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ABSTRACT. Consider N points in Rd and M local coordinate systems that are related through
unknown rigid transforms. For each point we are given (possibly noisy) measurements of its
local coordinates in some of the coordinate systems. Alternatively, for each coordinate system, we
observe the coordinates of a subset of the points. The problem of estimating the global coordinates of
the N points (up to a rigid transform) from such measurements comes up in distributed approaches
to molecular conformation and sensor network localization, and also in computer vision and
graphics.

The least-squares formulation, though non-convex, has a well known closed-form solution for
the case M = 2 (based on the singular value decomposition). However, no closed form solution is
known for M ≥ 3.

In this paper, we propose a semidefinite relaxation of the least-squares formulation, and prove
conditions for exact and stable recovery for both this relaxation and for a previously proposed
spectral relaxation. In particular, using results from rigidity theory and the theory of semidefinite
programming, we prove that the semidefinite relaxation can guarantee recovery under more
adversarial measurements compared to the spectral counterpart.

We perform numerical experiments on simulated data to confirm the theoretical findings. We
empirically demonstrate that (a) unlike the spectral relaxation, the relaxation gap is mostly zero for
the semidefinite program (i.e., we are able to solve the original non-convex problem) up to a certain
noise threshold, and (b) the semidefinite program performs significantly better than spectral and
manifold-optimization methods, particularly at large noise levels.

Keywords: Global registration, rigid transforms, rigidity theory, spectral relaxation, spectral
gap, convex relaxation, semidefinite program (SDP), exact recovery, noise stability.

1. INTRODUCTION

The problem of point-cloud registration comes up in computer vision and graphics [50, 57,
63], and in distributed approaches to molecular conformation [19, 16] and sensor network
localization [15, 9]. The registration problem in question is one of determining the coordinates
of a point cloud P from the knowledge of (possibly noisy) coordinates of smaller point cloud
subsets (called patches) P1, . . . , PM that are derived from P through some general transformation.
In certain applications [43, 57, 38], one is often interested in finding the optimal transforms (one
for each patch) that consistently align P1, . . . , PM . This can be seen as a sub-problem in the
determination of the coordinates of P [15, 49].
In this paper, we consider the problem of rigid registration in which the points within a given Pi

are (ideally) obtained from P through an unknown rigid transform. Moreover, we assume that
the correspondence between the local patches and the original point cloud is known, that is, we
know beforehand as to which points from P are contained in a given Pi. In fact, one has a control
on the correspondence in distributed approaches to molecular conformation [16] and sensor
network localization [9, 66, 15]. While this correspondence is not directly available for certain
graphics and vision problems, such as multiview registration [47], it is in principle possible to
estimate the correspondence by aligning pairs of patches, e.g., using the ICP (Iterative Closest
Point) algorithm [6, 49, 33].
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1.1. Two-patch registration. The particular problem of two-patch registration has been well-
studied [20, 31, 2]. In the noiseless setting, we are given two point clouds {x1, . . . , xN} and
{y1, . . . , yN} in Rd, where the latter is obtained through some rigid transform of the former.
Namely,

(1) yk = Oxk + t (k = 1, . . . , N),

where O is some unknown d× d orthogonal matrix (that satisfies OTO = Id) and t ∈ Rd is some
unknown translation.
The problem is to infer O and t from the above equations. To uniquely determine O and t,
one must have at least N ≥ d + 1 non-degenerate points1. In this case, O can be determined
simply by fixing the first equation in (1) and subtracting (to eliminate t) any of the remaining d
equations from it. Say, we subtract the next d equations:

[y2 − y1 · · · yd+1 − y1] = O[x2 − x1 · · · xd+1 − x1].

By the non-degeneracy assumption, the matrix on the right of O is invertible, and this gives us
O. Plugging O into any of the equations in (1), we get t.
In practical settings, (1) would hold only approximately, say, due to noise or model imperfections.
A particular approach then would be to determine the optimal O and t by considering the
following least-squares program:

(2) min
O∈O(d), t∈Rd

N∑
k=1

‖yk −Oxk − t‖22.

Note that the problem looks difficult a priori since the domain of optimization is O(d) × Rd,
which is non-convex. Remarkably, the global minimizer of this non-convex problem can be
found exactly, and has a simple closed-form expression [18, 36, 29, 20, 31, 2]. More precisely, the
optimal O? is given by V UT , where UΣV T is the singular value decomposition (SVD) of

N∑
k=1

(xk − xc)(yk − yc)T ,

in which xc = (x1 + · · ·+ xN )/N and yc = (y1 + · · ·+ yN )/N are the centroids of the respective
point clouds. The optimal translation is t? = yc −O?xc.
The fact that two-patch registration has a closed-form solution is used in the so-called incremen-
tal (sequential) approaches for registering multiple patches [6]. The most well-known method is
the ICP algorithm [49] (note that ICP uses other heuristics and refinements besides registering
corresponding points). Roughly, the idea in sequential registration is to register two overlapping
patches at a time, and then integrate the estimated pairwise transforms using some means. The
integration can be achieved either locally (on a patch-by-patch basis), or using global cycle-based
methods such as synchronization [50, 32, 51, 57, 61]. More recently, it was demonstrated that,
by locally registering overlapping patches and then integrating the pairwise transforms using
synchronization, one can design efficient and robust methods for distributed sensor network
localization [15] and molecular conformation [16]. Note that, while the registration phase is
local, the synchronization method integrates the local transforms in a globally consistent manner.
This makes it robust to error propagation that often plague local integration methods [32, 61].

1.2. Multi-patch registration. To describe the multi-patch registration problem, we first intro-
duce some notations. Suppose x1, x2, . . . , xN are the unknown global coordinates of a point
cloud in Rd. The point cloud is divided into patches P1, P2, . . . , PM , where each Pi is a subset
of {x1, x2, . . . , xN}. The patches are in general overlapping, whereby a given point can be-
long to multiple patches. We represent this membership using an undirected bipartite graph
Γ = (Vx ∪ VP , E). The set of vertices Vx = {x1, . . . , xN} represents the point cloud, while

1By non-degenerate, we mean that the affine span of the points is d dimensional.
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VP = {P1, . . . , PM} represents the patches. The edge set E = E(Γ) connects Vx and VP , and is
given by the requirement that (k, i) ∈ E if and only if xk ∈ Pi. We will henceforth refer to Γ as
the membership graph.

 

P1 

P2 

P3 

P2 P3 

FIGURE 1. The problem of registering 3 patches on R2. One is required to
find the global coordinates of the points from the corresponding local patch
coordinates. The local coordinates of the points in patches P2 and P3 are
shown (see (5) for the notation of local coordinates). It is only the common
points (belonging to two or more patches, marked in red) that contribute to
the registration. Note that sequential or pairwise registration would fail in this
case. This is because no pair of patches can be registered as they have less than
3 points in common (at least 3 points are required to fix rotations, reflections,
and translations in R2). The SDP-based algorithm proposed in this paper does
a global registration, and is able to recover the exact global coordinates for this
example.

In this paper, we assume that the local coordinates of a given patch can (ideally) be related to the
global coordinates through a single rigid transform, that is, through some rotation, reflection,
and translation. More precisely, with every patch Pi we associate some (unknown) orthogonal
transform Oi and translation ti. If point xk belongs to patch Pi, then its representation in Pi is
given by (cf. (1) and Figure 1)

(3) x
(i)
k = OT

i (xk − ti) (k, i) ∈ E(Γ).

Alternatively, if we fix a particular patch Pi, then for every point belonging to that patch,

(4) xk = Oix
(i)
k + ti (k, i) ∈ E(Γ).

In particular, a given point can belong to multiple patches, and will have a different representa-
tion in the coordinate system of each patch.
The premise of this paper is that we are given the membership graph and the local coordinates
(referred to as measurements), namely

(5) Γ and {x(i)
k , (k, i) ∈ E(Γ)},
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and the goal is to recover the coordinates x1, . . . , xN , and in the process the unknown rigid
transforms (O1, t1), . . . , (OM , tM ), from (5). Note that the global coordinates are determined
up to a global rotation, reflection, and translation. We say that two points clouds (also called
configurations) are congruent if one is obtained through a rigid transformation of the other. We
will always identify two congruent configurations as being a single configuration.
Under appropriate non-degeneracy assumptions on the measurements, one task would be
to specify appropriate conditions on Γ under which the global coordinates can be uniquely
determined. Intuitively, it is clear that the patches must have enough points in common for
the registration problem to have an unique solution. For example, it is clear that the global
coordinates cannot be uniquely recovered if Γ is disconnected.
In practical applications, we are confronted with noisy settings where (4) holds only approxi-
mately. In such cases, we would like to determine the global coordinates and the rigid transforms
such that the discrepancy in (4) is minimal. In particular, we consider the following quadratic
loss:

(6) φ =
∑

(k,i)∈E(Γ)

‖xk −Oix
(i)
k − ti‖

2,

where ‖·‖ is the Euclidean norm on Rd. The optimization problem is to minimize φ with respect
to the following variables:

x1, x2, . . . , xN ∈ Rd, O1, . . . , OM ∈ O(d), t1, . . . , tM ∈ Rd.

The input to the problem are the measurements in (5). Note that our ultimate goal is to determine
x1, x2, . . . , xN ; the rigid transforms can be seen as latent variables.
The problem of multipatch registration is intrinsically non-convex since one is required to
optimize over the non-convex domain of orthogonal transforms. Different ideas from the
optimization literature have been deployed to attack this problem, including Lagrangian opti-
mization and projection methods. In the Lagrangian setup, the orthogonality constraints are
incorporated into the objective; in the projection method, the constraints are forced after every
step of the optimization [47]. Following the observation that the registration problem can be
viewed as an optimization on the Grassmanian and Stiefel manifolds, researchers have proposed
algorithms using ideas from the theory and practice of manifold optimization [38]. A detailed
review of these methods is beyond the scope of this paper, and instead we refer the interested
reader to these excellent reviews [17, 1]. Manifold-based methods are, however, local in nature,
and are not guaranteed to find the global minimizer. Moreover, it is rather difficult to certify the
noise stability of such methods.

1.3. Contributions. In Section 2, we demonstrate that the non-convex least-squares formulation
can be relaxed into a semidefinite program, and that the global coordinates can be computed
from the solution of this program. The registration algorithm based on this relaxation is
described in Algorithm 2. The corresponding algorithm for the spectral relaxation, that was
already considered in [38], is described in Algorithm 1 for reference.
In Section 3, we prove different conditions on the membership graph Γ for exact recovery using
Algorithms 1 and 2. In particular, we present different admissibility conditions on Γ under
which the spectral and semidefinite programs are guaranteed to have an unique solution. We
identify a particular combinatorial structure on Γ, called lateration, that is sufficient to make Γ
admissible for both the programs (cf. Propositions 5 and 6, and Theorem 8). We describe here
how it is possible to construct patch systems in certain applications that are tailored to satisfy
the lateration condition. In Section 4, we demonstrate that the semidefinite relaxation is tighter
than its spectral counterpart in that the former is able to guarantee exact recovery under weaker
assumptions on Γ. More precisely, in Theorem 12, we prove that the rigidity properties (namely,
it unique localizability [54]) of a certain backbone graph derived from Γ are both necessary and
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sufficient for exact recovery by the semidefinite program. This result also shows us that the
global rigidity [24] of the backbone graph is a necessary and sufficient condition for uniqueness.
We present a registration example in Remark 13 for which the spectral relaxation fails, but for
which the solution of the semidefinite relaxation is unique. The proof of Theorem 12 is based on
results from the theory of semidefinite programming and the theory of graph rigidity [54]. In
Section 5, we present an efficient randomized test for certifying admissibility.
In Section 6, we study the stability of Algorithms 1 and 2 for the noise model in which the patch
coordinates are perturbed using noise of bounded size (note that the stability of the spectral
relaxation was not investigated in [38]). Our main result here is Theorem 17 which states that,
if Γ is admissible in a certain sense, then the registration error for the semidefinite relaxation
is within a constant factor of the noise level. To the best of our knowledge, there is no existing
algorithm for multipatch registration that comes with a similar stability guarantee.
In Section 7, we present numerical results on simulated data to numerically verify the exact
recovery and noise stability properties of Algorithms 1 and 2. Our main empirical findings are
the following:
(a) The semidefinite relaxation performs significantly better than spectral and manifold-based
optimization (say, with the spectral solution as initialization) in terms of the reconstruction
quality (see first plot in Figure 8).
(b) The relaxation gap is mostly zero for the semidefinite program (we are able to solve the
original non-convex problem) up to a certain noise threshold (see second plot in Figure 8).

1.4. Broader context and related work. The objective (6) is a straightforward extension of the
objective for two-patches [18, 20, 31, 2]. In fact, this objective was earlier considered by Zhang
et al. for distributed sensor localization [66]. The present work is also closely tied to the work
of Cucuringu et al. on distributed localization [15, 16], where a similar objective is implicitly
optimized. The common theme in these works is that some form of optimization is used
to globally register the patches, once their local coordinates have been determined by some
means. There is however a fundamental difference between the algorithms used to perform
the optimization. Zhang et al. [66] use alternating least-squares to iteratively optimize over the
global coordinates and the transforms, which to the best of our knowledge has no convergence
guarantee. On the other hand, Cucuringu et al. [15, 16] first optimize over the orthogonal
transforms (using synchronization [51]), and then solve for the translations (in effect, the global
coordinates) using least-squares fitting. In this work, we combine these different ideas into a
single framework. While our objective is similar to the one used in [66], we jointly optimize the
rigid transforms and positions. In particular, the algorithms considered in Section 2 avoid the
convergence issues associated with alternating least-squares in [66], and is able to register patch
systems that cannot be registered using the approach in [15, 16].
Another closely related work is the paper by Krishnan et al. on global registration [38], where
the optimal transforms (rotations to be specific) are computed by extending the objective in (1)
to the multipatch case. The subsequent mathematical formulation has strong resemblance with
our formulation, and, in fact, leads to a subproblem that is equivalent to the following:

(7) max
O1,...,OM

M∑
i,j=1

Tr(OiQijO
T
j ) subject to Oi ∈ O(d) (1 ≤ i ≤M),

where the block matrix Q ∈ RMd×Md is positive semidefinite whose (i, j)-th block is Qij .
Krishnan et al. [38] propose the use of manifold optimization to solve (7), where the manifold is
the product manifold of rotations. However, as mentioned earlier, manifold methods generally
do not offer guarantees on convergence (to the global minimum) and stability. Moreover, the
manifold in (7) is not connected. Therefore, any local method cannot solve (7) if the initial guess
is on the wrong component of the manifold. It is exactly at this point that we depart from [38],
namely, we propose to relax (7) into a tractable semidefinite program (SDP). This was motivated
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by a long line of work on the use of SDP relaxations for non-convex (particularly NP-hard)
problems. See, for example, [41, 22, 64, 45, 12, 39], and these reviews [58, 46, 67]. Note that for
d = 1, (7) is a quadratic Boolean optimization, similar to the MAX-CUT problem. An SDP-based
algorithm with randomized rounding for solving MAX-CUT was proposed in the seminal work
of Goemans and Williamson [22]. The semidefinite relaxation that we consider in Section 2 is
motivated by this work. In connection with the present work, we note that provably stable SDP
algorithms have been considered for low rank matrix completion [12], phase retrieval [13, 60],
and graph localization [34].
We note that a special case of the registration problem considered here is the so-called general-
ized Procrustes problem [25]. Within the point-patch framework just introduced, the goal in
Procrustes analysis is to find O1, . . . , OM ∈ O(d) that minimizes

(8)
N∑

k=1

M∑
i,j=1

‖Oix
(i)
k −Ojx

(j)
k ‖

2.

In other words, the goal is to achieve the best possible alignment of the M patches through
orthogonal transforms. This can be seen as an instance of the global registration problem without
the translations (t1 = · · · = tM = 0), and in which Γ is complete. It is not difficult to see that
(8) can be reduced to (7). On the other hand, using the analysis in Section 2, it can be shown
that (6) is equivalent to (8) in this case. While the Procrustes problem is known to be NP-hard,
several polynomial-time approximations with guarantees have been proposed. In particular,
SDP relaxations of (8) have been considered in [45, 53, 44], and more recently in [4]. We use the
relaxation of (7) considered in [4] for reasons to be made precise in Section 2.

1.5. Notations. We use upper case letters such as O to denote matrices, and lower case letters
such as t for vectors. We use Id to denote the identity matrix of size d×d. We denote the diagonal
matrix of size n× n with diagonal elements c1, . . . , cn as diag(c1, . . . , cn). We will frequently use
block matrices built from smaller matrices, typically of size d× d, where d is the dimension of
the ambient space. For some block matrix A, we will use Aij to denote its (i, j)-th block, and
A(p, q) to denote its (p, q)-th entry. In particular, if each block has size d× d, then

Aij(p, q) = A
(
(i− 1)d+ p, (j − 1)d+ q

)
(1 ≤ p, q ≤ d).

We use A � 0 to mean that A is positive semidefinite, that is, uTAu ≥ 0 for all u. We use O(d) to
denote the group of orthogonal transforms (matrices) acting on Rd, and O(d)M to denote the
M -fold product of O(d) with itself. We will also conveniently identify the matrix [O1 · · ·OM ]
with an element of O(d)M where each Oi ∈ O(d). We use ‖x‖ to denote the Euclidean norm of
x ∈ Rn (n will usually be clear from the context, and will be pointed out if this is not so). We
denote the trace of a square matrix A by Tr(A). The Frobenius and spectral norms are defined as

‖A‖F = Tr(ATA)1/2 and ‖A‖sp = max
‖x‖≤1

‖Ax‖.

The Kronecker product between matrices A and B is denoted by A⊗B [23]. The all-ones vector
is denoted by e (the dimension will be obvious from the context), and eNi denotes the all-zero
vector of length N with 1 at the i-th position.

2. SPECTRAL AND SEMIDEFINITE RELAXATIONS

The minimization of (6) involves unconstrained variables (global coordinates and patch trans-
lations) and constrained variables (the orthogonal transformations). We first solve for the
unconstrained variables in terms of the unknown orthogonal transformations, representing the
former as linear combinations of the latter. This reduces (6) to a quadratic optimization problem
over the orthogonal transforms of the form (7).
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In particular, we combine the global coordinates and the translations into a single matrix:

(9) Z =
[
x1 · · · xN t1 · · · tM

]
∈ Rd×(N+M).

Similarly, we combine the orthogonal transforms into a single matrix,

(10) O = [O1 · · · OM ] ∈ Rd×Md.

Recall that we will conveniently identify O with an element of O(d)M .
To express (6) in terms of Z and O, we write xk − ti = Zeki, where

eki = eN+M
k − eN+M

N+i .

Similarly, we write Oi = O(eMi ⊗ Id). This gives us

φ(Z,O) =
∑

(k,i)∈E(Γ)

‖Zeki −O(eMi ⊗ Id)x
(i)
k ‖

2.

Using ‖x‖2 = Tr(xxT ), and properties of the trace, we obtain

(11) φ(Z,O) = Tr

(
[Z O]

[
L −BT

−B D

] [
ZT

OT

])
,

where

L =
∑

(k,i)∈E

ekie
T
ki, B =

∑
(k,i)∈E

(eMi ⊗ Id)x
(i)
k eTki, and(12)

D =
∑

(k,i)∈E

(eMi ⊗ Id)x
(i)
k x

(i)
k

T
(eMi ⊗ Id)T .

The matrix L is the combinatorial graph Laplacian of Γ [14], and is of size (N +M)× (N +M).
The matrix B is of size Md× (N +M), and the size of the block diagonal matrix D is Md×Md.
The optimization program now reads

(P) min
Z,O

φ(Z,O) subject to Z ∈ Rd×(N+M), O ∈ O(d)M .

The fact that O(d)M is non-convex makes (P) non-convex. In the next few Sections, we will
show how this non-convex program can be approximated by tractable spectral and convex
programs.

2.1. Optimization over translations. Note that we can write (P) as

min
O∈O(d)M

[
min

Z∈Rd×(N+M)
φ(Z,O)

]
.

That is, we first minimize over the free variable Z for some fixed O ∈ O(d)M , and then we
minimize with respect to O.
Fix some arbitrary O ∈ O(d)M , and set ψ(Z) = φ(Z,O). It is clear from (11) that ψ(Z) is
quadratic in Z. In particular, the stationary points Z? = Z?(O) of ψ(Z) satisfy

(13) ∇ψ(Z?) = 0 ⇒ Z?L = OB.

Note that the Hessian of ψ(Z) equals 2L, and it is clear from (12) that L � 0. Therefore, Z? is a
minimizer of ψ(Z).
If Γ is connected, then e is the only vector in the null space of L [14]. Let L† be the pseudoinverse
of L, which is again positive semidefinite [23]. It can be verified that

(14) LL† = L†L = IN+M − (N +M)−1eeT .

We right multiply (13) by L† and use Be = 0, to get

(15) Z? = OBL† + teT ,
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where t ∈ Rd is some global translation. Conversely, if we right multiply (15) by L and use
eTL = 0, we get (13). That is, every solution of (13) is of the form (15).
Substituting (15) into (11), we get

(16) ψ(Z?) = φ(Z?, O) = Tr(COTO) =

M∑
i,j=1

Tr(OiCijO
T
j ),

where

(17) C =
[
BL† IMd

] [ L −BT

−B D

] [
L†BT

IMd

]
= D −BL†BT .

Note that (16) has the global translation t taken out. This is not a surprise since φ is invariant to
global translations. Moreover, note that we have not forced the orthogonal constraints on O as
yet. Since φ(Z,O) ≥ 0 for any Z and O, it necessarily follows from (16) that C � 0. We will see
in the sequel how the spectrum of C dictates the performance of the convex relaxation of (16).
In analogy with the notion of stress in rigidity theory [24], we can consider (6) as a sum of
the “stress” between pairs of patches when we try to register them using rigid transforms. In
particular, the (i, j)-th term in (16) can be regarded as the stress between the (centered) i-th and
j-th patches generated by the orthogonal transforms. Keeping this analogy in mind, we will
henceforth refer to C as the patch-stress matrix.

2.2. Optimization over orthogonal transforms. The goal now is to optimize (16) with respect
to the orthogonal transforms, that is, we have reduced (P) to the following problem:

(P0) min
O∈Rd×Md

Tr(COTO) subject to (OTO)ii = Id (1 ≤ i ≤M).

This is a non-convex problem since O lives on a non-convex (disconnected) manifold [1]. We
will generally refer to any method which uses manifold optimization to solve (P0) and then
computes the coordinates using (15) as “Global Registration over Euclidean Transforms using
Manifold Optimization” (GRET-MANOPT).

2.3. Spectral relaxation and rounding. Following the quadratic nature of the objective in (P0),
it is possible to relax it into a spectral problem. More precisely, consider the domain

S = {O ∈ Rd×Md : rows of O are orthogonal and each row has norm
√
M}.

That is, we do not require the d× d blocks in O ∈ S to be orthogonal. Instead, we only require
the rows of O to form an orthogonal system, and each row to have the same norm. It is clear that
S is a larger domain than that determined by the constraints in (P0). In particular, we consider
the following relaxation of (P0):

(P1) min
O∈S

Tr(COTO).

This is precisely a spectral problem in that the global minimizers are determined from the
spectral decomposition of C. More precisely, let µ1 ≤ . . . ≤ µMd be eigenvalues of C, and let
r1, . . . , rMd be the corresponding eigenvectors. Define

(18) W ? def
=
[
r1 · · · rd

]T ∈ Rd×Md.

Then

(19) Tr(CW ?TW ?) = min
O∈S

Tr(COTO) = M(µ1 + · · ·+ µd).

Due to the relaxation, the blocks of W ? are not guaranteed to be in O(d). We round each d× d
block of W ? to its “closest” orthogonal matrix. More precisely, let W ? = [W ?

1 · · ·W ?
M ]. For every

1 ≤ i ≤M , we find O?
i ∈ O(d) such that

‖O?
i −W ?

i ‖F = min
O∈O(d)

‖O −W ?
i ‖F .
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As noted earlier, this has a closed-form solution, namely O?
i = UV T , where UΣV T is the SVD

of W ?
i . We now put the rounded blocks back into place and define

(20) O? def
=
[
O?

1 . . . O
?
M

]
∈ O(d)M .

In the final step, following (15), we define

(21) Z? def
= O?BL† ∈ Rd×(N+M).

The first N columns of Z? are taken to be the reconstructed global coordinates.
We will refer to this spectral method as the “Global Registration over Euclidean Transforms
using Spectral Relaxation” (GRET-SPEC). The main steps of GRET-SPEC are summarized in
Algorithm 1. We note that a similar spectral algorithm was proposed for angular synchronization
by Bandeira et al. [3], and by Krishnan et al. [38] for initializing the manifold optimization.

Algorithm 1 GRET-SPEC

Require: Membership graph Γ, local coordinates {x(i)
k , (k, i) ∈ E(Γ)}, dimension d.

Ensure: Global coordinates x1, . . . , xN in Rd.
1: Build B,L and D in (12) using Γ.
2: Compute L† and C = D −BL†BT .
3: Compute bottom d eigenvectors of C, and set W ? as in (18).
4: for i = 1 to M do
5: if W ?

i ∈ O(d) then
6: O?

i ←W ?
i .

7: else
8: Compute W ?

i = UiΣiV
T
i .

9: O?
i ← UiV

T
i .

10: end if
11: end for
12: Z? ←

[
O?

1 · · ·O?
M

]
BL†.

13: Return first N columns of Z?.

The question at this point is how are the quantities O? and Z? obtained from GRET-SPEC
related to the original problem (P)? Since (P1) is obtained by relaxing the block-orthogonality
constraint in (P0), it is clear that if the blocks of W ? are orthogonal, then O? and Z? are solutions
of (P), that is,

φ(Z?, O?) ≤ φ(Z,O) for all Z ∈ Rd×(N+M), O ∈ O(d)M .

We have actually found the global minimizer of the original non-convex problem (P) in this
case.

Observation 1 (Tight relaxation using GRET-SPEC). If the d× d blocks of the solution of (P1) are
orthogonal, then the coordinates and transforms computed by GRET-SPEC are the global minimizers of
(P).

If some the blocks are not orthogonal, the rounded quantities O? and Z? are only an approxima-
tion of the solution of (P).

2.4. Semidefinite relaxation and rounding. We now explain how we can obtain a tighter
relaxation of (P0) using a semidefinite program, for which the global minimizer can be computed
efficiently. Our semidefinite program was motivated by the line of works on the semidefinite
relaxation of non-convex problems [41, 22, 58, 12].
Consider the domain

C = {O ∈ RMd×Md : (OTO)11 = · · · = (OTO)MM = Id}.
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That is, while we require the columns of each Md× d block of O ∈ C to be orthogonal, we do
not force the non-convex rank constraint rank(O) = d. This gives us the following relaxation

(22) min
O∈C

Tr(COTO).

Introducing the variable G = OTO, (22) is equivalent to

(P2) min
G∈RMd×Md

Tr(CG) subject to G � 0, Gii = Id (1 ≤ i ≤M).

This is a standard semidefinite program [58] which can be solved using software packages such
as SDPT3 [56] and CVX [26]. We provide details about SDP solvers and their computational
complexity later in Section 2.5.
Let us denote the solution of (P2) by G?, that is,

(23) Tr(CG?) = min
G∈RMd×Md

{Tr(CG) : G � 0, G11 = · · · = GMM = Id}.

By the linear constraints in (P2), it follows that rank(G?) ≥ d. If rank(G?) > d, we need to
round (approximate) it by a rank-d matrix. That is, we need to project it onto the domain of (P0).
One possibility would be to use random rounding that come with approximation guarantees;
for example, see [22, 4]. In this work, we use deterministic rounding, namely the eigenvector
rounding which retains the top d eigenvalues and discards the remaining. In particular, let
λ1 ≥ λ2 ≥ · · · ≥ λMd be the eigenvalues of G?, and q1, . . . , qd be the corresponding eigenvectors.
Let

(24) W ? def
=
[√

λ1q1 · · ·
√
λdqd

]T ∈ Rd×Md.

We now proceed as in the GRET-SPEC, namely, we define O? and Z? from W ? as in (20) and
(21). We refer to the complete algorithm as “Global Registration over Euclidean Transforms
using SDP” (GRET-SDP). The main steps of GRET-SDP are summarized in Algorithm 2.

Algorithm 2 GRET-SDP

Require: Membership graph Γ, local coordinates {x(i)
k , (k, i) ∈ E(Γ)}, dimension d.

Ensure: Global coordinates x1, . . . , xN in Rd.
1: Build B,L and D in (12) using Γ.
2: Compute L† and C = D −BL†BT .
3: G? ← Solve the SDP (P2) using C.
4: Compute top d eigenvectors of G?, and set W ? using (24).
5: if rank(G?) = d then
6: O? ←W ?.
7: else
8: for i = 1 to M do
9: Compute W ?

i = UiΣiV
T
i .

10: O?
i ← UiV

T
i .

11: end for
12: O? ←

[
O?

1 · · ·O?
M

]
13: end if
14: Z? ← O?BL†.
15: Return first N columns of Z?.

Similar to Observation 1, we note the following for GRET-SDP.

Observation 2 (Tight relaxation using GRET-SDP). If the rank of the solution of (P2) is exactly d,
then the coordinates and transforms computed by GRET-SDP are the global minimizers of (P).
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If rank(G?) > d, the output of GRET-SDP can only be considered as an approximation of the
solution of (P). The quality of the approximation for (P2) can be quantified using, for example,
the randomized rounding in [4]. More precisely, note that since D is block-diagonal, (22) is
equivalent (up to a constant term) to

max
O∈C

Tr(QOTO)

where Q = BL†BT � 0. Bandeira et al. [4] show that the orthogonal transforms (which we
continue to denote by O?) obtained by a certain random rounding of G? satisfy

E
[
Tr(Q O?TO?)

]
≥ α2

d ·OPT,

where OPT is the optimum of the unrelaxed problem (7) with Q = BL†BT , and αd is the
expected average of the singular values of a d × d random matrix with entries iid N (0, 1/d).
It was conjectured in [4] that αd is monotonically increasing, and the boundary values were
computed to be α1 =

√
2/π (α1 was also reported here [46]) and α∞ = 8/3π. We refer the reader

to [4] for further details on the rounding procedure, and its relation to previous work in terms
of the approximation ratio. Empirical results, however, suggest that the difference between
deterministic and randomized rounding is small as far as the final reconstruction is concerned.
We will therefore simply use the deterministic rounding.

2.5. Computational complexity. The main computations in GRET-SPEC are the Laplacian
inversion, the eigenvector computation, and the orthogonal rounding. The cost of inverting L
when Γ is dense is O((N +M)3). However, for most practical applications, we expect Γ to be
sparse since every point would typically be contained in a small number of patches. In this case,
it is known that the linear system Lx = b can be solved in time almost linear in the number of
edges in Γ [55, 59]. Applied to (14), this means that we can compute L† in O((N +M)|E(Γ)|)
time (up to logarithmic factors). Note that, even if L is dense, it is still possible to speed up the
inversion (say, compared to a direct Gaussian elimination) using the formula [30, 48]:

L† = [L+ (N +M)−1eeT ]−1 − (N +M)−1eeT .

The speed up in this case is however in terms of the absolute run time. The overall complexity
is still O((N + M)3), but with smaller constants. We note that it is also possible to speed up
the inversion by exploiting the bipartite nature of Γ [30], although we have not used this in our
implementation.
The complexity of the eigenvector computation is O(M3d3), while that of the orthogonal round-
ing isO(Md3). The total complexity of GRET-SPEC, say, using a linear-time Laplacian inversion,
is (up to logarithmic factors)

O
(
|E(Γ)|(N +M) + (Md)3

)
.

The main computational blocks in GRET-SDP are identical to that in GRET-SPEC, plus the
SDP computation. The SDP solution can be computed in polynomial time using interior-point
programming [65]. In particular, the complexity of computing an ε-accurate solution using
interior-point solvers such as SDPT3 [56] is O((Md)4.5 log(1/ε)). It is possible to lower this
complexity by exploiting the particular structure of (P2). For example, notice that the constraint
matrices in (P2) have at most one non-zero coefficient. Using the algorithm in [27], one can
then bring down the complexity of the SDP to O((Md)3.5 log(1/ε)). By considering a penalized
version of the SDP, we can use first-order solvers such as TFOCS [5] to further cut down the
dependence on M and d to O((Md)3ε−1), but at the cost of a stronger dependence on the
accuracy. The quest for efficient SDP solvers is currently an active area of research. Fast SDP
solvers have been proposed that exploit either the low-rank structure of the SDP solution [11, 35]
or the simple form of the linearity constraints in (P2) [62]. More recently, a sublinear time
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approximation algorithm for SDP was proposed in [21]. The complexity of GRET-SDP using a
linear-time Laplacian inversion and an interior-point SDP solver is thus

O
(
|E(Γ)|(N +M) + (Md)4.5 log(1/ε) + (Md)3

)
.

For problems where the size of the SDP variable is within 150, we can solve (P2) in reasonable
time on a standard PC using SDPT3 [56] or CVX [26]. We use CVX for the numerical experiments
in Section 7 that involve small-to-moderate sized SDP variables. For larger SDP variables, one
can use the low-rank structure of (P2) to speed up the computation. In particular, we were
able to solve for SDP variables of size up to 2000× 2000 using SDPLR [11]. We would, however,
note that SDPLR uses low-rank based heuristics, and is not guaranteed to converge to the SDP
solution.

3. EXACT RECOVERY

We now demonstrate that, under certain conditions on the membership graph Γ, the proposed
spectral and convex relaxations can exactly reconstruct the global coordinates from the knowl-
edge of the clean local coordinates. More precisely, let {x̄1, . . . , x̄N} be the true coordinates a
point cloud in Rd. Suppose that the point cloud is divided into patches whose membership
graph is Γ, and that we are provided the measurements

(25) x
(i)
k = ŌT

i (x̄k − t̄i) (k, i) ∈ E(Γ),

where Ōi ∈ O(d) and t̄i ∈ Rd are unknown. The patch-stress matrix C is constructed from Γ and
the clean measurements (25).
For future use, we define the variables

Z̄ =
[
x̄1 · · · x̄N t̄1 · · · t̄M

]
∈ Rd×(N+M),

and
Ō = [Ō1 · · · ŌM ] ∈ Rd×Md and Ḡ = ŌT Ō.

We will show that under precise conditions on Γ, we have

Z? = ΩZ̄ + teT (Ω ∈ O(d), t ∈ Rd)

for both GRET-SPEC and GRET-SDP. We will refer to this as exact recovery. Henceforth, we will
always assume that Γ is connected (clearly one cannot have exact recovery otherwise).
From (25), we can write Z̄L = ŌB. Since Γ is connected,

(26) Z̄ = ŌBL† + teT (t ∈ Rd).

Using (26), it is not difficult to verify that φ(Z̄, Ō) = Tr(CḠ). Moreover, it follows from (25) that
φ(Z̄, Ō) = 0. Therefore,

(27) Tr(CḠ) = Tr(CŌT Ō) = 0.

Now, since the objectives in (P1) and (P2) are non-negative, this means that Ō and Ḡ are the
solutions of (P1) and (P2). Notice that {ΩŌ : Ω ∈ O(d)} are also solutions of (P1). It is not
difficult to show that we have exact recovery for either relaxation if we can guarantee these to
be the only solutions of the respective programs.

Observation 3 (Exact recovery). IfW ? = ΩŌ,Ω ∈ O(d), then we have exact recovery for GRET-SPEC.
Similarly, we have exact recovery for GRET-SDP if Ḡ is the unique solution of (P2).

Remark 4 (Exact recovery and rank of SDP solution). The condition W ? = ΩŌ,Ω ∈ O(d), is
necessary for exact recovery using GRET-SPEC. However, it is possible to have exact recovery using
GRET-SDP even if (P2) has high rank solutions. For example, consider two patches in Rd that share d
overlapping points (each patch has d points). In this case, one can find a reflection (about the hyperplane
containing the d points) that fixes the overlapping points. By applying this reflection to a rank-d solution
of (P2), one can obtain a solution of rank d+ 1 that results in exact recovery. However, such examples
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are rather pathological, and one cannot have exact recovery if rank(G?) > d provided the patches have
sufficient non-overlapping points.

The uniqueness of solutions for either relaxation can be resolved by examining the spectrum of
the patch-stress matrix.

Proposition 5 (Uniqueness of solutions of GRET-SPEC). We have W ? = ΩŌ,Ω ∈ O(d), if and
only if rank(C) = (M − 1)d.

Proof. Indeed, it follows from (18) that W ?T is in the nullspace of C if rank(C) ≤ (M − 1)d.
Since ŌT is also in the nullspace of C, and moreover W ?, Ō ∈ S, it is not difficult to verify that
W ? = ΩŌ,Ω ∈ O(d), if and only if rank(C) = (M − 1)d. �

Since relaxation (P2) is tighter than (P1), we automatically have that G? = Ḡ if rank(C) =
(M − 1)d.

Corollary 6 (Strict convexity of GRET-SDP). If rank(C) = (M − 1)d, then (P2) is strictly convex.

We will henceforth say that the patch-stress C is admissible if rank(C) = (M − 1)d.
The previous discussion leads to the question as to under what conditions on Γ can we guarantee
the patch-stress matrix to be admissible? To address this question, we introduce the following
construct for Γ.

Definition 7 (Lateration). Γ is said to be laterated in Rd if there exists a reordering of the patch indices
such that, for every 2 < i ≤ M , Pi and P1 ∪ · · · ∪ Pi−1 have at least d + 1 non-degenerate points in
common.

Note that if Γ is laterated, then it is automatically connected, which is required to ensure exact
recovery.

Theorem 8 (Lateration and Rank). If Γ is laterated in Rd, then C is admissible.

 

P1 

P2 P3 

FIGURE 2. Instance of three overlapping patches, where the overlapping points
are shown in red. In this case, P3 cannot be registered with either P1 or P2

due to insufficient overlap. Therefore, the patches cannot be localized in two
dimension using an algorithm (e.g., [66, 16]) that works by registering pairs
of patches. The patches can however be registered globally using GRET-SPEC
and GRET-SDP since the ordered patches P1, P2, P3 form a lateration in R2 (cf.
Definition 7).
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Remark 9 (Pairwise vs. global registration). Note that any distributed algorithm (for example,
[66, 16]) that proceeds by registering pairs of overlapping patches must consider pairs that have at least
d+ 1 points in common; this is the minimum one needs to successfully register a pair of patches in Rd.
In particular, define the graph ΓP = (VP , EP ), where VP represents the patch indices, and (i, j) ∈ EP if
and only if |Pi ∩ Pj | ≥ d + 1. In order to globally register all patches using pairwise alignment, it is
necessary that ΓP be connected. Now, if ΓP is connected, then it is easy to see that Γ is laterated. This
means that, in the noiseless case, whenever a pairwise-alignment based algorithm provides an unique
solution, GRET-SPEC and GRET-SDP are also guaranteed to have an unique solution.
What is perhaps interesting is that the proposed relaxations also provide an unique solution for instances
where ΓP is not even connected. For example, consider the 3-patch system in R2 shown in Figure 2.
Here, |P1 ∩ P2| = 3, |P1 ∩ P3| = 2, and |P2 ∩ P3| = 1. Clearly, ΓP is disconnected in this case. In
particular, while it possible to register P1 and P2, P3 cannot be registered with either P1 or P2. Therefore,
a distributed algorithm which works with pairs of patches cannot recover the global coordinates of the
points. However, note that the patch system is laterated in this case, and as predicted by Theorem 8,
GRET-SPEC and GRET-SDP can exactly recover the global coordinates in this case.

We will now prove Theorem 8. To do so, we will need the following lemma (which will also be
used later). The proof is provided in Section 9.1.

Lemma 10. Suppose we have points x1, . . . , xN , matrices F1, . . . , FM , and translations t1, . . . , tM ,
such that

(28) xk = Fix
(i)
k + ti (k, i) ∈ E(Γ),

for some membership graph Γ. Suppose that Γ is connected, and each patch in Γ contains d+ 1 or more
points. Then the span of [F1 · · ·FM ] is identical to the affine span of {x1, . . . , xN}.

We recall that the affine span of of a set of points P is defined as the linear subspace of smallest
dimension whose translate contains P . The dimension of this subspace is the affine rank of P .

Proof of Theorem 8. We know that the nullity of C is at least d (the rows of Ō are in its null space),
so that rank(C) ≤ (M − 1)d. We need to show that the rank is exactly (M − 1)d under the given
assumptions.
We claim that if Tr(CX) = 0 implies rank(X) ≤ d for any X � 0, then rank(C) = (M − 1)d.
Suppose the former is true, but rank(C) < (M − 1)d. We will show that Tr(CY ) = 0 for some
Y � 0 with rank(Y ) > d, which will contradict our hypothesis. Indeed, since the nullity of C is
d+ 1 or more, we can find some null vector u that does not belong to the span of the rows of Ō.
Take Y = Ḡ+ uuT � 0 whose rank is d+ 1, and note that Tr(CY ) = 0.
It remains to show that under the assumption of Theorem 8, Tr(CX) = 0 implies rank(X) ≤ d
for any X � 0. Fix the order of patches so that P1, · · · , PM satisfy the lateration condition.
Take X � 0 and write X = FTF , where F ∈ RMd×Md. We are done if we can show that
rank(F ) ≤ d. Substituting for C, we can write

0 = Tr(FCFT ) =
∑

(k,i)∈E(Γ)

‖Zeki − F (ei ⊗ Id)x
(i)
k ‖

2,

whereZ def
= FBL†.Write F = [F1, . . . , FM ] where each Fi ∈ RMd×d. Then we have the equations

Zeki = Fix
(i)
k (k, i) ∈ E(Γ).

Further, define xk to the k-th column of Z for 1 ≤ k ≤M , and ti to be the (N + i)-th column of
Z for 1 ≤ i ≤M . Then

(29) xk = Fix
(i)
k + ti (k, i) ∈ E.

Clearly, the rank of each Fi is at most d. We are done if we can show that the columns of
F1, . . . , FM span the same space.
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We proceed by inducting on M . When M = 2, we know that there are d+ 1 points in common
between P1 and P2, say, x1, . . . , xd+1. From (29), we have

xk = F1x
(1)
k + t1 = F2x

(2)
k + t2 (k = 1, 2, . . . , d+ 1).

We now take out the translation by subtracting pairs of equations. In particular, we fix the first
equation and subtract the remaining d equations from it. This gives us the equation

(30) F1X1 = F2X2,

where
Xi = [x

(i)
2 − x

(i)
1 · · · x(i)

d+1 − x
(i)
1 ] ∈ Rd×d (i = 1, 2).

Since the common points are assumed to be non-degenerate, it follows that the X1 and X2 are
of full rank. Therefore, F1 and F2 span the same space.
Assume, by the induction hypothesis, that the result holds for the first 2 ≤ m < M patches.
Namely, that the columns of F1, . . . , Fm span the same space. Let x1, . . . , xd+1 (after relabeling)
be the points belonging to the union of P1, . . . , Pm that are also in Pm+1. It trivially follows from
the lateration assumption that each patch contains d+ 1 or more non-degenerate points, and
that Γ is connected. Therefore, by Lemma 10, the affine span of {x1, · · · , xd+1} is contained in
the span of [F1 · · ·Fm].
On the other hand, from (36), we have

xk = Fm+1x
(m+1)
k + tm+1 (k = 1, 2, . . . , d+ 1).

After subtraction, we get

Fm+1 [x
(m+1)
2 − x(m+1)

1 · · ·x(m+1)
d+1 − x(m+1)

1 ] = [x2 − x1 · · ·xd+1 − x1].

Now, since the matrix on the left is invertible (by the non-degeneracy assumption), it follows
that the span of the columns of Fm+1 is identical to the affine span of {x1, . . . , xd+1}. Therefore,
the columns of Fm+1 have the same span as [F1 · · ·Fm]. This completes the induction. �

The previous discussion leads to the following questions:

• Is lateration also necessary for exact rank recovery?
• For what class of Γ would GRET-SPEC fail to recover the exact coordinates, while the

tighter relaxation GRET-SDP would succeed?
• Is there a necessary and sufficient condition for exact recovery using GRET-SDP?

The answer to the first question is in the negative, and as a counterexample, we again consider a
3-patch system shown in Figure 1. This patch system is not laterated in R2, since no two patches
have three points in common. However, numerical experiments (cf. Section 7) show that we have
exact recovery for this example using GRET-SDP. On the other hand, if the points are chosen to
be non-degenerate, the rank of the patch-stress matrix turns out to be less than (M − 1)d = 4 for
this example. As a result, following Proposition 5, GRET-SPEC would fail to recover the exact
coordinates in this case. To explain why GRET-SDP succeeds while GRET-SPEC fails for this
patch system, and to resolve the final question, we will now take a different route.

4. UNIQUE LOCALIZABILITY AND RANK RECOVERY

Corollary 6 tells us that (P2) is strictly convex if C is admissible. We will now show that the
strict convexity of (P2) can be established under weaker conditions. To do so, we will use a
standard result in the theory of semidefinite programming: If the solution of SDP’s such as (P2)
is guaranteed to be of fixed rank, then the solution is necessarily unique [37, pg. 36-39]. That is,
if we can guarantee the rank of G? to be exactly d, then G? = Ḡ. We will refer to this as rank
recovery.
To establish conditions for rank recovery, we will need a particular notion of graph rigidity
called unique localizability due to So and Ye [54]. The setting here is that we are given a graph
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(V,E) and distances {dkl : (k, l) ∈ E}. A set of points (xk)k∈V in Rd is said to be a realization of
{dkl : (k, l) ∈ E} in Rd if dkl = ||xk − xl|| for (k, l) ∈ E.

Definition 11 (Unique localizability, [54]). We say that a graph (V,E), along with distances {dkl :
(k, l) ∈ E}, is uniquely localizable in Rd if
(a) There exists a realization of {dkl : (k, l) ∈ E} in Rd.
(b) One cannot find a realization of {dkl : (k, l) ∈ E} whose affine rank is larger than d.

We will show that rank recovery for GRET-SDP is equivalent to the unique localizability of
a graph (derived from the membership graph) together with distances (defined on this new
graph) computed from the local coordinates. In particular, consider the graph ΓB = (VB , EB),
where VB = {1, 2, . . . , N} and (k, l) ∈ EB if and only if xk and xl belong to the same patch. We
call ΓB the backbone graph (see Figure 3). We associate the following distances with ΓB :

(31) dkl = ‖x(i)
k − x

(i)
l ‖ (k, l) ∈ EB ,

where xk, xl ∈ Pi, say. Note that the above assignment is independent of the choice of patch.

 

FIGURE 3. This shows the backbone graph for a 3-patch system. The edges of
the backbone graph are obtained by connecting points that belong to the same
patch. The edges within a given patch are marked with the same color. We
prove in the text that GRET-SDP can successfully register all the patches if the
backbone graph is rigid in a certain sense.

It is clear that ΓB , together with the distances (31), has a realization in Rd, namely the one arising
from the clean configuration. What is less obvious is whether it also has a realization in some
higher dimension. The resolution of this question tells us when rank(G?) = d. Intuitively, there
cannot be exact recovery if the backbone is realizable in a space whose affine dimension is larger
than d.

Theorem 12 (Rank recovery and uniquely localizability). If every patch contains at least d + 1
non-degenerate points, then the following are equivalent:
(1) The rank of G? is d.
(2) ΓB along with the distances (31) is uniquely localizable in Rd.

Before turning to the proof of Theorem (12), we make some observations.

Remark 13 (GRET-SPEC fails, but GRET-SDP succeeds). The significance of Theorem 12 is that
it offers an explanation as to why GRET-SDP works perfectly for the patch system in Figure 1, while
GRET-SPEC fails. Note that the backbone graph in this case is trilaterated (we recall that a graph is a
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trilateration if there exists an ordering of the vertices such that the first three vertices form a triangle, and
every vertex after that is connected to at least three vertices earlier in the order). Now it is well-known
that trilaterated graphs are uniquely localizable in R2 [54], which explains why GRET-SDP is able to
recover the exact coordinates for the patch system in this example.
Notice that, following Theorem 12, it is necessary that the backbone graph in Figure 2 is uniquely
localizable. In fact, the backbone graph in this case is also trilaterated.
A precise explanation as to why GRET-SPEC fails in this example is as follows. As explained (we skip
the details) in Figure 4, we can construct a matrix F = [F1, F2, F3], where each Fi is a 3 × 2 matrix,
such that

rank(F ) > 2 and Tr(FCFT ) = 0.

In other words, the patch-stress matrixC has a larger nullspace than what is required to make it admissible.
The larger nullspace is precisely due to the additional degree of freedom coming from the affine constraints
as against what we would have if we restricted the transforms to be orthogonal. Indeed, it is the diagonal
(orthogonality) constraints in (P1) that eliminates the extra degree of freedom coming from the affine
transforms.
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FIGURE 4. We give an explanation as to why the point-patch system in Figure 1
cannot be registered using GRET-SPEC, and in particular, why the patch-stress
matrix in this example fails to be admissible. Recall that the backbone graph in
this case is uniquely localization (forms a trilateration), and is thus uniquely
localizable in R2. Left: Unique configuration in R2 (up to a rigid transform)
that satisfies the measurements (25). Right: Configuration in R3 obtained from
the one on the left through affine transforms applied on (the points in) patches
P1 and P2. In particular, we first scale P1 along r1, and then rotate it about
the u axis. We then scale P2 along r2, and rotate it about the v axis. It can be
shown the combined affine transform is in the null space of the patch-stress
matrix, and that the rank of the transform is greater than 2 (extra degree of
freedom obtained by replacing the orthogonal constraints by affine constraints).
This explains why the patch-stress matrix is rank deficient (see Remark 13 for a
precise description).

We now give the proof Theorem 12. To do so, we introduce the following notations. Let
λ1, · · · , λMd be the full set of eigenvalues of G? sorted in non-increasing order, and q1, . . . , qMd

be the corresponding eigenvectors. Define

(32) O?? def
=
[√

λ1q1 · · ·
√
λMdqMd

]T ∈ RMd×Md,

and O??
i to be the i-th Md× d block of O??, that is,

(33) O?? def
= [O??

1 · · · O??
M ].
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This should not lead to confusion since we will no longer refer to (18) in the rest of the paper.

By construction, G? = O??TO??. In particular, the rank of G? is identical to that of O??. This
reduces the problem to one of understanding when the rank of the latter is exactly d. Moreover,
note that by feasibility,

G?
ii = O??

i
TO??

i = Id (1 ≤ i ≤M).

Thus the d columns of O??
i form an orthonormal system in RMd.

Now define

(34) Z?? def
= O??BL† ∈ RMd×(N+M),

and, denoting the p-th column of Z?? by Z??
p , define

(35) x??k
def
= Z??

k (1 ≤ k ≤ N) and t??i
def
= Z??

N+i (1 ≤ i ≤M).

The configuration {x??1 , . . . , x
??
N } and the translations {t??1 , . . . , t

??
M} live in RMd. Roughly speak-

ing, the desired configuration Z? is obtained by projecting {x??1 , . . . , x
??
N } onto a d-dimensional

subspace of RMd. If rank(G?) = d, then the projection is trivial, Z?? = Z?. In this case, we have
seen that the configuration and the transforms defined in (35), and (33) satisfy the measurement
model in (25). More generally, even if the rank is larger than d, we have the following relation.

Proposition 14 (Consistency).

(36) x??k = O??
i x

(i)
k + t??i (k, i) ∈ E(Γ).

In other words, the configuration and the transforms that are obtained by solving (P2) are
consistent with the measurements in RMd.

Proof. Note that from (34), (35), and (33), we can write∑
(k,i)∈E(Γ)

‖x??k −O??
i x

(i)
k − t

??
i ‖2 = φ(Z??, O??) = φ(O??BL†, O??) = Tr(CG?),

where the Euclidean norm on the left is on RMd. Then, from (23) and (27), we conclude that
Tr(CG?) = 0. This gives us the consistency relations. �

We now show how the above consistency relations along with Lemma 10 can be used to infer
when the rank of O?? is exactly d.

Proof of Theorem (12). Note that if either (1) or (2) holds, then the membership graph Γ must be
connected.
(2)⇒ (1): If ΓB is unique localizable, then, as a realization, {x??1 , x

??
2 , . . . , x

??
N }must have affine

rank d. However, Lemma 10 tells us that the affine rank of {x??1 , x
??
2 , . . . , x

??
N } equals that of O?.

(1)⇒ (2): We need to show that any realization of ΓB (along with the distances (31)) has affine
rank d. Let {y1, . . . , yN} be such a realization. Then

‖yk − yl‖ = ‖x(i)
k − x

(i)
l ‖ (k, l) ∈ EB .

For a fixed patch Pi, consider the realizations Π1 = {yk : (k, i) ∈ E(Γ)} and Π2 = {x??k : (k, i) ∈
E(Γ)}. It follows from (36) that

‖x??k − x??l ‖ = ‖x(i)
k − x

(i)
l ‖ (k, l) ∈ EB .

Therefore, the distance between a pair of points in Π1 is equal to that of a pair of corresponding
points in Π2. Since Pi contains d + 1 or more non-degenerate points, it must be that Π1 is
obtained through some rigid transform of Π2. Combining this with (36), it is easy to see that

(37) yk = Oix
i
k + ti (k, i) ∈ E(Γ),

where the columns of Oi ∈ RMd×d form an orthonormal system in RMd.
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Let O = [O1 · · ·OM ]. It follows from (37) and Lemma 10 that the affine rank of {y1, . . . , yN} is
identical to rank(O). Moreover, it is not difficult to show using (37) that Tr(COTO) = 0, so that
OTO is optimal for (P2). Since SDP solvers return the maximum rank solution, it follows that
rank(O) ≤ rank(O??) = d This establishes our claim. �

5. RANDOMIZED RANK TEST

In this Section, we propose an efficient randomized test for exact recovery. That is, given some
membership graph Γ and clean measurements defined on Γ, we describe a test that takes Γ and
returns certificates of exact recovery for GRET-SPEC and GRET-SDP. First, let us consider the
various conditions of exact recovery described in the previous Sections:

• A necessary and sufficient condition for exact recovery using GRET-SPEC is that the
patch-stress matrix constructed from the clean measurements is admissible.
• A sufficient condition for the patch-stress matrix to be admissible is that Γ is laterated.
• This rank condition is sufficient for exact recovery using GRET-SDP, but is not necessary.
• A necessary and sufficient condition for exact recovery using GRET-SDP is that the

backbone graph of Γ is unique localizability.

To the best of our knowledge, there is no known polynomial-time algorithm for testing lateration
for a given patch system. As described earlier, it is however possible to construct patch systems
in certain applications that are tailored to satisfy the lateration condition. Thus, while the
lateration condition is useful in practice when one has some control on Γ, it cannot be used as a
test for either relaxation.
On the other hand, it is known that unique localizability can be certified in polynomial time
using an SDP-based test [54]. This test can, in principle, be used to certify exact recovery for
GRET-SDP. However, the test requires one to run an SDP program where the size of the variable
scales linearly with the size of the backbone graph (cf. [54] for details). Since the size of the
backbone graph is comparable to the size Γ, namely N +M , the complexity of this test would
far exceed the complexity of GRET-SDP itself. In short, the SDP-based algorithm in [54] cannot
be used as an efficient test for GRET-SDP.
This leaves us with the rank condition, which can of course be tested efficiently. However, we
note that the rank condition is only a sufficient condition for GRET-SDP. In particular, if the
patch-stress matrix is not admissible the test is inconclusive. That is, it is possible that the given
Γ is good enough to guarantee exact recovery (e.g., the backbone is uniquely localizable) even
though the patch-stress matrix fails to be admissible.
As we will see in Section 6, the rank condition also plays a role in determining the performance
of GRET-SDP when the measurements are corrupted. What we can hope for in this case is
that the membership graph Γ should at least guarantee exact recovery if clean measurements
were provided instead. The point is that it would not make sense to register the patches with
noisy measurements if exact recovery cannot be guaranteed with clean measurements. An
efficient test then would be to test the rank of the patch-stress matrix constructed from the clean
measurements. The problem, however, is that we do not have access to the clean measurements
(else, there would be noting to solve for). To bypass this problem, we propose a procedure
similar to the randomized tests proposed for local rigidity by Hendrickson [28], for generic
global rigidity by Gortler et al. [24], and for matrix completion by Singer and Cucuringu [52].
Before we do so, we need a result. Let us continue to denote the patch-stress matrix obtained
from Γ and the measurements (25) by C. We introduce the notation C0 to denote the patch-
stress matrix obtained from the same graph Γ, but using the (unknown) original coordinates as
measurements, namely,

(38) x
(i)
k = x̄k (k, i) ∈ Γ.



20 KUNAL N. CHAUDHURY, YUEHAW KHOO, AND AMIT SINGER

Algorithm 3 RRT

Require: Membership graph Γ, and dimension d.
Ensure: Exact recovery certificate for GRET-SDP.

1: Build L using Γ, and compute L†.
2: Randomly pick {x1, . . . , xN} from the unit cube in Rd, where N = |Vx(Γ)|.
3: x

(i)
k ← xk for every (k, i) ∈ E(Γ).

4: C0 ← D −BL†BT .
5: if rank(C0) = (M − 1)d then
6: Positive certificate for GRET-SPEC and GRET-SDP.
7: else
8: Negative certificate for GRET-SPEC.
9: GRET-SDP cannot be certified.

10: end if

The advantage of working with C0 over C is that the former can be computed using just the
global coordinates, while the latter requires the knowledge of the global coordinates as well as
the clean transforms. In particular, this only requires us to simulate the global coordinates. Since
the coordinates of points in a given patch are determined up to a rigid transform, we claim the
following (cf. Section 9.2 for a proof).

Proposition 15 (Rank equivalence). For a fixed Γ, C and C0 have the same rank.

In other words, the rank of C0 can be used to certify exact recovery. The proposed test is based
on Proposition 9.2, and the fact that if two different generic configurations are used as input in
(38) (for the same Γ), then the patch-stress matrices they produce would have the same rank.
By generic, we mean that the coordinates of the configuration do not satisfy any non-trivial
algebraic equation with rational coefficients [24]. It is not difficult to reason that if the points in
the configuration are drawn randomly (and independently) from a non-singular distribution
(say, the uniform distribution over the unit cube in Rd), then the configuration is generic with
probability one. The idea then is to randomly pick x1, . . . , xN from this distribution, and use
it in place of the unknown (38) to compute the patch-stress matrix and its rank. If the rank is
(M − 1)d, we return a positive certificate for GRET-SPEC and GRET-SDP. On the other hand, if
the rank is less than (M − 1)d, we return a negative certificate for GRET-SPEC. However, we are
not able to certify GRET-SDP in this case. The complete test is described in Algorithm 3. We will
henceforth refer to this as the “Randomized Rank Test” (RRT). Note that the main computations
in RRT are the Laplacian inversion (which is also required for the registration algorithm), and
the rank determination.

6. STABILITY ANALYSIS

We have so far studied the problem of exact recovery from noiseless measurements. In practice,
however, the measurements are invariably noisy. This brings us to the question of stability,
namely how stable are GRET-SPEC and GRET-SDP to perturbations in the measurements?
Numerical results (to be presented in the next Section) show that both the relaxations are indeed
quite stable to perturbations. In particular, the reconstruction error degrades quite gracefully
with the increase in noise (reconstruction error is the gap between the outputs with clean and
noisy measurements). In this Section, we try to quantify these empirical observations. In
particular, we show that, for a specific noise model, the reconstruction error grows at most
linearly with the level of noise.
The noise model we consider is the “bounded” noise model. Namely, we assume that that the
measurements are obtained through bounded perturbations of the clean measurements in (25).
More precisely, we suppose that we have a membership graph Γ, and that the observed local
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coordinates are of the form

(39) x
(i)
k = ŌT

i (x̄k − t̄i) + εk,i, ‖εk,i‖ ≤ ε (k, i) ∈ E(Γ).

In other words, every coordinate measurement is offset within a ball of radius ε around the
clean measurements. Here, ε is a measure of the noise level per measurement. In particular,
ε = 0 corresponds to the case where we have the clean measurements (25).
Since the coordinates of points in a given patch are determined up to a rigid transform, it is
clear that the above problem is equivalent to the one where the measurements are

(40) x
(i)
k = x̄k + εk,i, ‖εk,i‖ ≤ ε (k, i) ∈ E(Γ).

By equivalent, we mean that the reconstruction errors obtained using either (39) or (40) are
equal. The reason we use the latter measurements is that the analysis in this case is much more
simple.
The reconstruction error is defined as follows. Generally, let Z? be the output of Algorithms 1
and 2 using (40) as input, and let

(41) Z0
def
= [x̄1 · · · x̄N 0 · · · 0] ∈ Rd×(N+M),

where we assume that the centroid of {x̄1, · · · , x̄N} is at the origin.
Ideally, we would require that Z? = Z0 (up to a rigid transformation) when there is no noise,
that is, when ε = 0. This is the exact recovery phenomena that we considered earlier. In general,
the gap between Z0 and Z? is a measure of the reconstruction quality. Therefore, we define the
reconstruction error to be

η = min
Θ∈O(d)

‖Z? −ΘZ0‖F .

Note that we are not required to factor out the translation since Z0 is centered by construction.
Our main results are the following.

Theorem 16 (Stability of GRET-SPEC). Assume that R is the radius of the smallest Euclidean ball
that encloses the clean configuration {x̄1, . . . , x̄N}. For fixed noise level ε ≥ 0 and membership graph Γ,
suppose we input the noisy measurements (40) to GRET-SPEC. If C0 is admissible, then we have the
following bound for GRET-SPEC:

η ≤ |E(Γ)|1/2

λ2(L)
(K1ε+K2ε

2),

where

K1 =
8πR

µd+1(C)

√
2MN |E(Γ)|(2 +N)d(d+ 1)

(
4R

√
N |E(Γ)|
λ2(L)

+ 1

)
+
√

2 +N +M.

and

K2 =
8πR

µd+1(C)

√
2MN |E(Γ)|(2 +N)d(d+ 1)

(
2

√
N |E(Γ)|
λ2(L)

+ 1

)
.

Here λ2(L) is the second smallest eigenvalue of L.

We assume here that µd+1(C) is non-zero2. The bounds here are in fact quite loose. Note that
when ε = 0, then by the admissibility assumption µd+1(C) > 0, and we recover the perfect
reconstruction results for GRET-SPEC.

2Numerical experiments suggest that this is indeed the case if C0 is admissible. In fact, we notice a growth in the
eigenvalue with the increase in noise level. We have however not been able to prove this fact.
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Theorem 17 (Stability of GRET-SDP). Under the conditions of Theorem 16, we have the following for
GRET-SDP:

η ≤ |E(Γ)|1/2

λ2(L)

[
32
√

2d(d+ 1)(2 +N)|E(Γ)|µ−1/2
d+1 (C0)R+

√
2 +N +M

]
ε.

The bounds are again quite loose. The main point is that the reconstruction error for GRET-SDP
is within a constant factor of the noise level. In particular, when ε = 0 (measurements are clean),
we recover the perfect reconstruction results.
The rest of this Section is devoted to the proofs of Theorem 16 and 17. First, we introduce some
notations.
Notations. We note that the patch-stress matrix in (P1) is computed from the noisy measure-
ments (40), and the same patch-stress matrix is used in (P2). The quantities G?,W ?, O?, and Z?

are as defined in Algorithms 1 and 2 . We continue to denote the clean patch-stress matrix by C0.
Define

O0
def
= [Id · · · Id] and G0

def
= OT

0 O0.

Let e1, . . . , ed be the standard basis vectors of Rd, and let e be the all-ones vector of length M .
Define

(42) si
def
=

1√
M
e⊗ ei ∈ RMd (1 ≤ i ≤ d).

Note that every d× d block of G0 is Id, and that we can write

(43) G0 =

d∑
i=1

Msis
T
i .

We first present an estimate that applies generally to both algorithms. The proof is provided in
Section 9.3.

Proposition 18 (Basic estimate). Let R be the radius of the smallest Euclidean ball that encloses the
clean configuration. Then, for any arbitrary Θ,

(44) ‖Z? −ΘZ0‖F ≤
|E(Γ)|1/2

λ2(L)

[
R(2 +N)1/2‖O? −ΘO0‖F + ε(2 +N +M)1/2

]
.

In other words, the reconstruction error in either case is controlled by the rounding error:

(45) δ = min
Θ∈O(d)

‖O? −ΘO0‖F .

The rest of this Section is devoted to obtaining a bound on δ for GRET-SPEC and GRET-SDP. In
particular, we will show that δ is of the order of ε in either case. Note that the key difference
between the two algorithms arises from the eigenvector rounding, namely the assignment of
the “unrounded” orthogonal transform W ? (respectively from the patch-stress matrix and the
optimal Gram matrix). The analysis in going from W ? to the rounded orthogonal transform O?,
and subsequently to Z?, is however common to both algorithms.
We now bound the error in (45) for both algorithms. Note that we can generally write

W ? =
[√
α1u1 · · ·

√
αdud

]T
,

where u1, . . . , ud are orthonormal. In GRET-SPEC, each αi = M , while in GRET-SDP we set αi

using the eigenvalues of G?.
Our first result gives a control on the quantities obtained using eigenvector rounding in terms
of their Gram matrices.

Lemma 19 (Eigenvector rounding). There exist Θ ∈ O(d) such that

‖W ? −ΘO0‖F ≤
4√
M
‖W ?TW ? −G0‖F .
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Next, we use a result by Li [40] to get a bound on the error after orthogonal rounding.

Lemma 20 (Orthogonal rounding). For arbitrary Θ ∈ O(d),

‖O? −ΘO0‖F ≤ 2
√
d+ 1 ‖W ? −ΘO0‖F .

The proofs of Lemma 19 and 20 are provided in Appendices 9.4 and 9.5. At this point, we record
a result from [42] which is repeatedly used in the proof of these lemmas and elsewhere.

Lemma 21 (Mirsky, [42]). Let |||·||| be some unitarily invariant norm, and let A,B ∈ Rn×n. Then

||| diag(σ1(A)− σ1(B), · · · , σn(A)− σn(B)) ||| ≤ |||A−B|||.
In particular, the above result holds for the Frobenius and spectral norms.

By combining Lemma 19 and 20, we have the following bound for (45):

(46) δ ≤ 8

√
d+ 1

M
‖W ?TW ? −G0‖F .

We now bound the quantity on the right in (46) for GRET-SPEC and GRET-SDP.

6.1. Bound for GRET-SPEC. For the spectral relaxation, this can be done using the Davis-Kahan
theorem [7]. Note that from (18), we can write

(47)
1

M
(W ?TW ? −G0) =

d∑
i=1

rir
T
i −

d∑
j=1

sjs
T
j .

Following [7, Ch. 7], let A be some symmetric matrix and S be some subset of the real line.
Denote PA(S) to be the orthogonal projection onto the subspace spanned by the eigenvectors of
A whose eigenvalues are in S. A particular implication of the Davis-Kahan theorem is that

(48) ‖ PA(S1)− PB(S2) ‖sp ≤
π

2ρ(Sc
1, S2)

‖A−B‖sp,

where Sc
1 is the complement of S1, and ρ(S1, S2) = min{|u− v| : u ∈ S1, v ∈ S2}.

In order to apply (48) to (47), set A = C,B = C0, S1 = [µ1(C), µd(C)], and S2 = {0}. If C0 is
admissible, then PB(S2) =

∑d
j=1 sjs

T
j . Applying (48), we get

(49) ‖W ?TW ? −G0‖sp ≤
Mπ

2µd+1(C)
‖C − C0‖F .

Now, it is not difficult to verify that for the noise model (40),

(50) ‖C − C0‖F ≤ 2
√
N |E(Γ)|

[(
4R

√
N |E(Γ)|
λ2(L)

+ 1
)
ε+

(
2

√
N |E(Γ)|
λ2(L)

+ 1
)
ε2

]
.

Combining Proposition 18 with (46),(49), and (50), we arrive at Theorem 16.

6.2. Bound for GRET-SDP. To analyze the bound for GRET-SDP, we require further notations.
Recall (42), and let S be the space spanned by {s1, . . . , sd} ⊂ RMd, and let S̄ be the orthogonal
complement of S in RMd. In the sequel, we will be required to use matrix spaces arising from
tensor products of vector spaces. In particular, given two subspaces U and V of RMd, denote by
U ⊗ V the space spanned by the rank-one matrices {uvT : u ∈ U, v ∈ V }. In particular, note that
G0 is in S ⊗ S.
Let A ∈ RMd×Md be some arbitrary matrix. We can decompose it into

(51) A = P +Q+ T

where
P ∈ S ⊗ S, Q ∈ (S ⊗ S) ∪ (S ⊗ S), and T ∈ S ⊗ S.

We record a result about this decomposition from Wang and Singer [61].
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Lemma 22 ([61], pg. 7). Suppose G0 + ∆ � 0 and ∆ii = 0 (1 ≤ i ≤M). Let ∆ = P +Q+ T as in
(51). Then

T � 0, and Pij = − 1

M

M∑
l=1

Tll (1 ≤ i, j ≤M).

It is not difficult to verify that Tr(C0G0) = 0 and that C0 � 0. From (43), we have

0 = Tr(C0G0) =

d∑
i=1

sTi C0si ≥ 0.

Since each term in the above sum is non-negative, C0si = 0 for 1 ≤ i ≤ d. In other words, S is
contained in the null space of C0. Moreover, if C0 is admissible, then S is exactly be the null
space of C0. Based on this observation, we give a bound on the residual T .

Proposition 23 (Bound on the residual). Suppose that C0 is admissible. Decompose ∆ = P +Q+ T
as in (51). Then

(52) Tr(T ) ≤ 4µ−1
d+1(C0)|E(Γ)|ε2.

Proof. The main idea here is to compare the objective in (P0) with the trace of T . To do so, we
will use the unrounded Z and O defined in (32) and (34). In particular, we will use the fact that
(Z??, O??) are the minimizers of the unconstrained program

(53) min
(Z,O)

∑
(k,i)∈E(Γ)

‖Zeki −Oix
(i)
k ‖

2 s.t. Z ∈ RMd×(N+M), O ∈ RMd×Md.

Note that Tr(C0G
?) = Tr(C0(G0 + ∆)) = Tr(C0T ). Now, from Lemma (22), T � 0. Therefore,

writing
T =

∑
i

viv
T
i (vi ∈ S̄),

we get
Tr(C0T ) =

∑
i

vTi C0vi ≥ µd+1(C0)
∑
i

vTi vi = µd+1(C0)Tr(T ).

Therefore,

(54) Tr(T ) ≤ µ−1
d+1(C0) Tr(C0G

?).

We are done if we can bound the term on the right. To do so, we note that

Tr(C0G
?) = Tr(C0O

??TO??) = min
Z∈RMd×N+M

∑
(k,i)∈E(Γ)

‖Zeki −O??
i x̄k‖2.

Therefore,
Tr(C0G

?) ≤
∑

(k,i)∈E(Γ)

‖Z??eki −O??
i x̄k‖2.

To bring in the error term, we write

Z??eki −O??
i x̄k = Z??eki −O??

i x
(i)
k +O??

i εk,i,

and use ‖x+ y‖2 ≤ 2(‖x‖2 + ‖y‖2) to get

(55) Tr(C0G
?) ≤ 2

∑
(k,i)∈E

‖Z??eki −O??
i x

(i)
k ‖

2 + 2|E(Γ)|ε2.

Finally, using the optimality of (Z??, O??) for (53), we have

(56)
∑

(k,i)∈E(Γ)

‖Z??eki −O??
i x

(i)
k ‖

2 ≤
∑

(k,i)∈E(Γ)

‖Z0eki − Idx(i)
k ‖

2 ≤ |E(Γ)|ε2.

The desired result follows from (54), (55), and (56). �
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Finally, we note that Tr(T ) can be used to bound the difference between the Gram matrices.

Proposition 24 (Trace bound). ‖W ?TW ? −G0‖F ≤ 2
√

2MdTr(T ).

Proof. We will heavily use decomposition (51) and its properties. Let G? = G0 + ∆. By triangle
inequality,

‖W ?TW ? −G0‖F ≤ ‖
Md∑

i=d+1

λi(G
?) uiu

T
i ‖F + ‖∆‖F

= ‖ diag(λd+1(G?), . . . , λMd(G?)) ‖F + ‖∆‖F .

Moreover, since the bottom eigenvalues of G0 are zero, it follows from Lemma 21 that the norm
of the diagonal matrix is bounded by ‖∆‖F . Therefore,

(57) ‖W ?TW ? −G0‖F ≤ 2‖∆‖F .

Fix {sd+1, . . . , sMd} to be some orthonormal basis of S̄. For arbitrary A ∈ RMd, let

A(p, q) = sTpAsq (1 ≤ p, q ≤Md).

That is, (A(p, q)) are the coordinates of A in the basis {s1, ..., sd} ∪ {sd+1, . . . , sMd}.
Decompose ∆ = P +Q+ T as in (51). Note that P,Q, and T are represented in the above basis
as follows: P is supported on the upper d × d diagonal block, T is supported on the lower
(M−1)d× (M−1)d diagonal block, andQ on the off-diagonal blocks. The matrixG0 is diagonal
in this representation.
We can bound ‖P‖F using Lemma 22,

(58) ‖P‖2F = M2‖P11‖2F = ‖
M∑
l=1

Tll‖2F ≤
[
Tr
( M∑

l=1

Tll
)]2

= Tr(T )2,

where we have used the properties T � 0 and Tll � 0 (1 ≤ l ≤M). In particular,

(59) ‖T‖F ≤ Tr(T ).

On the other hand, since G0 + ∆ � 0, we have (G0 + ∆)(p, q)2 ≤ (G0 + ∆)(p, p)(G0 + ∆)(q, q).
Therefore,

‖Q‖2F = 2

d∑
p=1

Md∑
q=d+1

Q(p, q)2 ≤ 2

d∑
p=1

(G0 + ∆)(p, p)

Md∑
q=d+1

T (q, q).

Notice that 0 = Tr(∆) = Tr(T ) + Tr(P ). Therefore,

(60) ‖Q‖2F ≤ 2MdTr(T )− 2Tr(T )2.

Combining (57), (58), (60), and (59), we get the desired bound. �

Putting together (46) with Propositions (18),(23), and (24), we arrive at Theorem (17).

7. NUMERICAL EXPERIMENTS

We now present some numerical results on multipatch registration using GRET-SPEC and
GRET-SDP. In particular, we study the exact recovery and stability properties of the algorithm.
We define the reconstruction error in terms of the root-mean-square deviation (RMSD) given by

(61) RMSD = min
Ω∈O(d),t∈Rd

[
1

N

N∑
k=1

‖Z?
k − Ωx̄k − t‖2

]1/2

.

In other words, the RMSD is calculated after registering (aligning) the original and the recon-
structed configurations. We use the SVD-based algorithm [2] for this purpose.
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We first consider a few examples concerning the registration of three patches in R2, where we
vary Γ by controlling the number of points in the intersection of the patches. We work with the
clean data model in (25) and demonstrate exact recovery for different Γ.
In the left plot in Figure 5, we consider the patch system that was considered earlier in Figure
2. In the present case, we have N = 10 points. The points that belong to two or more patches
are marked red, while the rest are marked black. The patches taken in the order P1, P2, P3 form
a lateration in this case. As predicted by Theorem 8, the rank of the patch-stress matrix C0

for this system must be 2(3− 1) = 4. This is indeed confirmed by our experiment. We expect
GRET-SPEC and GRET-SDP to recover the exact configuration. Indeed, we get a very small
RMSD of the order of 1e-7 in this case. As shown in the figure, the reconstructed coordinates
obtained using GRET-SDP perfectly match the original ones after alignment.
We next consider the example shown in the center plot in Figure 5. The patch system is not
laterated in this case, but the rank of C0 is 4. Again we obtain a very small RMSD of the order
1e-7 for this example. This example demonstrates that lateration is not necessary for exact
recovery.
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FIGURE 5. Instances of a three-patch systems in R2. Left: Patch system is
laterated. Center: Patch system is not laterated but for which C0 has rank 4.
Right: The backbone graph is uniquely localizable but for which rank(C0) = 3.
The original coordinates are marked with ◦, and the coordinates reconstructed
by GRET-SDP with +.

In the next example, we show that the condition rank(C0) = (M − 1)d is not necessary for
exact recovery using GRET-SDP. To do so, we use Theorem 12 which tells us that the unique
localizability of the backbone graph is both necessary and sufficient for exact recovery. Consider
the example shown in the right plot in Figure 5. This has barely enough points in the patch
intersections to make the backbone graph uniquely localizable. Experiments confirm that we
have exact recovery in this case. However, it can be shown that rank(C0) < (M − 1)d = 4.
We now consider the structured PACM data in R3 shown in Figure 6. The are a total of 799 points
in this example that are obtained by sampling the 3-dimensional PACM logo [16, 19]. To begin
with, we divide the point cloud into M = 30 disjoint pieces (clusters) as shown in the figure. We
augment each cluster into a patch by adding points from neighboring clusters. We ensure that
there are sufficient common points in the patch system so that C0 has rank (M − 1)d = 87. We
generate the measurements using the bounded noise model in (40). In particular, we perturb the
clean coordinates using uniform noise over the hypercube [−ε, ε]d. For the noiseless setting, the
RMSD’s obtained using using GRET-SPEC and GRET-SDP are 3.3e-11 and 1e-6. The respective
RMSD’s when ε = 0.5 are 1.4743 and 0.3823. The results are shown in Figure 7.
In the final experiment, we demonstrate the stability of GRET-SDP and GRET-SPEC by plotting
the RMSD against the noise level for the PACM data. We use the noise model in (40) and
vary ε from 0 to 2 in steps of 0.1. For a fixed noise level, we average the RMSD over 20 noise
realizations. The results are reported in the bottom plot in Figure 8. We see that the RMSD
increases gracefully with the noise level. The result also shows that the semidefinite relaxation
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FIGURE 6. Disjoint clusters for the PACM point cloud. Each cluster is marked
with a different color. The clusters are augmented to form overlapping patches
which are then registered using GRET-SDP.

is more stable than spectral relaxation, particularly at large noise levels. Also shown in the
figure are the RMSD obtained using GRET-MANOPT with the solutions of GRET-SPEC and
GRET-SDP as initialization. In particular, we used the trust region method provided in the
Manopt toolbox [10] for solving the manifold optimization (P0). For either initialization, we
notice some improvement from the plots. It is clear that the manifold method relies heavily on
the initialization, which is not surprising.
Finally, we plot the rank of the SDP solution G? and notice an interesting phenomenon. Up to
a certain noise level, G? has the desired rank and rounding is not required. This means that
the relaxation gap is zero for the semidefinite relaxation, and that we can solve the original
non-convex problem using GRET-SDP up to a certain noise threshold. It is therefore not
surprising that the RMSD shows no improvement after we refine the SDP solution using
manifold optimization. We have noticed that the rank of the SDP solution is stable with respect
to noise for other numerical experiments as well (not reported here).

8. DISCUSSION

There are several directions along which the present work could be extended and refined. We
summarize some of these below.
Rank recovery. Exhaustive numerical simulations (see, for example, Figure 8) show us that the
proposed program is quite stable as far as rank recovery is concerned. By rank recovery, we
mean that rank(G?) = d. In this case, the relaxation gap is zero – we have actually solved the
original non-convex problem. We have performed numerical experiments in which we fix some
admissible Γ, and gradually increase the noise in the measurements as per the model in (40).
When the noise is zero, we recover the exact Gram matrix that has rank d. What is interesting is
that the program keeps returning a rank-d solution up to a certain noise level. In other words,
we observe a phase transition phenomenon in which rank(G?) is consistently d up to a certain
noise threshold. This threshold seems to depend on on the number of points in the intersection
of the patches, which is perhaps not surprising. A precise understanding of this phase transition
in terms of the properties of Γ would be interesting study.
Conditions on Γ. We established that the unique localizability of the backbone graph is both
necessary and sufficient for admissibility. However, to test unique localizability, we need to
run a semidefinite program [54]. The complexity of this program would, however, be much
more than the program used for the registration itself. This led us to propose the rank test
for admissibility that could be tested efficiently. The rank test is nonetheless not necessary
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FIGURE 7. Reconstruction of the PACM data from corrupted patch coordinates
(ε = 0.5). Left: GRET-SPEC, RMSD = 1.4743. Right: GRET-SDP, RMSD =
0.3823. The measurements were generated using the noise model in (40).

for admissibility, and weaker admissibility conditions on Γ can be found. In particular, an
interesting question is whether we could find an efficiently-testable admissibility condition that
holds true for the extreme example in Figure 5, in which Γ fails the rank test?
Tighter bounds. The stability in Theorem 17 was for the bounded noise model, which made the
subsequent analysis quite straightforward. The goal was to establish that the reconstruction
error is within Cε for some constant C independent of the noise. In particular, the bounds in
Theorem 17 are quite loose. One possible direction would be to consider a stochastic noise
model with statistically independent perturbations to tighten the bound.
Anchor points. In sensor network localization, one has to infer the coordinates of sensors
from the knowledge of distances between sensors and its geometric neighbors. In distributed
approaches to sensor localization [15, 9], one is faced exactly with the multipatch registration
problem described in this paper. Besides the distance information, one often has the added
knowledge of the precise positions of selected sensors known as anchors [8]. This is often by
design and is used to improve the localization accuracy. The question is can we incorporate the
anchor constraints into the present registration algorithm? One possible way of leveraging the
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FIGURE 8. Left: RMSD versus noise level. GRET-MANOPT1 (resp.
GRET-MANOPT2) is the result obtained by refining the output of GRET-SPEC
(resp. GRET-SDP) using manifold optimization. Right: Rank of G? in
GRET-SDP.

existing framework is to introduce an additional patch (called anchor patch) for the anchor points.
The anchor coordinates are assigned to the points in the anchor patch (treating them as local
coordinates). This gives us an augmented bipartite graph Γa which has one more patch vertex
than Γ, and extra edges connecting the anchor patch to the anchor vertices. We then proceed
exactly as before, that is, we solve for the global coordinates of both the anchor and non-anchor
points given the measurements on Γa.
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9. TECHNICAL PROOFS

In this Section, we give the proof of Lemmas 10, 19, and 20, and Propositions 15 and 18.

9.1. Proof of Lemma 10. Fix patch Pi and (without loss of generality) assume that the labels of
the d+ 1 non-degenerate points in Pi are {1, 2, . . . , d+ 1}. From (28),

xk = Fix
(i)
k + ti (k = 1, 2, . . . , d+ 1).

We fix k = 1 and subtract the remaining d equations from it, to get

Fi

[
x

(i)
2 − x

(i)
1 . . . x

(i)
d+1 − x

(i)
1

]
=
[
x2 − x1 . . . xd+1 − x1

]
.

From the non-degeneracy assumption, it follows that the matrix on the left is invertible, so that
the span of Fi is identical to the affine span of {x1, . . . , xd+1}. Applying this observation to
every patch P1, . . . , PM , we conclude that the span of [F1 · · · FM ] is contained in the affine span
of {x1, . . . , xN}. Note that we did not require the connectivity of Γ for this direction.
The reverse inclusion can be be deduced from the assumed connectivity of Γ. Namely, for every
pair of points taken from different patches, there exists a path in Γ connecting these points.
Note that it suffices to show that for arbitrary xk and xl, the difference xk − xl is in the span
of [F1 · · ·FM ]. To avoid notational complications, we consider the case where we have three
patches P1, P2 and P3. Consider points xk and xl belonging respectively to P1 and P3. If P1 and
P3 have a common point, say xp, then we write

xk − xl = (xk − xp) + (xp − xl)

From (28), it follows that xk−xp is in the span of F1, and xp−xl is in the span of F3. The desired
conclusion then follows from the above decomposition.
On the other hand, it is possible that P1 and P3 have no points in common. However, since Γ is
connected, there must be points in P2, say xp and xq , such that

xk, xp ∈ P1 and xq, xl ∈ P3.

Pick some point xr in P2 different from xp and xq , and write

xk − xl = (xk − xp) + (xp − xr) + (xr − xq) + (xq − xl).

From (28), the first term is in the span of F1, the middle terms are in the span of F2, while the
last term is in the span of F3. Therefore, xk − xl is in the span of [F1 F2 F3].
The strategy for the general proof is now clear, namely, we have to use the connectivity assump-
tion to write xk − xl as a chain of differences, where each term in the chain belongs to a single
patch.
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9.2. Proof of Proposition 15. We are done if we can show that there exists a bijection between
the nullspace of C and that of C0. To do so, we note that the associated quadratic forms can be
expressed as

uTCu = min
z∈R1×N+M

∑
(k,i)∈E(Γ)

‖zeki − uTi x
(i)
k ‖

2,

and
vTC0v = min

z∈R1×N+M

∑
(k,i)∈E(Γ)

‖zeki − vTi x̄k‖2.

Here u1, . . . , uM are the d× 1 blocks of the vector u ∈ RMd×1.
Now, it follows from (25) that there is a one-to-one correspondence between u and v, namely

ui = Ōivi (1 ≤ i ≤M),

such that uTCu = vTC0v. In other words, the null space of C is related to the null space of C0

through an orthogonal transform, as was required to be shown.

9.3. Proof of Proposition 18. Without loss of generality, we assume that the smallest Euclidean
ball that encloses the clean configuration {x̄1, . . . , x̄N} is centered at the origin, that is,

(62) ‖x̄k‖ ≤ R (1 ≤ k ≤ N).

Let B0 be the matrix B in (12) computed from the clean measurements, i.e., from (40) with ε = 0.
Let B0 +H be the same matrix obtained from (40) for some ε > 0.
Recall that Z0 = O0B0L

† (by the centering assumption in (41)). Therefore,

‖Z? −ΘZ0‖F = ‖O?(B0 +H)L† −ΘO0B0L
†‖F = ‖(O? −ΘO0)B0L

† +O?HL†‖F .

By triangle inequality,

(63) ‖Z? −ΘZ0‖F ≤ ‖O? −ΘO0‖F ‖B0L
†‖F + ‖O?HL†‖F ,

Now

‖B0L
†‖F ≤ ‖L†‖sp‖B0‖F =

1

λ2(L)
‖B0‖F ,

where λ2(L) is the smallest non-zero eigenvalue of L. On the other hand,

B0 =
∑

(k,i)∈E(Γ)

(eMi ⊗ Id)x̄ke
T
ki.

Using Cauchy-Schwarz and (62), we get

‖B0‖2F =
∑

(k,i)∈E(Γ)

∑
(l,j)∈E(Γ)

Tr
(
ekix̄

T
k (eMi ⊗ Id)T (eMj ⊗ Id)x̄le

T
lj

)
=

∑
(k,i)∈E(Γ)

∑
(l,i)∈E(Γ)

x̄Tk x̄l e
T
kieli.

≤
∑

(k,i)∈E(Γ)

2R2 +
∑

(k,i)∈E(Γ)

∑
(l,i)∈E(Γ)

R2.

Therefore,

(64) ‖B0L
†‖F ≤ λ2(L)−1

√
2 +N |E(Γ)|1/2R.

As for the other term in (63), we can write

‖O?HL†‖F ≤ ‖L†‖2‖O?H‖F ≤ λ2(L)−1‖O?H‖F .

Now
O?H = O?(B −B0) =

∑
(k,i)∈E(Γ)

O?
i εk,ie

T
ki.
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Therefore, using Cauchy-Schwarz, the orthonormality of the columns of O?
i ’s, and the noise

model (40), we get

‖O?H‖2F =
∑

(k,i)∈E(Γ)

∑
(l,j)∈E(Γ)

(O?
i εk,i)

T (O?
j εl,j)e

T
kieli

≤
∑

(k,i)∈E(Γ)

2ε2 +
∑

(k,i)∈E(Γ)

∑
(l,i)∈E(Γ)

ε2 +
∑

(k,i)∈E(Γ)

∑
(k,j)∈E(Γ)

ε2.

This gives us

(65) ‖O?HL†‖F ≤
√

2 +N +M |E(Γ)|1/2λ2(L)−1ε.

Combining (63),(64), and (65), we get the desired estimate.

9.4. Proof of Lemma 19. The proof is mainly based on the observation that if u and v are unit
vectors and 0 ≤ uT v ≤ 1, then

(66) ‖u− v‖ ≤ ‖uuT − vvT ‖F .
Indeed,

‖uuT − vvT ‖2F = Tr
(
uuT + vvT − 2(uT v)2

)
≥ Tr(uuT + vvT − 2uT v) = ‖u− v‖2.

To use this result in the present setting, we use the theory of principal angles [7, Ch. 7.1]. This tells
us that, for the orthonormal systems {u1, . . . , ud} and {s1, . . . , sd}, we can find Ω1,Ω2 ∈ O(Md)
such that

(1) Ω1[u1 · · ·ud] = [u1 · · ·ud]ΘT
1 where Θ1 ∈ O(d),

(2) Ω2[s1 · · · sd] = [s1 · · · sd]ΘT
2 where Θ2 ∈ O(d),

(3) (Ω1si)
T (Ω2uj) = 0 for i 6= j, and 0 ≤ (Ω1si)

T (Ω2ui) ≤ 1 for 1 ≤ i ≤ d.

Here Θ1 and Θ2 are the orthogonal transforms that map {u1, . . . , ud} and {s1, . . . , sd} into the
corresponding principal vectors.

Using properties 1 and 2 and the fact3 that αi ≤M , we can write

√
M ‖Θ1W

? −Θ2O0‖F ≤ ‖Ω1[α1u1 · · ·αdud]−MΩ2[s1 · · · sd]‖F +
[ d∑

i=1

(M − αi)
2
]1/2

.

Moreover, by triangle inequality,

‖Ω1[α1u1 · · ·αdud]−MΩ2[s1 · · · sd]‖F ≤M‖Ω1[u1 · · ·ud]−Ω2[s1 · · · sd]‖F +
[ d∑

i=1

(M −αi)
2
]1/2

.

Therefore,

(67)
√
M ‖Θ1W

? −Θ2O0‖F ≤M‖Ω1[u1 · · ·ud]− Ω2[s1 · · · sd]‖F +
[ d∑

i=1

(M − αi)
2
]1/2

.

Now, using (66) and the principal angle property 3, we get

‖Ω1[u1 · · ·ud]− Ω2[s1 · · · sd]‖F ≤ ‖
d∑

i=1

Ω1ui(Ω1ui)
T −

d∑
i=1

Ω2si(Ω2si)
T ‖F .

3To see why the eigenvalues of G? are at most M (the authors thank Afonso Bandeira for suggesting this), note that
by the SDP constraints, for every block Gij ,

uTGijv ≤ (‖u‖2 + ‖v‖2)/2 (u, v ∈ Rd).

Let x = (x1, . . . , xM ) where each xi ∈ Rd. Then

xTGx =
∑
i,j

xT
i Gijxj ≤

∑
i,j

(‖xi‖2 + ‖xj‖2)/2 = M‖x‖2.
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Moreover, using triangle inequality and properties 1 and 2, we have

M‖
d∑

i=1

Ω1ui(Ω1ui)
T −

d∑
i=1

Ω2si(Ω2si)
T ‖F ≤ ‖W ?TW ? −G0‖F +

[ d∑
i=1

(M − αi)
2
]1/2

.

That is,

(68) ‖Ω1[u1 · · ·ud]− Ω2[s1 · · · sd]‖F ≤ ‖W ?TW ? −G0‖F +
[ d∑

i=1

(M − αi)
2
]1/2

.

Finally, note that by Lemma 21,

(69)
[ d∑

i=1

(M − αi)
2
]1/2

≤ ‖W ?TW ? −G0‖F .

Combining (67), (68), and (69), and setting Θ = ΘT
1 Θ2, we arrive at Lemma 19.

9.5. Proof of Lemma 20. This is done by adapting the following result by Li [40]: If A,B are
square and non-singular, and ifR(A) andR(B) are their orthogonal rounding (obtained from
their polar decompositions [29]), then

(70) ‖R(A)−R(B)‖F ≤
2

σmin(A) + σmin(B)
‖A−B‖F .

We recall that if A = UΣV T is the SVD of A, thenR(A) = UV T .
Note that it is possible that some of the blocks of W ? are singular, for which the above result
does not hold. However, the number of such blocks can be controlled by the global error. More
precisely, let B ⊂ {1, 2, . . . ,M} be the index set such that, for i ∈ B, ‖W ?

i −Θ‖F ≥ β. Then

‖W ? −ΘO0‖2F ≥
∑
i∈B
‖W ?

i −Θ‖2F = |B|β2.

This gives a bound on the size of B. In particular, the rounding error for this set can trivially be
bounded as

(71)
∑
i∈B
‖O?

i −Θ‖2F ≤
∑
i∈B

2d =
2d

β2
‖W ? −ΘO0‖2F .

On the other hand, we known that, for i ∈ Bc, ‖W ?
i −Θ‖F < β. From Lemma 21, it follows that

|1− σmin(W ?
i )| ≤ ‖W ?

i −Θ‖sp < β.

Fix β ≤ 1. Then σmin(W ?
i ) > 1− β, and we have from (70),

(72) ‖O?
i −Θ‖F ≤

2

2− β
‖W ?

i −Θ‖F (i ∈ Bc)

Fixing β = 1/
√

2 and combining (71) and (72), we get the desired bound.
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