Optimal prediction in the linearly transformed spiked model

Edgar Dobriban, William Leeb, and Amit Singer

September 12, 2017

Abstract

We consider the linearly transformed spiked model, where observations \(Y_i \) are noisy linear transforms of unobserved signals of interest \(X_i \):
\[
Y_i = A_i X_i + \varepsilon_i,
\]
for \(i = 1, \ldots, n \). The transform matrices \(A_i \) are also observed. We model \(X_i \) as random vectors lying on an unknown low-dimensional space. How should we predict the unobserved signals (regression coefficients) \(X_i \)?

The naive approach of performing regression for each observation separately is inaccurate due to the large noise. Instead, we develop optimal linear empirical Bayes methods for predicting \(X_i \) by “borrowing strength” across the different samples. Our methods are applicable to large datasets and rely on weak moment assumptions. The analysis is based on random matrix theory.

We discuss applications to signal processing, deconvolution, cryo-electron microscopy, and missing data in the high-noise regime. For missing data, we show in simulations that our methods are faster, more robust to noise and to unequal sampling than well-known matrix completion methods.

1 Introduction

In this paper we study the linearly transformed spiked model, where the observed data vectors \(Y_i \) are noisy linear transforms of unobserved signals of interest \(X_i \):
\[
Y_i = A_i X_i + \varepsilon_i, \quad i = 1, \ldots, n.
\]

We also observe the transform matrices \(A_i \). A transform matrix reduces the dimension of the signal \(X_i \in \mathbb{R}^p \) to a possibly observation-dependent dimension \(q_i \leq p \), thus \(A_i \in \mathbb{R}^{q_i \times p} \). Moreover, the signals are assumed to be random vectors lying on an unknown low-dimensional space, an assumption sometimes known as a spiked model (Johnstone, 2001).

Our main goal is to recover (estimate or predict) the unobserved signals \(X_i \). The problem arises in many applications, some of which are discussed in the next section. Recovery is challenging due to the two different sources of information loss: First, the transform matrices \(A_i \) reduce
the dimension, since they are generally not invertible. It is crucial that the transform matrices differ between observations, as this allows us to reconstruct this lost information from different “snapshots” of X_i. Second, the observations are contaminated with additive noise ε_i. We study the regime where the size of the noise is much larger than the size of the signal. This necessitates methods that are not only numerically stable, but also reduce the noise significantly.

This setup can be viewed as having a different linear regression problem for each sample $i = 1, \ldots, n$, with outcome vector Y_i, and covariate matrix A_i. The goal is then to estimate the regression coefficients X_i. Since X_i are random, this is also a random effects model. However, our specific setting, with low-rank X_i, is more commonly considered in spiked models, and we will call X_i the signals.

This paper will assume that the matrices $A_i^T A_i \in \mathbb{R}^p$ are diagonal. Equivalently, we assume that the matrices $A_i^T A_i$ must all commute (so they can be simultaneously diagonalized), and we will refer to this as the commutative model. This is mainly a technical assumption and we will see that it holds in many applications.

Since the noise is large, the prediction accuracy is low when predicting one X_i using one Y_i. In this paper we instead develop methods for predicting X_i by “borrowing strength” across the different samples. For this we model X_i as random vectors lying on an unknown low-dimensional space, which is reasonable in many applications. Thus our methods are a type of empirical Bayes methods (Efron, 2012).

Our methods are fast and applicable to big data, rely on weak distributional assumptions (only using moments), are robust to high levels of noise, and have certain statistical optimality results. Our analysis is based on recent insights from random matrix theory, a rapidly developing area of mathematics with many applications to statistics (e.g., Bai and Silverstein, 2009; Paul and Aue, 2014; Yao et al., 2015).

1.1 Motivation

We study the linearly transformed model motivated by its wide applicability to several important data analysis scenarios.

1.1.1 PCA and spiked model

In the well-known spiked model one observes data Y_i of the form $Y_i = X_i + \varepsilon_i$, where $X_i \in \mathbb{R}^p$ are unobserved signals lying on an unknown low dimensional space, and $\varepsilon_i \in \mathbb{R}^p$ is noise. With $A_i = I_p$ for all i, this is a special case of the commutative linearly transformed spiked model.

The spiked model is fundamental for understanding principal component analysis (PCA), and has been thoroughly studied under high-dimensional asymptotics. Its understanding will serve as a baseline in our study. Among the many references, see for instance Johnstone (2001); Baik et al. (2005); Baik and Silverstein (2006); Paul (2007); Nadakuditi and Edelman (2008); Nadler (2008); Bai and Ding (2012); Bai and Yao (2012); Benaych-Georges and Nadakuditi (2012); Onatski (2012);
Onatski et al. (2013); Donoho et al. (2013); Onatski et al. (2014); Nadakuditi (2014); Gavish and Donoho (2014b); Johnstone and Onatski (2015); Hachem et al. (2015).

1.1.2 Noisy deconvolution in signal processing

The transformed spiked model is broadly relevant in signal acquisition and imaging. Measurement and imaging devices nearly never measure the “true” values of a signal. Rather, they measure a weighted average of the signal over a small window in time and/or space. Often, this local averaging can be modeled as the application of a convolution filter. For example, any time-invariant recording device in signal processing is modeled by a convolution (Mallat, 2008). Similarly, the blur induced by an imaging device can be modeled as convolution with a function, such as a Gaussian (Blackledge, 2006; Campisi and Egiazarian, 2016). In general, the convolution filter will not be numerically invertible.

As is well-known, any convolution filter A_i is linear and diagonal in the Fourier basis; for example, see Stein and Shakarchi (2011). Consequently, $A_i^\top A_i$ is also diagonalized by the Fourier basis. Convolutions thus provide a rich source of examples of the linearly transformed spiked model.

1.1.3 Cryo-electron microscopy (cryo-EM)

Cryo-electron microscopy (cryo-EM) is an experimental method for mapping the structure of molecules. It allows imaging of heterogeneous samples, with mixtures or multiple conformations of molecules. This method has received a great deal of recent interest, and has recently led to the successful mapping of important molecules (e.g., Bai et al., 2015; Callaway, 2015).

Cryo-EM works by rapidly freezing a collection of molecules in a layer of thin ice, and firing an electron beam through the ice to produce an array of two-dimensional images. The resulting observations can be modeled as $Y_i = A_i X_i + \epsilon_i$, where X_i represents an unknown 3D molecule; A_i randomly rotates the molecule, projects it onto the xy-plane, and applies blur to the resulting image; and ϵ_i is noise (Katsevich et al., 2015). It is necessary to use a low electron dose to avoid destroying the molecule, so the images are typically extremely noisy.

When all the molecules in the batch are identical, i.e. $X_i = X$ for all i, the task of ab-initio 3D reconstruction is to recover the 3D molecule X from the noisy and blurred projections Y_i (Kam, 1980). Even more challenging is the problem of heterogeneity, in which several different molecules, or one molecule in different conformations, are observed together, without labels. The unseen molecules can usually be assumed to lie on some unknown low-dimensional space (Katsevich et al., 2015; Andén et al., 2015). Cryo-EM observations thus fit the linearly transformed spiked model.

The noisy deconvolution problem mentioned above is also encountered in cryo-EM. The operators A_i induce blur by convolution with a point-spread function (PSF), thus denoising leads to improved 3D reconstruction (Bhamre et al., 2016).
1.1.4 Missing data

Missing data can be modeled by coordinate selection operators A_i, such that $A_i(k,l) = 1$ if the k-th coordinate selected by A_i is l, and $A_i(k,l) = 0$ otherwise. Thus $A_i^\top A_i$ are diagonal with 0/1 entries indicating missing/observed coordinates. In the low-noise regime, missing data in matrices has recently been studied under the name of matrix completion (e.g., Candès and Recht, 2009; Candès and Tao, 2010; Keshavan et al., 2009, 2010; Koltchinskii et al., 2011; Negahban and Wainwright, 2011; Recht, 2011; Rohde et al., 2011; Jain et al., 2013). As we discuss later, our methods perform well in the high-noise setting of this problem.

1.2 Our contributions

Our main contribution is to develop general methods predicting X_i in linearly transformed spiked models $Y_i = A_i X_i + \epsilon_i$. We develop methods that are fast and applicable to big data, rely on weak moment assumptions, are robust to high levels of noise, and have certain optimality properties.

Our general approach is as follows: We model X_i as random vectors lying on an unknown low-dimensional space, $X_i = \sum_{k=1}^{r} \ell_{k}^{1/2} z_{ik} u_k$ for fixed unit vectors u_k and mean-zero scalar random variables z_{ik}, as usual in spiked models. In this model, the Best Linear Predictor (BLP), also known as the Best Linear Unbiased Predictor (BLUP), of X_i given Y_i is well known (Searle et al., 2009). (The more well known Best Linear Unbiased Estimator (BLUE) is defined for fixed-effects models where X_i are non-random parameters.) The BLP depends on the unknown population principal components u_k. In addition, it has a complicated form involving matrix inversion.

Our contributions are then:

1. We show that the BLP reduces to a simpler form in a certain natural high-dimensional model where $n, p \to \infty$ such that $p/n \to \gamma > 0$ (Sec. 7.3). In this simpler form, we can estimate the population principal components using the principal components (PCs) of the backprojected data $A_i^\top Y_i$ to obtain an Empirical BLP (EBLP) predictor (a type of moment-based empirical Bayes method), known up to some scaling coefficients. By an exchangeability argument, we show that the optimal scaling coefficients are the same as optimal singular value shrinkage coefficients for a certain novel random matrix model (Sec. 2.3).

2. We derive the asymptotically optimal singular value shrinkage coefficients (Sec. 3), by characterizing the spectrum of the backprojected data matrix (Sec. 3.1). This is the main technical contribution of the paper.

3. We derive a suitable “normalization” method to make our method fully implementable in practice (Sec. 2.4). This allows us to estimate the optimal shrinkage coefficients consistently, and to use well-known optimal shrinkage methods (Nadakuditi, 2014; Gavish and Donoho, 2014b).
4. We also solve the out-of-sample prediction problem, where new Y_0, A_0 are observed, and X_0 is predicted using the existing data (Sec. 4).

5. We compare our methods to existing approaches for the special case of missing data problems via simulations (Sec. 5). These are reproducible with code provided on Github at https://github.com/wleeb/opt-pred.

2 Empirical linear prediction

2.1 The method

Our method is simple to state using elementary linear algebra. We give the steps here for convenience. In subsequent sections, we will explain each step, and prove the optimality of this procedure over a certain class of predictors.

Our method has the following steps:

1. Input: Noisy linearly transformed observations Y_i, and transform matrices A_i, for $i = 1, \ldots, n$. Preliminary rank estimate r.

2. Form backprojected data matrix $B = [A_1^T Y_1, \ldots, A_n^T Y_n]^T$ and diagonal normalization matrix $M = n^{-1/2} \sum_{i=1}^{n} A_i^T A_i$. Form the normalized, backprojected data matrix $\tilde{B} = B M^{-1}$.

3. (Optional) Multiply \tilde{B} by a diagonal whitening matrix W, $\tilde{B} \leftarrow \tilde{B} W$. The definition of W is given in Sec. 3.3.1.

4. Compute the singular values σ_k and the top r singular vectors \hat{u}_k, \hat{v}_k of the matrix \tilde{B}.

5. Compute $\hat{X} = (\hat{X}_1, \ldots, \hat{X}_n)^T = \sum_{k=1}^{r} \hat{\lambda}_k \hat{u}_k \hat{v}_k^\top$.

Here $\hat{\lambda}_k$ are computed according to Sec. 3: $\hat{\lambda}_k = \hat{\ell}_k^{1/2} \hat{c}_k \hat{\tilde{c}}_k$, where $\hat{\ell}_k, \hat{c}_k, \hat{\tilde{c}}_k$ are estimated based on the formulas given in Theorem 3.1 by plug-in. Specifically, $\hat{\ell}_k = 1/\hat{D}(\sigma_k^2)$, $\hat{c}_k = \hat{m}(\sigma_k^2)/[\hat{D}(\sigma_k^2) \hat{\ell}_k]$, $\hat{\tilde{c}}_k = \hat{m}(\hat{c}_k^2)/[\hat{D}'(\sigma_k^2) \hat{\ell}_k]$, where $\hat{m}, \hat{m}', \hat{D}, \hat{D}'$ are the plug-in estimators of the Stieltjes-transform-like functionals of the spectral distribution, using the bottom $\min(n, p) - r$ eigenvalues of the sample covariance matrix of the backprojected data. For instance, \hat{m} is given in equation (3.2.1) (assuming $p \leq n$):

$$\hat{m}(x) = \frac{1}{p - r} \sum_{k=r+1}^{p} \frac{1}{\sigma_k^2 - x}.$$

6. If whitening was performed (Step 3), unwhiten the data, $\hat{X} \leftarrow \hat{X} W^{-1}$.

7. Output: Predictions \hat{X}_i for X_i, for $i = 1, \ldots, n$.

The complexity of the method is dominated by computing the singular value spectrum of the backprojected matrix, which takes $O(\min(n, p)^2 \cdot \max(n, p))$ floating point operations. As we will show in Sec. 3.3, by choosing a certain whitening matrix W, the algorithm will only require computing the top r singular vectors and values of the backprojected data matrix, and so can typically be performed at an even lower cost using, for example, the Lanczos algorithm (Golub and Van Loan, 2012), especially when there is a low cost of applying the matrix \tilde{B} to a vector.
2.2 Motivation I: from BLP to EBLP

We now explain the steps of our method. We will use the mean-squared error $\mathbb{E}[\|\hat{X}_i - X_i\|^2]$ to assess the quality of a predictor \hat{X}_i. Recall that we modeled the signals as $X_i = \sum_{k=1}^{r} \ell_k^{1/2} z_{ik} u_k$. It is well known in random effects models (e.g., Searle et al., 2009) that the best linear predictor, or BLP, of one signal X_i using Y_i, is:

$$\hat{X}_{BLP}^i = \Sigma_X A_i^\top (A_i \Sigma_X A_i^\top + \Sigma_e)^{-1} Y_i. \quad (1)$$

Here, $\Sigma_X = \sum_{k=1}^{r} \ell_k u_k u_k^\top$ denotes the covariance matrix of one X_i, and Σ_e is the covariance matrix of the noise ε_i. These are unknown parameters, so we need to estimate them in order to get a bona fide predictor. Moreover, here A_i are considered fixed parameters, but we will take them to be random later.

We are interested in the “high-dimensional” asymptotic regime, where the dimension p grows proportionally to the number of samples n; that is, $p = p(n)$ and $\lim_{n \to \infty} p(n)/n = \gamma > 0$. In this setting it is in general not possible to estimate the population covariance Σ_X consistently. Therefore, we focus our attention on alternate methods derived from the BLP.

The BLP involves the inverse of a matrix, which makes it hard to analyze. However, for certain uniform models (see Sec. 7.3 for a precise definition), we can show that the BLP is asymptotically equivalent to a simpler linear predictor not involving a matrix inverse:

$$\hat{X}_0^i = \sum_{k=1}^{r} \eta_k^0 (A_i^\top Y_i, u_k) u_k.$$

Here η_k^0 are certain constants given in Sec. 7.3. This simple form of the BLP guides our choice of predictor when the true PCs are not known. Let $\hat{u}_1, \ldots, \hat{u}_r$ be the empirical PCs; that is, the top eigenvectors of the sample covariance $\sum_{i=1}^{n} (A_i^\top Y_i) (A_i^\top Y_i)^\top / n$, or equivalently, the top left singular vectors of the matrix $[A_1^\top Y_1, \ldots, A_n^\top Y_n]^\top$. For coefficients $\eta = (\eta_1, \ldots, \eta_r)$, substituting \hat{u}_k for u_k leads us to the following empirical linear predictor:

$$\hat{X}_0^i = \sum_{k=1}^{r} \eta_k (A_i^\top Y_i, \hat{u}_k) \hat{u}_k.$$

Note that, since the empirical PCs \hat{u}_k are used in place of the population PCs u_k, the coefficients η_k defining the BLP are no longer optimal, and must be adjusted downwards to account for the non-zero angle between u_k and \hat{u}_k. This phenomenon was studied in the context of the ordinary spiked model in Singer and Wu (2013).

2.3 Motivation II: Singular value shrinkage

Starting with BLP and replacing the unknown population PCs u_k with their empirical counterparts \hat{u}_k, we were lead to a predictor of the form

$$\hat{X}_i^\eta = \sum_{k=1}^{r} \eta_k (B_i, \hat{u}_k) \hat{u}_k,$$

where $B_i = A_i^\top Y_i$ are the backprojected data.
Now, the matrix $\hat{X}^\eta = [\hat{X}_1^\eta, \ldots, \hat{X}_n^\eta]^\top$ has the form

$$\hat{X}^\eta = \sum_{k=1}^r \eta_k \hat{u}_k \hat{u}_k^\top B = \sum_{k=1}^r \eta_k \sigma_k(B) \cdot \hat{u}_k \hat{u}_k^\top.$$

(2)

This has the same singular vectors as the matrix $B = [B_1, \ldots, B_n]^\top$ of backprojected data.

From now on, we will consider the X_i as random variables, which corresponds to an average-case analysis over their variability. Then observe that the predictors \hat{X}_i^η are exchangeable random variables with respect to the randomness in A_i, ε_i, because they depend symmetrically on the data matrix B. Therefore, the prediction error for a sample equals the average prediction error over all X_i, which is the normalized Frobenius norm for predicting the matrix $X = (X_1, \ldots, X_n)^\top$:

$$E\|\hat{X}_i^\eta - X_i\|^2 = \frac{1}{n} E\|\hat{X}^\eta - X\|_F^2.$$

Therefore, the empirical linear predictors are equivalent to performing singular value shrinkage of the matrix B to estimate X. That is, singular value shrinkage predictors are in one-to-one correspondence with the in-sample empirical linear predictors. Because singular value shrinkage is known to be minimax optimal for matrix denoising problems with Gaussian white noise (Gavish and Donoho, 2014a), it is a natural choice of predictor in the more general setting we consider in this paper, where an optimal denoiser is not known.

2.4 The class of predictors: shrinkers of normalized, backprojected data

Motivated by the previous two sections, we are led to singular value shrinkage predictors of the matrix X. However, it turns out that rather than shrink the singular values of the matrix B of backprojected data $A_i^\top Y_i$, it is more natural to work instead with the matrix B with rows $\hat{B}_i = M^{-1} A_i^\top Y_i$, where $M = \mathbb{E} A_i^\top A_i$ is a diagonal normalization matrix. We will show later that we can use a sample estimate of M.

The heuristic to explain this is that we can write $A_i^\top A_i = M + E_i$, where E_i is a mean zero diagonal matrix. We will show in the proof of Thm. 3.1 that the matrix with rows $E_i X_i / \sqrt{n}$ has operator norm that vanishes in the high-dimensional limit $p/n \to \gamma$. Consequently, we can write:

$$B_i = A_i^\top Y_i = M X_i + A_i^\top \varepsilon_i + E_i X_i \sim M X_i + A_i^\top \varepsilon_i$$

Since X_i lies in an r-dimensional subspace, spanned by u_1, \ldots, u_r, $M X_i$ also lies in the r-dimensional subspace spanned by $M u_1, \ldots, M u_r$. Furthermore, $A_i^\top \varepsilon_i$ is mean-zero and independent of $M X_i$. Consequently, $A_i^\top Y_i$ looks like the a spiked model, with signal $M X_i$ and noise $A_i^\top \varepsilon_i$.

Shrinkage of this matrix will produce a predictor of $M X_i$, not X_i itself. However, multiplying the data by M^{-1} fixes this problem: we obtain the
approximation:
\[\tilde{B}_i = M^{-1} A_i^\top Y_i \sim X_i + M^{-1} A_i^\top \varepsilon_i. \]

After this normalization, the target signal of any shrinker becomes the true signal \(X_i \) itself.

Motivated by these considerations, we can finally state the class of problems we study. We consider predictors of the form:
\[\hat{X}_i^\eta = \sum_{k=1}^r \eta_k \langle \tilde{B}_i, \hat{u}_k \rangle \hat{u}_k \]
where \(\tilde{B}_i = M^{-1} A_i^\top Y_i \), and we seek the AMSE-optimal coefficients \(\eta_k^* \) in the high-dimensional limit \(p/n \to \gamma \); that is, our goal is to find the optimal coefficients \(\eta_k \), minimizing the AMSE:
\[\eta^* = \arg \min_{\eta} \lim_{p,n \to \infty} \mathbb{E} \| \hat{X}_i^\eta - X_i \|^2. \]

We will show that the limit exists. The corresponding estimator \(\hat{X}_i^{\eta^*} \) will be called the empirical best linear predictor (EBLP). We will: (1) show that it is well-defined; (2) derive the optimal choice of \(\eta_k \); (3) derive consistent estimators of the optimal \(\eta_k \); and (4) derive consistently estimable formulas for the AMSE. As before, finding the optimal \(\eta_k \) is equivalent to performing optimal singular value shrinkage on the matrix \(\tilde{B} = [\tilde{B}_1, \ldots, \tilde{B}_n]^\top \).

3 Derivation of the optimal coefficients

As described in Sec. 2, we wish to find the AMSE-optimal coefficients \(\eta_k \) for predictors of the form \(\hat{X}_i^\eta = \sum_{k=1}^r \eta_k \langle \tilde{B}_i, \hat{u}_k \rangle \hat{u}_k \), where \(\tilde{B}_i = M^{-1} A_i^\top Y_i \) is the normalized, backprojected data. Equivalently, we find the optimal singular values of the matrix with the same singular vectors as \(\tilde{B} = [\tilde{B}_1, \ldots, \tilde{B}_n]^\top \).

Singular value shrinkage has been the subject of a lot of recent research. It is now well known that optimal singular value shrinkage depends on the asymptotic spectrum of the data matrix \(\tilde{B} \) (e.g., Nadakuditi, 2014; Gavish and Donoho, 2017). We now fully characterize the spectrum, and use it to derive the optimal singular values. We then show that by estimating the optimal singular values by plug-in, we get the method described in Sec. 2.1.

3.1 The asymptotic spectral theory of the backprojected data

The main theorem characterizes the asymptotic spectral theory of the normalized backprojected data matrix \(\tilde{B} = BM^{-1} \), and of the unnormalized version \(B = [A_1^\top Y_1, \ldots, A_n^\top Y_n]^\top \). Our data are iid samples of the form \(Y_i = A_i X_i + \varepsilon_i \).
We assume that the signals have the form \(X_i = \sum_{k=1}^{r} \ell_k^{1/2} z_{ik} u_k \). Here \(u_k \) are deterministic signal directions with \(\|u_k\| = 1 \). We will assume that \(u_k \) are delocalized, so that \(\|u_k\|_{\infty} \leq C \log(p)^{C}/p^{1/2} \) for some constants \(C, C' > 0 \). The scalars \(z_{ik} \) are standardized independent random variables, specifying the variation in signal strength from sample to sample. For simplicity we assume that the deterministic spike strengths are different and sorted: \(\ell_1 > \ell_2 > \ldots > \ell_r > 0 \).

We assume that the random vectors \(\varepsilon_i^* = A_i^\top \varepsilon_i \) have independent entries of mean zero. Let \(H_p \) be the distribution function of the variances of the entries of \(M^{-1} \varepsilon_i^* \). We assume that \(H_p \) is bounded away from zero.

For a distribution \(H \), let \(F_{\gamma, H} \) denote the generalized Marchenko-Pastur distribution induced by \(H \) with aspect ratio \(\gamma \) (Marchenko and Pastur, 1967).

Closely related to \(F_{\gamma, H} \) is the so-called companion distribution \(\Gamma_{\gamma, H}(x) = \gamma F_{\gamma, H}(x) + (1 - \gamma) \delta_0 \). We will also need the Stieltjes transform \(m_{\gamma, H} \) of \(F_{\gamma, H} \), \(m_{\gamma, H}(z) = \int (x - z)^{-1} dF_{\gamma, H}(x) \), and the Stieltjes transform \(\overline{m}_{\gamma, H} \) of \(\Gamma_{\gamma, H} \). Based on these, one can define the D-transform of \(F_{\gamma, H} \) by

\[
D_{\gamma, H}(x) = x \cdot m_{\gamma, H}(x) \cdot \overline{m}_{\gamma, H}(x).
\]

Up to the change of variables \(x = y^2 \), this agrees with the D-transform defined in Benaych-Georges and Nadakuditi (2012). Let \(b_{\gamma, H}^{2} \) be the supremum of the support of \(F_{\gamma, H} \), and \(D_{\gamma, H}(b_{\gamma, H}^2) = \lim_{t \uparrow b} D_{\gamma, H}(t^2) \). It is easy to see that this limit is well defined, and is either finite or \(+\infty \).

Assume the following conditions:

1. \(H_p \Rightarrow H \) almost surely, where \(H \) is a compactly supported distribution.
2. The supremum of the support of \(H_p \) converges almost surely to the upper edge of the support of \(H \).
3. \(\mathbb{E}|\varepsilon_i^*|^{6+\phi} < C \), \(\mathbb{E}|E_{ij}^{\dagger} \varepsilon_i|^6 < C \) (recall \(E_i = A_i^\top A_i - M \)), and \(\mathbb{E}|z_{ij}|^{4+\phi} < C \) for some \(\phi > 0 \) and \(C < \infty \).
4. Let \(P \) be the diagonal matrix with \(P_{jj} = \text{Var}[M_{ij}^{-1} \varepsilon_i^*] \). Then \(u_j \) are generic with respect to \(P \), in the following sense:

\[
\frac{u_j}{P - zI_p}^{-1} u_k \rightarrow I(j = k) \cdot \tau_k \cdot m_H(z)
\]

for all \(z \in \mathbb{C}^+ \).

Assumption 4 needs explanation. This assumption generalizes the existing conditions for spiked models. In particular, it is easy to see that it holds when the vectors \(u_k \) are random with independent coordinates. Specifically, let \(x \) be a random vector with iid zero-mean entries with variance \(1/p \). Then \(\mathbb{E}x^\top (P - zI_p)^{-1} x = p^{-1} \text{tr}(P - zI_p)^{-1} \). Assumption 4 requires that this converges to \(m_H(z) \), which follows from \(H_p \Rightarrow H \). However, Assumption 4 is more general, as it does not require any kind of randomness in \(u_k \).

Our main result in this section is the following.

Theorem 3.1 (Spectrum of transformed spiked models). Under the above conditions, the eigenvalue distribution of \(B^\top B/n \) converges to the general
Marchenko-Pastur law $F_{\gamma,H}$ a.s. In addition, for $k \leq r$, the k-th largest eigenvalue of $\tilde{B}^T \tilde{B}/n$ converges, $\lambda_k(\tilde{B}^T \tilde{B})/n \to \ell_k^2$ a.s., where

$$
t_k^2 = \left\{ \begin{array}{ll} D_{\gamma,H}^{-1}(\frac{1}{\ell_k}) & \text{if } \ell_k > 1/D_{\gamma,H}(b_H^2), \\ b_H^2 & \text{otherwise.} \end{array} \right.
$$

Moreover, let \hat{u}_k be the right singular vector of \tilde{B} corresponding to $\lambda_k(\tilde{B}^T \tilde{B})$. Then $(u_j^T \hat{u}_k)^2 \to c_{jk}^2$ a.s., where

$$
c_{jk}^2 = \left\{ \begin{array}{ll} \frac{m_{\gamma,H}(\ell_k^2)}{D_{\gamma,H}^{-1}(\ell_k^2) b_H^2} & \text{if } j = k \text{ and } \ell_k > 1/D_{\gamma,H}(b_H^2), \\ 0 & \text{otherwise.} \end{array} \right.
$$

Finally, let $Z_j = n^{-1/2}(z_{j1}, \ldots, z_{jn})^T$, and let \hat{Z}_k be the k-th left singular vector of B. Then $(Z_j^T \hat{Z}_k)^2 \to \tilde{c}_{jk}^2$ a.s., where

$$
\tilde{c}_{jk}^2 = \left\{ \begin{array}{ll} \frac{m_{\gamma,H}(\ell_k^2)}{D_{\gamma,H}^{-1}(\ell_k^2) b_H^2} & \text{if } j = k \text{ and } \ell_k > 1/D_{\gamma,H}(b_H^2), \\ 0 & \text{otherwise.} \end{array} \right.
$$

The proof is in Sec. 7.1. We note that the conclusion of this theorem is very similar to the results of Benaych-Georges and Nadakuditi (2012). However, our observation model $Y_i = A_iX_i + \varepsilon_i$ is entirely different from the one in that paper; we are addressing a different problem. Moreover, our technical assumptions are also more general and more realistic, and only require finite moments up to the sixth moment, unlike the more stringent conditions in previous work. In addition, we also have the result below, which is different from existing work.

For the un-normalized backprojected matrix B, a version of Thm. 3.1 applies mutatis mutandis. Specifically, we let H_p be the distribution of the variances of $A_i^T \varepsilon_i$. We replace I_p with M in the assumptions when needed, so we let $\tau_b = \lim_{n \to \infty} \|Mu_b\|^2$, and $\nu_j = M_{uj}/\|Mu_j\|$. Then the above result holds for B, with ℓ_k replaced by $\tau_k \ell_k$, and u_j replaced by ν_j. The proof is identical, and is also presented in Sec. 7.1.

3.2 Optimal singular value shrinkage

Theorem 3.1 describes precisely the limiting spectral theory of the matrix \tilde{B}/\sqrt{n}. Specifically, we derived formulas for the limiting cosines c_k and \hat{c}_k of the angles between the top r singular vectors of \tilde{B}/\sqrt{n} and X/\sqrt{n}, and the relationship between the top singular values of these matrices.

It turns, following the work of Gavish and Donoho (2017) and Nadakuditi (2014), that this information is sufficient to derive the optimal singular value shrinkage predictor of X. It is shown in Gavish and Donoho (2017) that $\lambda_1^* = \ell_1^2 c_1 \hat{c}_1$, under the convention $c_k, \hat{c}_k > 0$. Furthermore, the AMSE of this predictor is given by $\sum_{k=1}^r \ell_k (1 - c_k^2 \hat{c}_k^2)$. We outline the derivation of these formulas in Sec. 7.5, though the reader may wish to refer to Gavish and Donoho (2017) for a more detailed description of the method, as well as extensions to other loss functions.

We next show how to derive consistent estimators of the angles and the limiting singular values of the observed matrix. Plugging these into the expression $\lambda_1^* = \ell_1^2 c_1 \hat{c}_1$, we immediately obtain estimators of the optimal
singular values λ_i. This will complete the proof that the algorithm given in Sec. 2.1 solves the problem posed in Sec. 2.4 and defines the EBLP.

3.2.1 Estimating ℓ_k, c_k and \tilde{c}_k

To evaluate the optimal λ_i^*, we must estimate the values of ℓ_k, c_k, and \tilde{c}_k; this can be done using Thm. 3.1, whenever $\ell_k \geq b_H^2$ (that is, if the signal is strong enough). From (3) we have the formula $\ell_k = 1/(D_{\gamma,H}(t_k^*))$ where t_k is the limiting singular value of the observed matrix \tilde{B}/\sqrt{n}. We also have the formulas (4) and (5) for c_k and \tilde{c}_k.

We will estimate the Stieltjes transform $m_{\gamma,H}(z)$ by the sample Stieltjes transform, defined as:

$$\hat{m}_{\gamma,H}(z) = \frac{1}{p-r} \sum_{k=r+1}^{p} \frac{1}{\lambda_k - z},$$

where the sum is over the bottom $p-r$ eigenvalues λ_k of $\tilde{B}^\top \tilde{B}/n$. It is shown by Nadakuditi (2014) that $\hat{m}_{\gamma,H}$ is a consistent estimator of $m_{\gamma,H}$, and that using the corresponding plug-in estimators of $\hat{m}_{\gamma,H}$, $D_{\gamma,H}$ and $D'_{\gamma,H}$, we also obtain consistent estimators of ℓ_k, c_k, and \tilde{c}_k.

3.2.2 Using \hat{M} in place of M

To make the procedure fully implementable, we must be able to estimate the mean matrix $M = \mathbb{E} A_i^\top A_i$. If M is estimated from the iid matrices $A_i^\top A_i$ by the sample mean $\hat{M} = n^{-1} \sum_{i=1}^{n} A_i^\top A_i$, we show that multiplying by \hat{M}^{-1} has asymptotically the same effect as multiplying by the true M^{-1}, assuming that the diagonal entries of M are bounded below. This justifies our use of \hat{M}.

Lemma 3.2. Suppose that the entries M_i of M are bounded away from 0: $M_i \geq \delta$ for some $\delta > 0$, for all i. Let $\hat{M} = n^{-1} \sum_{i=1}^{n} A_i^\top A_i$. Then

$$\lim_{p,n \to \infty} n^{-1/2} \|BM^{-1} - B\hat{M}^{-1}\|_{op} = 0.$$

See Sec. 7.4 for the proof. Note that the condition of this lemma are violated only when the entries of M can be arbitrarily small; but in this case, the information content in the data on the corresponding coordinates vanishes, so the problem itself is ill-conditioned. The condition is therefore reasonable in practice.

3.3 Prediction for weighted loss functions: whitening and big data

In certain applications there may be some directions that are more important than others, whose accurate prediction is more heavily prized. We can capture this by considering weighted Frobenius loss functions $\|\hat{X}_i - X_i\|_F^2 = \|W(\hat{X}_i - X_i)\|^2$, where W is a positive-definite matrix. Can we derive optimal shrinkers with respect to these weighted loss functions?

The weighted error can be written as $\|\hat{X}_i - X_i\|_F^2 = \|W(\hat{X}_i - X_i)\|^2 = \|\tilde{W}\hat{X}_i - WX_i\|^2$. In other words, the problem of prediction for X_i in the
W-norm is identical to prediction of WX in the usual Frobenius norm. Because the vectors WX_i lie in an r-dimensional subspace (spanned by $W u_1, \ldots, W u_r$), the same EBLP method we have derived for X_i can be applied to prediction of WX_i, assuming that the technical conditions we imposed for the original model hold for this transformed model. That is, we perform singular value shrinkage on the matrix of transformed observations $W \tilde{B}_i$.

To explore this further, recall that after applying the matrix M^{-1} to each vector $A_i^\top Y_i$, the data matrix behaves asymptotically like the matrix with columns $X_i + \tilde{\varepsilon}_i$, for some noise vectors $\tilde{\varepsilon}_i$ that are independent of the signal X_i. The observations $WM^{-1}A_i^\top Y_i$ are asymptotically equivalent to $WX_i + W \tilde{\varepsilon}_i$. If we choose W to be the square root of the inverse covariance of $\tilde{\varepsilon}_i$, then the effective noise term $W \tilde{\varepsilon}_i$ has an identity covariance; we call this transformation “whitening the effective noise”.

One advantage of whitening is that there are closed formulas for the asymptotic spikes and cosines. This is because the Stieltjes transform of white noise an explicit closed formula; see Bai and Silverstein (2009). To make sense of the formulas, we will assume that the low-rank model WX_i satisfies the assumptions we initially imposed on X_i; that is, we will assume:

$$WX_i = \sum_{k=1}^r \hat{\ell}_k^{1/2} z_{ik} \hat{u}_k$$

where the z_{ik} are iid and the \hat{u}_k are orthonormal. With this notation, the empirical eigenvalues of $W \tilde{B}_i B/n$ converge to

$$\lambda_k = \begin{cases} \hat{\ell}_k (1 + \frac{\gamma}{\hat{\ell}_k})^2 & \text{if } \hat{\ell}_k > \sqrt{\gamma}, \\ (1 + \sqrt{\gamma})^2 & \text{otherwise} \end{cases}$$

while the limit of the cosine of the angle between the k^{th} empirical PC \hat{u}_k and the k^{th} population PC u_k is

$$c_k^2 = \begin{cases} 1 - \frac{\gamma}{\hat{\ell}_k^2} & \text{if } \hat{\ell}_k > \sqrt{\gamma}, \\ 0 & \text{otherwise} \end{cases}$$

and the limit of the cosine of the angle between the k^{th} empirical left singular vector \hat{v}_k and the k^{th} left population singular vector v_k is

$$\tilde{c}_k^2 = \begin{cases} 1 - \frac{\gamma}{1 + \gamma/\hat{\ell}_k} & \text{if } \hat{\ell}_k > \sqrt{\gamma}, \\ 0 & \text{otherwise} \end{cases}$$

These formulas are derived in Benaych-Georges and Nadakuditi (2012); also see Paul (2007).

Following Sec. 3.2, the W-AMSE of the EBLP is $\sum_{k=1}^r \hat{\ell}_k (1 - c_k^2 \tilde{c}_k^2)$. Since the parameters $\hat{\ell}_k$, c_k and \tilde{c}_k are estimable from the observations, the AMSE can be explicitly estimated. Using these formulas makes evaluation of the optimal shrinkers faster, as we avoid estimating the Stieltjes transform from the bottom $p - r$ singular values of B. Using whitening, the entire method only requires computation of the top r singular vectors and values. Whitening thus enables us to scale our methods to extremely large datasets.
3.3.1 Estimating the whitening matrix \(W \)

In the observation model \(Y_i = A_i^\top X_i + \varepsilon_i \), if the original noise term \(\varepsilon_i \) has identity covariance, that is \(\Sigma_\varepsilon = I_p \), then it is straightforward to estimate the covariance of the “effective” noise vector \(\tilde{\varepsilon}_i = M^{-1}A_i^\top \varepsilon_i \), and consequently to estimate the whitening matrix \(W = \Sigma_\varepsilon^{-1/2} \).

It is easy to see that \(A_i^\top \varepsilon_i \) has covariance \(M = \mathbb{E}[A_i^\top A_i] \), which is diagonal. Then the covariance of \(\tilde{\varepsilon}_i \) is \(M^{-1}MM^{-1} = M^{-1} \), and \(W = M^{1/2} \). As in the proof of Lemma 3.2, \(W \) can be consistently estimated from the data by the sample mean \(\sum_{i=1}^n(A_i^\top A_i)^{1/2}/n \).

4 Out-of-sample prediction

In Sec. 3, we derived the EBLP for predicting \(X_i \) from \(Y_i = A_i X_i + \varepsilon_i \), \(i = 1, \ldots, n \). We found the optimal coefficients \(\eta_k \) for the predictor \(\sum_{k=1}^r \eta_k \langle \tilde{B}_i, \hat{u}_k \rangle \hat{u}_k \), where the \(\hat{u}_k \) are the empirical PCs of the normalized back-projected data \(\tilde{B}_i = M^{-1}A_i^\top Y_i \).

Now suppose we are given another data point, call it \(Y_0 = A_0 X_0 + \varepsilon_0 \), drawn from the same model, but independent of \(Y_1, \ldots, Y_n \), and we wish to predict \(X_0 \) from an expression of the form \(\sum_{k=1}^r \eta_k \langle \tilde{B}_0, \hat{u}_k \rangle \hat{u}_k \).

At first glance, this problem appears identical to the one already solved. However, there is a subtle difference: the new data point is independent of the empirical PCs \(\hat{u}_1, \ldots, \hat{u}_r \). It turns out that this independence forces us to use a different set of coefficients \(\eta_k \) to achieve optimal prediction.

We call this the problem of out-of-sample prediction, and the optimal predictor the out-of-sample EBLP. To be clear, we will refer to the problem of predicting \(Y_1, \ldots, Y_n \) as in-sample prediction, and the optimal predictor as the in-sample EBLP. We call \((Y_1, A_0), \ldots, (Y_n, A_n) \) the in-sample observations, and \((Y_0, A_0) \) the out-of-sample observation.

One might object that solving the out-of-sample problem is unnecessary, since we can always convert the out-of-sample problem into the in-sample problem. We could enlarge the in-sample data to include \(Y_0 \), and let \(\hat{u}_k \) be the empirical PCs of this extended data set. While this is true, it is often not practical for several reasons. First, in on-line settings where a stream of data must be processed in real-time, recomputing the empirical PCs for each new observation may not be feasible. Second, if \(n \) is quite large, it may not be viable to store all of the in-sample data \(Y_1, \ldots, Y_n \); the \(r \) vectors \(\hat{u}_1, \ldots, \hat{u}_r \) require an order of magnitude less storage.

In this section we will first present the steps of the out-of-sample EBLP. Then we will provide a rigorous derivation. We will also show that the AMSEs for in-sample and out-of-sample EBLP with respect to squared \(W \)-norm loss are identical, where \(W \) is the inverse square root of the effective noise covariance. This is a rather surprising result that gives statistical justification for the use of out-of-sample EBLP, in addition to the computational considerations already described.
4.1 Out-of-sample EBLP

The out-of-sample denoising method can be stated simply, similarly to the in-sample algorithm in Sec. 2.1. We present the steps below.

1. **Input:** The top r in-sample empirical PCs $\hat{u}_1, \ldots, \hat{u}_r$. Estimates of the eigenvalues $\hat{\ell}_1, \ldots, \hat{\ell}_r$ and cosines $\hat{c}_1, \ldots, \hat{c}_r$. An estimate $\hat{\Sigma}_\varepsilon$ of the noise covariance Σ_ε of the normalized backprojected noise vectors $\tilde{\varepsilon}_i = M^{-1}A_i^\top \varepsilon_i$. The diagonal matrix M^{-1} which is the inverse of an estimate of the covariance matrix of the noise ε_i, and an out-of-sample observation (Y_0, A_0).

2. Construct the vector $\hat{B}_0 = M^{-1}A_0^\top Y_0$.

3. Compute estimators of the out-of-sample coefficients η_1, \ldots, η_r. These are given by the formula $\hat{\eta}_k = \frac{\hat{\ell}_k \hat{c}_k^2}{\hat{\ell}_k^2 + \hat{c}_k^2}$, where $\hat{d}_k = \hat{u}_k^\top \hat{\Sigma}_\varepsilon \hat{u}_k$.

4. **Output:** Return the vector $\hat{X}_0 = \sum_{k=1}^r \hat{\eta}_k (\hat{B}_0, \hat{u}_k) \hat{u}_k$.

4.2 Deriving out-of-sample EBLP

We now derive the out-of-sample EBLP described in Sec. 4.1. Due to the independence between the (Y_0, A_0) and the empirical PCs \hat{u}_k, the derivation is much more straightforward than was the in-sample EBLP. Therefore, we present the entire calculation in the main body of the paper.

4.2.1 Covariance of $M^{-1}A_i^\top Y_i$

Let $\hat{B}_i = M^{-1}A_i^\top Y_i = M^{-1}D_iX_i + M^{-1}A_i^\top \varepsilon_i$, with $X_i = \sum_{j=1}^r \hat{\ell}_j z_j u_j$ and $D_i = A_i^\top A_i$. Let $R_i = X_i + M^{-1}A_i^\top \varepsilon_i = X_i + \tilde{\varepsilon}_i$; so $\hat{B}_i = R_i + E_i X_i$, with $E_i = I_p - M^{-1}A_i^\top A_i$.

Observe that

$$\text{Cov}(\hat{B}_i) = \text{Cov}(R_i) + \text{Cov}(E_i X_i) + \mathbb{E} R_i (E_i X_i)^\top + \mathbb{E} (E_i X_i)^\top R_i$$

and also that

$$\mathbb{E} R_i (E_i X_i)^\top = \mathbb{E} X_i E_i^\top + \mathbb{E} \tilde{\varepsilon}_i X_i^\top E_i = 0$$

since $\mathbb{E} E_i = 0$ and $\mathbb{E} \tilde{\varepsilon}_i = 0$, and they are independent of X_i; similarly $\mathbb{E} (E_i X_i)^\top R_i = 0$ as well. Consequently,

$$\text{Cov}(\hat{B}_i) = \text{Cov}(R_i) + \text{Cov}(E_i X_i).$$

Let $c_j = \mathbb{E} E_{ij}^2$. Then

$$\mathbb{E} (E_i X_i)(E_i X_i)^\top = \sum_{j=1}^r \hat{\ell}_j^{1/2} \begin{pmatrix} c_1 u_{j1}^2 & c_2 u_{j2}^2 & \cdots & c_p u_{jp}^2 \end{pmatrix}$$

which goes to zero in operator norm as $n, p \to \infty$, by the incoherence property of the u_k’s, and because c_j are uniformly bounded under the assumptions of Theorem 3.1. Therefore $\|\Sigma_{\hat{B}} - (\Sigma_X + \Sigma_\varepsilon)\|_{op} \to 0$.

14
4.2.2 Out-of-sample coefficients and AMSE

We will compute the optimal (in sense of AMSE) coefficients for out-of-sample prediction. We have normalized, back-projected observations \(\tilde{B}_i = M^{-1} D_i X_i + \tilde{\varepsilon}_i \), with \(X_i = \sum_{j=1}^r \ell_j z_{ij} u_j \) and \(\tilde{\varepsilon}_i = M^{-1} A_i' \varepsilon_i \).

We are looking for the coefficients \(\eta_1, \ldots, \eta_r \) so that the estimator

\[
\hat{\eta}^0 = \sum_{j=1}^r \eta_j \langle \tilde{B}_0, \tilde{u}_j \rangle \tilde{u}_j
\]

has minimal AMSE. Here, \(\tilde{u}_j \) are the empirical PCs based on the in-sample data \((Y_1, A_1), \ldots, (Y_n, A_1)\) (that is, the top \(r \) eigenvectors of \(\sum_{i=1}^n \tilde{B}_i \tilde{B}_i' \)), whereas \((Y_0, A_0)\) is an out-of-sample datapoint.

It is easily shown that the contribution of \(\eta_k \) to the overall MSE is:

\[
\ell_k + \eta_k^2 \mathbb{E}(\tilde{u}_k' \tilde{B}_0)^2 - 2\eta_k \ell_k^{1/2} \mathbb{E}z_{0k}(\tilde{u}_k' \tilde{B}_0)(\tilde{u}_k' \tilde{u}_k).
\]

It is also easy to see that the interaction terms obtained when expanding the MSE vanish.

To evaluate the quadratic coefficient above, first take the expectation over \(Y_0 \) and \(A_0 \) only, which gives:

\[
\mathbb{E}_0(\tilde{u}_k' \tilde{B}_0)^2 = \tilde{u}_k' \Sigma \tilde{u}_k \sim \tilde{u}_k' \left(\sum_{j=1}^r \ell_j u_j u_j' + \Sigma \right) \tilde{u}_k
\]

\[
\sim \ell_k c_k^2 + \tilde{u}_k' \Sigma \tilde{u}_k
\]

Note that when the original noise \(\varepsilon_i \) is white (i.e. \(\Sigma = I_p \)), we can estimate \(d_k \equiv \tilde{u}_k' \Sigma \tilde{u}_k \) using the approximation \(\Sigma \sim M^{-1} \), as in Sec. 3.3.1. Defining the estimator \(\hat{d}_k = \tilde{u}_k' M^{-1} \tilde{u}_k \) (or \(\hat{u}_k' M^{-1} \hat{u}_k \), where \(M = \sum_{i=1}^n A_i' A_i/n \)), we therefore have \(|d_k - \hat{d}_k| \to 0 \).

Now turn to the linear term. We have \(\tilde{u}_k' \tilde{B}_0 = \sum_{j=1}^r \ell_j^{1/2} z_{0j} \hat{u}_k' M^{-1} D_0 u_j + \tilde{u}_k' \tilde{\varepsilon}_0 \); using \(\mathbb{E}[M^{-1} D_0] = I_p \) and using the almost sure convergence results, it follows after some simple calculation that \(\ell_k^{1/2} \mathbb{E}[z_{0k} \tilde{u}_k' \tilde{B}_0 \tilde{u}_k' \tilde{u}_k] \to \ell_k c_k^2 \). Consequently, the mean-squared error of the out-of-sample predictor (as a function of \(\eta_k \)) is asymptotically equivalent to:

\[
\sum_{k=1}^r \{ \ell_k + \eta_k^2 (\ell_k c_k^2 + d_k) - 2\eta_k \ell_k c_k^2 \}.
\]

This is minimized at \(\eta_k^* = \frac{\ell_k c_k^2}{\ell_k c_k^2 + d_k} \) and the MSE is asymptotically equivalent to:

\[
\sum_{k=1}^r \left(\ell_k - \frac{\ell_k c_k^2}{\ell_k c_k^2 + d_k} \right).
\]

This finishes the derivation of the optimal coefficients for out-of-sample prediction.
4.3 The whitened model

Following the approach described in Sec. 3.3, we can optimally predict \(X_0 \) using the \(W \)-loss, for any positive semi-definite matrix \(W \). This is equivalent to performing optimal prediction of the signal \(W X_0 \) based on the observations \(W \tilde{B}_0 = W M^{-1} A_0 \tilde{\epsilon}_0 \) in the usual Frobenius sense.

We can always transform the data so that the effective noise \(W \tilde{\epsilon} = W M^{-1} A_0 \tilde{\epsilon}_0 \) has identity covariance; that is, take \(W = \Sigma^{-1/2} \).

In this setting, the parameters \(\hat{u}_k W \Sigma^{-1/2} \hat{u}_k \), assuming the model (6). Using the formulas (7) and (8) for \(c_k \) and \(\tilde{c}_k \) as functions of \(\tilde{\ell}_k \), it is straightforward to check that formula (10) is equal to \(\sum_{k=1}^{r} \tilde{\ell}_k (1 - \tilde{c}_k^2 \tilde{c}_k^2) \), which is the in-sample AMSE with \(W \)-loss; we will show this in Sec. 7.6. That is, the AMSE for whitened observations are identical for in-sample and out-of-sample EBLP.

Thus, we state the following theorem:

Theorem 4.1 (Out-of-sample EBLP). Suppose our observations have the form \(Y_i = A_i X_i + \epsilon_i, i = 1, \ldots, n \), under the conditions of Thm. 3.1, and suppose in addition that (6) holds, with \(W = \Sigma^{-1/2} \).

Given an out-of-sample observation \(Y_0, A_0 \), consider a predictor of \(X_0 \) of the form (9). Then, for the optimal choice of \(\eta_k \), the minimum asymptotic out-of-sample MSE achieved by this predictor in \(\Sigma^{-1/2} \)-norm equals the corresponding expression for in-sample MSE.

Thus, asymptotically, out-of-sample denoising is not harder than in-sample denoising.

The remainder of the proof of Thm. 4.1 is contained in Sec. 7.6.

5 Matrix denoising and missing data

An important problem to which our analysis applies is the problem of missing data, where coordinates are discarded from the observed vectors. Here the operators \(D_i = A_i^\top A_i \) place zeros in the unobserved entries.

When there is no additive noise, recovering the matrix \(X = [X_1, \ldots, X_n]^\top \) is known as matrix completion, and has been widely studied in statistics and signal processing. There are many methods with guarantees of exact recovery for various classes of signals. These methods include nuclear norm minimization (Candès and Recht, 2009), alternating minimization (Jain et al., 2013), and optimization over Grassmannian manifolds (Keshavan et al., 2010).

Our approach differs from most existing methods. Our methods have the following advantages:

1. **Speed.** Typical methods for matrix completion are based on solving optimization problems such as nuclear norm minimization (Candès...
and Recht, 2009; Candès and Tao, 2010). These require iterative algorithms, where an SVD is computed at each step. In contrast, our methods require only one SVD, and are thus much faster.

2. **Robustness to high levels of noise.** Most matrix completion methods have guarantees of numerical stability: when the observed entries are accurate to a certain precision, the output will be accurate to almost the same precision. However, when the noise level swamps the signal, these stability guarantees are not informative. This is precisely the regime that we consider. Indeed, in the spiked model with missing entries, the Frobenius norm (or total “energy”) of the noise matrix will much be bigger than the norm of the signal matrix. In simulations in the spiked model, most standard matrix completion approaches break down completely when the noise level is too high — that is, the resulting relative MSE is greater than 1, meaning predicting the zero matrix is more accurate than the output of these algorithms. One method that performs well in the presence of high noise levels, however, is the OptSpace method of Keshavan et al. (2010). In Sec. 5.1, we show that our method is more robust to noise than OptSpace.

3. **Applicability to uneven sampling.** Most matrix completion methods assume that the entries are observed with equal probability. Our methods allow for a different probability in each row.

The OptShrink method (Nadakuditi, 2014) is designed for the spiked model we consider here and allows for high levels of noise. When the sampling probabilities are uniform over the entire matrix, OptShrink is identical to in-sample EBLP. However, our new method also handles the situation when every row has a different probability of being observed, as we show in simulations in Sec. 5.1.

4. **Precise performance guarantees.** Our shrinkage methods have precise asymptotic performance guarantees for their mean squared error. The error formulas can be estimated from the observations themselves.

In addition to these advantages, our method has the seeming shortcoming that it never yields exact recovery. Matrix completion methods are guaranteed to recover the underlying matrix exactly when there is no noise, under some additional conditions (Candès and Recht, 2009; Candès and Tao, 2010; Recht, 2011; Jain et al., 2013; Keshavan et al., 2009).

Even in the noiseless case, EBLP does not yield exact recovery. However, our methods lead to consistent estimators in the low-noise regime. In our model low noise corresponds to large spikes ℓ. It is easy to see that taking $\ell \to \infty$ we obtain an asymptotic MSE of $E\|X_i - \hat{X}_i\|^2 = O(1)$, whereas $E\|X_i\|^2 = \ell$. Thus the correlation $\text{corr}(X_i, \hat{X}_i) \to 1$ in probability, showing that we get consistent estimators. Thus we still have very good performance in low noise.

5.1 **Simulations**

In this section, we illustrate the merits of our proposed EBLP with whitening. In Sec. 5.1.1, we show that EBLP performs better with high noise
levels than standard matrix completion methods. In Sec. 5.1.2, we show that EBLP outperforms the OptShrink method of Nadakuditi (2014) when the sampling rate is non-homogeneous across the rows of the matrix. In Sec. 5.1.3, we compare the in-sample and out-of-sample EBLP and show that the MSEs for both procedures are similar.

The code for these experiments, as well as a suite of MATLAB codes for EBLP, can be found online at https://github.com/wleeb/opt-pred.

5.1.1 Performance in high noise levels

We compare the performance of in-sample EBLP with two standard matrix completion methods: nuclear norm-penalized least squares, as described in Candès and Plan (2010), and the OptSpace algorithm of Keshavan et al. (2010). For nuclear norm-penalized least squares, we minimize the loss function $\|X_\Omega - Y_\Omega\|_2^2 + w \cdot \|X\|_\ast$, where $\|\cdot\|_\ast$ denotes the nuclear norm and X_Ω denotes the vector of X’s values on the set of observed entries Ω. Following the recommendation in Candès and Plan (2010) we take $w = \sigma (\sqrt{p} + \sqrt{n}) \sqrt{\|\Omega\|/(pm)}$ at noise variance σ^2. To solve the minimization, we use the accelerated gradient method of Ji and Ye (2009). For OptSpace, we use the MATLAB code provided by Sewoong Oh on his website http://swoh.web.engr.illinois.edu/software/optspace/code.html.

The details of the experiment are as follows. We generate a rank 1 signal matrix of the form $X = \ell^1/2 u z^\top$, where $u \in \mathbb{R}^{100}$ is a unit vector drawn uniformly at random from the unit sphere, and $z \in \mathbb{R}^{1000}$ is a random Gaussian vector with variance σ^2. We form the matrix of back-projected observations B by adding to X a 100-by-1000 matrix ε of iid Gaussian entries with variance σ^2, and randomly discarding 50% of the entries of the noisy matrix, replacing them with zeros. Having thus generated the back-projected data, we apply the three methods to recover the clean matrix X from the noise: the method of nuclear norm-regularized least squares; OptSpace; and EBLP with whitening. For each value of σ, the entire experiment is repeated 10 times.

In Fig. 1, we plot the log-mean-error as a function of $\log(\sigma)$. When the noise level is small, nuclear norm minimization and OptSpace outperform EBLP. However, when the noise level is high, EBLP’s performance surpasses that of the other two methods.

5.1.2 Adaptivity to uneven sampling

We compare EBLP to the OptShrink procedure of Nadakuditi (2014) that assumes uniform sampling. When the sampling is uniform, the two procedures are nearly identical (and asymptotically are identical). However, their performance differs substantially when the sampling is non-uniform.

For this experiment, the details are as follows. We generated the signal and backprojected observation matrices as before, with dimensions $p = 500$ and $n = 1000$, with a fixed spike strength and unit variance Gaussian noise.

We gave every row a different probability of being selected; we chose these probabilities to be linearly spaced between values δ_{\min} and δ_{\max}, where $(\delta_{\min} + \delta_{\max})/2 = .5$ to ensure that the overall sampling probability...
is .5 for every run. We call $1 - 2\delta_{\min}$ the non-uniformity parameter; when it is 0, the sampling is perfectly uniform (with probability .5) and when it is 1 the sampling highly non-uniform (ranging from probability 0 to probability 1).

In Fig. 2, we compare EBLP to OptShrink. For each value of the non-uniformity parameter plotted on the x-axis, we ran the experiment 100 times, comparing the MSE of EBLP to the OptShrink method that assumes uniform sampling. As the sampling becomes more non-uniform, the advantages of EBLP become apparent as it strongly outperforms OptShrink.

5.1.3 Comparison of in-sample and out-of-sample EBLP

In this experiment, we compare the performance of in-sample and out-of-sample EBLP over a range of parameter values. Thm. 4.1 predicts that asymptotically, the MSE of the two methods are identical. We illustrate this result in the finite-sample setting.

The details of the experiment are as follows. We fixed a dimension $p = 200$, and generated random values of $n, \delta \in (0, 1)$ and $\ell > 0$. For each set of values, we randomly generated two rank 1 signal matrices of size p-by-n, X_{in} and X_{out}, added Gaussian noise, and subsampled these matrices uniformly at rate δ to obtain the backprojected observations \tilde{B}_{in} and \tilde{B}_{out}. We apply the in-sample EBLP on \tilde{B}_{in} to obtain \hat{X}_{in}, and using the singular vectors of \tilde{B}_{in}, we apply the out-of-sample EBLP to \tilde{B}_{out} to obtain \hat{X}_{out}.

In Fig. 3, we show a scatterplot of the (relative) MSEs $\|X_{in} - \hat{X}_{in}\|^2/n\ell$ and $\|X_{out} - \hat{X}_{out}\|^2/n\ell$, for each experiment (that is, each value of n, δ and ℓ). We also plot the line $x = y$ for reference. The errors of in-sample
Figure 2: The MSE of OptShrink with missing entries versus our proposed method, as a function of the non-uniformity of the sampling.

and out-of-sample EBLP are very close to each other, even for the modest dimension $p = 200$ used in this test.

Figure 3: Scatterplot of the relative MSEs of in-sample EBLP against out-of-sample EBLP.

6 Conclusion

In this paper we considered the linearly transformed spiked model, and developed asymptotically optimal EBLP methods for predicting the unob-
served signals in the commutative case of the model, under high-dimensional asymptotics. For missing data, we showed in simulations that our methods are faster, more robust to noise and to unequal sampling than well-known matrix completion methods.

There are many exciting opportunities for future research. One problem is to extend our methods beyond the commutative case. This is challenging because the asymptotic spectrum of the backprojected matrix B becomes harder to characterize, and new proof methods are needed. Another problem is to understand the possible benefits of whitening. We saw that whitening enables fast optimal shrinkage, but understanding when it leads to improved denoising remains an open problem.

Acknowledgements

The authors wish to thank Joakim Andén, Tejal Bhamre, Xiuyuan Cheng, David Donoho, and Iain Johnstone for helpful discussions on this work. The authors are grateful to Matan Gavish for valuable suggestions on an earlier version of the manuscript. Edgar Dobriban was supported in part by NSF grant DMS-1407813, and by an HHMI International Student Research Fellowship. William Leeb was supported by the Simons Collaboration on Algorithms and Geometry. Amit Singer was partially supported by Award Number R01GM090200 from the NIGMS, FA9550-12-1-0317 from AFOSR, Simons Foundation Investigator Award and Simons Collaborations on Algorithms and Geometry, and the Moore Foundation Data-Driven Discovery Investigator Award.

7 Proofs

7.1 Proof of Thm. 3.1

We present the proof of Thm. 3.1 for the backprojected matrix B. The proof for the normalized matrix \tilde{B} is identical and omitted for brevity. The proof spans multiple sections, until Sec. 7.2.1. To illustrate the idea, we first prove the single-spiked case, when $r = 1$. The proof of the multispiked extension is provided in Sec. 7.2.

Since $A_i^\top A_i = M + E_i$, we have the following decomposition for the backprojected observations B_i:

$$B_i = A_i^\top Y_i = MX_i + A_i^\top \varepsilon_i + E_iX_i.$$

The first key observation is that after backprojection, we still have an approximate spiked model. The new signal component is MX_i, the new noise is $A_i^\top \varepsilon_i$. The error term E_iX_i has an asymptotically negligible contribution in operator norm, as shown below. The proof is provided in Sec. 7.1.1.

Lemma 7.1. Let E^* be the matrix formed by the vectors $n^{-1/2}E_iX_i$. Then the operator norm $\|E^*\| \to 0$ a.s.

Since the claims of our theorem concern the limits of the spectral distribution, singular values, and angles between population and sample
singular vectors, all of which are continuous functions with respect to the operator norm, it follows that we can equivalently prove the theorem for

$$B_i^* = t^{1/2} z_i \cdot M u + A_i^\top \xi_i.$$

Let us denote by $\nu = Mu/\xi^{1/2}$ the normalized backprojected signal, where $\xi = |Mu|^2 \to \tau$. We will extend the technique of Benaych-Georges and Nadakuditi (2012) to characterize the spiked eigenvalues in this model. We denote the normalized vector $Z = n^{-1/2} \bar{Z}$, with $\bar{Z} = (z_1, \ldots, z_n)^\top$, the normalized noise $N = n^{-1/2} \bar{E}$, where $\bar{E} = (\bar{\epsilon}_1, \ldots, \bar{\epsilon}_n)^\top = (A_1^\top \xi_1, \ldots, A_n^\top \xi_n)^\top$ and the normalized backprojected data matrix $\bar{B}^* = n^{-1/2} B^*$, where $B^* = (B_1^*, \ldots, B_n^*)^\top$. Then, our model is

$$\bar{B}^* = (\xi \ell)^{1/2} \cdot Z \nu^\top + N. \quad (11)$$

We will assume that $n, p \to \infty$ such that $p/n \to \gamma > 0$. For simplicity of notation, we will first assume that $n \leq p$, implying that $\gamma \geq 1$. It is easy to see that everything works when $n \geq p$.

By Lemma 4.1 of Benaych-Georges and Nadakuditi (2012), the singular values of \bar{B}^* that are not singular values of N are the positive reals t such that the 2-by-2 matrix

$$M_n(t) = \begin{bmatrix} t \cdot Z^\top (t^2 I_n - NN^\top)^{-1} Z & Z^\top (t^2 I_n - NN^\top)^{-1} N \nu \\ \nu^\top N^\top (t^2 I_n - NN^\top)^{-1} Z & t \cdot \nu^\top (t^2 I_n - N^\top N)^{-1} \nu \end{bmatrix} - \begin{bmatrix} 0 & (\xi \ell)^{-1/2} \\ (\xi \ell)^{-1/2} & 0 \end{bmatrix}$$

is not invertible, i.e., $\det[M_n(t)] = 0$. We will find almost sure limits of the entries of $M_n(t)$, to show that it converges to a deterministic matrix $M(t)$. Solving the equation $\det[M(t)] = 0$ will provide an equation for the almost sure limit of the spiked singular values of \bar{B}^*. For this we will prove the following results:

Lemma 7.2 (The noise matrix). The noise matrix N has the following properties:

1. The eigenvalue distribution of $N^\top N$ converges almost surely (a.s.) to the Marchenko-Pastur distribution $F_{\gamma,H}$ with aspect ratio $\gamma \geq 1$.

2. The top eigenvalue of $N^\top N$ converges a.s. to the upper edge b_{H}^* of the support of $F_{\gamma,H}$.

This is proved in Sec. 7.1.2. For brevity we write $b = b_{H}$. Since \bar{B}^* is a rank-one perturbation of N, it follows that the eigenvalue distribution of $\bar{B}^* \top \bar{B}^*$ also converges to the MP law $F_{\gamma,H}$. This proves the first claim of Thm 3.1.

Moreover, since NN^\top has the same n eigenvalues as the nonzero eigenvalues of $N^\top N$, the two facts in Lemma 7.2 imply that when $t > b$, $n^{-1} \text{tr}(t^2 I_n - NN^\top)^{-1} \to (t^2 - x)^{-1}dF_{\gamma,H}(x) = -m(t^2)$. Here $\bar{F}_{\gamma,H}(x) = \gamma F_{\gamma,H}(x) + (1 - \gamma) \delta_0$ and $m = m_{\gamma,H}$ is the Stieltjes transform of $F_{\gamma,H}$. Clearly this convergence is uniform in t. As a special note, when t is a singular value of the random matrix N, we formally define $(t^2 I_n - NN^\top)^{-1} = 0$ and $(t^2 I_n - NN^\top)^{-1} = 0$. When $t > b$, the complement of this event happens a.s. In fact, from Lemma 7.2 it follows that $(t^2 I_n - NN^\top)^{-1}$ has a.s. bounded operator norm. Next we control the quadratic forms in the matrix M_n.\[\]
Lemma 7.3 (The quadratic forms). When \(t > b \), the quadratic forms in the matrix \(M_n(t) \) have the following properties:

1. \(Z^\top (t^2 I_n - NN^\top)^{-1} Z - n^{-1} \text{tr}(t^2 I_n - NN^\top)^{-1} \to 0 \text{ a.s.} \)
2. \(Z^\top (t^2 I_n - NN^\top)^{-1} N \nu \to 0 \text{ a.s.} \)
3. \(\nu^\top (t^2 I_p - N^\top N)^{-1} \nu \to -m(t^2) \text{ a.s.} \), where \(m = m_{\gamma, \nu} \) is the Stieltjes transform of the Marchenko-Pastur distribution \(F_{\gamma, \nu} \).

Moreover the convergence of all three terms is uniform in \(t > b + c \), for any \(c > 0 \).

This is proved in Sec. 7.1.3. The key technical innovation is the proof of the third part. Most results for controlling quadratic forms \(x^\top Ax \) are concentration bounds for random \(x \). Here \(x = \nu \) is fixed, and the matrix \(A = (t^2 I_p - N^\top N)^{-1} \) is random instead. For this reason we adopt the “deterministic equivalents” technique of Bai et al. (2007) for quantities \(x^\top (zI_p - N^\top N)^{-1} x \), with the key novelty that we can take the imaginary part of the complex argument to zero. The latter observation is nontrivial, and mirrors similar techniques used recently in universality proofs in random matrix theory (see e.g., the review by Erdős and Yau, 2012).

Lemmas 7.2 and 7.3 will imply that for \(t > b \), the limit of \(M_n(t) \) is

\[
M(t) = \begin{bmatrix} -t \cdot m(t^2) & -(\tau \ell)^{-1/2} \\ -(\tau \ell)^{-1/2} & -t \cdot m(t^2) \end{bmatrix}.
\]

By the Weyl inequality, \(\sigma_2(\hat{B}^*) \leq \sigma_2((t \ell)^{1/2} \cdot Z \nu^\top) + \sigma_1(N) = \sigma_1(N) \). Since \(\sigma_1(N) \to b \text{ a.s.} \) by Lemma 7.2, we obtain that \(\sigma_2(\hat{B}^*) \to b \text{ a.s.} \).

Therefore for any \(\varepsilon > 0 \), a.s. only \(\sigma_1(\hat{B}^*) \) can be a singular value of \(\hat{B}^* \) in \((b + \varepsilon, \infty)\) that is not a singular value of \(N \).

It is easy to check that \(D(x) = x \cdot m(x) m(x) \) is strictly decreasing on \((b^2, \infty)\). Hence, denoting \(h = \lim_{\tau \ell \to h} 1/D(t^2) \), for \(\tau \ell > h \), the equation \(D(t^2) = 1/(\tau \ell) \) has a unique solution \(t \in (b, \infty) \). By Lemma A.1 of Benaych-Georges and Nadakuditi (2012), we conclude that for \(\tau \ell > h \), \(\sigma_1(\hat{B}^*) \to t \text{ a.s.} \), where \(t \) solves the equation \(\det[M(t)] = 0 \), or equivalently,

\[
t^2 \cdot m(t^2) m(t^2) = \frac{1}{\tau \ell}.
\]

If \(\tau \ell \leq h \), then we note that \(\det[M_n(t)] \to \det[M(t)] \) uniformly on \(t > b + \varepsilon \). Therefore, if \(\det[M_n(t)] \) had a root \(\sigma_1(\hat{B}^*) \) in \((b + \varepsilon, \infty)\), \(\det[M(t)] \) would also need to have a root there, which is a contradiction. Therefore, we conclude \(\sigma_1(\hat{B}^*) \leq b + \varepsilon \text{ a.s.} \), for any \(\varepsilon > 0 \). Since \(\sigma_1(\hat{B}^*) \geq \sigma_2(\hat{B}^*) \to b \), we conclude that \(\sigma_1(\hat{B}^*) \to b \text{ a.s.} \), as desired. This finishes the spike convergence claim in Thm. 3.1.

Next, we turn to proving the convergence of the angles between the population and sample eigenvectors. Let \(\hat{Z} \) and \(\hat{u} \) be the singular vectors associated with the top singular value \(\sigma_1(\hat{B}^*) \) of \(\hat{B}^* \). Then, by Lemma 5.1 of Benaych-Georges and Nadakuditi (2012), if \(\sigma_1(\hat{B}^*) \) is not a singular value of \(X \), then the vector \(\eta = (\eta_1, \eta_2) = (\nu^\top \hat{u}, Z^\top \hat{Z}) \) belongs to the kernel of the matrix \(M_n(\sigma_1(\hat{B}^*)) \). By the above discussion, this 2-by-2
matrix is of course singular, so this provides one linear equation for the
vector η (with $R = (t^2I_n - NN^\top)^{-1}$)
\[\eta_1 Z^\top RZ + \eta_2 [Z^\top RN\nu - (\xi \ell)^{-1/2}] = 0. \]

By the same lemma cited above, it follows that we have the norm
identity (with $t = \sigma_1(B^*)$)
\[t^2\eta_1^2 Z^\top R^2Z + \eta_2^2 \nu^\top N^\top R^2N\nu + 2t\eta_1\eta_2 Z^\top R^2N\nu = (\xi \ell)^{-1}. \]

This follows from taking the norm of the equation $t\eta_1 RZ + \eta_2 R\nu = (\xi \ell)^{-1/2}Z$ (see Lemma 5.1 in Benaych-Georges and Nadakuditi (2012)).

We will find the limits of the quadratic forms below.

Lemma 7.4 (More quadratic forms). The quadratic forms in the norm
identity have the following properties:

1. $Z^\top (t^2I_n - NN^\top)^{-2}Z - n^{-1} \text{tr}(t^2I_n - NN^\top)^{-2} \rightarrow 0 \text{ a.s.}$
2. $Z^\top (t^2I_n - NN^\top)^{-2}N\nu \rightarrow 0 \text{ a.s.}$
3. $\nu^\top N^\top (t^2I_n - NN^\top)^{-2}N\nu \rightarrow m(t^2) + t^2m'(t^2) \text{ a.s., where } m \text{ is the}
Stieltjes transform of the Marchenko-Pastur distribution $F_{\gamma, \mu}$.

The proof is in Sec. 7.1.4. Again, the key novelty is the proof of the
third claim. The standard concentration bounds do not apply, because
ν is non-random. Instead, we use an argument from complex anal ysis
constructing a sequence of functions $f_n(t)$ such that their derivatives are
$f'_n(t) = \nu^\top N^\top (t^2I_n - NN^\top)^{-2}N\nu$, and deducing the convergence of $f'_n(t)$
from that of $f_n(t)$.

Lemma 7.4 implies that $n^{-1} \text{tr}(t^2I_n - NN^\top)^{-2} \rightarrow \int (t^2 - x)^{-2}dF_{\gamma, \mu}(x) = m'(t^2)$ for $t > b$. Solving for η_1 in terms of η_2 from the first equation, plugging in to the second, and taking the limit as $n \rightarrow \infty$, we obtain that
$\eta_2 \rightarrow c_2$, where
\[c_2 \left(\frac{m'(t^2)}{t^2m(t^2)} + m(t^2) + t^2m'(t^2) \right) = \frac{1}{\tau \ell}. \]

Using $D(x) = x \cdot m(x)m(x)$, we find $c_2 = \frac{m(t^2)|D'(t^2)|}{|c|}$, where
t solves (3). From the first equation, we then obtain $\eta_2 \rightarrow c_1$, where
$c_1 = m(t^2)|D'(t^2)|$, where t is as above. This finishes the proof of
Thm. 3.1 in the single-spiked case. The proof of the multispi ked case is a
relatively simple extension of the previous argument, so we present it in
Sec. 7.2.

7.1.1 Proof of Lemma 7.1

Since $X_i = t^{1/2}z_iu$, the (i, j)-th entry of E^* is $n^{-1/2}t^{1/2}z_i \cdot E_{ij}u(j)$. Now, denoting by \odot elementwise products
\[\|E^*\| = \sup_{|a|=|c|=1} a^\top E^*c = n^{-1/2}t^{1/2} \sup_{|a|=|c|=1} (a \odot z)^\top E(c \odot u). \]

We have $|a \odot z| \leq |a| |z| = |z| |a|$ and $|c \odot u| \leq |c| |u| = |u| |c|$, hence
\[\|E^*\| \leq t^{1/2} \cdot n^{-1/2}E \max |z| \max |u|. \]
Since z has iid standardized entries, and $C := \mathbb{E} z_i^{4+\phi} < \infty$, we can derive that

$$Pr(\max |z_i| \geq a) \leq \mathbb{E} \max |z_i|^{4+\phi}/a^{4+\phi} \leq nC/a^{4+\phi}.$$

Taking $a = n^{1/2-\phi'}$ for ϕ' small enough, we obtain $\max |z_i| \leq n^{1/2-\phi'}$ a.s.

Next we argue that $\|n^{-1/2}E\|$ is a.s. bounded. Once we have established that, our main claim follows, because $\|u\|_\infty \leq C \log(p)^B/p^{1/2}$, we obtain $\|E\| \leq C \log(p)^B n^{1/2-\phi'} p^{-1/2} \to 0$ a.s., as required.

It remains to show that $\|n^{-1/2}E\|$ is a.s. bounded. We will see below that for this it is enough that the $6 + \varepsilon$-th moment of all E_{ij} is uniformly bounded for some $\varepsilon > 0$. We will only give a proof sketch, as this consists of a small modification of Thm. 6.3 of Bai and Silverstein (2009). Their proof essentially goes through, except that one needs a slightly different, simpler, argument for the initial truncation step.

For this, we follow the same steps as the original proof of Cor. 6.6 from Bai and Silverstein (2009). The first step (on p. 128 of Bai and Silverstein (2009)) is a truncation, which relies on Thm. 5.8, a result controlling the operator norm of matrices with iid entries. The proof of this result is not provided in the book, since it is almost the same as Thm. 5.1. Therefore, we will show how to adapt the argument for Thm. 5.1 to our assumptions.

The first step of that proof (on p. 94) is a truncation of the entries of E at a threshold $cn^{1/2}$. Let $\tilde{E}_{ij} = E_{ij}I(|E_{ij}| \leq cn^{1/2})$, and let \tilde{E}_{ij} the corresponding matrix. We need to show that $P(E \neq \tilde{E}, \text{ i.o.}) = 0$.

Let $A_n = \bigcup_{(i,j) \leq (n,p)} I \left(|E_{ij}| \geq cn^{1/2}\right)$. Then $\{E \neq \tilde{E}\} = A_n$. By the Borel-Cantelli lemma, it is enough to show:

$$\sum_n P[A_n] = \sum_n P \left[\bigcup_{(i,j) \leq (n,p)} I \left(|E_{ij}| \geq cn^{1/2}\right) \right] < \infty.$$

We can bound

$$P[A_n] \leq np \cdot \max_{i,j} P \left(|E_{ij}| \geq cn^{1/2}\right) \leq np \cdot \max_{i,j} \mathbb{E}|E_{ij}|^k/[k^k n^{k/2}].$$

By taking the exponent $k = 6+\varepsilon$, we see from the assumption $\mathbb{E}|E_{ij}|^{6+\varepsilon} < C$ that this bound is summable. Thus the first step of the proof of Thm. 5.1 adapts to our setting. Then, similarly to remark 5.7 on p.104, we obtain Thm. 5.8 under the present conditions. This shows that the first step of the proof of Cor. 6.6 goes through.

Continuing with the proof of Cor. 6.6 under the present conditions, we need on p. 129 that the conditions of Thm 5.9 be met. It is immediate to see that they are met. In the remaining part of the argument, as stated on p. 129, “no assumptions need to be made on the relationship between the E-s for different n.” Since our assumptions ensure that after truncation we are in the same setting as that stated in Thm. 6.3, the rest of the argument applies verbatim. This finishes the proof of the sufficiency of finite $6 + \varepsilon$ moment for E. This also finishes the argument that $\|n^{-1/2}E\|$ is a.s. bounded, and thus that of the main lemma.
7.1.2 Proof of Lemma 7.2

Recall that \(N = n^{-1/2} \mathcal{E}^* \), where \(\mathcal{E}^* \) has rows \(\varepsilon_i = A_i^T \varepsilon_i \). According to our assumptions, the rows are iid, with independent entries having a distribution of variances \(H_p \). Recall that we assumed that \(H_p \Rightarrow H \). Hence the eigenvalue distribution of \(N^T N \) converges to the Marchenko-Pastur distribution \(F_{\gamma, H} \). This follows essentially by Thm. 4.3 of Bai and Silverstein (2009). While that result is stated for identically distributed random variables, it is easy to see that under our higher moment assumptions this is not needed, as the truncation steps on p. 70 of Bai and Silverstein (2009) go through; the situation is analogous to the modification of (Bai and Silverstein, 2009, Cor. 6.6) from Lemma 7.1.

Moreover, since \(\mathbb{E} x^{4(\varepsilon_i + x)} < \infty \) and supp\((H_p) \rightarrow \text{supp}(H)\), the largest eigenvalue of \(N^T N \) converges a.s. to the upper edge \(b^* \) of the support of \(F_{\gamma, H} \), by the modification of (Bai and Silverstein, 2009, Cor. 6.6) presented in the proof of Lemma 7.1.

7.1.3 Proof of Lemma 7.3

Part 1: For \(Z^T (t^2 I_n - N N^T)^{-1} Z \), note that \(Z \) has iid entries—with mean 0 and variance 1/n—that are independent of \(N \). We will use the following result:

Lemma 7.5 (Concentration of quadratic forms, consequence of Lemma B.26 in Bai and Silverstein (2009)). Let \(x \in \mathbb{R}^k \) be a random vector with i.i.d. entries and \(\mathbb{E} |x| = 0 \), for which \(\mathbb{E} [(\sqrt{k} x_i)^2] = 1 \) and \(\sup \mathbb{E} [(\sqrt{k} x_i)^{4+\phi}] < C \) for some \(\phi > 0 \) and \(C < \infty \). Moreover, let \(A_k \) be a sequence of random \(k \times k \) symmetric matrices independent of \(x \), with a.s. uniformly bounded eigenvalues. Then the quadratic forms \(x^T A_k x \) concentrate around their means: \(x^T A_k x - k^{-1} \text{tr} A_k \rightarrow_a \text{s.} 0 \).

We apply this lemma with \(x = Z \), \(k = p \) and \(A_p = (t^2 I_n - N N^T)^{-1} \). To get almost sure convergence, here it is required that \(z_i \) have finite \(4 + \phi \)-th moment. This shows the concentration of \(Z^T (t^2 I_n - N N^T)^{-1} Z \).

Part 2: To show \(Z^T (t^2 I_n - N N^T)^{-1} N \nu \) concentrates around 0, we note that \(w = (t^2 I_n - N N^T)^{-1}N \nu \) is a random vector independent of \(Z \), with a.s. bounded norm. Hence, conditional on \(w \):

\[
\mathbb{P}(|Z^T w| \geq a|w|) \leq a^{-4} \mathbb{E}|Z^T w|^4 = a^{-4} \left[\sum_i \mathbb{E}Z_{ni}^4 w_i^4 + \sum_{i \neq j} \mathbb{E}Z_{ni}^2 Z_{nj}^2 w_i^2 w_j^2 \right]
\]

\[
\leq a^{-4} \mathbb{E}Z_{nn}^4 \left(\sum_i w_i^4 \right)^2 = a^{-4} n^{-2} \mathbb{E}Z_{nn}^4 \cdot \|w\|_2^4
\]

For any \(C \) we can write

\[
\mathbb{P}(|Z^T w| \geq a) \leq \mathbb{P}(|Z^T w| \geq a\|w\| \leq C) + \mathbb{P}(\|w\| > C).
\]

For sufficiently large \(C \), the second term, \(\mathbb{P}(\|w\| > C) \) is summable in \(n \). By the above bound, the first term is summable for any \(C \). Hence, by the Borel-Cantelli lemma, we obtain \(|Z^T w| \rightarrow 0 \) a.s. This shows the required concentration.

Part 2: Finally we need to show that \(\nu^T (t^2 I_p - N N^T)^{-1} \nu \) concentrates around a definite value. This is probably the most interesting part,
because the vector ν is not random. Most results for controlling expressions of the above type are designed for random ν; however here the matrix N is random instead. For this reason we will adopt a different approach.

Under our assumption we have $\nu^\top (P - zI_p)^{-1} \nu \to m_U(z)$, for $z = t^2 + iv$ with $v > 0$ fixed, where P is the diagonal matrix with (j,j)-th entry $\text{Var} \left[z_{ij} \right]$. Therefore, Thm 1 of Bai et al. (2007) shows that $\nu^\top (zI_p - N^\top N)^{-1} \nu \to -m(z)$ a.s., where $m(z)$ is the Stieltjes transform of the Marchenko-Pastur distribution $F_{\gamma, \mu}$.

A close examination of their proofs reveals that their result holds when $v \to 0$ sufficiently slowly, for instance $v = n^{-\alpha}$ for $\alpha = 1/10$. The reason is that all bounds in the proof have the rate $n^{-k}v^{-l}$ for some small $k,l > 0$, and hence they converge to 0 for v of the above form.

For instance, the very first bounds in the proof of Thm 1 of Bai et al. (2007) are in Eq. (2.2) on page 1543. The first one states a bound of order $O(1/n^{1/2})$. The inequalities leading up to it show that the bound is in fact $O(1/(n^{1/2}v^2))$. Similarly, the second inequality, stated with a bound of order $O(1/n^{r/2})$ is in fact $O(1/(n^{r/2}v^r))$. These bounds go to zero when $v = n^{-\alpha}$ with small $\alpha > 0$. In a similar way, the remaining bounds in the theorem have the same property.

To get the convergence for real t^2 from the convergence for complex $z = t^2 + iv$, we note that

$$|\nu^\top (zI_p - N^\top N)^{-1} \nu - \nu^\top (t^2I_p - N^\top N)^{-1} \nu| = v|\nu^\top (zI_p - N^\top N)^{-1} (t^2I_p - N^\top N)^{-1} \nu| \leq v\| (t^2I_p - N^\top N)^{-1} \|^2 \cdot u^\top u.$$

As discussed above, when $t > b$, the matrices $(t^2I_p - N^\top N)^{-1}$ have a.s. bounded operator norm. Hence, we conclude that if $v \to 0$, then a.s.

$$\nu^\top (zI_p - N^\top N)^{-1} \nu - \nu^\top (t^2I_p - N^\top N)^{-1} \nu \to 0.$$

Finally, $m(z) \to m(t^2)$ by the continuity of the Stieltjes transform for all $t^2 > 0$ (Bai and Silverstein, 2009). We conclude that $\nu^\top (t^2I_p - N^\top N)^{-1} \nu \to -m(t^2)$ a.s. This finishes the analysis of the last quadratic form.

7.1.4 Proof of Lemma 7.4

Parts 1 and 2: The proofs of Part 1 and 2 are exactly analogous to those in Lemma 7.3. Indeed, the same arguments work despite the change from $(t^2I_p - N^\top N)^{-1}$ to $(t^2I_p - N^\top N)^{-2}$, because the only properties we used are its independence from Z, and its a.s. bounded operator norm. These also hold for $(t^2I_p - N^\top N)^{-2}$, so the same proof works.

Part 3: We start with the identity $\nu^\top N^\top (t^2I_n - NN^\top)^{-2}N\nu = -\nu^\top (t^2I_p - N^\top N)^{-1} \nu + t^2\nu^\top (t^2I_p - N^\top N)^{-2} \nu$. Since in Lemma 7.3 we have already established $\nu^\top (t^2I_p - N^\top N)^{-1} \nu \to -m(t^2)$, we only need to show the convergence of $\nu^\top (t^2I_p - N^\top N)^{-2} \nu$.

For this we will employ the following derivative trick (see e.g., Dobriban and Wager, 2015). We will construct a function with two properties: (1) its derivative is the quantity $\nu^\top (t^2I_p - N^\top N)^{-2} \nu$ that we want, and (2) its limit is convenient to obtain. The following lemma will allow us to get our answer by interchanging the order of limits:

27
Lemma 7.6 (see Lemma 2.14 in Bai and Silverstein (2009)). Let \(f_1, f_2, \ldots \) be analytic on a domain \(D \) in the complex plane, satisfying \(|f_n(z)| \leq M \) for every \(n \) and \(z \) in \(D \). Suppose that there is an analytic function \(f \) on \(D \) such that \(f_n(z) \to f(z) \) for all \(z \in D \). Then it also holds that \(f_n(z) \to f'(z) \) for all \(z \in D \).

Accordingly, consider the function \(f_p(r) = -\nu^\top (rI_p - N^\top N)^{-1} \nu \). Its derivative is \(f'_p(r) = \nu^\top (rI_p - N^\top N)^{-2} \nu \). Let \(S := \{ x + iv : x > b + \varepsilon \} \) for a sufficiently small \(\varepsilon > 0 \), and let us work on the set of full measure where \(||N^\top N|| < b + \varepsilon / 2 \) eventually, and where \(f_p(r) \to m(r) \). By inspection, \(f_p \) are analytic functions on \(S \) bounded as \(|f_p| \leq 2/\varepsilon \). Hence, by Lemma 7.6, \(f'_p(r) \to m'(r) \).

In conclusion, \(\nu^\top N^\top (t^2 I_p - N^\top N)^{-2} N \nu \to m(t^2) + t^2 m'(t^2) \), finishing the proof.

7.2 Proof of Thm. 3.1 - Multispiked extension

Let us denote by \(\nu_i = Mu_i / \xi_i^{1/2} \) the normalized backprojected signals, where \(\xi_i = ||Mu_i||^2 \to \tau_i \). For the proof we start as in Sec. 7.1, showing that we can equivalently work with \(B_1^* = \sum_{k=1}^{r} (\xi_k \ell_k)^{1/2} z_k \nu_k + \varepsilon_k^* \).

Defining the \(r \times r \) diagonal matrices \(L, \Delta \) with diagonal entries \(\ell_k, \xi_k \) (respectively), and the \(n \times r, p \times r \) matrices \(Z, V \), with columns \(Z_k = n^{-1/2}(z_{i1}, \ldots, z_{i_r})^\top \) and \(\nu_k \) respectively, we can thus work with

\[
\tilde{B}^* = Z(\Delta L)^{1/2}V^\top + N.
\]

The matrix \(M_n(t) \) is now \(2r \times 2r \), and has the form

\[
M_n(t) = \begin{bmatrix}
t \cdot Z^\top (t^2 I_n - NN^\top)^{-1} Z & Z^\top (t^2 I_n - NN^\top)^{-1} N V \\
V^\top N^\top (t^2 I_n - NN^\top)^{-1} Z & t \cdot V^\top (t^2 I_p - N^\top N)^{-1} V
\end{bmatrix} - \begin{bmatrix}
0_r & (\Delta L)^{-1/2} \\
(\Delta L)^{-1/2} & 0_r
\end{bmatrix}.
\]

It is easy to see that Lemma 7.2 still holds in this case. To find the limits of the entries of \(M_n(t) \), we need the following additional statement.

Lemma 7.7 (Multispiked quadratic forms). The quadratic forms in the multispiked case have the following properties for \(t > b \):

1. \(Z_i^\top R^\alpha Z_j \to 0 \) a.s. for \(\alpha = 1, 2 \), if \(k \neq j \).
2. \(\nu_i^\top (t^2 I_p - N^\top N)^{-\alpha} \nu_j \to 0 \) a.s. for \(\alpha = 1, 2 \), if \(k \neq j \).

This lemma is proved in Sec. 7.2.1, using similar techniques as those in Lemma 7.2. Defining the \(r \times r \) diagonal matrices \(T \) with diagonal entries \(\tau_k \), we conclude that for \(t > b \), \(M_n(t) \to M(t) \) a.s., where now

\[
M(t) = \begin{bmatrix}
-t \cdot m(t^2) I_r & -(TL)^{-1/2} \\
-(TL)^{-1/2} & -t \cdot m(t^2) I_r
\end{bmatrix}.
\]

As before, by Lemma A.1 of Benaych-Georges and Nadakuditi (2012), we get that for \(\tau_k \ell_k > 1/D(b^2) \), \(\sigma_k(B^*) \to \tau_k \) a.s., where \(t_k^2 \cdot m(t_k^2) m(t_k^2) = 1/(\tau_k \ell_k) \). This finishes the spike convergence proof.

To obtain the limit of the angles for \(\tilde{u}_k \) for a \(k \) such that \(\ell_k > \tau_k D(b^2) \), consider the left singular vectors \(\tilde{Z}_k \) associated to \(\sigma_k(B^*) \). Define the 2r-vector

\[
\alpha = \begin{bmatrix}
\beta_1 \\
\beta_2
\end{bmatrix} = \begin{bmatrix}
(\Delta L)^{1/2} V^\top \tilde{u}_k \\
(\Delta L)^{1/2} Z^\top \tilde{Z}_k
\end{bmatrix}.
\]
The vector α belongs to the kernel of $M_n(\sigma_k(\hat{B}^*))$. As argued by Benaych-Georges and Nadakuditi (2012), the fact that the projection of α into the orthogonal complement of $M(t_k)$ tends to zero, implies that $\alpha_j \to 0$ for all $j \notin \{k, k+r\}$. This proves that $\nu_j \hat{u}_k \to 0$ for $j \neq k$, and the analogous claim for the left singular vectors.

The linear equation $M_n(\sigma_k(\hat{B}^*))\alpha = 0$ in the k-th coordinate, where $k \leq r$, reads (with $t = \sigma_k(\hat{B}^*)$):

$$t\alpha_k Z_k^\top RZ_k - \alpha_{r+k} (\xi_k \ell_k)^{-1/2} + \sum_{i \neq k} M_n(\sigma_k(\hat{B}^*))_{ik}\alpha_k = 0.$$

Only the first two terms are non-negligible due to the behavior of M_n, so we obtain $t\alpha_k Z_k^\top RZ_k = \alpha_{r+k} (\xi_k \ell_k)^{-1/2} + o_p(1)$. Moreover taking the norm of the equation $\tilde{Z}_k = R(tZ\beta_1 + NV\beta_2)$ (see Lemma 5.1 in Benaych-Georges and Nadakuditi (2012)), we get

$$t^2 \sum_{i,j \leq r} \alpha_i \alpha_j Z_i^\top R^2 Z_j + \sum_{i,j \leq r} \alpha_{i+k} \alpha_{j+k} N^\top R^2 N\nu_j + \sum_{i,j \leq r} \alpha_i \alpha_{i+j} Z_i^\top R^2 N\nu_j = 1.$$

From Lemma 7.7 and the discussion above, only the terms $\alpha_k^2 Z_k^\top R^2 Z_k$ and $\alpha_{r+k} \nu_k N^\top R^2 N\nu_k$ are non-negligible, so we obtain

$$t^2 \alpha_k^2 Z_k^\top R^2 Z_k + \alpha_{r+k} \nu_k N^\top R^2 N\nu_k = 1 + o_p(1).$$

Combining the two equations above,

$$\alpha_{r+k} \left[\frac{Z_k^\top R^2 Z_k}{(\xi_k \ell_k (Z_k^\top RZ_k))} + \nu_k N^\top R^2 N\nu_k \right] = 1 + o_p(1).$$

Since this is the same equation as in the single-spiked case, we can take the limit in a completely analogous way. This finishes the proof.

7.2.1 Proof of Lemma 7.7

Part 1: The convergence $Z_k^\top R^\alpha Z_j \to 0$ a.s. for $\alpha = 1, 2$, if $k \neq j$, follows directly from the following well-known lemma, cited from Couillet and Debbah (2011):

Lemma 7.8 (Proposition 4.1 in Couillet and Debbah (2011)). Let $x_n \in \mathbb{R}^n$ and $y_n \in \mathbb{R}^n$ be independent sequences of random vectors, such that for each n the coordinates of x_n and y_n are independent random variables. Moreover, suppose that the coordinates of x_n are identically distributed with mean 0, variance C/n for some $C > 0$ and fourth moment of order $1/n^2$. Suppose the same conditions hold for y_n, where the distribution of the coordinates of y_n can be different from those of x_n. Let A_n be a sequence of $n \times n$ random matrices such that $\|A_n\|$ is uniformly bounded. Then $x_n^\top A_n y_n \to_n 0$.

Part 2: To show $\nu_k (t^2 I_p - N^\top N)^{-\alpha} \nu_j \to 0$ a.s. for $\alpha = 1, 2$, if $k \neq j$, the same technique cannot be used, because the vectors u_k are deterministic. However, it is straightforward to check that the method of Bai et al. (2007) that we adapted in proving Part 3 of Lemma 7.3 extends to proving $\nu_k (t^2 I_p - N^\top N)^{-\alpha} \nu_j \to 0$. Indeed, it is easy to see that all their
tends to 0 by our assumption, showing \(j, j \) bounds hold unchanged. In the final step, as a deterministic equivalent for \(\nu_k' (t^2 I_p - N^{-1} N)^{-1} v_j \to 0 \), one obtains \(\nu_k' (t^2 I_p - P)^{-1} v_j \), where \(P \) is the diagonal matrix with \((j, j)\)-th entry \([\varepsilon_{ij}']\), and this bilinear form tends to 0 by our assumption, showing \(\nu_k' (t^2 I_p - N^{-1} N)^{-1} v_j \to 0 \). Then \(\nu_k' (t^2 I_p - N^{-1} N)^{-2} v_j \to 0 \) follows from the derivative trick employed in Part 3 of Lemma 7.4. This finishes the proof.

7.3 The uniform model and the simple form of BLP

Here we introduce the uniform model, a special case of the linearly transformed model. In the uniform model, we have that \(A_i = m I_p \), and moreover that \(\mathbb{E} \varepsilon_i v_i' = I_p \). This is useful for justifying the simpler form of the BLP that we are using:

Proposition 7.1. In the uniform model, under the assumptions of Theorem 3.1, suppose also that the first eight moments of the entries of \(A_i A_i' \) are uniformly bounded. Then the BLP \(\dot{X}_i^{BLP} \) given in (1) is asymptotically equivalent to \(\dot{X}_i^0 = \sum_k \ell_k / (1 + m \ell_k) \cdot u_k v_k' A_i' Y_i \), in the sense that \(\mathbb{E} |\dot{X}_i^{BLP} - \dot{X}_i^0|^2 \to 0 \).

The proof is given below:

Recall that we observe \(Y_i = A_i X_i + \varepsilon_i \). The BLP has the form \(\dot{X}_i = \Sigma X A_i' (A_i \Sigma X A_i' + \Sigma_A)^{-1} A_i' Y_i \). Now, \(\Sigma_A \) is uniformly bounded. Then the BLP \(\dot{X}_i^{BLP} \) given in (1) is asymptotically equivalent to \(\dot{X}_i^0 = \sum_k \ell_k / (1 + m \ell_k) \cdot u_k v_k' A_i' Y_i \), in the sense that \(\mathbb{E} |\dot{X}_i^{BLP} - \dot{X}_i^0|^2 \to 0 \).

3.1 Asymptotic BLP after backprojection.

Our goal is to show that \(\dot{X}_i \) equivalent to \(\dot{X}_i^0 = \sum_k \ell_k / (1 + m \ell_k) \cdot u_k v_k' A_i' Y_i \), in the sense that \(\mathbb{E} |\dot{X}_i - \dot{X}_i^0|^2 \to 0 \).

Let us denote \(v_k = A_i u_k \), and \(G_k = (\sum_{j \neq k} \ell_{j} v_j v_j' + I)^{-1} \).

Then \(\dot{X}_i = \sum_k \ell_k u_k v_k' A_i' Y_i \) and \(\dot{X}_i^0 = \sum_k \ell_k / (1 + m \ell_k) \cdot u_k v_k' A_i' Y_i \). Let us also define \(m_k = v_k' G_k Y_i - 1/(1 + m \ell_k) \cdot \mathbb{E} \varepsilon_i v_i' \).

Then, clearly,

\[
\dot{X}_i - \dot{X}_i^0 = \sum_k m_k \cdot \ell_k u_k
\]

Therefore it is enough to show that \(\mathbb{E} m_k^2 \to 0 \).

Using the rank one perturbation formula \(u u' + T = u(1 + u'T) \), we can write

\[
v_k G = \frac{v_k' \left[\sum_j \ell_j u_j v_j' + I \right]^{-1} v_k' G_k / \left(1 + \ell_k u_k' G_k v_k \right)}.
\]

In addition, by using the formula \((VV' + I)^{-1} = [I - V(V'V + I)^{-1} V'] \) for \(V = [\ell_{1/2} v_1, \ldots, \ell_{1/2} v_r] \) (excluding \(\varepsilon_k \)), we conclude that

\[
v_k' G_k Y_i = v_k' \left[\sum_{j \neq k} \ell_j u_j v_j' + I \right]^{-1} Y_i = v_k' Y_i - v_k' V(V'V + I)^{-1} V' Y_i.
\]

30
We thus have
\[
m_k = \frac{v_k^\top G_k Y_i}{1 + \ell_k v_k^\top G_k v_k} - \frac{v_k^\top Y_i}{1 + m \ell_k} = v_k^\top Y_i \left(\frac{1}{1 + \ell_k v_k^\top G_k v_k} - \frac{1}{1 + m \ell_k} \right) - \frac{v_k^\top V (V^\top V + I)^{-1} V^\top Y_i}{1 + \ell_k v_k^\top G_k v_k}.
\]
Thus, it is enough to show
1. \(\mathbb{E}(v_k^\top Y_i)^2 \cdot (v_k^\top G_k v_k - m)^2 \to 0 \)
2. \(\mathbb{E}(v_k^\top V (V^\top V + I)^{-1} V^\top Y_i)^2 \to 0 \)

We prove these in turn below:

1. First, for (1):

By using the formula \((VV^\top + I)^{-1} = [I - V(V^\top V + I)^{-1}V^\top]\), we see

\[
v_k^\top G_k v_k = v_k^\top \left[\sum_{j \neq k} \ell_j v_j v_j^\top + I \right]^{-1} v_k = v_k^\top v_k - v_k^\top V (V^\top V + I)^{-1} V^\top v_k.
\]

But \(x^\top (V^\top V + I)^{-1} x \leq x^\top x \), because the eigenvalues of \((V^\top V + I)^{-1}\) are all at most unity. Thus, it is enough to show \(\mathbb{E}(v_k^\top Y_i)^2 \cdot (v_k^\top G_k v_k - m)^2 \to 0 \) and \(\mathbb{E}(v_k^\top Y_i)^2 \cdot (v_k^\top G_k v_k - m)^2 \to 0 \). For this, it is enough to show that \(\mathbb{E}|V^\top v_k|^4 \to 0 \), \(\mathbb{E}(v_k^\top Y_i)^4 \to 0 \), and \(\mathbb{E}(v_k^\top v_k - m)^4 \to 0 \).

First we show \(\mathbb{E}|V^\top v_k|^4 \to 0 \). The entries of the \(r - 1 \)-dimensional vector \(V^\top v_k \) are \(\ell_j/2 v_j^\top v_k = \ell_j/2 u_j^\top D_j u_k \) for \(j \neq k \). But we have that \(\mathbb{E}(u_j^\top D_j u_k)^2 \to 0 \). Indeed, since \(D_i = m I + E_i \), and \(uu_j \to 0 \), we only need to show that \(\mathbb{E}(u_j^\top E_i u_k)^8 \to 0 \). Since we assumed that \(E_{ij} \) has bounded 8th moments, this follows by expanding the moment.

The details are omitted for brevity. Thus, under the assumptions made on \(E_i \), \(\mathbb{E}|V^\top v_k|^8 \to 0 \).

Second, we show that \(\mathbb{E}(v_k^\top Y_i)^8 \to 0 \). Indeed, \(v_k^\top Y_i = u_k^\top A_i (A_i, \sum_j \ell_j/2 z_{ij} u_j + \varepsilon_i) \). We can take the expectation over \(z_{ij} \) and \(\varepsilon_i \), because they are independent from \(v_k \). We obtain \(\mathbb{E}(v_k^\top Y_i)^8 = \sum_i \ell_i^4 \mathbb{E}(u_k^\top D_j u_k)^8 + \mathbb{E}(u_k^\top D_i u_k)^4 \). Similarly to above, each term converges to zero.

Third, and finally, we show \(\mathbb{E}(v_k^\top v_k - m)^4 \to 0 \). Indeed, \(v_k^\top v_k - m = u_k^\top D_k u_k - m \cdot u_k^\top u_k = u_k^\top (D_i - m I) u_k \), so the claim is equivalent to \(\mathbb{E}(u_k^\top E_i u_k)^8 \to 0 \), which follows as above. This finishes the proof.

2. By using \(x^\top (V^\top V + I)^{-1} x \leq x^\top x \), it is enough to show \(\mathbb{E}|v_k^\top V V^\top Y_i|^2 \to 0 \). As above, this can be achieved by taking the expectation over \(z_{ij} \) and \(\varepsilon_i \) first, and then controlling \(v_k^\top V \). The details are omitted for brevity.

This finishes the proof that BLP is equivalent to simple linear denoising.
7.4 Proof of Lemma 3.2

We will show that the operator norm of $\hat{M}^{-1} - M^{-1}$ converges to 0; since the operator norm of the data matrix B converges almost surely by the main theorem, the result follows. This is equivalent to showing that $\sup_i |M_i^{-1} - \hat{M}_i^{-1}| \to 0$, which, since the M_i are uniformly bounded away from 0, will follow if we show $\sup_i |M_i - \hat{M}_i| \to 0$ almost surely.

To show this, observe that by the Central Absolute Moment Inequality (see, for example, Mukhopadhyay, 2000) and the moment condition on D_{ij}, there is an absolute constant C such that

$$E|\hat{M}_i - M_i|^{4+\phi} \leq Cn^{-(2+\phi/2)}$$

for all $i = 1, \ldots, p$. Therefore, for any $a > 0$,

$$\Pr(\sup_i |\hat{M}_i - M_i| \geq a) \leq \sum_{i=1}^n \Pr(|\hat{M}_i - M_i| \geq a) \leq C \cdot n \cdot \frac{E|\hat{M}_i - M_i|}{a^{4+\phi}} \leq C a^{-(4+\phi)} n^{-(1+\phi/2)}.$$

Since this is summable, it follows that $\sup_i |\hat{M}_i - M_i| \to 0$ almost surely, as desired.

7.5 Derivation of optimal singular values and AMSE

The derivation of the optimal singular values and the AMSE is a summary of what is found in Gavish and Donoho (2017). We provide it here for the reader’s convenience.

Proposition 7.2. There exist orthonormal bases $a_1, \ldots, a_p \in \mathbb{R}^p$ and $a'_1, \ldots, a'_n \in \mathbb{R}^n$ in which X and \hat{X} are jointly in block-diagonal form, with r 2-by-2 blocks. More precisely, there are orthogonal matrices A_1 and A_2 such that $A_1 \hat{B} A_2^\top = \oplus_{i=1}^r C_i$ and $A_1 X A_2^\top = \oplus_{i=1}^r D_i$, where C_i and D_i are 2-by-2 matrices given by

$$C_i = \begin{pmatrix} \lambda_i c_i \tilde{c}_i & \lambda_i c_i \tilde{s}_i \\ \lambda_i \tilde{c}_i s_i & \lambda_i \tilde{s}_i \tilde{s}_i \end{pmatrix}, \quad D_i = \begin{pmatrix} \ell_i^{1/2} & 0 \\ 0 & 0 \end{pmatrix}.$$

Proof. The proof, which is elementary linear algebra, is essentially contained in Gavish and Donoho (2017).

Since the rank r is fixed, and since the sines and cosines converge almost surely, it follows immediately that the quantity

$$L_\infty(\lambda_1, \ldots, \lambda_r) = \lim_{p,n \to \infty} \|\hat{X} - X\|_F^2$$

is well-defined, where \hat{X} is the estimator with singular values $\lambda_1, \ldots, \lambda_r$; and furthermore, since the squared Frobenius norm decomposes over blocks, we have:

$$L_\infty(\lambda_1, \ldots, \lambda_r) = \sum_{i=1}^r \|C_i - D_i\|_F^2$$
Consequently, the optimal λ_i is found by optimizing a single spike for a 2-by-2 block:

$$\lambda_i^* = \arg \min_{\lambda} \|C_i - D_i\|_F^2.$$ \hspace{1cm} (13)

To solve for λ_i^* and find the AMSE, we write out the error explicitly:

$$\|C_i - D_i\|_F^2 = \lambda_i^2 - 2\ell_1^1 c_i \tilde{c}_i + \ell_i,$$

which is minimized at $\lambda_i^* = \frac{\ell_i}{c_i \tilde{c}_i}$, and has minimum value $\ell_i(1 - c_i \tilde{c}_i)$. The total AMSE is therefore $\sum_{i=1}^r \ell_i(1 - c_i \tilde{c}_i)$.

7.6 Proof of Thm. 4.1

All that remains to show is that the out-of-sample W-AMSE is equal to the in-sample W-AMSE, when $W = \Sigma_\epsilon^{-1/2}$. That is, we must show

$$\sum_{i=1}^r \left(\ell_i - \frac{\ell_1^1 c_i^1}{c_i^2 + 1} \right) = \sum_{k=1}^r \ell_i(1 - c_i^2 \tilde{c}_i^2).$$

We will prove equality of the individual summands; denoting $\ell = \ell_i$, $c = c_i$ and $\tilde{c} = \tilde{c}_i$, this means showing $\ell - \frac{\ell_1^1 c_i^1}{c_i^2 + 1} = \ell(1 - c^2 \tilde{c}^2)$. Straightforward algebraic manipulation shows that this is equivalent to showing $1/\tilde{c}^2 = 1 + 1/(\ell c^2)$. Substituting formulas (7) and (8), we have:

$$1/\tilde{c}^2 = \frac{1 + 1/\ell}{1 - \gamma/\ell^2} = \frac{\ell + 1}{\ell - \gamma/\ell} = 1 + \frac{1 + \gamma/\ell}{\ell - \gamma/\ell} = 1 + \frac{1 + \gamma/\ell}{1 - \gamma/\ell^2} = 1 + 1/(\ell c^2)$$

as desired.

References

