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An approximate expectation-maximization for
two-dimensional multi-target detection

Shay Kreymer, Amit Singer, and Tamir Bendory

Abstract—We consider the two-dimensional multi-target de-
tection (MTD) problem of estimating a target image from a
noisy measurement that contains multiple copies of the image,
each randomly rotated and translated. The MTD model serves
as a mathematical abstraction of the structure reconstruction
problem in single-particle cryo-electron microscopy, the chief
motivation of this study. We focus on high noise regimes, where
accurate detection of image occurrences within a measurement
is impossible. To estimate the image, we develop an expectation-
maximization framework that aims to maximize an approxima-
tion of the likelihood function. We demonstrate image recovery
in highly noisy environments, and show that our framework
outperforms the previously studied autocorrelation analysis in
a wide range of parameters.

Index Terms—Expectation-maximization, multi-target detec-
tion, cryo-electron microscopy.

I. INTRODUCTION

We study the multi-target detection (MTD) problem of esti-
mating a target image f : R2 → R from a noisy measurement
that contains multiple copies of the image, each randomly
rotated and translated [1], [2], [3], [4], [5], [6], [7]. We
consider a measurement M ∈ RN×N of the form

M [~̀] =

p∑
i=1

Fφi [
~̀− ~̀i] + ε[~̀], (1)

where Fφi [~̀] := fφi(
~̀/n) is a discrete copy of f , rotated by

angle φi about the origin; n is the known radius of the image
in pixels; {φi}pi=1 ∼ Unif[0, 2π) are uniformly distributed
rotations; {~̀i}pi=1 ∈ {n+ 1, . . . , N − n}2 are identically dis-
tributed random translations (though not independent, and the
underlying distribution is not assumed to be known); and ε[~̀]
is i.i.d. Gaussian noise with zero mean and variance σ2. The
rotations, translations, and the number of occurrences of f
in M , denoted by p, are unknown. Importantly, since the
rotations are unknown, it is possible to reconstruct the target
image only up to a rotation.

Following [3], [4], [5], [8], we assume that the image f is
supported on the unit disk {~x ∈ R2 : |~x| ≤ 1} and has a finite
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Fig. 1: Three measurements at different SNRs: (a) no noise;
(b) SNR = 50; (c) SNR = 2. Each measurement contains
multiple rotated versions of the target image. We focus on the
low SNR regime (e.g., panel (c)) in which the locations and
rotations of the image occurrences cannot be detected reliably.

expansion in the basis of Dirichlet Laplacian eigenfunctions.
In particular, the image f can be expanded as

f(r, θ) =
∑

(ν,q):λν,q≤λ

αν,qψν,q(r, θ), r ≤ 1, (2)

in polar coordinates (r, θ), where ψν,q(r, θ) = Jν (λν,qr) e
iνθ,

ν ∈ Z≥0, Jν is the ν-th order Bessel function of the first
kind, λν,q > 0 is the q-th positive root of Jν , λ is called the
bandlimit frequency, and α is the vector of expansion coeffi-
cients. Hereafter, by estimating the image we mean estimating
the vector of coefficients α. Notably, the basis of Dirichlet
Laplacian eigenfunctions is steerable: rotating f is equivalent
to modulating the expansion coefficients αν,q . Specifically, the
expansion of the rotated image fφ(r, θ) := f(r, θ + φ) is
given by fφ(r, θ) =

∑
(ν,q):λν,q≤λ αν,qψν,q(r, θ)e

iνφ. For real
valued images, α−ν,q = α∗ν,q .

We focus on the well-separated case of the 2-D MTD
problem, which was introduced in [3], [4]. In this case, each
translation in the measurement M (1) is separated by at least
a full image diameter from its neighbors. Specifically, we
assume

|~̀i1 − ~̀i2 | > 4n, for all i1 6= i2. (3)

Figure 1 presents an example of a measurement M at dif-
ferent signal-to-noise ratios (SNRs). We define SNR :=

‖F‖2F
Aσ2 ,

where A is the area in pixels of F .
The MTD model serves as a mathematical abstraction of the

cryo-electron microscopy (cryo-EM) technology for macro-
molecular structure determination [9], [10], [11]. In a cryo-EM
experiment, individual copies of the target biomolecule are
dispersed at unknown 2-D locations and 3-D orientations in a
thin layer of vitreous ice, from which 2-D tomographic projec-
tion images are produced by an electron microscope [12]. It is
necessary to keep the electron dose low in order to minimize
irreversible structural damage. Consequently, the projection
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images are considerably noisy. In the current data processing
pipeline of cryo-EM [13], [14], [15], [16], the 2-D projections
are first detected and extracted from the micrograph, and later
rotationally and translationally aligned to reconstruct the 3-D
molecular structure. This approach fails for small molecules,
which are difficult to detect and align [7], [9], [13], [17].

The MTD model was devised in [7] in order to study
the recovery of small molecular structures using cryo-EM,
below the current detection limit [18]. In [3], [4], [5], an
autocorrelation analysis technique was devised for the 2-
D MTD problem (1). Autocorrelation analysis is a special
case of the method of moments, and it consists of finding
an image that best matches the empirical autocorrelations of
the measurement, thus bypassing detecting the locations and
rotations of individual image occurrences. In this work, we
propose to replace autocorrelation analysis by expectation-
maximization (EM): a classical iterative algorithm to compute
the maximum likelihood estimator [19]. Similarly to autocorre-
lation analysis, the EM algorithm estimates the target image F
directly by marginalizing over the translations and rotations.

Previous works demonstrated that EM outperforms auto-
correlation analysis in terms of estimation accuracy for the
1-D MTD problem [2], as well as for the closely related
multireference alignment model [20], [21]. EM is also the most
popular computational framework for reconstructing molecular
structures using cryo-EM, see for example [15], [16]. More-
over, a recent paper [22] shows that likelihood optimization
in the low SNR regime reduces to a sequence of least squares
optimization problems that match the moments of the image
estimate to the observable moments one by one, and by that
suggests that EM has the potential to surpass the estimation
accuracy achieved by autocorrelation analysis.

At each iteration, EM assigns probabilities to all possible
rotations and translations (see Section II). Unfortunately, for
the MTD model (1), the number of possible translations
grows quickly with the measurement size, and therefore direct
application of the EM algorithm to the MTD problem is com-
putationally intractable, even for very small measurements.
Thus, following [2], we suggest mitigating the computational
burden by developing an EM algorithm that maximizes an
approximation of the likelihood function. In the approximate
EM scheme, the number of possible translations is linear in N2

(the size of the measurement), making the algorithm tractable.
The main contribution of this paper is in developing an

approximate EM framework for the 2-D MTD problem; see
Section II. In Section III, we demonstrate successful recon-
structions in noisy regimes. We also conduct extensive nu-
merical experiments that demonstrate significant improvement
in estimation accuracy compared to autocorrelation analysis.
Section IV concludes the paper and introduces future work. In
particular, we discuss potential implications for the ongoing ef-
fort to estimate small molecular structures using cryo-EM [7].

II. APPROXIMATE EXPECTATION-MAXIMIZATION

Given a measurement M that follows the MTD model (1),
the maximum marginal likelihood estimator (MMLE) for the
vector of coefficients α, that represents the target image f (2),

is the maximizer of the likelihood function p(M |α). The
translations and rotations of the target images within the
measurement are treated as nuisance variables. The EM algo-
rithm estimates the MMLE by iteratively applying the expec-
tation (E) and maximization (M) steps [19]. Specifically, given
the current estimate αk, the E-step computes the expected
log-likelihood function, where the expectation is taken over
all admissible configurations of translations and rotations.
The estimate is then updated in the M-step by maximizing
the function with respect to α. Unfortunately, for the MTD
model, the number of possible translations grows quickly
with the problem size, rendering direct application of EM
computationally intractable. Hence, based on [2], we suggest
to apply an approximate EM, in which the number of possible
translations is linear in N2.

The approximate EM begins with partitioning the measure-
ment M into Nd = (N/L)2 non-overlapping patches; each
patch is of size L× L, where L = 2n+ 1 is the diameter
of the target image F . In EM terminology, the patches are
called the observed data. The separation condition (3) implies
that each patch Mm can contain either no target image, a full
target image, or part of a rotated image; overall there are (2L)2

possibilities, excluding rotations. In particular, each patch can
be modeled by

Mm = CT~̀
m
ZFLφm + εm, εm ∼ N (0, σ2IL×L), (4)

where FL is a square image of size L × L enclosing
the disk-shaped image F of radius n, the operator Z
zero-pads L entries to the right and to the bottom of a
rotated copy of F , and T~̀

m
circularly shifts the zero-padded

image by ~̀
m = (`mx, `my) ∈ L := {0, 1, . . . , 2L− 1}2 posi-

tions, that is,

(T~̀
m
ZFLφm) [i, j] =

(ZFLφm)
[
(i+ `mx) mod 2L, (j + `my) mod 2L

]
. (5)

The operator C then crops the image to size L × L, i.e.,
CT~̀

m
ZFLφm = T~̀

m
ZFLφm [0 : L− 1, 0 : L− 1], and the result

is further corrupted by additive white Gaussian noise. In
addition, since the EM algorithm assigns probabilities to
rotations (in the expectation step), we need to discretize the
search space of rotations:

φm ∈ Φ :=

{
k

2π

K

}
, k = 0, . . . ,K − 1, (6)

where K is a parameter chosen by the user. Higher K provides
higher accuracy at the cost of running time (see Figure 4).
The rotations, translations, and patches are referred to, in EM
terminology, as the complete data. We assume that in each
patch p(~̀m, φm|αk) = p(~̀m)p(φm), namely, ~̀m and φm are
independent of αk and of each other. Since the rotations are
drawn from a uniform distribution over the set Φ from (6),
we can write p(~̀m, φm|αk) = ρ[~̀m]/K, where ρ[~̀] is the
distribution of 2-D translations in the patch (which should be
estimated simultaneously with α).

In the E-step, our algorithm calculates the expected log-
likelihood function of the model, given explicitly by

Q(α, ρ|αk, ρk) = E [logL|M0, . . . ,MNd−1;αk, ρk] , (7)
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where L is the likelihood function, defined as

L := p(M0, . . . ,MNd−1, ~̀0, . . . , ~̀Nd−1, φ0, . . . , φNd−1;α, ρ)

≈
Nd−1∏
m=0

p(Mm, ~̀m, φm;α, ρ), (8)

where we neglect statistical dependencies between patches.
Bayes’ rule dictates

p(~̀m, φm|Mm, αk)

=
p(Mm|~̀m, φm, αk)p(~̀m, φm|αk)∑

~̀′∈L
∑
φ′∈Φ p(Mm|~̀′, φ′, αk)p(~̀′, φ′|αk)

, (9)

which is the normalized likelihood function

p(Mm|~̀m, φm, α) ∝ exp

(
−
‖Mm − CT ~̀

m
ZFφm‖2F

2σ2

)
,

(10)
with the normalization

∑
~̀∈L
∑
φ∈Φ p(Mm|~̀m, φm, α) = 1,

weighted by the prior distribution p(~̀m, φm|αk) = ρ[~̀m]/K.
Utilizing the approximation in (8), we can write the ex-

pected log-likelihood function, up to a constant, as:

Q(α, ρ|αk, ρk) =

Nd−1∑
m=0

∑
~̀∈L

∑
φ∈Φ

p(Mm|~̀, φ, αk)ρk[~̀]

×
(

log p(Mm|~̀, φ, α) + log ρ[~̀]
)
. (11)

The M-step updates the image estimate α and ρ by maxi-
mizing Q(α, ρ|αk, ρk) under the constraint that ρ lies on the
simplex ∆4L2 :

arg max
α,ρ

Q(α, ρ|αk, ρk) s.t. ρ ∈ ∆4L2 . (12)

The constrained maximization of (12) can be achieved with
the unconstrained maximization of the Lagrangian

L(α, ρ, η) = Q(α, ρ|αk, ρk) + η

1−
∑
~̀∈L

ρ[~̀]

 , (13)

where η is the Lagrange multiplier. As we will see next, the
constraint of (12) is automatically satisfied at the maximum
of the Lagrangian.

Since Q(α, ρ|αk, ρk) is additively separable for α and ρ,
we maximize L(α, ρ, η) with respect to α and ρ separately.
At the maximum of L(α, ρ, η), we have

0 =
∂L

∂(α)ν,q
=

Nd−1∑
m=0

∑
~̀∈L

∑
φ∈Φ

p(Mm|~̀, φ, αk)ρk[~̀]

× ∂ log p(Mm|~̀, φ, α)

∂(α)ν,q
, (14)

resulting in a set of linear equations which is solved to
update α. In order to update ρ, we maximize L(α, ρ, η) with
respect to ρ:

0 =
∂L
ρ[~̀]

=

Nd−1∑
m=0

∑
φ∈Φ

p(Mm|~̀, φ, αk)ρk[~̀]
1

ρ[~̀]
− η, (15)

Algorithm 1: Approximate EM for 2-D MTD

Input: measurement M ; noise variance σ2; initial
guesses α0 and ρ0; parameter K (6); stopping
parameter ε

Output: an estimate of α and ρ

1 set k → 0;
2 calculate Q0 according to (11) and set Q−1 → −∞;
3 while Qk −Qk−1 > ε do
4 calculate p(Mm|~̀, φ, αk) according to (10);
5 update αk+1 by solving (14);
6 update ρk+1 according to (16);
7 calculate Qk+1 according to (11);
8 set k → k + 1;
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Fig. 2: The mean estimation error of recovering the target
image F , as a function of the SNR, by approximate EM
(Algorithm 1) and autocorrelation analysis. Evidently, the ap-
proximate EM algorithm outperforms autocorrelation analysis.

for ~̀ ∈ L. We thus obtain the update rule for ρ as

ρ[~̀] =
1

η

Nd−1∑
m=0

∑
φ∈Φ

p(Mm|~̀, φ, αk)ρk[~̀], (16)

and η = Nd from the normalization
∑
~̀∈L ρ[~̀] = 1. The

approximate EM algorithm is summarized in Algorithm 1.

III. NUMERICAL EXPERIMENTS

In this section, we present numerical results for the approx-
imate EM described in Section II. As a baseline, we compare
the results against autocorrelation analysis with the first three
autocorrelations based on the framework (and code) of [3],
[4], [5]. To take the in-plane rotation symmetry into account,
we measure the estimation error by minφ∈[0,2π)

‖α∗−αφ‖2
‖α∗‖2 ,

where α∗ is the true vector of expansion coefficients, and αφ is
the vector of coefficients of the estimated image, rotated by φ.
In all experiments, the measurements were generated accord-
ing to (1) with density γ := pπn

2

N2 = 0.04. The rotations were
drawn from a uniform distribution on [0, 2π), while the search
space of the EM was discretized with a parameter K according
to (6). The target images are of diameter L = 5 pixels. Each
entry of the target images was drawn i.i.d. from a uniform
distribution on [0, 1]. Then, each image was normalized such
that ‖F‖F = 10, and expanded using its first 10 coefficients
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Fig. 3: The mean estimation error of recovering the target
image F (left) and running time (right), as a function of the
measurement size N2 by approximate EM and autocorrelation
analysis. For the estimation error, the black dashed lines
illustrate a slope of −1/2, as predicted by the law of large
numbers. For the computation time, it illustrates a slope of 1,
implying a linear increase in computation time, since the
number of patches Nd = N2/L2 grows linearly in N2.
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Fig. 4: The mean estimation error of recovering the target
image F (left) and corresponding running time (right), as a
function of the size of the search space of rotations K, by
approximate EM. The recovery error and running time using
autocorrelation analysis are marked by dashed red lines. For
the running time, the black dashed line illustrates a slope of 1,
which implies a linear increase in computation time, as the
number of computations per patch depends linearly on K.

as in (2). The initializations of the EM and autocorrelation
analysis iterations were drawn from the same distribution as
the ground truth images, and γinit = 0.03. If the algorithms
were initialized from several random points, we calculated the
error of the image estimate whose likelihood is maximal (for
approximate EM), or whose objective function is minimal (for
autocorrelation analysis). Figures 2, 3 and 4 present the mean
error over 40 trials. The code to reproduce all experiments is
publicly available at https://github.com/krshay/MTD-2D-EM.

A. Recovery error as a function of the SNR

Figure 2 presents recovery error as a function of the
SNR. The measurements are of size N2 = 25002 pixels, and
we use K = 8 possible rotations (6), and 5 random initial
guesses for α. To save computation time (see Section IV), we
initialized the approximate EM algorithm using the estimate
achieved by autocorrelation analysis. We achieve a significant
improvement in recovery accuracy using approximate EM,
even though the search space of rotations is coarsely sampled.

In an additional numerical experiment with SNR = 2 (low
SNR, see Figure 1), N2 = 100002 pixels, and K = 16, the
relative error of approximate EM was 0.017, whereas the error
of autocorrelation analysis was 0.073.

B. Recovery error as a function of the measurement size
Figure 3 presents recovery error and running time as a

function of the measurement size N2, with SNR = 5, K = 16,
and 5 random initial guesses for α. Using approximate EM,
the error decays as 1/

√
N2. The same trend is visible also for

autocorrelation analysis for sufficiently large measurements.
We achieve a significant improvement in recovery accuracy
using approximate EM. However, the computation time of our
method is greater, and grows linearly with the measurement
size. In particular, autocorrelation analysis is faster since it
requires a single pass over the measurement, while the com-
putational complexity of matching an image to the observed
autocorrelations scale with L2 � N2.

C. Recovery error as a function of discretization of rotations
Figure 4 presents recovery error and running time as a

function of K, the size of the search space of rotations, for
measurements with SNR = 5, N2 = 15002 pixels, and one
initial guess for α. Remarkably, even when the EM searches
over only 4 rotations (recall that the rotations are drawn from a
continuous distribution), the obtained estimation error is sim-
ilar to the estimation error of autocorrelation analysis, which
takes all possible (infinitely many) rotations into account.
As expected, the computation time grows linearly with the
parameter K. This implies that one can save running time
by coarsely sampling the search space of rotations without
severely degrading the estimation quality.

IV. CONCLUSION

This paper is motivated by the effort of reconstructing
small 3-D molecular structures using cryo-EM, below the
current detection limit [7]. The main contribution of this paper
is in introducing an approximate EM scheme for the 2-D MTD
problem, and comparing it numerically to autocorrelation
analysis. The numerical experiments show an improvement
in estimation accuracy, but at the cost of computational time.
As Figure 4 shows, the parameter K provides an accuracy-
running time trade-off. A possible improvement is to increase
the resolution of the search space as the iterations progress [2],
or to design a branch-and-bound algorithm that accelerates
EM by quickly and inexpensively ruling out large regions of
the search space that have very low probability to contain the
optimum of the objective function [16].

Our ultimate goal is to develop an approximate EM scheme
for recovering small molecular structures using cryo-EM [7].
In order to achieve a computationally efficient algorithm for
the 3-D case of cryo-EM, parallel processing and randomized
algorithms, such as stochastic or online EM [23], [24], [25],
[26], [27], must be utilized. Further accelerations can be
achieved by applying the EM algorithm on a lower dimen-
sional representation of the data [28], and initializing the
EM iterations with efficient computational techniques, such
as autocorrelation analysis or stochastic gradient descent [16].
Moreover, adding a prior on the target image is expected to
improve robustness at the cost of possible model bias. Another
research direction is replacing EM by more intricate tech-
niques that aim to approximate the posterior distribution, such
as variational inference [29] or variational auto-encoders [30].

https://github.com/krshay/MTD-2D-EM
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