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Abstract

This paper studies the limiting behavior of Tyler’s and Maronna’s M-
estimators, in the regime that the number of samples n and the dimension
p both go to infinity, and p/n converges to a constant y with 0 < y < 1.
We prove that when the data samples are identically and independently
generated from the Gaussian distribution N(0, I), the difference between
the sample covariance matrix and a scaled version of Tyler’s M-estimator
or Maronna’s M-estimator tends to zero in spectral norm, and the empiri-
cal spectral densities of both estimators converge to the Marchenko-Pastur
distribution. We also extend this result to elliptical-distributed data sam-
ples for Tyler’s M-estimator and non-isotropic Gaussian data samples for
Maronna’s M-estimator.
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1 Introduction

Many statistical estimators and signal processing algorithms are based on the
sample covariance matrix of the input, which is defined to be Sn = 1

n

∑n
i=1 xix

T
i

when the input data points are x1,x2, · · · ,xn ∈ Rp. Due to the importance
of the sample covariance matrix, its asymptotic spectral properties at the limit
of infinite number of samples have been well studied. A noticeable example
is the case of the sample covariance matrix of n i.i.d Gaussian random vec-
tors in Rp. Denoting the eigenvalues of Sn by λ1(Sn), λ2(Sn), · · · , λn(Sn), the
Marchenko-Pastur law [13] states that the distribution of the eigenvalues of
empirical covariance matrix, i.e. the empirical spectral density

f(λ) =
1

n

n∑
i=1

δλi(Sn)(λ)

converges in distribution to a deterministic distribution, known as the Marchenko-
Pastur distribution, when p, n→∞ and p/n→ y.

In many applications, one needs to use robust estimators for data sets sam-
pled from distributions with heavy tails or outliers. A commonly used robust
estimator of covariance is Maronna’s M-estimator [12], which is defined as the
solution to the equation

Σ =
1

n

n∑
i=1

u(xTi Σ−1xi)xix
T
i , where u : (0,∞)→ [0,∞) (1)

Another interesting robust covariance estimator is Tyler’s M-estimator [16],
which is a special case of Maronna’s M-estimator with the choice u(x) = p

x . It
is shown to be the most robust estimator of the covariance matrix of an ellipti-
cal distribution in the sense of minimizing the maximum asymptotic variance.
Therefore, Tyler’s M-estimator has been used to replace the empirical sample
covariance in many applications such as anomaly detection in wireless sensor
networks [4], antenna array processing [14] and radar detection [15].

The limiting empirical spectral density of Maronna’s M-estimator when both
p, n → ∞ and p/n → y has been analyzed in two recent works [5, 6], which
prove that a properly scaled Maronna’s M-estimator converges to the sample
covariance matrix in terms of operator norm under some assumptions of u(x)
and the distribution of data samples.

For Tyler’s M-estimator, the original work by Tyler studied the case when
p is fixed and n goes to infinity [16, Theorem 3.2, Theorem 4.2], which is the
standard setting in classical statistics. Some later works focused on the case
p, n → ∞ and p/n → 0: Dümbgen [7] showed that the conditional number of
Tyler’s estimator converges to 1 + O(

√
p/n). Frahm and Glombek [8] showed

that the empirical spectral distribution of
√
n/p(Σ̂ − I) converges to the a

semicircle distribution. However, modern applications involve high-dimensional
data for which n and p are of the same order. Yet, no result for the setting p, n→
∞ and p/n → y has been obtained, although it has been conjectured that the
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empirical density distribution follows the Marchenko-Pastur distribution [9, 6].
We note that Tyler’s M-estimator was not included in the analysis of [5, 6]
because their method depends on the strict monotonicity of xu(x), which is a
constant for Tyler’s M-estimator since xu(x) = p.

The main contribution of this paper are Theorem 3.5 and Corollary 3.7
that prove the conjecture that as p, n → ∞ and p/n → y, 0 < y < 1, the
empirical spectral density of a properly scaled Tyler’s M-estimator converges to
the Marchenko-Pastur distribution ρMP(x), defined by

ρMP(x) =
1

2π

y
√

(y+ − x)(x− y−)

x
1[y−,y+], where y± = (1±√y)2. (2)

Our paper and [5, 6] are similar in the sense that the proofs are based on
the representation of M-estimator as a weighted sum of xix

T
i , and the uniform

convergence of these weights. However, we give a different proof for the con-
vergence of the weights, by considering the weights as the solution to a system
of equations, while the proofs of [5, 6] are based on an iteratively reweighted
algorithm. In comparison, our approach can handle Tyler’s M-estimator and
some Maronna’s M-estimators (i.e., some functions u(x)) that are not covered in
[5, 6]. We remark that while some Lemmas and technical proofs are also covered
in [5, 6] (for example, Lemma 5.2 and the analysis in the proof of Theorem 3.2
are similar to [5, Lemma 2], [6, Lemma 6] and proof of Theorem 1 in [5]), we
still include them for the completeness of the paper.

Based on the properties of Tyler’s and Maronna’s M-estimators, this paper
also analyzes the empirical spectral density when data samples are i.i.d. drawn
from other distributions such as elliptical distributions. In addition, we give
estimates for the convergence rates of the empirical density function and the
largest eigenvalue of the Tyler’s M-estimator as p, n→∞, p/n→ y.

The rest of the paper is organized as follows. In Section 2 we provide the
definition of Tyler’s and Maronna’s M-estimators and state some of their proper-
ties, such as existence and uniqueness, and we introduce their representations by
linear combinations of xix

T
i . In Section 3 we present the main results that when

data set is i.i.d. sampled from Gaussian distribution N(0, I), properly scaled
Tyler’s and Maronna’s M-estimators converge to the sample covariance in op-
erator norm, and the limiting empirical spectral density of Tyler’s M-estimator
follows the Marchenko-Pastur law. We also extend the result to elliptical dis-
tributions for Tyler’s M-estimator and non-isotropic Gaussian distributions for
Maronna’s M-estimator. The technical proofs are given in Section 5.

As for notations, we will use c, c′, C, C ′ to denote any fixed constants as
p, n → ∞ (though they may depend on y). Depending on the context, they
might denote different values in different equations.
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2 Properties of Tyler’s and Maronna’s M-estimators

By the fixed-point algorithm [19, (1.2)], Tyler’s M-estimator can also be defined
by any Σ satisfying

n∑
i=1

xix
T
i

xTi Σ−1xi
= cΣ, for some c > 0. (3)

When span({xi}ni=1) = Rp, Tyler’s M-estimator exists and is unique up to
a scaling [19, Theorem 1.1]: it is easy to verify that for any solution to (3), its
scaled version is another solution. For the rest of the paper we denote Tyler’s
M-estimator by Σ̂ and ensure it uniqueness by fixing its trace to be 1, that is,
we assume tr(Σ̂) = 1.

As for Maronna’s M-estimator, for the convenience of analysis we define it
slightly different from the literature by removing the factor 1/n from (1), or
equivalently, replace u(x) by 1

nu(x) in (1):

Σ =

n∑
i=1

u(xTi Σ−1xi)xix
T
i , (4)

and we note that a similar modification has also been applied in [5, 6].
The existence and uniqueness of Maronna’s M-estimator has been analyzed

in [11, 20], by analyzing the minimizer of the objective function

L(Σ) =

n∑
i=1

ρ(xTi Σ−1xi) +
n

2
log det Σ, where ρ′(x) = nu(x)/2.

We remark that the derivative of L(Σ) with respect to Σ−1 is

d

dΣ−1
L(Σ) =

n∑
i=1

n

2
u(xTi Σ−1xi)xix

T
i −

n

2
Σ,

whose roots give solutions to (4).
By analyzing the geodesic convexity of L(Σ), [20, Theorem 1] states that the

uniqueness of the minimizer of L(Σ) is guaranteed when ρ(x) is continuous in
(0,∞), nondecreasing and ρ(ex) is convex [20, Theorem 1], and the minimizer of
L(Σ) exists when a1 = sup{a|xa/2 exp(−ρ(x)) → 0 as x→∞} is positive [11,
Theorem 2.3] (when lim∞ xu(x) exists, a1 = n limx→∞ xu(x)),1 and

|{xi}ni=1 ∩V|
n

< 1− p− dim(V)

a1
for any linear subspace V ∈ Rp. (5)

1It follows from the comment after [11, Definition 2.1]. We remark that u(x) in [11] should
be replaced by nu(x), since we use (4) over the standard definition (1). This also explains our
choice of ρ′(x) = nu/2 instead of ρ′(x) = u/2 used in [11]. We remark that there is a typo
after [11, Definition 2.1], where “ρ′(x) = 2u(x)” should be replaced by “ρ′(x) = u(x)/2”.
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When the underlying distribution of {x}ni=1 does not concentrate on any
subspace (i.e., the measure of any subspace is 0), then the LHS of (5) is bounded

above by dim(V )
n almost surely and (5) becomes

d

n
< 1− p− d

a1
for any 1 ≤ d ≤ p− 1. (6)

Applying a1 = n limx→∞ xu(x), (6) holds for p, n → ∞ when limx→∞ xu(x) >
y.

When the above condition holds, the minimizer of L(Σ) exists, and the
minimizer is also a solution to (4). Due to the geodesic convexity of L(Σ) [20,
Theorem 1], the minimizer of L(Σ) is unique, and any solution to (4) is also a
minimizer of L(Σ). Therefore, the solution to (4) is also unique. That is, under
the above assumptions on ρ(x), we have the existence and uniqueness of the
solution to (4).

Since uniqueness and existence of both Maronna’s M-estimator and Tyler’s
M-estimator requires span({xi}ni=1) = Rp, we let y < 1 throughout the paper.

The analysis for Tyler’s and Maronna’s M-estimators in this paper is based
on the following representations, whose proofs are deferred to Section 5:

Lemma 2.1. Tyler’s M-estimator can be written as

Σ̂ =

n∑
i=1

ŵixix
T
i

/
tr
( n∑
i=1

ŵixix
T
i

)
, (7)

where {ŵi}ni=1 are uniquely defined by

(ŵ1, ŵ2, · · · , ŵn) = arg min∑n
i=1 wi=1

−
n∑
i=1

logwi +
n

p
log det

( n∑
i=1

wixix
T
i

)
. (8)

Lemma 2.2. When Maronna’s M-estimator exists and is unique, any {w̄i}ni=1

satisfying

w̄j = xTj

( n∑
i=1

u(w̄i)xix
T
i

)−1
xj , for j = 1, 2, · · · , n (9)

gives Maronna’s M-estimator by

Σ̄ =

n∑
i=1

u(w̄i)xix
T
i . (10)

3 Main Results

In this section we present the main results: we prove the convergence of Tyler’s
and Maronna’s M-estimators to the sample covariance matrix under the Gaus-
sian model N(0, I) in terms of the operator norm in Section 3.1, and then extend
the result to elliptical distributions/non-isotropic Gaussian distributions in Sec-
tion 3.2. Based on the convergence, we obtain the limiting empirical density
distributions of Tyler’s and Maronna’s M-estimators in Section 3.3.
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3.1 Isotropic Gaussian Distribution

3.1.1 Tyler’s M-estimator

In this section, we assume that {xi}ni=1 ⊂ Rp are i.i.d. drawn from N(0, I). The
main result, Theorem 3.2, characterizes the convergence and convergence rate
of Tyler’s M-estimator to the sample covariance in terms of the operator norm.
Its proof applies Lemma 3.1, whose proof is rather technical and therefore in
Section 5.

Lemma 3.1. If xi ∼ N(0, I) for all 1 ≤ i ≤ n, then max1≤i≤n |n ŵi − 1|
converges to 0 almost surely as p, n→∞. In particular, there exists C, c, c′ > 0
such that for any ε < c′,

Pr

(
max
1≤i≤n

|n ŵi − 1| ≤ ε
)
≥ 1− Cne−cε

2n. (11)

Theorem 3.2. Suppose that {xi}ni=1 are i.i.d. sampled from N(0, I), p, n→∞
and p/n = y, where 0 < y < 1, and xi ∼ N(0, I) for all 1 ≤ i ≤ n, then a
scaled Tyler’s M-estimator converges to the sample covariance in operator norm
almost surely, and there exist C, c, c′ > 0 such that for any ε < c′,

Pr

(∥∥∥∥∥p Σ̂− 1

n

n∑
i=1

xix
T
i

∥∥∥∥∥ ≤ ε
)
≥ 1− Cne−cε

2n. (12)

The strategy of the proof for Theorem 3.2 is as follows. According to
Lemma 2.1, a scaled Tyler’s M-estimator is a linear combination of xix

T
i , i.e.,

it can be written as
∑n
i=1 ŵixix

T
i (up to scale). Then Lemma 3.1 shows that

nŵi converges to 1 uniformly, and based on the following matrix analysis, The-
orem 3.2 can be concluded.

Proof of Theorem 3.2. We first prove that for ε < c′,

Pr

(∥∥∥∥∥
n∑
i=1

ŵixix
T
i −

1

n

n∑
i=1

xix
T
i

∥∥∥∥∥ ≤ ε
)
≥ 1− Cne−cε

2n. (13)

Let Bn =
∑n
i=1(ŵi − 1

n )xix
T
i =

∑n
i=1 ŵixix

T
i − 1

n

∑n
i=1 xix

T
i , then

‖Bn‖ = sup
‖v‖=1

vTBnv = sup
‖v‖=1

n∑
i=1

(ŵi −
1

n
)(vTxi)

2

≤ sup
‖v‖=1

n∑
i=1

∥∥∥∥ŵ − 1

n
1

∥∥∥∥
∞

(vTxi)
2 ≤ ‖nŵ − 1‖∞‖

1

n

n∑
i=1

xix
T
i ‖.

Since ‖nŵ − 1‖∞ → 0 with probability estimated in (11), and ‖ 1n
∑n
i=1 xix

T
i ‖

is bounded above by (1 + 2
√
y)2 with probability 1−C exp(−cn) [10, Theorem

II.13], (13) is proved.
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Second, since ‖
∑n
i=1 ŵixix

T
i ‖ ≤

∥∥∑n
i=1 ŵixix

T
i − 1

n

∑n
i=1 xix

T
i

∥∥+
∥∥ 1
n

∑n
i=1 xix

T
i

∥∥ ,
Pr

(
‖

n∑
i=1

ŵixix
T
i ‖ < C ′

)
> 1− Cn exp(−cn). (14)

Besides, tr(
∑n
i=1 ŵixix

T
i ) =

∑n
i=1 ŵix

T
i xi → p in the same rate as in (14): ap-

plying the concentration of high-dimensional Gaussian measure on the sphere [2,
Corollary 2.3], we have

max

(
Pr

(
n∑
i=1

ŵix
T
i xi < p(1− ε)

)
,Pr

(
n∑
i=1

ŵix
T
i xi > p/(1− ε)

))
(15)

≤max

(
Pr

(
min

1≤i≤n
‖xi‖2 < p(1− ε)

)
,Pr

(
max
1≤i≤n

‖xi‖2 > p/(1− ε)
))

< ne−ε
2p/4.

Combining (14), (15) and (7),∥∥∥∥∥
n∑
i=1

ŵixix
T
i − p Σ̂

∥∥∥∥∥ =

∥∥∥∥∥
n∑
i=1

ŵixix
T
i

∥∥∥∥∥
(

1− p/tr(
n∑
i=1

ŵixix
T
i )

)
(16)

converges in the same rate as specified in (13). (12) is then proved by combining
(13), (16) and the triangle inequality.

From the probabilistic estimation (12) we obtain a convergence rate of
O(
√

log n/n). In simulations we observe a rate of O(1/
√
n), which means our

estimation might be off by a factor of
√

log n.

3.1.2 Maronna’s M-estimator

In this section we first state our assumptions for u(x) in (4):
A1. u : [0,∞) → (0,∞) is nonnegative, ψ(x) = xu(x) is increasing and

limx→∞ ψ(x) > y.
A2. u(x) is twice differentiable, and xu′(x) < u(x).
We require assumption A1 to ensure the existence and uniqueness of Maronna’s

M-estimator so that Lemma 2.2 can be applied. When u(x) is nonnegative and
ψ(x) = xu(x) is increasing, the uniqueness condition in Section 2, i.e., ρ(x) is
non-decreasing and ρ(ex) is convex, are guaranteed (recall ρ′(x) = nu(x)/2).
And the condition limx→∞ ψ(x) > y guarantees the existence of Maronna’s
M-estimator as p, n→∞, as discussed in Section 2.

We require assumption A2 for some technical steps in our proof, though we
conjecture that our results about Maronna’s M-estimator in this paper will still
hold without this assumption.

Here we compare our assumption of u(x) with the assumption in [5, 6]. Since(
Z, u(x)

)
in [5, 6] is equivalent to

(
pΣ̄, yu(x)

)
in our setting, their assumptions

of u(x) can be translated to:

• u(x) is nonnegative, continuous and increasing.
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• ψ(x) is increasing and bounded, and 1
y < limx→∞ ψ(x) < 1

y2 .

There are three main differences between the assumptions of u(x), and our
assumptions allow some u(x) that was not covered in their work. First, our
assumption of limx→∞ ψ(x) is less restrictive and allows it to be infinity. As a
consequence, our theory allows some commonly used u(x) such as u(x) = xβ

(see [20]). Second, our assumption is less restrictive in the sense that we replaced
the assumption “u(x) is nonincreasing” (i.e., u′(x) ≤ 0) by xu′(x) < u(x).
However, our assumption on the twice differentiability of u(x) is more restrictive.

Based on these assumptions, we obtain the convergence of Maronna’s M-
estimator to a scaled version of the sample covariance matrix in operator norm.

Lemma 3.3. If xi ∼ N(0, I) for all 1 ≤ i ≤ n, let ψ(x) = xu(x), then there
exists a solution {w̄i}ni=1 to (9) max1≤i≤n |w̄i − ψ−1( 1

y )| converges to 0 almost

surely as p, n → ∞. In particular, there exists C, c, c′ > 0 such that for any
ε < c′,

Pr

(
max
1≤i≤n

|w̄i − ψ−1(1/y)| ≤ ε
)
≥ 1− Cne−cε

2n. (17)

Theorem 3.4. Suppose that {xi}ni=1 are i.i.d. sampled from N(0, I), p, n→∞
and p/n→ y, where 0 < y < 1, and xi ∼ N(0, I) for all 1 ≤ i ≤ n, then a scaled
Maronna’s M-estimator converges to the sample covariance matrix in operator
norm almost surely, and there exist C, c, c′ > 0 such that for any ε < c′,

Pr

(∥∥∥∥∥ 1

nψ−1(1/y)
Σ̄− 1

n

n∑
i=1

xix
T
i

∥∥∥∥∥ ≤ ε
)
≥ 1− Cne−cε

2n. (18)

3.2 More General Distributions

3.2.1 Tyler’s M-estimator

In this section, we extend Theorem 3.2 from the setting of the normal distri-
bution N(0, I) to elliptical distributions. We say that µp is an elliptical distri-
bution, if µp can be characterized by µp(x) = C(gp) det(Tp)

−1/2gp(x
TT−1p x),

where Tp is a positive definite matrix in Rp×p, gp : [0,∞) to [0,∞) satisfies∫∞
0
gp(x)xp−1 <∞, and C(gp) is a normalization parameter that only depends

on gp.
When Tp is a scalar matrix, the distribution is isotropic and we call µp

spherically symmetric distribution.
Our analysis is based on Theorem 3.2 and two properties of Tyler’s M-

estimator: 1. Tyler’s M-estimator is invariant to the scaling of data set, i.e., if
{xi}ni=1 are replaced by {cixi}ni=1 and {ci}ni=1 are arbitrary numbers in R, then

Σ̂ remains the same. 2. For any non-singular linear operator T : Rp → Rp, if
Tyler’s M-estimator for {xi}ni=1 is Σ̂, then Tyler’s M-estimator for {Txi}ni=1 is

T Σ̂T /tr(T Σ̂T ).
Both properties can be obtained by verifying (3). To prove the first propriety,

note that the LHS of (3) is unchanged if {xi}ni=1 is replaced by {cixi}ni=1. To
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prove the second property, one can show that (3) still holds when {xi}ni=1 and

Σ̂ are replaced by {Txi}ni=1 and T Σ̂T /tr(T Σ̂T ).

Theorem 3.5. If {xi}ni=1 are i.i.d. sampled from elliptical distribution µp(x) =
C(gp) det(Tp)

−1/2gp(x
TT−1p x), then we have the following property for Tyler’s

M-estimator: there exist c, C, c′ > 0 such that for any ε < c′,

Pr

(∥∥∥∥∥pT−1/2p Σ̂T−1/2p /tr(T−1/2p Σ̂T−1/2p )− p

n

n∑
i=1

yiy
T
i

∥∥∥∥∥ ≤ ε
)
≥ 1− Cne−cε

2n

(19)

for yi = T
−1/2
p xi/‖T−1/2p xi‖.

Proof. First, since xi are i.i.d. sampled from an elliptical distribution with

covariance matrix Tp, yi = T
−1/2
p xi/‖T−1/2p xi‖ are uniformly distributed over

the p− 1-dimensional unit sphere.
If we consider yi as the projections of xi ∼ N(0, I), the concentration of

N(0, I) on the sphere with radius
√
p [2, Corollary 2.3] and the boundedness of

‖ 1n
∑n
i=1 xix

T
i ‖ from above [10, Theorem II.13] gives that for ε < c′,

Pr

(∥∥∥∥∥ pn
n∑
i=1

yiy
T
i −

1

n

n∑
i=1

xix
T
i

∥∥∥∥∥ < ε

)
<≥ 1− Cne−cε

2n. (20)

Assuming the Tyler’s M-estimator for {yi}ni=1 is Σ̂y, then Theorem 3.2 and
(20) gives

Pr

(∥∥∥∥∥p Σ̂y −
p

n

n∑
i=1

yiy
T
i

∥∥∥∥∥ ≤ ε
)
≥ 1− Cne−cε

2n. (21)

Applying Property 1 (scale invariance) of Tyler’s M-estimator, Σ̂y is also the

Tyler’s M-estimator for the set {T−1/2p xi}ni=1. Applying Property 2,

Σ̂y = T−1/2p Σ̂T−1/2p /tr(T−1/2p Σ̂T−1/2p ). (22)

Combining (21) and (22), Theorem 3.5 is proved.

3.2.2 Maronna’s M-estimator

In this section, we extend Theorem 3.4 from the setting of the normal dis-
tribution N(0, I) to non-isotropic Gaussian distributions. The model is more
restrictive than the model of Tyler’s M-estimator, since Maronna’s M-estimator
lacks Property 1 (scale invariance) of Tyler’s M-estimator. We extend Theo-
rem 3.4 to non-isotropic Gaussian distributions by applying a similar property
to the Property 2 of Tyler’s M-estimator: For any non-singular linear oper-
ator T : Rp → Rp, if Maronna’s M-estimator for {xi}ni=1 is Σ̄, then Tyler’s

M-estimator for {Txi}ni=1 is T Σ̂T .
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Corollary 3.6. If {xi}ni=1 are i.i.d. sampled from N(0,Tp), where Tp is a pos-
itive definite matrix in Rp×p,. Then we have the following property for Tyler’s
M-estimator: there exist c, C, c′ > 0 such that for any ε < c′,

Pr

(∥∥∥∥∥T−1/2p

( 1

nψ−1(1/y)
Σ̄− 1

n

n∑
i=1

xix
T
i

)
T−1/2p

∥∥∥∥∥ ≤ ε
)
≥ 1−Cne−cε

2n. (23)

The distributions for data samples in this section can be compared to the
model given in [5, Section II] and [6, Assumption 2]. For the simplicity of the
discussion we only discuss [6, Assumption 2], which assumes that xi ∈ Rp is
defined by

√
τiANyi, where yi has independent entries with zero mean and unit

variance, and τi follows from some distribution.
While [6] covers more models than Corollary 3.6, we note that our proof only

depends Lemma 5.2. That is, our proof can be applied to any distribution that
satisfies Lemma 5.2. Since the distribution in [6] satisfies [6, Lemma 6], which
is equivalent to Lemma 5.2, our proof can also be applied to their models.

3.3 Empirical Spectral Density

3.3.1 Tyler’s M-estimator

This section investigates the distribution of the eigenvalues of Tyler’s M-estimator,
i.e., its empirical spectral density. We follow the setting of previous sections and
present two corollaries, where the first corollary proves the conjecture proposed
in [9] that the empirical spectral density converges to the Marchenko-Pastur
distribution when {xi}ni=1 are drawn from N(0, I), and the second corollary
gives the limiting distribution under the setting of elliptical distributions.

Corollary 3.7. If {xi}ni=1 are i.i.d. sampled from spherically symmetric dis-

tributions C(gp)gp(‖x‖2), then the empirical spectral density of pΣ̂ converges to
the following Marchenko-Pastur distribution.

To visualize Corollary 3.7, we simulated the case n = 20000 and p = 4000
with Gaussian distribution N(0, I), and Figure 1 shows that the empirical spec-
tral density of pΣ̂ is well approximated by the corresponding Marchenko-Pastur
distribution.

Lemma 3.8. Assume a set of matrices {An}n≥1 with size kn × kn, and with
empirical spectral density converging to a continuous distribution ρ, and another
sequence of matrices {Bn}n≥1 such that Bn is also of size kn×kn and ‖Bn‖ →
0. Then the empirical spectral density of {An + Bn}n≥1 also converges to ρ.

Proof of Corollary 3.7. The proof follows from Theorem 3.2 and Lemma 3.8,
and the proof of Lemma 3.8 will be given later in Section 5.

First, due to Property 1 in Section 3.2, it suffices to consider the case xi ∼
N(0, I). Then Corollary 3.7 is proved by combining Theorem 3.2, Lemma 3.8
and the fact that the empirical density of 1

n

∑n
i=1 xix

T
i converges to (2) as

p, n→∞ [13].

10



Figure 1: The empirical spectral density when n = 20000 and p = 4000, and
{xi}ni=1 are drawn from N(0, I) The red ind represents the Marchenko-Pastur
distribution for y = 1/5.

Next we extend the analysis to general elliptical distributions.

Corollary 3.9. Suppose {xi}ni=1 are i.i.d. sampled from elliptical distribution
C(gp)gp(x

TT−1p x), and the empirical spectral density of Tp converges to H.

Then the empirical spectral density of tr(Tp)Σ̂ converges to ρ, whose Stieltjes
transform s(z) satisfies

s(z) =

∫
1

t(1− y − yz s(z))− z
dH(t). (24)

Proof. Let

Bp = pT−1/2p Σ̂T−1/2p /tr(T−1/2p Σ̂T−1/2p )− 1

n

n∑
i=1

ziz
T
i , (25)

where zi = hi ·yi = hi ·T−1/2p xi/‖T−1/2p xi‖, and hi ∼
√
χ2
p. Then Theorem 3.5

and the convergence of hi to
√
p implies

Σ̂ =
T

1/2
p ( 1

n

∑n
i=1 ziz

T
i + Bp)T

1/2
p

tr
(
T

1/2
p ( 1

n

∑n
i=1 ziz

T
i + Bp)T

1/2
p

) ,
where ‖Bp‖ → 0.

Since ‖Bp‖ → 0 and zi are i.i.d fromN(0, I), tr
(
T

1/2
p ( 1

n

∑n
i=1 ziz

T
i + Bp)T

1/2
p

)
→

tr(Tp) almost surely. Therefore we only need to prove that the empirical spectral

density of tr
(
T

1/2
p ( 1

n

∑n
i=1 ziz

T
i + Bp)T

1/2
p

)
Σ̂ = T

1/2
p ( 1

n

∑n
i=1 ziz

T
i +Bp)T

1/2
p

converges to ρ.

11



Since T
1/2
p ( 1

n

∑n
i=1 ziz

T
i + Bp)T

1/2
p − T

1/2
p ( 1

n

∑n
i=1 ziz

T
i − ‖Bp‖I)T

1/2
p is

positive definite, the eigenvalues of T
1/2
p ( 1

n

∑n
i=1 ziz

T
i + Bp)T

1/2
p is bounded

below by T
1/2
p ( 1

n

∑n
i=1 ziz

T
i − ‖Bp‖I)T

1/2
p ; similarly it is bounded above by

T
1/2
p ( 1

n

∑n
i=1 ziz

T
i + ‖Bp‖I)T

1/2
p . Combining it with the fact that the eigenval-

ues of 1
n

∑n
i=1 ziz

T
i are almost surely bounded by [1−√y− t, 1+

√
y+ t] for any

t > 0 [17, Corollary 5.35], the eigenvalues of T
1/2
p ( 1

n

∑n
i=1 ziz

T
i + Bp)T

1/2
p

are bounded below and above by T
1/2
p (1 − ‖Bp‖

1−√y−t )(
1
n

∑n
i=1 ziz

T
i )T

1/2
p and

T
1/2
p (1 +

‖Bp‖
1−√y−t )(

1
n

∑n
i=1 ziz

T
i )T

1/2
p almost surely. By the convergence of the

ESD of T
1/2
p ( 1

n

∑n
i=1 ziz

T
i )T

1/2
p to ρ [1, (6.1.2)] and the convergence of ‖Bp‖

to 0, Corollary 3.9 is proved.

3.3.2 Maronna’s M-estimator

This section investigates the distribution of the eigenvalues of Maronna’s M-
estimator, when data are sample from Gaussian distribution. The analysis fol-
lows from the proof of Theorem 3.5 and Corollary 3.6.

Corollary 3.10. Suppose {xi}ni=1 are i.i.d. sampled from Gaussian distribution
N(0,Tp), where Tp is a positive definite matrix in Rp×p, and the empirical
spectral density of Tp converges to H. Then the empirical spectral density of

1
nψ−1(1/y) Σ̄ converges to ρ, whose Stieltjes transform s(z) satisfies

s(z) =

∫
1

t(1− y − yz s(z))− z
dH(t). (26)

In particular, if Tp = I for all p, 1
nψ−1(1/y) Σ̄ converges to the Marchenko-

Pastur distribution in (2).

4 Summary

We established that Maronna’s M-estimator and Tyler’s M-estimator converge
in operator norm to the sample covariance matrix as p, n → ∞ and p/n →
y, 0 < y < 1, where data samples follow the distribution of N(0, I). We
also extended the result to elliptical distribution for Tyler’s M-estimator and
non-isotropic Gaussian distribution for Maronna’s M-estimator, and proved the
conjecture that the empirical spectral density of Tyler’s M-estimator converges
to the Marchenko-Pasture distribution.

There are several possible future directions of this work. First, we would
like to know if a more careful analysis can prove the convergence of Maronna’s
estimator without the assumption A2. Second, in simulations we observe the
rate of M-estimator’s convergence to the sample covariance matrix is 1/

√
n,

while the current theoretical analysis only gives the order of O(
√

log n/n), and
we would like to find an approach that gives the better empirical rate.

12



5 Proof of Lemmas

5.1 Proof of Lemma 2.1

We first show the uniqueness of the solution to (8). It follows from the equiva-
lence to the following convex problem:

(ẑ1, ẑ2, · · · , ẑn) = arg min∑n
i=1 zi=1

log det(

n∑
i=1

ezixix
T
i ), (27)

The equivalence can be proved by plugging wi = nezi/(
∑n
i=1 e

zi) to (8) and
plugging zi = logwi − (

∑n
i=1 logwi − 1)/n to (27), and the uniqueness of the

solution to (27) follows from its convexity, which is proved in [18, Lemma 4].
Next we will verify (7). We start the proof by verifying that ŵi = w′i, where

w′i = c0/(x
T
i Σ̂−1xi) and c0 is a constant such that

∑n
i=1 w

′
i = 1.

According to the equivalence between (8) and (27), it is enough to show that
z′i = log(w′i) + c1 (c1 chosen such that

∑n
i=1 z

′
i = 1) is the unique minimizer

of (27). Indeed, applying the iterative algorithm (3), Σ̂ = c2
∑n
i=1 w

′
ixix

T
i for

some c2. Combining it with the definition of w′i, we have

w′i =
c0/c2

xTi (
∑n
i=1 w

′
ixix

T
i )−1xi

. (28)

Now we are ready to prove that the directional derivative of the objective func-
tion in (27) is 0 at (z′1, z

′
2, · · · , z′n): assuming the direction is from (z′1, z

′
2, · · · , z′n)

to (z′1 + δ1, z
′
2 + δ2, . . . , z

′
n + δn), then the directional derivative is

n∑
i=1

ez
′
ixTi (

n∑
i=1

ez
′
ixix

T
i )−1xiδi =

n∑
i=1

w′ix
T
i (

n∑
i=1

w′ixix
T
i )−1xiδi =

n∑
i=1

w′i
c0
c2w′i

δi = 0,

where the second equality follows from (28) and the last equality follows from∑n
i=1 δi = 0.
Due to the convexity of the objective function in (27), its stationary point

is also its minimizer, therefore ẑi = z′i and ŵi = w′i.

Combining ŵi = c0/(x
T
i Σ̂−1xi) and the definition of Σ̂ in (3), (7) is proved.

5.2 Proof of Lemma 2.2

Proof. It follows from the definition in (4) that w̄i = 1
nx

T
i Σ̄−1xi satisfies (10).

Plug (10) in the definition of w̄i, we obtain (9).
Since any {w̄i}ni=1 that satisfy (9) give the solution of (4) by (10), and the

solution of (4), i.e., Maronna’s M-estimator, exists and is unique, therefore any
solution to (9) gives the same Σ̄ by (10).
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5.3 Proof of Lemma 3.1

We start with an outline of the proof, which consists of three parts. First, we
rewrite the constrained optimization problem (8) to the problem of finding the
root of g(w), which will be defined in (29). Since the root of g(w) is nŵ−1, we
only need to show the convergence of the root of g(w). Second, we will show
that g(0) converges to 0, ∇g(0) is large and the variation of ∇g(w) is bounded.
Finally, we will use a perturbation analysis and the observations on g(0) and
∇g(w) to show that the root of g(w) converges to 0.

The proof depends on Lemma 5.2, Lemma 5.3 and Lemma 5.1, and their
proofs are postponed to subsequent sections.

Lemma 5.1. For a function f(w) : Rp → Rp, assume that ∇f(0) = I, and
‖∇f(w)−∇f(0)‖∞ = maxi≤i≤p ‖∇fi(w)−∇fi(0)‖∞ < C5‖w‖∞ for ‖w‖∞ ≤
1, and ‖f(0)‖∞ < min(1/9C5, 1/3). Then there exists w̃ such that ‖w̃‖∞ <
3‖f(0)‖∞ and f(w̃) = 0.

Lemma 5.2. If xi ∼ N(0, I) for all 1 ≤ i ≤ n, and S = 1
n

∑n
i=1 xix

T
i , then

there exists c, C, c′ > 0 such that for any ε < c′,

Pr

(
max
1≤i≤n

|1
p
xTi S

−1xi − 1| < ε

)
≥ 1− Cne−cε

2n.

Lemma 5.3. For the n × n matrix A defined by Aij = 1
n p (xTi S

−1xj)
2, (a)

‖A‖∞ < 2 with probability 1− Cn exp(−cn).
(b) There exists c = c(p, n) > 0 and C2 = C2(y) > 0 such that ‖(I −A +

c11T )−1‖∞ < C2 with probability 1− Cn exp(−cn).

We start the first part of the proof with the construction of g(w). We let

g(w) = ∇G(w + 1), (29)

where

G(w) = −
n∑
i=1

logwi +
n

p
log det(

n∑
i=1

wixix
T
i ) +

c0
2

(
n∑
i=1

wi − n)2, (30)

and the constant c0 will be specified later before (46).
It is easy to prove that the minimizer of G(w) and the zeros of ∇G(w)

must satisfies
∑n
i=1 wi = n (otherwise nw/(

∑n
i=1 wi) is a better minimizer

and ∇G(w) is nonzero). Therefore minimizing (30) is equivalent to minimizing
−
∑n
i=1 logwi + n

p log det(
∑n
i=1 wixix

T
i ) with constraint

∑n
i=1 wi = n, which is

the same as (8) except for the constraint. Noticing that a scaling of w increases
−
∑n
i=1 logwi + n

p log det(
∑n
i=1 wixix

T
i ) by a constant only depending on the

scale, the minimizer of (30) is unique and it is nŵ, where ŵ is defined in (8).
By the convexity of its equivalent problem (27), the root of g(w) is also unique
and it is nŵ − 1.
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For the second part of the proof, we start by proving that g(0) is small. By
calculation, the i-th component of function g(w) is

gi(w) = − 1

wi + 1
+
n

p
xTi (nS +

n∑
i=1

wixix
T
i )−1xi + c0(

n∑
i=1

wi).

Applying Lemma 5.2,

Pr (‖g(0)‖∞ < ε) ≥ 1− Cne−cε
2n. (31)

Now we will prove that ∇g(0) is bounded from below. By calculation, its (i, j)-
th entry is

(
∇g(w)

)
i,j

= I(i = j)
1

(wi + 1)2
− n

p

(
xTi
(
nS +

n∑
i=1

wixix
T
i

)−1
xj

)2
+ c0.

Applying Lemma 5.3,

‖(∇g(0))−1‖∞ < C2 with probability 1− Cne−cn. (32)

Now we bound the variation of ∇g(w) in the region ‖w‖∞ < 1/2. Apply
| 1
(wi+1)2 − 1| < 3|wi − 1| ≤ 3‖w‖∞ and coordinatewise comparison,

|∇i,jg(w)−∇i,jg(0)| ≤ I(i = j) (3‖w‖∞) + 3‖w‖∞ ·
n

p
|Aij |.

Therefore, the variation of ∇g(w) is bounded by

‖∇g(w)−∇g(0)‖∞ < (3 + 3n‖A‖∞/p)‖w‖∞. (33)

At last we finish the third part of the proof of Lemma 3.1 by applying
Lemma 5.1 to f(w) = (∇g(0))−1g(w/2). It is easy to verify that ∇f(0) = I.
Due to (31) and (32), ‖f(0)‖∞ ≤ ‖(∇g(0))−1‖∞‖g(0)‖∞ → 0 in the same rate
as in (31) and ‖f(0)‖∞ < min(1/9C5, 1/3) holds with probability 1− Cne−cn.
Due to (31), (33), and the boundedness of ‖A‖∞ (Lemma 5.3), ‖∇f(w) −
∇(0)‖∞ < C5‖w‖∞ also holds with probability 1 − Cne−cn. Therefore the
assumption in Lemma 5.1 holds with probability 1 − Cne−cn and there exists
w̃ such that f(w̃) = 0 and

‖w̃‖∞ < 3‖f(0)‖∞. (34)

When f(w̃) = 0, we have g(2w̃) = 0 and by previous discussion 2w̃ = nŵ−1.
therefore (34) gives

‖nŵ − 1‖∞ < 6‖f(0)‖∞.

Since ‖f(0)‖∞ converges to 0 in the rate as in (31), ‖nŵ − 1‖∞ converges
in the same rate and Lemma 3.1 is proved.
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5.4 Proof of Lemma 3.3

Proof. Define ḡ(w) : Rn → Rn by ḡj(w) = wj − xTj
(∑n

i=1 u(wi)xix
T
i

)−1
xj for

all 1 ≤ j ≤ n, then w̄ = (w̄1, w̄2, · · · , w̄n) is a root of ḡ(w). Let w̃ = ψ−1(1/y)1,
we will prove that
1. Pr(‖ḡ(w̃)‖∞ < ε) > 1− Cne−cε2n for any ε < c′.

2. Pr(‖
(
∇ḡ(w̃)

)−1‖∞ < C ′) > 1− Cne−cn.
3. Pr(‖∇ḡ(w̃)−∇ḡ(w)‖∞ < C ′‖w−w̃‖∞) > 1−Cne−cn for any ‖w−w̃‖∞ < c′.

The first point can be proved by applying Lemma 5.2. As for the second
point, we have

∇ij ḡ(w̃) = I +
u′(ψ−1(1/y))

u(ψ−1(1/y))2
(
xi(nS)−1xj

)2
.

Since
∑n
j=1

(
xi(nS)−1xj

)2
= xi(nS)−1xi, and xi(nS)−1xi converges to 1/y

with probability (Lemma 5.2), we have

n∑
j=1

u′(ψ−1(1/y))

u(ψ−1(1/y))2
(
xi(nS)−1xj

)2 → u′(ψ−1(1/y))

u(ψ−1(1/y))2
· 1/y

=
u′(ψ−1(1/y))

u(ψ−1(1/y))2
· u(ψ−1(1/y))ψ−1(1/y) =

u′(ψ−1(1/y))ψ−1(1/y)

u(ψ−1(1/y))
.

Since |u′(x)x/u(x)| < 1, we have
∥∥∥ u′(ψ−1(1/y))
u(ψ−1(1/y))2

(
xi(nS)−1xj

)2∥∥∥
∞
< 1 with ex-

ponential probability, and by∥∥∥I +
u′(ψ−1(1/y))

u(ψ−1(1/y))2
(
xi(nS)−1xj

)2∥∥∥
∞
≤
∞∑
i=0

∥∥∥ u′(ψ−1(1/y))

u(ψ−1(1/y))2
(
xi(nS)−1xj

)2∥∥∥i
∞

=
1

1−
∥∥ u′(ψ−1(1/y))
u(ψ−1(1/y))2

(
xi(nS)−1xj

)2∥∥
∞

,

the second point is proved.
As for the third point, we note that the j-th component of the gradient of

ḡk is

∇j
(
ḡk(w̃)

)
= δ(j = k) + u′(wj)

(
xTk
( n∑
i=1

u(wi)xix
T
i

)−1
xj

)2
,

u is twice differentiable, and ‖A‖∞ is bounded with high probability, therefore
the third point holds.

Apply Lemma 5.1 with f(w) =
(
∇ḡ(w̃)

)−1
ḡ(w), then Lemma 3.3 follows

the same procedure as in the third part of the proof of Lemma 3.1.
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5.4.1 Proof of Lemma 5.1

Proof. When ‖w‖∞ ≤ 1,

fj(w)− fj(0) =

∫ 1

t=0

〈
ejw

T ,∇f(tw)
〉

dt (35)

=

∫ 1

t=0

〈
ejw

T ,∇f(tw)−∇f(0) + I
〉

dt = wj +

∫ 1

t=0

wT (∇f(tw)−∇f(0))ej dt

≤wj + ‖
∫ 1

t=0

wT (∇f(tw)−∇f(0))‖∞ ≤ wj + C5‖w‖2∞.

Similarly
fj(w)− fj(0) ≥ −C5‖w‖2∞ + wj . (36)

To prove it, we consider the continuous mapping h(w) = w−f(w)/(4+9C5)
and will prove that h maps A to itself, where

A = {w : w ∈ [−3η, 3η]n} and η = ‖f(0)‖∞.

1. |wi| < 2η. Then apply (35) and (36) (they are applicable since for any w ∈
A, ‖w‖∞ ≤ 1), we have |fi(w)| < |fi(0)|+C5‖w‖2∞+ |wi| ≤ η+C5(3η)2 +3η <
(4+9C5)η (η2 < η since η < 1). Therefore, |hi(w)| ≤ |wi|+ |fi(w)|/(4+9C5) ≤
3η.

2. wi > 2η, then applying (36),

fi(w) ≥ −|fi(0)|+ wi − C5‖w‖2∞ ≥ −η + 2η − C5(3η)2.

Since η < 1/9C5, we have fi(w) < 0 and therefore hi(w) ≤ wi ≤ 3η.
Similar to case 1 we can prove that hi(w) ≥ −3η. Therefore |hi(w)| < 3η.
3. Similar to case 2, when wi < −2η, |hi(w)| < 3η.
Therefore the continuous mapping h maps the convex, compact set A to

itself. By Schauder fixed point theorem h(x) has a fixed point in A and therefore
Lemma 5.1 is proved with w̃ being the fixed point.

5.4.2 Proof of Lemma 5.2

Assuming the SVD decomposition of X is X = UΣV T , where U ∈ Rn×p and
UTU = I. Since xi ∼ N(0, I) for all 1 ≤ i ≤ n, U is uniformly distributed over
the space of all orthogonal n× p matrices. Since

XS−1X = (UΣV T )(
1

n
V Σ2V T )−1(UΣV T ), (37)

if we write the row of U by u1,u2, · · · ,un, then 1
nxiS

−1xi = uTi ui = ‖ui‖2.
Since U can be considered as the first p columns of a random n×n orthogonal

matrix (with haar measure over the set of all n × n orthogonal matrices), ui
can be considered as the first p entries from a random vector of length n that
is sampled from the uniform sphere in Rn.

17



Therefore, ‖ui‖2 ∼
∑p
j=1 g

2
j /
∑n
j=1 g

2
j for i.i.d. random variables {gj}nj=1 ∼

N(0, 1). Applying [2, Corollary 2.3], we have

Pr

(
n∑
i=1

g2i ≥
n

1− ε

)
≤ e−ε

2n/4 (38)

and

Pr

(
n∑
i=1

g2i ≤ n(1− ε)

)
≤ e−ε

2n/4, (39)

therefore

Pr

(
p(1− ε)2

n
≤ ‖u1‖2 ≤

p

n(1− ε)2

)
≥ Pr

(
p(1− ε) ≤

p∑
i=1

g2i ≤
p

1− ε

)

+ Pr

(
n(1− ε) ≤

n∑
i=1

g2i ≤
n

1− ε

)
≥ 1− 2e−ε

2p/4 − 2e−ε
2n/4.

For ε ≤ 0.1, we have

Pr

(
max
1≤i≤n

|1
p
xTi S

−1xi − 1| ≤ ε
)
≥ 1− nPr

(
|‖u1‖2 −

p

n
| > p

n
ε
)

≥1− n
(

1− Pr

(
p(1− ε/3)2

n
≤ ‖u1‖2 ≤

p

n(1− ε/3)2

))
(40)

≥1− 2ne−ε
2p/36 − 2ne−ε

2n/36, (41)

where the second inequality follows from 1− 3ε ≤ (1− ε)2 and 1
(1−ε)2 ≤ 1 + 3ε.

5.4.3 Proof of Lemma 5.3

(a) Since ‖A‖∞ = max1≤i≤n(
∑

1≤j≤nAij), and

∑
1≤j≤n

Aij =
∑

1≤j≤n

1

np
xTi S

−1xjx
T
j S
−1xi = xTi S

−1(
∑

1≤j≤n

xjx
T
j )S−1xi/np

(42)

=xTi S
−1(nS)S−1xi/np = xTi S

−1xi/p, (43)

it follows from (41) with ε = 0.1 that ‖A‖∞ < 2 holds with probability 1 −
Cn exp(−cn).

(b) We first prove that there exists C3 = C3(y) such that

‖A− c011T ‖∞ ≤ C3 < 1 with probability 1− Cn exp(−cn). (44)

We start with the proof of (44) with another lemma:
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Lemma 5.4. There exists a c4 > 0 such that with probability 1− C exp(−cn),

n∑
j=1

I(xT1 xj > c4
√
p) > 0.75n.

There exists C4 = C4(y) such that ‖S‖ < C4 with probability 1−Cn exp(−cn) [10,
Theorem II.13]. Therefore xTi S

−1xj ≥ xTi xj/C4 and Lemma 5.4 implies that
for any 1 ≤ i ≤ n:

n∑
j=1

I(xTi S
−1xj > c4

√
p/C4) > 0.75 with probability 1− C exp(−cn). (45)

Let c0 = (c4/C4)2/n, then (45) implies∑
1≤j≤n

|Ai,j − c| ≤
∑

1≤j≤n

|Ai,j | − 0.25c n ≤ xTi S
−1xi/p− 0.25(c4/C4)2, (46)

where the last step follows from (43).
Applying the estimation of xTi S

−1xi/p in (41) and a union bound argument
over all 1 ≤ i ≤ n to (46), (44) is proved for C3 = 1 + η − 0.25(c4/C4)2.

Lemma 5.3(b) follows from (44) with C2 = 1
1−C3

, where the expansion of

(I−A + c11T )−1 is valid since ‖A + c11T ‖ ≤ ‖A + c11T ‖∞ < 1:

‖(I−A + c11T )−1‖∞ ≤
∞∑
i=0

‖A− c11T ‖i∞ =

∞∑
i=0

Ci3 =
1

1− C3
. (47)

5.4.4 Proof of Lemma 5.4

We first show that there exists c4 such that for all p,

E(I(|xT1 x2| > c4
√
p)) ≥ 0.85. (48)

WLOG we rotate x1 such that it is nonzero only at the first coordinate, and
x2 = (g1, g2, ..., gp) where gi ∼ N(0, 1). Then |xT1 x2| = |g1| ‖x1‖.

Notice that ‖x1‖2 is the sum of p independent χ2
1 distribution and Eχ2

1 = 1,
by central limit theorem, ‖x1‖ ≤

√
2p with probability 1 − Ce−cn. Besides,

Pr(|g1| >
√

2 c4) ≥ 0.85 for c4 = Φ−1(1− 0.85/2)/
√

2. Therefore (48) is proved
by combining the estimations on |g1|, x1 and |xT1 x2| = |g1| ‖x1‖.

To obtain Lemma 5.4 from (48), we apply Hoeffding’s inequality to the
indicator function I(|xTi xj | > c4

√
p) over all 1 ≤ j ≤ n, j 6= i.

5.5 Proof of Lemma 3.8

Denoting the k-th eigenvalue of any matrix A by λk(A), then [3, Corollary
III.4.2] gives

λk(An + Bn)− λk(An) ≤ ‖Bn‖, (49)
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Assuming the empirical spectral density of An and An + Bn are ρn and ρ′n,
then (49) implies ∫ b

a

ρ′n(x) dx ≤
∫ b+‖Bn‖

a−‖Bn‖
ρn(x) dx.

Since ‖Bn‖ → 0, for any ε > 0,

lim
n→∞

sup

∫ b

a

ρ′n(x) dx ≤
∫ b+ε

a−ε
ρ(x) dx.

By the continuity of ρ, limn→∞ sup
∫ b
a
ρ′n(x) dx ≤

∫ b
a
ρ(x). Similarly we can

prove that limn→∞ inf
∫ b
a
ρ′n(x) dx ≥

∫ b
a
ρ(x), and therefore limn→∞

∫ b
a
ρ′n(x) dx =∫ b

a
ρ(x) and Lemma 3.8 is proved.
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