blocks. For example, in the case of k = 1,

1
2
W (1)(g)+

1
2
J(1)W (1)(g)J(1)

=









w(1)
0,0(β) 0 0

0 e−iαw(1)
−1,−1(β)e

−iγ e−iαw(1)
−1,1(β)e

iγ

0 eiαw(1)
1,−1(β)e

−iγ eiαw(1)
1,1(β)e

iγ









,

and in the case of k = 2,

1
2
W (2)(g) +

1
2
J(2)W (2)(g)J(2)

=





















e−iαw(2)
−1,−1(β)e

−iγ e−iαw(2)
−1,1(β)e

iγ 0 0 0

eiαw(2)
1,−1(β)e

−iγ eiαw(2)
1,1(β)e

iγ 0 0 0

0 0 e−2iαw(2)
−2,−2(β)e

−2iγ e−2iαw(2)
−2,0(β) e−2iαw(2)

−2,2(β)e
2iγ

0 0 w(2)
0,−2(β)e

−2iγ w(2)
0,0(β) w(2)

0,2(β)e
2iγ

0 0 e2iαw(2)
2,−2(β)e

−2iγ e2iαw(2)
2,0(β) e2iαw(2)

2,2(β)e
2iγ





















.

We can conjugate each X(k)
i j in (4.4) by a permutation and get

X
(k)
i j =

[

X
(k,0)
i j 0

0 X
(k,1)
i j

]

.

Similarly, we can conjugate X(k) by a permutation and get

X(k)
=

[

X(k,0) 0

0 X(k,1)

]

,

25



Inverse Problems 36 (2020) 064002 A S Bandeira et al

where

X(k,0)
=









X
(k,0)
11 · · · X

(k,0)
1n

...
. . .

...
X
(k,0)
n1 · · · X(k,0)

nn









, X(k,1)
=









X
(k,1)
11 · · · X

(k,1)
1n

...
. . .

...
X
(k,1)
n1 · · · X(k,1)

nn









.

Let us denote the above permutation as Πk. The objective function in (4.4) is preserved if we
conjugate both the C(k)’s and the X(k)’s by Πk. I.e.,

tr
[

C(k)X(k)
]

= tr
[

ΠkC
(k)
Π
T
kΠkX

(k)
Π
T
k

]

= tr
[

C(k,0)X(k,0)
]

+ tr
[

C(k,1)X(k,1)
]

,

where C(k,0) and C(k,1) are blocks corresponding to X(k,0) and X(k,1), respectively. We apply the
same permutation to the X(k)’s in the constraints of (4.4) and reduce (4.4) to

minimize
X(k,0),X(k,1)

t
∑

k=0

tr
[

C(k,0)X(k,0)
]

+ tr
[

C(k,1)X(k,1)
]

subject to X(k,0) � 0, X(k,1) � 0

X
(k,0)
ii = Ik×k, X

(k,1)
ii = I(k+1)×(k+1)

t
∑

k=0

(3)t−k
(t − k)!

(

k+
1
2

)

(

tr
[

(

W (k,0)(α, β, γ)
)∗
X
(k,0)
i j

]

+tr
[

(

W (k,1)(α, β, γ)
)∗
X
(k,1)
i j

])

> 0 ∀(α, β, γ) ∈ Ωt

X
(0,1)
i j = 1

Qi j = AEq

(

X
(1,0)
i j ,X(1,1)

i j

)

, Qi j � 0, tr[Qi j] = 1,

(5.1)

whereAEq de�nes the linear relationship between Qij and
(

X(1,0),X(1,1)
)

as

Y (i j)
=













− i√
2

0
1√
2

0 1 0

− i√
2

0 − 1√
2













∗










X(1,1)
i j (1, 1) 0 X(1,1)

i j (1, 2)

0 X
(1,0)
i j 0

X(1,1)
i j (2, 1) 0 X(1,1)

i j (2, 2)























− i√
2

0
1√
2

0 1 0

− i√
2

0 − 1√
2













,

Qi j =
1
4















1+ Y
(i j)
11 + Y

(i j)
22 + Y

(i j)
33 0 0 −(Y (i j)

31 − Y (i j)
13 )

0 1− Y (i j)
11 − Y (i j)

22 + Y
(i j)
33 −(Y (i j)

31 + Y
(i j)
13 ) 0

0 −(Y (i j)
31 + Y

(i j)
13 ) 1+ Y

(i j)
11 − Y (i j)

22 − Y (i j)
33 0

−(Y (i j)
31 − Y (i j)

13 ) 0 0 1− Y (i j)
11 + Y

(i j)
22 − Y (i j)

33















.

5.3.2. Rounding. (5.1) gives us the X(k,0)’s and the X(k,1)’s. We aggregate X(1,0) and X(1,1) into
the 3n× 3nmatrixX(1). From theX(1)’s, we build the synchronizationmatrix S described in [18]
and apply the cryo_syncrotations function on S from the ASPIRE software package
[42] to recover (α1, β1, γ1), . . . , (αn, βn, γn). Note that we do not truncate the eigenvectors and
eigenvalues from X(1).
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Figure 6. Three cryo-EM images uniquely determine their orientations up to handed-
ness. Image courtesy of Singer et al [46].

6. Implementation and results for synthetic cryo-EM datasets

In this section, we give a brief history ofmethods used for determining orientations of cryo-EM
projection images, and where we stand against the current state-of-the-art.

In 1986, Vainshtein and Goncharov developed a common-lines based method for ab initio
modeling in cryo-EM [29]. In 1987, Van Heel also independently discovered the same method,
and coined it angular reconstitution [28].Recall that by the Fourier slice theorem, two cryo-EM
projection images (in Fourier space) must intersect along a common line. Given three cryo-EM
images from different viewing directions, their common lines must uniquely determine their
relative orientations up to handedness. (See �gure 6.) The orientations of the rest of the images
are determined by common lines with the �rst three images. This is angular reconstitution in
a nutshell.

In 1992, Farrow and Ottensmeyer expanded upon angular reconstitution by developing a
method to sequentially add images via least squares [43]. One major drawback in sequentially
assigning orientations of cryo-EM images is the propagation of error due to false common
line detection. In 1996, Penczek, Zhu, and Frank tried to circumvent the issue via brute-force
search for a global energy minimizer [44]. However, the search space is simply too big for
that method to be applicable. In 2006, Mallick et al introduced a Bayesian method in which
common lines between pairs of images are determined by their common lines with different
projection triplets [45]. In the method by Mallick et al, at least seven common lines must
be correctly and simultaneously determined, which can be problematic. In 2010, Singer et al
lowered the requirement to that only two common lines need to be correctly and simultaneously
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Figure 7. Example created by Jiang and Chiu available at http://jiang.bio.
purdue.edu/software/ctf/ctfapplet.html.

determined [46]. In 2011, Singer and Shkolnisky built upon [46] by adding a global consistency
condition among the orientations [18]. This method is called synchronization, and it is regarded
as the current state-of-the-art.

Note that all avaible methods for orientation determination, including the NUG approach
proposed in this paper, cannot be directly applied to raw experimental images. We will explain
the factors preventing us from doing so in the next subsection. We therefore numerically
validate and evaluate the method using synthetic data.

6.1. Shifts,CTF and contrast

In comparison to the simplistic forward model (2.8), there are three major imperfections in
the experimental cryo-EM datasets. First, the images are not centered, and the common lines
will not correspond exactly even under their true orientations. Second, the images are subject
to the contrast transfer function (CTF) of the electron microscope. A CTF, as a function of
radial frequency, is shown in �gure 7. Making matters mathematically more challenging, a
CTF is typically estimated per micrograph and each micrograph would have a different CTF.
Thus, all images from the same micrograph are typically assigned the same CTF. We also say
those images belong to the same defocus group. However, as shown in table 2 of section 6.4,
shifts and CTFs are not detrimental to NUG’s performance. This brings us to the third obsta-
cle, which does prevent us from directly applying NUG on raw experimental images. The ice
layer in which the molecules are frozen is not uniform. It can be thicker/thinner where dif-
ferent projections are taken, and this effect is equivalent to scaling the projections by a factor
γ > 0. So, various projections have various contrasts. Those effects are typically mitigated in
class averages. Class averages are formed by in-plane aligning and averaging raw images that
are estimated to have similar viewing directions. It is possible to apply NUG on class aver-
ages instead of the original raw experimental images. However, the quality of the results then
depends crucially on the speci�c class averaging procedure being used and does not provide
much insight into the performance of NUG itself.
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6.2. ADMM implementation

There are two parts that are particularly challenging for obtaining a numerical solution to the
NUG SDP (4.4) and (5.1):

• implementing an SDP solver that is scalable to real-world problems such as orientation
estimation in cryo-EM,
• computing the coef�cient matrix for generic objective function fij’s.

For the cryo-EM problem, the NUG SDP is simply too big to iterate on solvers based on
techniques like interior point methods. Interior point methods are known for their accuracy.
However, their accuracy is achieved at the expense of computational complexity. In essence,
interior point methods solve a system of linear equations that attempts to satisfy both primal
and dual feasibilities [47]. That is, solvers based on interior point methods have to invert a
matrix that contains both primal and dual variables. The number and size of the signals coupled
with the number of inequality constraints in (4.4) and (5.1) make this inversion impractical.
Instead, we use the alternating direction method of multipliers, or ADMM. As the name sug-
gests, ADMM alternates between the primal and the different sets of dual variables. More
importantly, the steps in ADMM are linear, with the exception of an eigendecomposition on
the primal variable. In practice, the eigendecomposition on the primal variable is manageable.

In general, it is not possible to obtain a closed-form expression for the coef�cient matrices
C(k)’s. Sometimes, we need to employ numerical integration schemes over the group G to �nd
the C(k)’s.

6.2.1. The alternating direction method of multipliers. In short, ADMM solves the augmented
Lagrangian via iterative partial updating.We solve an unconstrainedoptimization problemover
the objective variable, and enforce the constraints via dual variables. We will express the NUG
SDP in a more general form, and derive ADMM updates in the more general setting. (4.4) and
(5.1) are SDPs of the following form:

minimize
X

〈C,X〉

subject to X � 0

AE(X) = bE

AI(X) > bI .

(6.1)

We can think of C and X as the following block matrices:

C =











C(0)

C(1)

. . .
C(t)











, X =











X(0)

X(1)

. . .
X(t)











.

Note that going from (4.4) and (5.1) to (6.1), we used the fact that

tr
[

C(k)X(k)
]

=
〈

C(k),X(k)
〉
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because the C(k)’s are Hermitian.AE and AI are linear operators that encapsulate the equality
and inequality constraints, respectively. For example, we can think of A as

A(X) =













〈A(1)
I ,X〉
...

〈A(m)
I ,X〉
...













,

where, for the constraint
∑t

k=0 bktr
[

ρ∗k(gm)X
(k)
i j

]

, A(m)
I is the matrix containing bkρk(gm) at the

position of X(k)
i j and 0 everywhere else.

More concretely,A(X) = b is equivalent to A vec(X) = b, where

A =
[

vec(A(1)) · · · vec(A(m)) · · ·
]T

and vec vectorizes the matrix A(m) along the columns. The adjoint operator of A is given by

A∗(z) = mat(ATz),

where mat is the reverse operator of vec. Furthermore, we can verify

• 〈A(X), z〉 = 〈A vec(X), z〉 = 〈mat(ATz),X〉 = 〈A∗(z),X〉,
• (AA∗)(z) = A(A∗(z)) = (AAT)z,
• (A∗A)(z) = A∗(A(X)) = mat

(

(ATA)vec(X)
)

.

Now, we describe the ADMM solver outlined in [48] for SDP (6.1). ADMM is essentially
a series of partial iterative updates based on the augmented Lagrangian. So, we will de�ne the
dual variables and write out the augmented Lagrangian. Then, we derive the updates by setting
the gradient of the augmented Lagrangian, with respect to speci�c variables, to 0.

The dual variables corresponding to (6.1) are

− X � 0 ↔ S � 0

bE −AE(X) = 0 ↔ yE

bI −AI(X) 6 0 ↔ yI > 0.

The Lagrangian for (6.1) is

L(X, S, yE, yI) := − 〈(bE, bI), (yE, yI)〉+
〈

X, S+A∗E(yE)+A∗I (yI)− C
〉

. (6.2)

The motivation for de�ning (6.2) is so that the primal variable X satis�es the constraints using
the dual variables via

minimize
S�0,yE ,yI>bI

maximize
X

L(X, S, yE, yI). (6.3)

Notice that (6.3) is an unconstrained optimization problem over X. If X is not PSD, then there
exists S � 0 such that L(X, S, yE, yI) = −∞. Thus, due to the inner maximization over X, (6.3)
produces a solution satisfying X � 0. The equality and inequality constraints are enforced in a
similar manner. The maximizing X must satisfy

∇XL = 0⇔ S+A∗E(yE)+A∗I (yI) = C.
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In fact, this gives us the dual problem to (6.1)

minimize
S,yE ,yI

δ�0(S)+ δ60(yI)− 〈(bE, bI), (yE, yI)〉

subject to S +A∗E(yE)+A∗I (yI) = C.

The augmented Lagrangian is the Lagrangian with the dual variables regularized by the
Frobenius norm:

Lρ(X, S, yE, yI) := − 〈(bE, bI), (yE, yI)〉+
〈

X, S+A∗E(yE)+A∗I (yI)− C
〉

+
ρ

2
‖S +A∗E(yE)+A∗I (yI)− C‖2Fro . (6.4)

This regularization term is crucial for numerical convergence of the solver.
The updates for the dual variables are given by their individual optimality conditions.

• Solving 0 = ∇SLρ for S and applying the PSD projection, we get

S(k+1)
=

[

C −A∗E(y(k)E )−A∗I (y(k)I )− 1
ρ
X(k)

]

�0
.

• Solving 0 = ∇yELρ for yE, we get

y
(k+1)
E =

(

AEA∗E
)−1
(

1
ρ

(

bE −AE(X(k))
)

−AE

(

A∗I (y(k)I )+ S(k) − C
)

)

.

Note that for the NUG SDP, AEA∗E = I because each equality constraint is on a single
entry in X. So, this update simpli�es to

y
(k+1)
E =

1
ρ

(

bE −AE(X(k))
)

−AE

(

A∗I (y(k)I )+ S(k) − C
)

.

• Note that if we solve 0 = ∇yILρ for yI, we will have to invert the operatorAIA∗I , and this is
extremely computationally challenging. Instead, we add an additional regularization term
ρ
2‖yI − y

(k)
I ‖2

λI−AIA∗I
, whereλ is the largest eigenvalue ofAIA∗I and y(k)I is the element from

the previous yI-update. Solving 0 = ∇yI

[

Lρ +
ρ
2‖yI − y

(k)
I ‖2

λI−AIA∗I

]

for yI and applying

the the nonnegativity projection, we get

y
(k+1)
I =

[

1
ρλ

(

bI −AI(X
(k))
)

+
1
λ
AI

(

C −A∗E(y(k)E )−A∗I (y(k)I )− S(k)
)

+ y
(k)
I

]

>0

.

The update for the primal variable is simply a gradient descent given by

X(k+1)
= X(k)

+ ρ
(

S(k) +A∗E(y(k)E )+A∗I (y(k)I )− C
)

.
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We initialize the variables as the following:

• X(0) = I,
• y(0)I = 0,
• S(0) = 0,
• y(0)E = 1

2AE

(

C −A∗I (y(0)I )− S(0)
)

.

We apply the updates in the following order:

(a) S(k+1) =

[

C −A∗E(y(k)E )−A∗I (y(k)I )− 1
ρX

(k)
]

�0
,

(b) y(k+1/2)
E = AE

(

C −A∗I (y(k)I )− S(k+1)
)

,

(c) y(k+1)
I =

[

1
ρλ

(

bI −AI(X(k))
)

+ 1
λ
AI

(

C −A∗E(y(k+1/2)
E )−A∗I (y(k)I )− S(k+1)

)

+ y
(k)
I

]

>0
,

(d) y(k+1)
E = AE

(

C −A∗I (y(k+1)
I )− S(k+1)

)

,

(e) X(k+1) = X(k) + ρ
(

S(k+1) +A∗E(y(k+1)
E )+A∗I (y(k+1)

I )− C
)

.

Note that we updated yE twice, which guarantees the solver’s convergence to the
optimizer [48].

6.2.2. Fourier coefficients for bandlimited functionson SO(3). The coef�cientmatrix in (3.12)
is composed of

f̂ i j(k) =
∫

G
fi j(g)ρ

∗
k(g)dg.

We obtained closed-form expressions for the registration problem (2.4) under the assumption
that the noise in the underlying signal is Gaussian. For the cryo-EMproblem (2.11), we require
a single approximation of an integral using Gaussian quadrature. However, this is not always
the case. For example, the noise in the cryo-EM projections is better modeled by the Poisson
distribution [49]. We describe the numerical integration scheme in [50] that can be used to
obtain the desired Fourier coef�cients f̂ i j(k). We need to make the assumption that fij’s are
bandlimited by T. The method described in [50] has a better computational complexity than
straight forward numerical integration. We will de�ne the quadrature, and then outline the
evaluation over the quadrature.

For function f with bandlimit T, we have the equality

f̂ (k) =
1

(2T)2

2T−1
∑

j1=0

2T−1
∑

j2=0

2T−1
∑

l=0

bT(l) f (α j1 , βl, γ j2)ρ
∗
k(α j1 , βl, γ j2), (6.5)

where

bT(l) =
2
T
sin

[

π(2l+ 1)
4T

] T−1
∑

m=0

1
2m+ 1

sin

[

π(2l+ 1)(2m+ 1)
4T

]

,

and

α j1 =
2π j1
2T

, βl =
π(2l+ 1)

4T
, γ j2 =

2π j2
2T

, 0 6 j1, j2, l < 2T.
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Recall that

[ρk(α, β, γ)]m,m′ = eimαw(k)
m,m′ (β)e

im′γ .

We can re-write the entries in (6.5) as

[

f̂ (k)
]

m,m′
=

1
(2T)2

2T−1
∑

l=0

bT(l)w
(k)
m′ ,m(βl)

2T−1
∑

j2=0

e−imγ j2
2T−1
∑

j1=0

e−im
′α j1 f (α j1 , βl, γ j2).

(6.6)

By rearranging the terms in (6.6), it becomes obvious that we should compute f̂ (k) in the
following order:

(a) for all 0 6 j2, l < 2T and −T 6 m′ 6 T, compute

S1(l, j2,m′) =
1
2T

2T−1
∑

j1=0

e−im
′α j1 f (α j1 , βl, γ j2),

(b) for all 0 6 l < 2T and −T 6 m′,m 6 T, compute

S2(l,m′,m) =
1
2T

2T−1
∑

j2=0

e−imγ j2 S1(l, j2,m′),

(c) for all −T 6 m′,m 6 T, compute

[

f̂ (k)
]

m,m′
=

2T−1
∑

l=0

bT(l)w
(k)
m′,m(βl)S2(l,m

′,m).

The complexity to compute
[

f̂ (k)
]

m,m′
for all m,m′ and k is O(T4); and the complexity of the

straight-forward evaluation in (6.5) is O(T6) [50].

6.2.3. Simplification for cryo-EM. Recall that the objective function for cryo-EM does not
depend on β. I.e.,

f (α, γ) = f (α, β1, γ) = f (α, β2, γ).

(6.6) reduces to

[

f̂ (k)
]

m,m′
=

(

2T−1
∑

l=0

bT(l)w
(k)
m′,m(βl)

)

×





1
(2T)2

2T−1
∑

j2=0

e−imγ j2
2T−1
∑

j1=0

e−im
′α j1 f (α j1 , γ j2)



 . (6.7)

We compute (6.7) in the following order:

(a) compute

BT(k) =
2T−1
∑

l=0

bT(l)w
(k)
m′,m(βl),
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(b) for all 0 6 j2 < 2T and −T 6 m′ 6 T, compute

S1( j2,m′) =
1
2T

2T−1
∑

j1=0

e−im
′α j1 f (α j1 , γ j2),

(c) for all −T 6 m′,m 6 T, compute

S2(m′,m) =
1
2T

2T−1
∑

j2=0

e−imγ j2S1( j2,m′),

(d) for all −T 6 m′,m 6 T, compute
[

f̂ (k)
]

m,m′
= BT(k)S2(m

′,m).

The complexity to compute
[

f̂ (k)
]

m,m′
for all m,m′ and k is O(T3).

6.3. Rotation MSE and FSC resolution

We assess the performance of orientation estimation method using the mean squared error
(MSE), de�ned as follows:

MSE :=
1
n

n
∑

i=1

‖R̂i − Ri‖2Fro. (6.8)

Here Ri are the true rotations (which are known in the simulation setting) and R̂i are the esti-
mated rotations (note that we previously used the hat notation for the Fourier transform, but
here it is used for estimators). Since the estimation is up to a global rotation and possibly
handedness, the two sets of rotations are aligned prior to computing the MSE.

In addition, we will include the Fourier shell correlation (FSC) of the reconstructed struc-
ture against the known structure. We reconstruct the three-dimensional structure (in Fourier
space) using the estimated orientations to get φ̂, and compare it against the known structure φ
(in Fourier space). For each spatial frequency rk, we calculate the FSC

FSC(rk) :=

∑

‖v‖2=rk
φ̂(v)φ∗(v)

∑

‖v‖2=rk
|φ̂(v)|2 ∑

‖v‖2=rk
|φ(v)|2

.

We derive the resolution (in Angstroms) by interpolating the FSC until we reach an rk yielding
FSC(rk) 6 0.5. See [51] for a discussion on the FSC and the cutoff value.

Note that the rotationMSE is the most direct assessment of orientation estimation methods.
After all, the stated objective of orientation estimation in cryo-EM is to estimate the orienta-
tions. In addition, the quality of the three-dimensional reconstruction depends on several other
factors such as the signal-to-noise ratio of the images, the number of images, the distribution
of the viewing directions and the CTF of the images. We focus on the rotation MSE because
the other factors mentioned are independent of the algorithm being used.

6.4. Simulated data

With the ASPIRE software package in [42], we generate a set of 100 and a set of 500
projection images of size 129× 129 from the Plasmodium falciparum 80S ribosome (see

34



Inverse Problems 36 (2020) 064002 A S Bandeira et al

Table 1. The resolutions shown are in Angstroms. At high SNR, synchronization is
accurate to more decimal places. This is not surprising since we have compromised
on various truncations and discretizations for computational speed, etc. However, as the
noise increases, we see NUG outperforming synchronization.

SNR NUG MSE sync. MSE NUG ressync res

100 images

1/1 0.0153 1.2759 × 10−4 24.6 20.8
1/2 0.0155 1.3593 × 10−4 21.5 20.3
1/4 0.0174 3.6615 × 10−4 27.0 22.4
1/8 0.0192 0.0037 28.7 25.8
1/16 0.0227 0.0300 29.8 30.9
1/32 0.0298 0.1572 35.6 45.8
1/64 0.1559 2.7818 45.3 174.1
1/128 2.1239 4.1492 97.9 175.3

500 images

1/1 0.0125 4.1412 × 10−5 18.1 14.6
1/2 0.0130 5.1825 × 10−5 20.8 18.2
1/4 0.0134 1.5268 × 10−4 21.7 17.0
1/8 0.0143 0.0018 16.4 18.1
1/16 0.0175 0.0189 20.8 17.7
1/32 0.0195 0.1559 24.6 30.7
1/64 0.0460 2.2496 29.3 71.1
1/128 1.6060 3.1661 64.2 107.6

https://ebi.ac.uk/pdbe/emdb/empiar/entry/10028/.) We add Gaussian noise to the simulated
projections, and then apply a circular mask to zero out the noise outside of the radius. Table 1
shows a comparison of NUG and the synchronization method for different noise levels. In
particular, the estimation error of NUG at SNR = 1/64 with 500 images is suf�ciently low
(MSE = 0.05) to result in a meaningful three-D ab initio model (with <30 Å resolution).
Numerical experiments were conducted on a cluster of Intel(R) Xeon(R) CPU E7-8880v3
@ 2.30 GHz totaling 144 cores and 792 GB of RAM. The synchronization method is
roughly two orders of magnitude faster than NUG, but NUG gives more accurate estimates at
low SNR.

To put the numbers in table 1 into perspective, an MSE of 0.1, for example, can be regarded
as small enough in one instance to lead to a good reconstruction, but too large in another. The
three-dimensional reconstruction from 100 images at low SNR (e.g., SNR = 1/128) looks
bad even if one uses the true orientations (i.e., MSE = 0). On the other hand, the three-
dimensional reconstruction from 500 images at moderate SNR (e.g., SNR = 1/32) would
look very decent at MSE = 0.1. The latter case is shown in �gure 7 in [18], where SNR =

1/32 and the MSE is slightly above 0.1. The resolution measure quanti�es the quality of the
three-D ab initio model. An idea about the quality of three-dimensional reconstruction with
respect to the MSE can also be obtained from table 3 and �gure 8 in [27]. We would like
to point out that for the same computational cost, synchronization can process more images
thanNUG, and thereforemay yield better three-dimensional reconstructions.However, beyond
the theoretical importance, NUG still might be useful in situations in which the number of
images is limited (e.g., when there are only a handful number of class averages or in electron
tomography).
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Table 2. Effects of shifts, CTFs and contrast on the MSE (de�ned in (6.8)) of the NUG
SDP cryo-EM. Shifts are sampled from U(−5, 5), CTFs are drawn uniformly from 4
defocus groups and contrasts are sampled from U(0.5, 1.5). We used 500 simulated
projections of size 64× 64.

SNR benchmark CTF CTF and shifts CTF and contrast

1/4 0.0285 0.0381 0.3382 0.7342
1/8 0.0333 0.1450 0.5741 >2.0
1/16 0.0698 0.7631 1.3391 >2.0
1/32 0.4387 1.9199 >2.0 >2.0
1/64 1.8587 >2.0 >2.0 >2.0

Figure 8. Distribution of contrast in the experimental dataset EMPIAR-10028.

We also illustrate the effects of contrast, CTF and shifts on the performance of NUG in
the numerical experiment reported in table 2. In this numerical experiment, phase �ipping was
applied to correct for the phases of the CTF but not their magnitudes. As for shifts, we simply
ignore it in the NUG SDP. In the future, we can expand (4.4) to include shifts to improve upon
our estimates. Please see section 6.1 for a discussion on the effects of contrast, CTF and shifts.

The distribution for the contrast was based on the following numerical experi-
ment. We used the publicly available experimental dataset EMPIAR-10028 found here:
https://ebi.ac.uk/pdbe/emdb/empiar/entry/10028/. Using the known three-dimensional struc-
ture of the molecule, we construct 10 000 simulated clean projections of size 64× 64 at differ-
ent orientations sampled uniformly over SO(3). For each image Î in the experimental dataset,
we solve for γ in

minimize
γ,Ii

‖γ Î − Ii‖2Fro,

where Ii’s are simulated projections generated from the known structure. Figure 8 shows the
empirical distribution of γ.
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7. Summary

The NUG problem consists in the minimization of the sum of pairwise cost functions de�ned
over the ratio between group elements, for arbitrary compact groups. This corresponds to the
simultaneous multi-alignment of many datapoints (e.g. signals, images, or molecule densities)
with respect to transformations given by an action of the corresponding group. We presented
a methodology to solve this problem involving a relaxation of the problem to an SDP and an
implementation of an ADMM algorithm to solve the resulting SDP.

In this paper we focusedmainly in the context of alignment over SO(2) and SO(3). A notable
example is that of �nding a consistent set of pairwise rotations of many different functions
de�ned on a sphere which globally minimize the disagreement between pairs of functions.

The NUG problem arises in cryo-EM, where the task is to recover the relative orienta-
tions of many noisy two-dimensional projections images of a three-dimensional object, each
obtained from a different unknown viewing direction. Once good alignments are estimated,
the three-dimensional object can be reconstructed using standard tomography algorithms. In
this paper we formulate the problem of image alignment in cryo-EM as an instance of NUG,
and demonstrate the applicability to simulated datasets.

The computational and numerical considerations require truncations of the both the cost
functions and group representations; a general approach is proposed as part of the formulation
as an SDP, and additional methods particularly developed for the case of SO(3), and to the
special properties of the cryo-EM problem, are presented.

It is noteworthy that, compared to previous work on related alignment problems, the for-
mulation of the problem as an SDP can provide a certi�cate for optimality in some cases.
Speci�cally, whenever the solution of the SDP also satis�es the nonconvex constraints that
have been relaxed, it serves as a certi�cate that optimality has been achieved. In numerical
work not reported in this paper we have numerically observed optimality of NUG SDP for
some instances of MRA, but not for estimation of orientations in cryo-EM. Better theoretical
understanding of when NUG SDP achieves optimality is an interesting open problem. In the
context of cryo-EM, like other common-line based approaches, it does not require an initial
guess. These properties make NUG a candidate for future work on robust ab initio alignment
which would provide an initialization for other re�nement algorithms.
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