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ABSTRACT

Single particle reconstruction (SPR) from cryo-electron mi-
croscopy (EM) is a technique in which the 3D structure of
a molecule needs to be determined from its contrast transfer
function (CTF) affected, noisy 2D projection images taken at
unknown viewing directions. One of the main challenges in
cryo-EM is the typically low signal to noise ratio (SNR) of
the acquired images. 2D classification of images, followed
by class averaging, improves the SNR of the resulting aver-
ages, and is used for selecting particles from micrographs and
for inspecting the particle images. We introduce a new affin-
ity measure, akin to the Mahalanobis distance, to compare
cryo-EM images belonging to different defocus groups. The
new similarity measure is employed to detect similar images,
thereby leading to an improved algorithm for class averaging.
We evaluate the performance of the proposed class averag-
ing procedure on synthetic datasets, obtaining state of the art
classification.

Index Terms— Cryo-electron microscopy, single parti-
cle reconstruction, particle picking, class averaging, Maha-
lanobis distance, denoising, CTF.

1. INTRODUCTION

SPR from cryo-EM is a rapidly advancing technique in struc-
tural biology to determine the 3D structures of macromolecu-
lar complexes in their native state [1, 2], without the need for
crystallization. First, the sample, consisting of randomly ori-
ented, nearly identical copies of a macromolecule, is frozen
in a thin ice layer. An electron microscope is used to ac-
quire top view images of the sample, in the form of a large
image called a ’micrograph’, from which individual particle
images are picked semi-automatically. After preprocessing
the selected raw particle images, the images are next clas-
sified, and images within each class are averaged, (a step
known as ”class averaging”), to obtain a single image per
class, that enjoys a higher SNR than the individual images. To
minimize radiation damage, cryo-EM imaging must be con-
strained to low electron doses, which results in a very low
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SNR in the acquired 2D projection images. Class averaging is
thus a crucial step in the SPR pipeline; class averages are used
for a preliminary inspection of the dataset, to eliminate out-
liers, and in semi-automated particle picking [3]. Typically,
a user manually picks particles from a small number of mi-
crographs. These are used to compute class averages, which
are further used as templates to pick particles from all micro-
graphs. Class averages are also used in subsequent stages of
the SPR pipeline, such as 3D ab-initio modeling.

The two popular approaches for 2D class averaging
[4, 5, 6, 7, 8, 9] in cryo-EM are multivariate statistical anal-
ysis (MSA)[7] with multi-reference alignment (MRA) [10]
and iterative reference-free alignment using K-means cluster-
ing [5]. Popular cryo-EM packages like RELION, XMIPP,
EMAN2, SPIDER, SPARX, IMAGIC [11, 12, 13, 14, 3, 15]
use some of these methods for class averaging. RELION
uses a maximum likelihood classification procedure. In
[16], a faster and more accurate approach for 2D class
averaging was introduced based on a new rotationally in-
variant representation to compute the similarity between
pairs of cryo-EM images. The implementation of this
method is available in the cryo-EM software package AS-
PIRE (http://spr.math.princeton.edu/).

Recently in [17], it was shown that preliminary inspec-
tion of the underlying clean images can in fact be performed
at an earlier stage, by better denoising the acquired images us-
ing an algorithm called Covariance Wiener Filtering (CWF).
In CWF, the covariance matrix of the underlying clean pro-
jection images is estimated from their noisy, CTF-affected
measurements. This estimated covariance is then used in the
classical Wiener deconvolution framework to obtain denoised
images, which can be used for a preliminary viewing of the
underlying dataset, and outlier detection.

There are two main contributions of this paper. First,
we introduce a new similarity measure, related to the Maha-
lanobis distance [18], to compute the similarity of pairs of
cryo-EM images. Second, we use the proposed Mahalanobis
distance to improve the class averaging algorithm described in
[16]. We first obtain for each image a list of S other images
suspected as nearest neighbors using the rotational invariant
representation (see Sec. 2 for details), and then rank these
suspects using the Mahalanobis distance. The top K nearest
neighbors, where K < S, given by this procedure are finally
aligned and averaged to produce class averages. We test the
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Fig. 1: CTF’s for different values of the defocus. CTF param-
eters used are: the amplitude contrast α = 0.07 , the electron
wavelength λ = 2.51pm, the spherical aberration constant
Cs = 2.0 , the B-factor B = 10, the defocus= 1µm, 1.3µm,
and 1.6µm, and the pixel size is 2.82Å. See eq. (3)

new algorithm on a synthetic dataset at various noise levels
and observe an improvement in the number of nearest neigh-
bors correctly detected.

2. BACKGROUND

2.1. Image Formation Model

Under the linear, weak phase approximation (see [19, Chap-
ter 2]), the image formation model in cryo-EM is given by

yi = ai ? xi + ni (1)

where ? denotes the convolution operation, yi is the noisy
projection image in real space, xi is the underlying clean pro-
jection image in real space, ai is the point spread function of
the microscope, and ni is additive Gaussian noise that cor-
rupts the image. In the Fourier domain, images are multiplied
with the Fourier transform of the point spread function, called
the CTF, and eqn.(1) can be rewritten as

Yi = AiXi +Ni (2)

where Yi, Xi and Ni are the Fourier transforms of yi, xi and
ni respectively. The CTF is approximately given by (see [19,
Chapter 3])

CTF (k̂; ∆ẑ2) = e−Bk̂
2

sin[−π∆ẑk̂2 +
π

2
k̂4] (3)

where ∆ẑ = ∆z

[Csλ]
1
2

is the“generalized defocus” and k̂ =

[Csλ]
1
4 k is the“generalized spatial frequency”, andB is the B

factor for the Gaussian envelope function. CTF’s correspond-
ing to different defocus values have different zero crossings
(see Fig.1). Note that the CTF inverts the sign of the image’s
Fourier coefficients when it is negative, and completely sup-
presses information at its zero crossings.

2.2. Rotationally Invariant Class Averaging

The procedure for class averaging, described in [16], was
demonstrated to be both faster and more accurate than other

existing class averaging procedures. It consists of three main
steps. First, principal component analysis (PCA) of CTF-
corrected phase flipped images is computed. We refer to this
step as steerable PCA, because the procedure takes into ac-
count that the 2D covariance matrix commutes with in-plane
rotations. Second, the bispectrum of the expansion coeffi-
cients in the reduced steerable basis is computed. The bispec-
trum is a rotationally invariant representation of images, but
is typically of very high dimensionality. It is projected onto
a lower dimensional subspace using a fast, randomized PCA
algorithm [20]. One way to compare images after this step
is using the normalized cross correlation. At low SNR, it is
difficult to identify true nearest neighbors from the cross cor-
relation. Therefore, Vector Diffusion Maps (VDM) [15] was
used to further improve the initial classification by taking into
account the consistency of alignment transformations among
nearest neighbor suspects.
2.3. Covariance Wiener Filtering (CWF)

CWF was proposed in [17] as an algorithm to (i) estimate the
CTF-corrected covariance matrix of the underlying clean 2D
projection images (since phase flipping is not an optimal cor-
rection) and (ii) using the estimated covariance to solve the as-
sociated deconvolution problem in eqn. 2 to obtain denoised
images, that are estimates of Xi for each i in eqn. 2. The
first step involves estimating the mean image of the dataset,
µ, denoted µ̂, followed by solving a least squares problem to
estimate the covariance Σ, denoted Σ̂. Under the assumption
of additive white Gaussian noise, the estimate of the underly-
ing clean image Xi is given by

X̂i = (I −HiAi)µ̂+HiYi (4)

where Hi = Σ̂ATi (AiΣ̂A
T
i + σ2I)−1

3. ANISOTROPIC AFFINITY

The Mahalanobis distance in statistics [18] is a generalized,
unitless and scale invariant similarity measure that takes cor-
relations in the dataset into account. It is popularly used for
anomaly detection and clustering [21, 22].

Our goal is to define a similarity measure to compare how
close any two cryo-EM images are, given the CTF-affected,
noisy observations for a pair of images, say Yi and Yj in eq.2.
CTF correction is a challenging problem due to the numer-
ous zero crossings of the CTF. A popular, albeit, heuristic ap-
proach for CTF correction is phase flipping, which involves
simply inverting the sign of the Fourier coefficients. This cor-
rects for the phase inversion caused by the CTF, but does not
perform amplitude correction. In [17], a new approach for de-
noising and CTF correction in a single step was introduced,
called CWF. When comparing the similarity of cryo-EM im-
ages from different defocus groups, one must take into ac-
count of the effects of CTFs. Since phase flipping is sub-
optimal as a method for CTF correction, computing nearest



neighbors using the Euclidean distance between features con-
structed from phase flipped, denoised images can suffer from
incorrectly identified neighbors. One simple approach would
be to simply use the Euclidean distance between the CWF de-
noised images, as a measure of similarity. However, the opti-
mality criterion for obtaining CWF denoised images is differ-
ent from that for identying nearest neighbors. Moreover, even
after CWF denoising, there is remnant noise in the denoised
images. Due to the different noise statistics for each denoised
image, the Euclidean distance is not an optimal measure of
affinity.

In our statistical model, the underlying clean images
X1, X2, . . . Xn ∈ Cd (where n is the total number of im-
ages and d is the total number of pixels in each image) are
assumed to be independent, identically distributed (i.i.d.)
samples drawn from a Gaussian distribution. Further, we
assume that the noise in our model is additive white Gaussian
noise.

Xi ∼ N (µ,Σ)

Ni ∼ N (0, σ2Id) (5)

We note that while the assumption of a Gaussian distribution
does not hold in practice, it facilitates the derivation of the
new measure. The justification of the new measure is its su-
periority over the existing class averaging algorithm, as we
demonstrate in Sec. 5.

The Gaussian assumption on signal and noise (5) and the
image formation model (2) imply that Yi is also Gaussian

Yi ∼ N (Aiµ,AiΣA
T
i + σ2Id), for i = 1, . . . , n. (6)

The joint distribution of (Xi, Yi) is given by[
Xi

Yi

]
=

[
I 0
Ai I

]
×
[
Xi

Ni

]
(7)

∼ N
[[

µ
Aiµ

]
,

[
Σ ΣATi
AiΣ AiΣA

T
i + σ2I

]]
(8)

The conditional distribution of Xi given Yi is also Gaussian

Xi|Yi = yi ∼ N (αi, Li) (9)

where
αi = µ+ ΣAT

i (AiΣA
T
i + σ2I)−1(yi −Aiµ)

Li = Σ − ΣAT
i (AiΣA

T
i + σ2I)−1AiΣ.

(10)

So

Xi −Xj |Yi = yi, Yj = yj ∼ N (αi − αj , Li + Lj) (11)

LetXi−Xj = xij , and αi−αj = αij . Then, for small ε, the
probability that the `p distance between Xi and Xj is smaller
than ε is

Pr(||Xij ||p < ε|Yi = yi, Yj = yj) =
1

(2π)
d
2 |Li + Lj |

1
2

×∫
Bp(0,ε)

exp{−1

2
(xij − αij)T (Li + Lj)

−1(xij − αij}dxij

(12)

VDM No VDM
SNR This work [16] This work [16]
1/60 34965 32113 34537 29219
1/100 17262 14431 16057 13706

Table 1: Number of nearest neighbors with correlation> 0.9,
using 10000 images, K = 10 and S = 50.

=
εdVol(Bp(0, 1))

(2π)
d
2 |Li + Lj |

1
2

exp{−1

2
αTij(Li+Lj)

−1αij}+O(εd+1)

(13)
where Bp(0, ε) is the `p ball of radius ε in Rd centered at the
origin. The probability of ‖Xij‖p < ε given the noisy images
yi and yj is a measure of the likelihood for the underlying
clean images xi and xj to originate from the same viewing
direction. So we can define our similarity measure after tak-
ing the logarithm on both sides of eqn.(13), dropping out the
constants independent of i and j, and substituting back αij :

− 1

2
log(|Li+Lj |)−

1

2
(αi−αj)T (Li+Lj)

−1(αi−αj) (14)

Notice the resemblance of the second term in eq. (14) to
the classical Mahalanobis distance [18]. This term takes into
account the anisotropic nature of the covariance matrix by ap-
propriately normalizing/scaling each dimension when com-
puting the distance between two points. Note that this dis-
tance is different for different pairs of points since it depends
on Li + Lj , unlike the Euclidean distance and the classical
Mahalanobis distance.

4. ALGORITHM FOR IMPROVED CLASS
AVERAGING USING MAHALANOBIS DISTANCE

We propose an improved class averaging algorithm that in-
corporates the affinity measure (14). The quantities αi, Li are
computed for each image and defocus group respectively (in
practice Σ is replaced by its estimate Σ̂), using CWF [17].
The estimated covariance using CWF is block diagonal in the
Fourier Bessel basis. In practice, we use αi, Li projected onto
the subspace spanned by the principal components (for each
angular frequency block). We obtain an initial list of S near-
est neighbors for each image using the Initial Classification
algorithm in [16]. Then, for the list of nearest neighbors cor-
responding to each image, the affinity (14) is computed and
used to pick the closest K nearest neighbors, where K < S.

5. NUMERICAL EXPERIMENTS

We test the improved class averaging algorithm on a syn-
thetic dataset that consists of projection images generated
from the volume of P. falciparum 80S ribosome bound to
E-tRNA, available on the Electron Microscopy Data Bank
(EMDB) as EMDB 6454. The algorithm was implemented



in the UNIX environment, on a machine with total RAM of
1.5 TB, running at 2.3 GHz, and with 60 cores. For the re-
sults described here, we used 10000 projection images of size
65× 65 that were affected by the various CTF’s and additive
white Gaussian noise at various noise levels, in particular,
we show here results for 4 values of the SNR. The images
were divided into 20 defocus groups. Initial classification
was first used to select S = 50 nearest neighbors for each
image. After rotationally aligning the suspected neighbors,
the Mahalanobis distance was computed between each image
and the 50 aligned suspects. We then pick the closest K = 10
neighbors for each image. For comparison, we compute 10
nearest neighbors for each image using only Initial Classifi-
cation (with or without using the optional VDM step). Table
1 shows the number of pairs of nearest neighbor images de-
tected with each method at various SNR’s, that have correla-
tion > 0.9 between the original clean images, indicating that
they are indeed neighbors. We note an improvement in the
number of true nearest neighbors detected by the improved
classification algorithm using the Mahalanobis distance. Fig-
ure 3 shows the estimated probability density function of the
angular distance between nearest neighbor images, using 1)
Initial Classification only 2) Improved classification using
the Mahalanobis distance by repeating this experiment at
four different SNR’s. Figure 2a shows the results of Initial
Classification and the improved class averaging algorithm on
this synthetic dataset. We compare the quality of the class
averages from [16] and this paper with K = 10. Averaging
over a large number of nearest neighbors reduces the noise
variance. However, it also blurs the underlying clean signal,
since the neighbors are not exactly from the same viewing
direction. Therefore, it is crucial to correctly identify only
the top few nearest neighbors and average them in order to
sufficiently reduce the noise without blurring the features too
much for the ab initio reconstruction. We can see in Figure
2b that noise reduces in the class averages when K increases.
The procedure in [16] took 168 seconds, while the improved
classification using the anisotropic affinity took 860 seconds
for the experiment described here.

6. DISCUSSION

In this paper, we introduced a new similarity measure to com-
pare CTF-affected cryo-EM images belonging to different de-
focus groups. The anisotropic affinity defined in this paper is
similar the one that appears in [23, 24] but also includes an
additional normalization/log term. In this work we provide
a new probabilistic interpretation for this anisotropic affinity.
The affinity proposed here can be used as a similarity measure
for any manifold learning procedure [24, 23] such as diffusion
maps [25, 26], with or without missing data.

Raw

[14]

This
work

Clean

(a)

Clean Noisy K=10 K=20 K=30

(b)

Fig. 2: Results of class averaging of a synthetic dataset of
10000 projection images of size 65 × 65, affected by CTF
and at an SNR= 1/40. (a) We show class averages with Ini-
tial Classification in the second row, and with the improved
algorithm using the anisotropic affinity in the third row. We
use K = 10 and S = 50. (b) We show class averages for one
image in the dataset with the improved algorithm using the
anisotropic affinity, for S = 50, and using K = 10, 20, 30
for averaging.

Fig. 3: The estimated probability density function of the an-
gular distance (in degrees) between images classified into the
same class by 1) Initial Classification and 2) Improved Clas-
sification using the anisotropic affinity at different SNR’s.
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