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Abstract: We consider n-by-n matrices whose (i, j)-th entry is f(XT
i Xj),

where X1, . . . ,Xn are i.i.d. standard Gaussian random vectors in R
p, and

f is a real-valued function. The eigenvalue distribution of these random
kernel matrices is studied at the “large p, large n” regime. It is shown
that, when p, n → ∞ and p/n = γ which is a constant, and f is properly
scaled so that V ar(f(XT

i Xj)) is O(p−1), the spectral density converges
weakly to a limiting density on R. The limiting density is dictated by a
cubic equation involving its Stieltjes transform. While for smooth kernel
functions the limiting spectral density has been previously shown to be
the Marcenko-Pastur distribution, our analysis is applicable to non-smooth
kernel functions, resulting in a new family of limiting densities.

AMS 2000 subject classifications: Primary 62H10; secondary 60F99.
Keywords and phrases: kernel matrices, limiting spectrum, random ma-
trix theory, Stieltjes transform, Hermite polynomials.

1. Introduction

In recent years there has been significant progress in the development and ap-
plication of kernel methods in machine learning and statistical analysis of high-
dimensional data [13]. These methods include kernel PCA (Principal Component
Analysis), the “kernel trick” in SVM (Support Vector Machine), and non-linear
dimensionality reduction [5, 6], to name a few. In such kernel methods, the in-
put is a set of n high-dimensional data points X1, . . . , Xn from which an n-by-n
matrix is constructed, where its (i, j)-th entry is a symmetric function of Xi

and Xj . Whenever the function depends merely on the inner-product XT
i Xj , it

is called an inner-product kernel matrix.
In this paper we study the spectral properties of an n×n symmetric random

kernel matrix A whose construction is as follows. Let X1, . . . , Xn be n i.i.d
Gaussian random vectors in R

p, where Xi ∼ N (0, p−1Ip) and Ip is the p × p
identity matrix. That is, the np-many coordinates {(Xi)j , 1 ≤ i ≤ n, 1 ≤ j ≤ p}
are i.i.d Gaussian random variables with mean 0 and variance p−1. The entries
of A are defined as

Aij =

{

f(XT
i Xj ; p), i 6= j,

0, i = j,
(1.1)

where f(ξ; p) is a real-valued function possibly depending on p. We will later
consider another model where Xi are drawn from the uniform distribution over
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the unit sphere Sp−1 in R
p.

The study of the spectrum of large random matrices, since Wigner’s semi-
circle law, has been an active research area motivated by applications such as
quantum physics, signal processing, numerical linear algebra, statistical infer-
ence, among others. An important result is the Marcenko-Pastur (M.P.) law
[12] for the spectrum of random matrices of the form S = XXT (also known
as Wishart matrices), where X is a p-by-n (complex or real) matrix with i.i.d
Gaussian entries. In the “large p, large n” limit, i.e. p, n → ∞ and p/n = γ
(0 < γ < ∞), the spectral density of S converges to a deterministic limit,
known as the Marcenko-Pastur distribution, which has γ as its only parameter.
We refer the reader to [2], [18] and [4, Chapters 1-3] for an introduction of these
topics. Notice that Wishart matrices share the non-zero eigenvalues with their
corresponding Gram matrices G = XTX , the latter of which, neglecting the
difference at the diagonal entries, can be considered as a kernel matrix as in
Eqn. (1.1) with the linear kernel function f(ξ; p) = ξ. Thus, the M.P. law and
other results involving Wishart matrices can be translated to the Gram matrix
case.

The spectrum of inner-product random kernel matrices with kernel functions
that are locally smooth at the origin has been studied in [9]. It was shown that,
in the limit p, n → ∞ and p/n = γ,

(1) whenever f is locally C3, the non-linear kernel matrix converges asymp-
totically in spectral norm to a linear kernel matrix;

(2) with less regularity of f (locally C2), the weak convergence of the spectral
density is established.

We refer to [9] and references therein for more details, including a complete
review of the origins of this problem. The problem we study here is similar to
the one considered in [9], except that we allow the kernel function f to belong
to a much larger class of functions, in particular, f can be discontinuous at the
origin.

Our main result, Thm 3.4, establishes the convergence of the spectral den-
sity of random kernel matrices under the condition that the kernel function
belongs to a weighted L2 space, is properly normalized and satisfies some ad-
ditional technical conditions. The limiting spectral density is characterized by
an algebraic equation, Eqn. (3.5), of its Stieltjes transform. The equation in-
volves only three parameters, namely ν, a and γ. The parameter ν is the limit
of p ·V ar(f(XT

i Xj)) and simply scales the limiting spectral density. The param-
eter a is the limiting coefficient of the linear term ξ in the expansion of f(ξ; p)
into rescaled Hermite polynomials, and has some non-trivial effect on the shape
of the limiting spectral density. The result concerning the weak convergence of
the spectral density in [9] can be regarded as a special case of our result. Specif-
ically, [9] proves that for a locally smooth kernel function, the limiting spectral
density is dictated by its first-order Taylor expansion. The linear term in our
rescaled Hermite expansion asymptotically coincides with the first-order term
of the Taylor expansion. See also Remark 3.8 after Thm. 3.4.

Notice that the entries of the random kernel matrix are dependent. For exam-
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ple, the triplet of entries (i, j), (j, k) and (k, i) are mutually dependent. In the
literature of random matrix theory (RMT), random matrices with dependent
entries have received some attention. For example, the spectral distribution of
random matrices with “finite-range” dependency among entries is studied in
[3]. However, we do not find studies of this sort to be readily applicable to the
analysis of the random inner-product kernel matrices considered here. We em-
phasize that our result only addresses the weak limit of the spectral density,
while leaving many other questions about random kernel matrices unanswered.
These include the analysis of the local statistics of the eigenvalues, the limit-
ing distribution of the largest eigenvalue, and universality type questions with
respect to different probability distributions for the data points.

The rest of the paper is organized as follows: in Sec. 2 we review the definition
and properties of the Stieltjes transform (Sec. 2.1), and revisit the proof of the
M.P. law using the Stieltjes transform (Sec. 2.2). Sec. 3 includes the statement
of our main theorem, Thm. 3.4, and the result of some numerical experiments.
The proof of Thm. 3.4 is established in Sec. 4. Finally, the concluding remarks,
discussion and open problems are provided in Sec. 5.

Notations: For a vector X , we denote by |X | its l2 norm, i.e. for X =

(X1, · · · , Xp)
T in R

p, |X | =
√

X2
1 + · · ·+X2

p . We write x = O(1)pα to in-

dicate that |x| ≤ Cpα for some positive constant C and large enough p (which
also implies large enough n since p/n = γ). Also, Oa(1) means that the con-
stant C depends on the quantity a, and the latter is often independent of p.
Throughout the paper, ζ stands for a random variable observing the standard
normal distribution.

2. Review of the Stieltjes Transform and the M.P. Law

2.1. The Stieltjes Transform

For a probability measure dµ on R, its Stieltjes transform (also known as the
Cauchy transform) is defined as (see, e.g. Appendix B of [4])

m(z) =

∫

R

1

t− z
dµ(t), ℑ(z) > 0,

and hence ℑ(m) > 0. The probability density function can be recovered from
its Stieltjes transform via the “inversion formula”

lim
b→0+

1

π
ℑ(m(t+ ib)) =

dµ

dt
(t), (2.1)

where the convergence is in the weak sense.
Point-wise convergence of the Stieltjes transform implies weak convergence

of the probability density (Thm. B.9 in [4]). This is the fundamental tool that
we use to establish the main result in our paper. For the n-by-n random kernel
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matrix A, its empirical spectral density (ESD) is defined as

ESDA =
1

n

n
∑

i=1

δλi(A)(λ)dλ, (2.2)

where {λi(A), i = 1, · · · , n} are the n (real) eigenvalues of A. Considering ESDA

as a random probability measure on R, we have its Stieltjes transform as

mA(z) =
1

n

n
∑

i=1

1

λi(A)− z
=

1

n
Tr(A− zI)−1, ℑ(z) > 0. (2.3)

To show the convergence of ESDA, in expectation (or in a.s. sense), it suffices to
show that, for every fixed z above the real axis, mA(z) converges to the Stieltjes
transform of the limiting density in expectation (or in a.s. sense).

Another convenience brought by fixed z is the uniform boundedness of many
quantities. Specifically, for z = u+ iv, v > 0,

|mA(z)| ≤
1

n

n
∑

i=1

1

|λi(A)− z| ≤
1

n

n
∑

i=1

1

v
=

1

v
.

Also,
∣

∣

(

(A− zI)−1
)

ii

∣

∣ ≤ 1

v
, 1 ≤ i ≤ n, (2.4)

which follows from the spectral decomposition of A.

2.2. Proving the M.P. Law using the Stieltjes Transform

Thm. 2.1 is the version of the M.P. law for random kernel matrices with a linear
kernel function. The version for Wishart matrices is well known and its proof
can be found in many places, see e.g. [4, Chapter 3.3].

Theorem 2.1 (the M.P. law for random linear-kernel matrices). Suppose that
Xi ∼ N (0, p−1Ip). Let A be the random kernel matrix as in Eq. (1.1) with
the kernel function f(ξ) = aξ where a is a constant. Then the limiting spectral
density of A is

ρI(t) =
1

a
ρM.P.

(

t+ a

a
;
1

γ

)

. (2.5)

The density function ρM.P.(t; y), with positive constant y as a parameter, is
defined as

ρM.P.(t; y) =

(

1− 1

y

)+

δ0(t) +

√

(b(y)− t)+(t− a(y))+

2πyt
, (2.6)

where (x)+ = max{x, 0}, b(y) = (1 +
√
y)2 and a(y) = (1 −√

y)2. The conver-
gence of ESDA to ρI(t)dt is in the weak sense, almost surely.
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Remark 2.2. In Eq. (2.5), the rescaling by a is due to the constant a in front of
the inner-product, and the shifting by a is due to our setting diagonal entries
to be zero. Also, Eq. (2.6) is slightly different from the M.P. distribution in
literature, since the random kernel matrices that we consider are n-by-n and
the variance of XT

i Xj is p−1, while Wishart matrices are p-by-p and have a
different normalization.

Remark 2.3. The distribution of the largest eigenvalue (i.e. the spectral norm,
denoted as s(A)), a question independent from the limiting spectral density, is
well-understood for Wishart matrices, and thus applies to Gram matrices. It
has been shown that the largest eigenvalue converges almost surely to its mean
value, following a stronger result about the limiting distribution of the largest
eigenvalue, namely the Tracy-Widom Law [10]. The Tracy-Widom Law of the
largest eigenvalue has been shown to be universal for certain sample covariance
matrices with non-Gaussian entries, see e.g. [17, 8]. As a result (the smallest
eigenvalue of a Wishart matrix is always non-negative), as p, n → ∞, p/n = γ,
almost surely s(A) < b(γ−1) + 1, which is an O(1) constant depending on γ
only.

Another way to characterize Eq. (2.5) is that mI(z), the Stieltjes transform
of ρI(t), satisfies the following quadratic equation

− 1

m(z)
= z + a

(

1− 1

1 + a
γm(z)

)

. (2.7)

In the literature, Eq. (2.7) is sometimes called the M.P. equation. It has been
shown that Eq. (2.7) has a unique solution with positive imaginary part (Lemma
3.11 of [4]).

We reproduce the proof of Thm. 2.1 here, since some key techniques will be
used in proving our main result.

Proof of Thm. 2.1. In two steps it can be shown that mA(z), as defined in
Eq. (2.3), converges almost surely to the solution of Eq. (2.7). Without loss of
generality, let a = 1.

Step 1. Reduce a.s. convergence to convergence of EmA(z).

Lemma 2.4 (concentration of mA at EmA). For the n-by-n random kernel
matrix A as in Eq. (1.1), where Xi’s are independent random vectors, and a
fixed complex number z with ℑ(z) > 0 , we have that as n → ∞,

mA(z)− EmA(z) → 0

almost surely, and also

E|mA − EmA| ≤ O(1)n−1/2. (2.8)

The above lemma relies on that ℑ(z) > 0 and that the Xi’s are independent,
while there is no restriction on the specific form of the kernel function, nor on the
distribution of Xi. The proof (left to Appendix B) uses a martingale inequality,
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combined with the observation that among all the entries of A only the k-th
column/row depend on Xk.

Step 2. Convergence of EmA(z). Observe that

EmA(z) = E
1

n
Tr(A− zI)−1

= E
1

n

n
∑

i=1

(

(A− zI)−1
)

ii

= E
(

(A− zI)−1
)

nn
,

where the last equality follows from that the rows/columns of A are exchange-
able and so are those of (A− zI)−1. We then need the following formula

((A− zI)−1)nn =
1

(Ann − z)−AT·,n(A(n) − zIn−1)−1A·,n
, (2.9)

where A(n) is the top left (n − 1) × (n − 1) minor of A, i.e. the matrix A is
written in blocks as

A =

[

A(n) A·,n
AT

·,n Ann

]

,

and In−1 is the (n − 1) × (n − 1) identity matrix. Notice that since ℑ(z) > 0,
both A − zI and A(n) − zIn−1 are invertible. Formula (2.9) can be verified by
elementary linear algebra manipulation.

By Eq. (2.9) (recall that Ann = 0 from Eq. (1.1)),

EmA(z) = E
(

(A− zI)−1
)

nn
= E

1

−z −AT·,n(A(n) − zIn−1)−1A·,n
. (2.10)

To proceed, we condition on the choice of Xn, and write

Xi = ηi(Xn)0 + X̃i, 1 ≤ i ≤ n− 1, (2.11)

where (Xn)0 = Xn

|Xn| is the unit vector in the same direction of Xn, and X̃i lie

in the (p − 1)-dimensional subspace orthogonal to Xn. Due to the orthogonal
invariance of the standard multivariate Gaussian distribution, we know that
ηi ∼ N (0, p−1), X̃i ∼ N (0, p−1Ip−1), and they are independent. Now we have

XT
i Xn = ηi|Xn|, 1 ≤ i ≤ n− 1, (2.12)

and
XT

i Xj = ηiηj + X̃T
i X̃j , 1 ≤ i, j ≤ n− 1, i 6= j. (2.13)

Define η = (η1, · · · , ηn−1)
T , Dη = diag{η21, · · · , η2n−1} which is a diagonal ma-

trix. Also, define

Ã
(n)
ij =

{

X̃T
i X̃j , i 6= j,

0, i = j,
1 ≤ i, j ≤ n− 1. (2.14)
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Then

AT
·,n(A

(n) − zIn−1)
−1A·,n = |Xn|2ηT (ηηT −Dη + Ã(n) − zIn−1)

−1η

= |Xn|2 ·
ηT (Ã(n) −Dη − zIn−1)

−1η

1 + ηT (Ã(n) −Dη − zIn−1)−1η

= |Xn|2
(

1− 1

1 + ηT (Ã(n) −Dη − zIn−1)−1η

)

,

(2.15)

where to get the 2nd line we use the equality

qT (pqT +M − zI)−1 =
qT (M − zI)−1

1 + qT (M − zI)−1p
, ∀p, q.

By showing that the denominator in Eq. (2.15) is asymptotically concentrat-
ing at the value of Em̃(z), where m̃(z) := 1

nTr(Ã
(n) − zIn−1)

−1, we end up
with

E

∣

∣

∣

∣

∣

∣

mA(z)−
(

−z −
(

1−
(

1 +
1

γ
Em̃(z)

)−1
))−1

∣

∣

∣

∣

∣

∣

→ 0.

The detailed derivation is left to Appendix (Lemma B.1). Notice that the prob-
ability law of ηi and X̃T

i X̃j do not depend on the position of Xn, so we omit
the conditioning on Xn when computing the probabilities and expectations.
Furthermore, by Lemma B.6,

E|mA(z)− m̃(z)| → 0, (2.16)

thus

Em̃(z)−
(

−z −
(

1−
(

1 +
1

γ
Em̃(z)

)−1
))−1

→ 0. (2.17)

Since the quadratic Eq. (2.7) has a unique solution mI(z) with positive imagi-
nary part, Eq. (2.17) means that

Em̃(z) → mI(z).

At last, by Eq. (2.16), mI(z) is the limit of EmA(z).

3. Random Inner-product Kernel Matrices

3.1. Model and Notations

LetX1, · · · , Xn be i.i.d random vectors in R
p and assume thatXi ∼ N (0, p−1Ip).

The random kernel matrix A is defined in Eqn. (1.1) with the kernel function
f(ξ; p), and we define

k(x; p) =
√
pf(

x√
p
; p). (3.1)
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In many cases of interest f(ξ; p) does not depend on p, or the dependency is in
the form of some rescaling or normalization. However, we formulate our result
in a general form, keeping the dependency of k(x; p) on p, and require k(x; p) to
satisfy certain conditions. We will see that those conditions are often satisfied
in the cases of interest (Remark 3.2 and Remark 3.3).

Let X and Y be two independent random vectors distributed as N (0, p−1Ip),
and define ξp =

√
pXTY . Denote the probability density of ξp by qp(x), and the

L2 spaces Hp = L2(R, qp(x)dx). Let {Pl,p(x), l = 0, 1, · · · } be a set of orthonor-
mal polynomials in Hp, that is

∫

R

Pl1,p(x)Pl2,p(x)qp(x)dx = δl1,l2 ,

where δl,k equals 1 when l = k and 0 otherwise. We define Pl,p (l ≥ 0) using
the Gram-Schmidt procedure on the monomials {1, x, x2, . . .}, so that P0,p = 1,
P1,p = x (notice that Eξ2p = 1), and Pl,p is a polynomial of degree l. Notice that
by the Central Limit Theorem, ξp → N (0, 1) in distribution as p → ∞. We define

HN = L2(R, q(x)dx) where q(x) = 1√
2π

e−x2/2. It can be shown (Lemma 4.1)

that for any finite degree l, the coefficients of the polynomial Pl,p(x) converge
to those of the normalized l-degree Hermite polynomial, the latter being an
orthonormal basis of HN .

We formally expand k(x; p) as

k(x; p) =

∞
∑

l=0

al,pPl,p(x),

al,p =

∫

R

k(x; p)Pl,p(x)qp(x)dx,

(3.2)

and will later explain how to understand this formal expansion. Corresponding
to the l-th term in Eqn. (3.2), we define the random kernel matrix Al to be

(Al)ij =

{

fl(X
T
i Xj ; p), i 6= j,

0, i = j,
(3.3)

where fl(ξ; p) =
al,p√

p Pl,p(
√
pξ).

3.2. Statement of the Main Theorem

Our main result is stated in Thm. 3.4, which establishes the weak convergence of
the spectrum of random inner-product kernel matrices. The following conditions
are required for k(x; p):

1. (C.Variance) For all p, k(x; p) ∈ Hp, and as p → ∞, V ar(k(ξp; p)) =
νp → ν which is a finite non-negative number. We also assume that a0,p =
Ek(ξp; p) = 0 (Remark 3.5).
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2. (C.p-Uniform) The expansion in Eqn. (3.2) converges in Hp uniformly
in p. Equivalently, let

kL(x; p) =

L
∑

l=0

al,pPl,p(x),

then for any ǫ > 0, there exist L and p0 such that
∑∞

l=L+1 a
2
l,p < ǫ for

p > p0.
3. (C.a1) As p → ∞, a1,p → a which is a constant.

Remark 3.1. By condition (C.Variance), the integrals in Eqn. (3.2) are well-
defined. The requirement νp → ν can be fulfilled as long as k(x; p) ∈ Hp and is
properly scaled. Notice that νp = V ar(k(ξp; p)) =

∑∞
l=1 a

2
l,p, thus in condition

(C.a1), a
2 ≤ ν.

Remark 3.2. When k(x; p) = k(x), and if (1) k(x) ∈ HN , and Ek(ζ) = 0 where
ζ ∼ N (0, 1), and (2) k(x) satisfies

∫

R

k(x)2|qp(x) − q(x)|dx → 0, p → ∞, (3.4)

then the three conditions are satisfied and νp → νN := Ek(ζ)2, and a1,p →
aN := Eζk(ζ) (Lemma C.2). Eqn. (3.4) holds as long as the singularity in the
integral, say at x = ∞ or k(x) = ∞, can be controlled p-uniformly. This is the
case, for example, when k(x) is bounded, or when k(x) is bounded on |x| ≤ R
for any R > 0 and k(x)2 is p-uniformly integrable at x → ∞ (Lemma C.5). It
is also possible for k(x) to be unbounded. See Sec. 3.3 for an example of k(x)
that diverges at x = 0.

Remark 3.3. When f(ξ, p) = f(ξ), the three conditions generally need to be
checked for k(x; p) case by case. For the special situation where f(ξ) is C1 at
ξ = 0, see Remark 3.8.

Theorem 3.4 (the limiting spectrum of random inner-product kernel matrices).
Suppose that X1, · · · , Xn ∼ N (0, p−1Ip) are i.i.d., and k(x; p) satisfies condi-
tions (C.Variance), (C.p-Uniform) and (C.a1). Then, as p, n → ∞ with
p/n = γ, ESDA (the empirical spectral density of the random kernel matrix
A, defined in Eqn. (2.2)) converges weakly to a continuous probability measure
on R in the almost sure sense. The Stieltjes transform of the limiting spectral
density is the solution of the following algebraic equation

− 1

m(z)
= z + a

(

1− 1

1 + a
γm(z)

)

+
ν − a2

γ
m(z), (3.5)

which is at most cubic, and involves three parameters: ν (defined in (C.Variance)),
a (defined in (C.a1)) and γ. Eqn. (3.5) has a unique solution m(z) with positive
imaginary part (Lemma A.1), and the explicit formula of

y(u) := lim
v→0+

ℑ(m(u+ iv)) (3.6)

is given in Appendix A.
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Remark 3.5. We assume a0,p = 0, since otherwise it results in adding to the
kernel matrix a perturbation 1√

pa0,p(1n1
T
n − In), where 1n is the all-ones vector

of length n and In is the identity matrix. The limiting spectral density of a
sequence of Hermitian matrices with growing size (n → ∞) is invariant to a
finite-rank perturbation (with rank that does not depend on n), see Thm. A.43
in [4].

Remark 3.6. Recall the definition of Al in Eqn. (3.3). The limiting spectral
density of A1 is the M.P. distribution. For this case, f(ξ; p) = aξ, or equivalently
k(x; p) = ax, for some constant a. Then, the expansion in Eqn. (3.2) has one
term, a1,p = a, νp = a2, and Eqn. (3.5) is reduced to Eqn. (2.7).

Remark 3.7. The limiting spectral density of Al (l ≥ 2) is a semi-circle. More-
over, the limiting density of any partial sum (finite or infinite) of A2, A3, · · · is
a semi-circle, whose squared radius equals the sum of the squared radii of the
semi-circle of each Al.

Remark 3.8. For random kernel matrices with locally smooth kernel functions,
the limiting spectral density is the M.P. distribution. Specifically, if f(ξ; p) =
f(ξ), and is locally C1 at ξ = 0, one can show (Lemma C.3) that the result in
the theorem holds and a2 = ν = (f ′(0))2. In other words, the linear term in
Eqn. (3.2) determines the limiting spectral density, in agreement with the result
in [9].

The proof of Thm. 3.4 is given in Section 4. Before presenting the proof, we
analyze some examples of kernel functions numerically.

3.3. Numerical Experiments

We compare the eigenvalue histogram and the theoretical limiting spectral den-
sity numerically. In the subsequent figures, the eigenvalues that produce the
empirical histogram are computed by MATLAB’s eig function and correspond
to a single realization of the random kernel matrix. The “theoretical curve” is
calculated using the “inversion formula” Eqn. (2.1) and Eqn. (A.2), which is the
expression for y(u; a, ν, γ) defined in Eqn. (3.6).

3.3.1. Example: Sign(x)

As an example of a discontinuous kernel function, let

k(x; p) = k(x) = Sign(x),

where Sign(x) is 1 when x > 0 and -1 otherwise. Since |k(x)| = 1, k(x) is
bounded, and according to Remark 3.2, by Lemma C.2 and Lemma C.5, k(x)
satisfies conditions (C.Variance), (C.p-Uniform) and (C.a1). Meanwhile,
a = E|ζ| =

√

2/π, and νp = 1 for all p, thus ν = 1.
Fig. 1 is for Xi ∼ N (0, p−1Ip). Notice that for the sign kernel, the two

models Xi ∼ N (0, p−1Ip) and Xi ∼ U(Sp−1) result in the same probability



X. Cheng and A. Singer/Inner-product Random Kernel Matrices 11

−5 0 5 10 15
0

0.005

0.01

0.015

0.02

0.025

0.03

λ

fr
eq

ue
nc

y

f(ξ) = p−1/2Sign(ξ), p=4e2, n=4e3, X
i
 ~ N(0, p−1I

p
) 

−2 −1 0 1 2
0

0.005

0.01

0.015

0.02

λ

fr
eq

ue
nc

y

f(ξ) = p−1/2Sign(ξ), p=8e3, n=4e3, X
i
 ~ N(0, p−1I

p
)

Fig 1. Random kernel matrix with the Sign kernel, and Xi ∼ N (0, p−1Ip). (Left) p = 4×102,
n = 4 × 103, γ = p/n = 0.1. (Right) p = 8 × 103, n = 4 × 103, γ = p/n = 2. The blue-
boundary bars are the empirical eigenvalue histograms, and the red broken-line curves are the
theoretical prediction of the eigenvalue densities by Thm. 3.4.

law of the random kernel matrix. This is due to the fact that Sign(XT
i Xj) =

Sign((Xi/|Xi|)T (Xj/|Xj|)) and that ifXi ∼ N (0, p−1Ip) thenXi/|Xi| ∼ U(Sp−1).
As such, the results for Xi ∼ U(Sp−1) are omitted.

The following serves as a motivation for the sign kernel matrix. Consider a
network of n “subjects” represented by X1, . . . , Xn lying in R

p. Subjects i and j
have a friendship relationship if they are positively correlated, i.e., if XT

i Xj > 0,
and a non-friendship relationship if XT

i Xj < 0. The off-diagonal entries of the
n-by-n kernel matrix A are all ±1 representing the friendship/non-friendship
relationships. This model has the merit that if i and j are friends, and j and
k are also friends, then chances are greater that i and k are also friends. When
the Xi’s are i.i.d uniformly distributed on the unit sphere in R

p and p is fixed,
according to [11], as n grows to infinity the top p eigenvectors of the kernel
matrix A converge, up to a multiplying constant and a global rotation, to the
coordinates of the n data points. In this case, the eigen-decomposition of the sign
kernel matrix recovers the positioning of the subjects in the whole community
from their pairwise relationships. On the other hand, Thm. 3.4 covers the more
realistic case of the “large p, large n” regime.

3.3.2. Example: |x|−r (r < 1/2)

As examples of unbounded kernel functions, we study the even function

ke(x) = |x|−r − E|ζ|−r

and the odd function
ko(x) = Sign(x)|x|−r,

where r < 1/2 so as to guarantee the integrability of k(x)2 at x = 0.
Notice that for both cases, |k(x)| is bounded on {|x| > R} for any R > 0,

and diverge at x = 0. Meanwhile, k(x)2 = |x|−2r is integrable at x = 0, and
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Fig 2. Random kernel matrix where k(x) = ke(x) = |x|−1/4 − E|ζ|−1/4 (left) and ko(x) =
Sign(x)|x|−1/4 (right). Xi ∼ N (0, p−1Ip), and p = 2× 103, n = 4× 103, γ = p/n = 0.5.

with the fact that qp(x) ≤ qp(0) → q(0) = 1/
√
2π, Eqn. (3.4) still holds. Thus

by Lemma C.2, Thm. 3.4 applies to both ke and ko. By

E|ζ|−r =

√

2

π
2−(r+1)/2Γ(

1− r

2
)

where Γ(·) is the Gamma function, and similarly for E|ζ|−2r , the constants ν
and a for both ke and ko can be explicitly computed. For ke, ν = V ar(|ζ|−r)
and a = 0. For ko, ν = |ζ|−2r, and

a = E|ζ|1−r =

√

2

π
2−r/2Γ(1− r

2
).

The numerical results for r = 1/4 with Xi ∼ N (0, p−1Ip) are shown in Fig.
2. The empirical histograms for Xi ∼ U(Sp−1) look almost identical and are
therefore omitted. In the left panel of Fig. 2, the empirical spectral density is
close to a semi-circle, as our theory predicts. Notice that for r = 1/4, the off-
diagonal entries of the random kernel matrix do not have a 4th moment. However
this does not contradict the “Four Moment Theorem” for random matrices with
i.i.d entries [20] since the model for random kernel matrices is different.

4. Proof of the Main Theorem

The model and the notations are the same as in Sec. 3.1. The proof of Thm.
3.4 is provided in Sec. 4.3. Prior to the proof, in Sec. 4.1 we review some useful
properties of Hermite polynomials, and in Sec. 4.2 we introduce an asymptotic
upper bound for the expected value of the spectral norm of random kernel
matrices. The other model Xi ∼ U(Sp−1) is analyzed in Sec. 4.4, where it is
shown that the result of Thm. 3.4 still holds.
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4.1. Orthonormal Polynomials

4.1.1. HN and normalized Hermite polynomials

Define the normalized Hermite polynomials as

hl(x) =
1√
l!
Hl(x), l = 0, 1, · · · (4.1)

where Hl(x) is the l-degree Hermite polynomial, satisfying
∫

R

Hl1(x)Hl2 (x)q(x)dx = δl1,l2 · l1!.

Thus, {hl(x), l = 0, 1, · · · } form an orthonormal basis of HN . The explicit for-
mula of Hl is [1]

Hl(x) = l!

⌊l/2⌋
∑

k=0

(−1

2
)k

1

k!(l − 2k)!
xl−2k.

Also, the derivative of Hl(x) satisfies the recurrence relation Hl
′(x) = lHl−1(x)

for l ≥ 1, and as a result,

hl
′(x) =

√
lhl−1(x). (4.2)

4.1.2. Hp and Pl,p(x)

Recall that the random variable ξp converges in distribution to N (0, 1) as p →
∞. Meanwhile, the moments of ξp approximate those of N (0, 1):

Eξkp =

{

(k − 1)!! +Ok(1)p
−1, k even;

0, k odd.
(4.3)

Eq. (4.3) is verified by directly computing the moments of ξp using the model,
i.e. ξp =

√
pXTY and X and Y are independently distributed as N (0, p−1Ip).

With the following lemma, Eq. (4.3) implies the asymptotic consistency between
Pl,p and hl.

Lemma 4.1 (convergence of Pl,p to hl). Let {Pl,p, l = 0, 1, · · · } be the orthonor-
mal polynomials of L2(R, dµp), where µp is a sequence of probability measures.
Suppose that the moments of µp approximate those of N (0, 1) in the sense that,
for every fixed k,

∫

R

xkdµp(x) = Eζk +Ok(1)p
−1.

Then, for every fixed degree l,

Pl,p(x) = hl(x) +

l
∑

j=0

(δl,p)jx
j ,
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where (δl,p)j satisfy
max
0≤j≤l

|(δl,p)j | < Ol(1)p
−1.

The proof of Lemma 4.1 follows from the fact that the coefficients of the
l-degree orthogonal polynomials are decided by up to the first 2l moments.

One consequence of Lemma 4.1 is that as p → ∞

|Pl,p(x)| ≤ Ol(1)M
l, |x| ≤ M, (4.4)

as the coefficients of Pl,p(x) for each l converge to those of hl(x). Also, Eq. (4.2)
leads to

P
′

l,p(x) =
√
lPl−1,p(x) +Ol(1)M

l−1p−1,

P
′′

l,p(x) =
√

l(l − 1)Pl−2,p(x) +Ol(1)M
l−2p−1,

l ≥ 2. (4.5)

Another consequence is the “asymptotic consistency between the Pl,p-expansion
and the Hermite-expansion” in their first finite-many terms (Lemma C.1). This
further implies that conditions (C.Variance), (C.p-Uniform) and (C.a1) are
satisfied by a large class of kernel functions (Remark 3.2).

4.2. Spectral Norm Bound

The following lemma gives an upper bound for the expectation of the spectral
norm of random kernel matrices by analyzing their 4th moment. The proof is left
to Appendix B. It is based on the moment method, which is useful for bounding
the spectral norm of random matrices (see, e.g. [18, Chapter 2.3]).

Lemma 4.2 (bounding mean spectral norm by the 4th moment). Let A be
the random kernel matrix defined in Eq. (1.1) with the kernel function f(ξ; p)
(the distribution of Xi’s does not need to be standard Gaussian). Suppose that
k(x; p) =

√
pf( x√

p ; p) satisfies the following conditions as p → ∞:

1. Ek(ξp; p) = O(1)p−1;
2. Both Ek(ξp; p)

2 and Ek(ξp; p)
4 are O(1), and suppose that Ek(ξp; p)

2 ≤ m2

where m2 is a positive constant.

Then, as p, n → ∞, p/n = γ,

Es(A) ≤ Oγ(1)
√
m2n

1/4.

Remark 4.3. The conditions are on the 1st, 2nd and 4th moments of k(ξp, p) or
equivalently those of f(XTY ; p), but not on the distribution of the Xi’s as long
as they are i.i.d.

Remark 4.4. We are aware of the existence of significant literature on the spec-
tral norm of randommatrices. The asymptotic concentration of the largest eigen-
value at its mean value is quantified by the Tracy-Widom Law for Gaussian
ensembles (see, e.g. [2, Chapter 3]) and a large class of Wigner-type matrices
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(see [16], [19] and references therein), as well as Wishart-type matrices (Remark
2.3). For random kernel matrices, s(Al) is conjectured to be O(1), and see more
in Sec. 5. However, the bound provided by Lemma 4.2, though not tight, is
sufficient for the proof of our main theorem.

4.3. Proof of Thm. 3.4

Proof of Thm. 3.4. Same as in Sec. 2.2, it suffices to show the mean convergence
of the Stieltjes transform. Specifically, we want to show that for a fixed z = u+iv,
EmA(z) converges to the unique solution of Eq. (3.5). Recall that the expansion
Eq. (3.2) converges p-uniformly in Hp, and we first reduce the general case to
that where the expansion has finite many terms.

Step 1. Reduction to the case of finite expansion up to order L.
Denote the truncated kernel function up to finite order L by fL(ξ; p) =

p−1/2kL(
√
pξ; p) where (recall that a0,p = 0 by Remark 3.5)

kL(x; p) =
L
∑

l=1

al,pPl,p(x).

Let mA(z) and mL(z) be the Stieltjes transforms of the random kernel matrix
with the kernel function f(ξ; p) and fL(ξ; p), respectively. For a fixed z, define

RHS(m; a, ν) =

(

−z − a

(

1− 1

1 + a
γm

)

− ν − a2

γ
m

)−1

. (4.6)

The goal is to show that, as p, n → ∞ with p/n = γ, EmA converges to the
solution of Eq. (3.5) which can be rewritten asm = RHS(m; a, ν), and it suffices
to show that

|EmA −RHS(EmA; a, ν)| → 0. (4.7)

We need the following lemma, whose proof is left to Appendix D:

Lemma 4.5 (stability of the Stieltjes transform to L2 perturbation in the kernel
function). Suppose that Xi (i = 1, · · · , n) are i.i.d random vectors, and the two
functions fA(ξ; p) and fB(ξ; p) satisfy that with large p

E(fA(X
TY ; p)− fB(X

TY ; p))2 ≤ ǫp−1,

where X and Y are two independent random vectors distributed in the same way
as Xi’s, and ǫ is some positive constant. Let A be the n-by-n random kernel
matrix with the kernel function fA(ξ; p), and B with fB(ξ; p). Also, let mA and
mB be the Stieltjes Transforms of A and B respectively. Then for a fixed z,

E|mA(z)−mB(z)| ≤ O(1)
√
ǫ.
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By condition (C.p-Uniform), for arbitrary ǫ > 0, there exists some L =
L(ǫ), so that E(k(ξp; p)− kL(ǫ)(ξp; p))

2 ≤ ǫ2 for all p, and then

E(f(XTY ; p)− fL(ǫ)(X
TY ; p))2 ≤ ǫ2p−1.

By Lemma 4.5,

|EmA(z)− EmL(ǫ)(z)| ≤ E|mA(z)−mL(ǫ)(z)| ≤ O(1)ǫ.

If in addition we can show that, for any fixed L and some sequence of aL(p) and
νL(p),

|EmL − RHS(EmL; aL(p), νL(p))| → 0,

aL(p) → a, νL(p) → ν,
(4.8)

then Eq. (4.7) holds asymptotically.
Step 2. Convergence of EmL(z) for finite L.
With slight abuse of notation, we denote the random kernel matrix with

kernel function fL(ξ; p) by A. Its Stieltjes transform is denoted by mL(z). In
what follows we sometimes drop the dependence on p and write fL(ξ; p) as fL(ξ),
and similar for other functions.

Recall that

EmL(z) = E
(

(A− zI)−1
)

nn

= E(−z −AT
·,n(A

(n) − zIn−1)
−1A·,n)

−1.
(4.9)

Notations as in Eq. (2.11, 2.12, 2.13), we have

A·,n = f(1) + f(2),

f(1) := a1,p|Xn|η,
f(2) := (f>1(ξ1n), · · · , f>1(ξn−1,n))

T ,

(4.10)

where ξin = |Xn|ηi for 1 ≤ i ≤ n − 1, η := (η1, · · · , ηn−1)
T , and f>1(ξ) :=

fL(ξ)− a1,pξ. The off-diagonal entries of A(n) are

A
(n)
ij = fL(X

T
i Xj) = fL(ηiηj + ξ̃ij), 1 ≤ i, j ≤ n− 1, i 6= j,

where ξ̃ij = X̃T
i X̃j .

The typical magnitude of ηi and ξ̃ij is p−1/2, and specifically, we have the
large probability set Ωδ defined as

Ωδ = {|ηi| < δ, |ξ̃ij | < δ,
∣

∣|Xn|2 − 1
∣

∣ <
√
2δ, 1 ≤ i, j ≤ n− 1, i 6= j}, (4.11)

where δ = M√
p , M =

√
20 ln p. By Lemma D.1, Pr(Ωc

δ) ≤ O(1)p−7. On Ωδ,

fL(ηiηj + ξ̃ij) = a1,pηiηj + a1,pξ̃ij

+ f>1(ξ̃ij) + f
′

>1(ξ̃ij)ηiηj + tij ,
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where

tij =
1

2
f

′′

>1(θij)(ηiηj)
2.

Recall that f>1(ξ) =
1√
p

∑L
l=2 al,pPl,p(

√
pξ), and by Eq. (4.5),

f
′

>1(ξ) =

L
∑

l=2

al,p(
√
lPl−1,p(

√
pξ) +Ol(1)M

l−1p−1), (4.12)

and

f
′′

>1(ξ) =
√
p

L
∑

l=2

al,p(
√

l(l − 1)Pl−2,p(
√
pξ) +Ol(1)M

l−2p−1). (4.13)

We define

Ã
(n)
ij = a1,pξ̃ij + f>1(ξ̃ij),

F̃ij =
1√
p

L
∑

l=2

al,p
√
lPl−1,p(

√
pξ̃ij),

i 6= j,

and set the diagonal entries to be zeros for both Ã(n) and F̃ , then

A(n) = Ã(n) + a1,p(ηη
T −Dη) +

√
pWF̃W + T,

where T is Hermitian with Tij = tij+
1√
pf

′

>1(ξ̃ij)−F̃ij , andW = diag{η1, · · · , ηn−1}.
We have (recall that

∑L
l=1 a

2
l,p is bounded by some O(1) constant for all p, by

Remark 3.1)

1. Since θij is between ξ̃ij and ξ̃ij + ηiηj , and both ξ̃ij and ηi are bounded
in magnitude by δ = p−1/2M , then |θij | ≤ δ + δ2 ≤ 1.01δ = p−1/21.01M .

Thus, by Eq. (4.13, 4.4), |f ′′

>1(θij)| ≤
√
pOL(1)M

L−2, and then |tij | ≤
OL(1)M

L+2p−3/2. Together with Eq. (4.12),

|Tij | ≤ OL(1)M
L+2p−3/2 +OL(1)M

L−1p−3/2 = OL(1)M
L+2p−3/2.

As a result,

s(T − a1,pDη) · 1Ωδ
≤ s(T ) · 1Ωδ

+ |a1,p|δ
= OL(1)M

L+2p−1/2 +O(1)Mp−1/2

= OL(1)M
L+2p−1/2. (4.14)

2. Lemma 4.2 applies to F̃ and we have

Es(F̃ ) ≤ L3/2 · O(1)p1/4 = OL(1)p
1/4.

As a result,

Es(
√
pWF̃W ) · 1Ωδ

≤ M2p−1/2
Es(F̃ ) ≤ OL(1)M

2p−1/4. (4.15)
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Now we break the quantity AT
·,n(A

(n)−zIn−1)
−1A·,n into the following pieces:

define Â(n) = a1,pηη
T + Ã(n), and recall that A·,n = f(1)+ f(2) as defined in Eq.

(4.10),

AT
·,n(A

(n) − zIn−1)
−1A·,n =AT

·,n(Â
(n) − zIn−1)

−1A·,n −AT
·,n(A

(n) − zIn−1)
−1

· (√pWF̃W + T − a1,pDη)(Â
(n) − zIn−1)

−1A·,n

=fT
(1)(Â

(n) − zIn−1)
−1f(1)

+ fT
(2)(Â

(n) − zIn−1)
−1f(2) + r2 − r1 (4.16)

where

r2 = 2fT
(1)(Â

(n) − zIn−1)
−1f(2),

r1 = AT
·,n(A

(n) − zIn−1)
−1(

√
pWF̃W + T − a1,pDη)

· (Â(n) − zIn−1)
−1A·,n.

(4.17)

For r2,

r2 = 2a1,p|Xn|ηT (Â(n) − zIn−1)
−1f(2)

= 2a1,pf
T
(2)(Â

(n) − zIn−1)
−1(|Xn|η)

= 2a1,p{fT
(2)(Ã

(n) − zIn−1)
−1(|Xn|η)

− fT
(2)(Ã

(n) − zIn−1)
−1a1,pηη

T (Â(n) − zIn−1)
−1(|Xn|η)}

:= 2a1,p(r2,1 − r2,2), (4.18)

and by moment method we can show that (Lemma D.2)

E|r2| · 1Ωδ
≤ OL(1)M

2p−1/2. (4.19)

To bound r1, we restrict ourselves to Ωδ where ||A·,n||2 =
∑n−1

i=1 fL(ξin)
2 ≤

OL(1)M
L, and with Eq. (4.15, 4.14)

E|r1| · 1Ωδ
≤ E(s(

√
pWF̃W ) + s(T − a1,pDη))||A·,n||2 · 1Ωδ

≤ OL(1)M
L
E(s(

√
pWF̃W ) + s(T − a1,pDη))

= OL(1)M
L(OL(1)M

2p−1/4 +OL(1)M
L+2p−1/2)

= OL(1)M
2L+2p−1/4. (4.20)

Furthermore, as in Sec. 2.2, we can compute the first term in Eq. (4.16):

fT
(1)(Â

(n) − zIn−1)
−1f(1) = |Xn|2a21,pηT (Â(n) − zIn−1)

−1η

= |Xn|2a1,p
(

1− (1 + a1,pη
T (Ã(n) − zIn−1)

−1η)−1
)

= |Xn|2a1,p
(

1− (1 + a1,p(γ
−1

Em̃(z) + γ−1r̃ + r(1),2))
−1
)

,

where m̃(z) = 1
n−1Tr(Ã

(n) − zIn−1)
−1, and
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1. r̃ = m̃(z)− Em̃(z), E|r̃| ≤ O(1)n−1/2 by Lemma 2.4;
2. The term

r(1),2 = ηT (Ã(n) − zIn−1)
−1η − 1

p
Tr(Ã(n) − zIn−1)

−1

is similar to r2 in Lemma B.1 and satisfies E|r(1),2| ≤ O(1)p−1/2.

Going through a process similar to that in Lemma B.1 to bound the denomina-
tors, including

1. introducing a large probability set

Ω(1) := {|r̃| ≤ p−1/4, |r(1),2| ≤ p−1/4}, Pr(Ωc
(1)) ≤ O(1)p−1/4,

so as to bound |(1 + a1,pγ
−1

Em̃(z))−1| on Ωδ ∩ Ω(1) by O(1)M2,

2. making use of that |(1 + a1,pη
T (Ã(n) − zIn−1)

−1η)−1| on Ωδ is bounded
by O(1)M2,

we have

fT
(1)(Â

(n) − zIn−1)
−1f(1) = a1,p

(

1− (1 +
a1,p
γ

Em̃(z))−1

)

+ r(1), (4.21)

where
E|r(1)| · 1Ωδ∩Ω(1)

≤ O(1)M4p−1/2. (4.22)

We turn to compute the second term in Eq. (4.16). We have

fT
(2)(Â

(n) − zIn−1)
−1f(2) = fT

(2)(Ã
(n) − zIn−1)

−1fT
(2)

− fT
(2)(Ã

(n) − zIn−1)
−1a1,pηη

T (Â(n) − zIn−1)
−1f(2)

=
ν>1,p

γ
Em̃(z) +

ν>1,p

γ
r̃ + r(2),2 − r(2),3 (4.23)

where
ν>1,p = E(f(2))

2
i = Ef>1(ξin)

2 = νp − a21,p,

and

r(2),2 = fT
(2)(Ã

(n) − zIn−1)
−1fT

(2) −
ν>1,p

p
Tr(Ã(n) − zIn−1)

−1,

r(2),3 = fT
(2)(Ã

(n) − zIn−1)
−1a1,pηη

T (Â(n) − zIn−1)
−1f(2)

= a1,p(η
T (Â(n) − zIn−1)

−1f(2))r2,1.

For r(2),2, by a moment method argument similar to the first part in the proof
of Lemma D.2, we have

E|r(2),2| ≤ OL(1)p
−1/2. (4.24)

To bound r(2),3, we restrict ourselves to Ωδ, where

|f(2)(ξin)| ≤ OL(1)M
Lp−1/2, |ηi| ≤ Mp−1/2, 1 ≤ i ≤ n− 1,
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thus

|a1,pηT (Â(n) − zIn−1)
−1f(2)| · 1Ωδ

≤ O(1)s((Â(n) − zIn−1)
−1)||η|| · ||f(2)||

≤ O(1)

v

√

O(1)M2

√

OL(1)M2L = OL(1)M
L+1,

and then

E|r(2),3| · 1Ωδ
= E|r2,1||a1,p(ηT (Â(n) − zIn−1)

−1f(2))| · 1Ωδ

≤ OL(1)M
L+1

E|r2,1|
≤ OL(1)M

L+1p−1/2. (4.25)

Now puting Eq. (4.16,4.20,4.19,4.21,4.22,4.23,4.24,4.25) together, we have

E

∣

∣

∣

∣

∣

mL(z)−
(

−z − a1,p

(

1− (1 +
a1,p
γ

Em̃(z))−1

)

− ν>1,p

γ
Em̃(z)

)−1
∣

∣

∣

∣

∣

· 1Ωδ∩Ω(1)

≤ 2

v
E(|r1|+ |r2|+ |r(1)|+ |ν>1,pγ

−1r̃|+ |r(2),2|+ |r(2),3|) · 1Ωδ∩Ω(1)

≤ OL(1)M
2L+2p−1/4 +OL(1)M

2p−1/2 +O(1)M4p−1/2

+O(1)n−1/2 +OL(1)p
−1/2 +OL(1)M

L+1p−1/2

= OL(1)M
2L+2p−1/4 → 0. (4.26)

Meanwhile, similar to the proof of Lemma B.6 (making use of the fact that
Es(

√
pWF̃W + T ) · 1Ωδ

≤ OL(1)M
2p−1/4 and the inequality that Tr(AB) ≤

n · s(A)s(B) for n-by-n Hermitian matrices A and B ), it can be shown that

E|mL(z)− m̃(z)| → 0.

With Eq. (4.26), we have (dropping the dependence on z)

|Em̃−RHS(Em̃; a1,p, νp)| → 0,

and thus
|EmL −RHS(EmL; a1,p, νp)| → 0.

At last, by condition (C.Variance) and (C.a1), a1,p → a and νp → ν. Thus
Eq. (4.8) is verified if we set aL(p) = a1,p and νL(p) = νp.

4.4. Model Xi ∼ U(Sp−1)

We also consider the model where the random vectors Xi’s are i.i.d. uniformly
distributed on a high-dimensional sphere. For this model, the marginal dis-
tribution of the inner-product ξij = XT

i Xj has probability density Q
′

p(u) =

Ap(1 − u2)(p−3)/2, where Ap is a normalization constant. Let ξ
′

p have the same
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distribution as
√
pξij , whose probability density is q

′

p(x) =
1√
pQ

′

p(
x√
p ), and let

H′

p = L2(R, q
′

p(x)dx). By Lemma D.3,

E(ξ
′

p)
k =

{

(k − 1)!! +Ok(1)p
−1, k even;

0, k odd,

which echos Eq. (4.3). As a result, by Lemma 4.1, the orthonormal polynomi-
als of H′

p are asymptotically consistent with the Hermite polynomials. If we

expand k(x; p) into the orthonormal polynomials of H′

p, and require the con-
ditions (C.Variance), (C.p-Uniform) and (C.a1) accordingly, the result in
Thm. 3.4 still holds.

One way of showing this is sketched as follows: condition on the draw of Xn,
and without loss of generality let Xn = (1, 0, · · · , 0)T . Then

Xi = (ui,
√

1− u2
i X̃

T
i )

T , 1 ≤ i ≤ n− 1,

where ui’s are i.i.d distributed, and X̃i’s are i.i.d. uniformly distributed on the
unit sphere in R

p−1 independently from ui’s. As a result, let ξij = XT
i Xj and

ξ̃ij = X̃T
i X̃j , then

ξij = uiuj +
√

1− u2
i

√

1− u2
j ξ̃ij , 1 ≤ i, j ≤ n− 1, i 6= j,

which is different from before. However, on the large probability set

Ωδ = {|ui| ≤ δ, |ξ̃ij | ≤ δ, 1 ≤ i, j ≤ n− 1, i 6= j, δ = p−1/2M,M =
√

20 ln p},
it can be shown that

ξij = uiuj + ξ̃ij + rij , |rij | ≤ δ3,

thus the extra rij does not harm the Taylor expansion argument. The mechanism
in Sec. 4.3 then applies to what follows in almost the same way.

Another way of extending the result in Thm. 3.4 to the model where Xi ∼
U(Sp−1) is to compare to the standard Gaussian case, that is, to replace the Xi

by Xi/|Xi| in the model Xi ∼ N (0, p−1Ip) and to bound the difference resulted
in mA(z) (reducing to the finite expansion case k = kL first).

We would like to make another comment about the connection to the p-
spherical harmonics, which are eigenfunctions of the Hilbert-Schmidt integral
operator

(Iϕ)(X) =

∫

Sp−1

f(XTY ; p)ϕ(Y )dP (Y ),

where dP (Y ) is the uniform measure/area element on Sp−1. This is due to that
the integral kernel depends on the inner-product XTY only, and thus the inte-
gral operator commutes with the rotation on Sp−1. The spectral representation
of the integral operator can be written as

f(XTY ; p) =
∑

j∈J

cj(p)φj(X)φj(Y ), (4.27)
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where φj are the spherical harmonics on Sp−1. {φj , j ∈ J} are homogeneous
harmonic polynomials restricted to the surface of the unit sphere, and form an
orthonormal basis of L2(Sp−1, dP ). cj(p) are eigenvalues for φj , and for φj of
the same degree they are the same. Then Eq. (4.27) can be rewritten as

f(XTY ; p) =

∞
∑

l=0

cl(p)Zl,X(Y ),

where Zl,X(Y ) is the l-degree zonal harmonic function with axisX , which up to a
multiplicative constant equals Gl,p(X

TY ), the Gegenbauer polynomial of degree

l. The latter, for all l, are mutually orthogonal in the space L2([−1, 1], Q
′

p(u)du).

Notice that this sequence of L2 spaces are, after a rescaling by
√
p, theH′

p defined
above.

5. Summary and Discussion

The main theorem, Thm. 3.4, establishes the convergence of the spectral density
of random kernel matrices in the limit p, n → ∞, p/n = γ, under the assumption
that the random vectors are standard Gaussian. Our proof is based on analyzing
the Stieltjes transform of the random kernel matrix, and uses the expansion
of the kernel function into orthonormal Hermite-like polynomials. The limiting
spectral density holds for a larger class of kernel functions than the cases studied
in [9], which are smooth kernels.

The assumption that the random vectors are standard Gaussian can be weak-
ened. We showed that the result extends to the case that they are uniformly
distributed over the unit sphere. Numerical simulations (not reported here) in-
dicate that the limiting spectral density holds for other non-Gaussian random
vectors. This includes the case where Xi’s are uniformly sampled from the 2p

vertices of the hypercube {−p−1/2, p−1/2}p (where the value of the sign kernel
and the divergent kernel at x = 0 is set to 0). The universality of the limiting
spectral density is however beyond the scope of this paper.

While our paper mainly focused on the limiting spectral density, another
question of practical importance concerns the statistics of the largest eigenvalue
of random kernel matrices. This include studying the mean, variance, limiting
distribution, as well as large deviation bounds for the largest eigenvalue. As
discussed in Remark 4.4, the bound in Lemma 4.2 for the expected value of
the spectral norm is far from being sharp. Numerical simulations (not reported
here) have shown that for the models studied in this paper, the largest/smallest
eigenvalue lies at the right/left end of the support of the limiting spectral den-
sity, and thus both of them are conjectured to be O(1) almost surely. We are
not aware of any result concerning the limiting probability law of the largest
eigenvalue of random kernel matrices, except for the one in [9] where the kernel
function is assumed to have strong (C3) regularity. Many other interesting ques-
tions can be asked from the RMT point of view, e.g. the “eigenvalue spacing”
problem, namely the “local law” of eigenvalues. If the asymptotic concentration
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of the eigenvalues at the “local level” could be established, one consequence
would be that the top eigenvalue can be shown to concentrate at the right end
of the limiting spectral density.

There are several interesting extensions of the inner-product kernel matrix
model. The first possible extension is to distance kernel functions of the form
f(Xi, Xj) = f(|Xi −Xj |), which are popular in machine learning applications.
Due to the relation

|Xi −Xj |2 = |Xi|2 + |Xj |2 − 2XT
i Xj ,

for the model where Xi ∼ U(Sp−1), where |Xi| ≡ 1, distance kernels can
be regarded as inner-product kernels. However, for the model where Xi ∼
N (0, p−1Ip), the fluctuations in |Xi|’s do seem to make a difference, and so
far we have not been able to draw any conclusion about the limiting spectrum.

Another extension is to kernels that are of more general forms, neither an
inner-product kernel nor a distance one. For example, a complex-valued kernel
has been used in [15] for a dataset of tomographic images. Every pair of images is
brought into in-plane rotational alignment. The modulus of the kernel function
corresponds to the similarity of the images when they are optimally aligned,
while the phase of the kernel is the optimal in-plane alignment angle. Notice
that this kernel is discontinuous, since a small perturbation in the images may
lead to a completely different phase. Similar kernels with discontinuity have also
been used for dimensionality reduction [14] and sensor network localization [7].
In many senses, these applications have been the motivation for the analysis
presented in this paper.

Finally, it is also possible to extend the study to non-Hermitian matrices
as follows. Suppose that X1, · · · , Xm are m i.i.d random vectors in R

p, and
Y1, · · · , Yn are n i.i.d random vectors in R

p, independent from the Xi’s. The
m-by-n matrix A is constructed as Aij = f(XT

i Yj) where f is some function.
The distribution of the singular values of A in the limit p,m, n → ∞ and
p/n = γ1, p/m = γ2 is conjectured to converge to a certain limiting density.
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Appendix A: Solution of the Equation of m(z)

We rewrite Eq. (3.5) as

a(ν − a2)

γ
m3 + (ν + az)m2 + (a+ γz)m+ γ = 0, ℑ(z) > 0,ℑ(m) > 0, (A.1)
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Fig 3. Function y(u; a, ν, γ) as in Eq. (A.2).

where a2 ≤ ν. When a = 0 (a2 = ν) the equation corresponds to the semi-
circle distribution (M.P. distribution), and the existence and uniqueness of the
solution with positive imaginary part are known. We consider the case where
0 < a2 < ν, thus the cubic term in Eq. (A.1) does not vanish.

Lemma A.1. For every z with ℑ(z) > 0, there exists a unique m with ℑ(m) > 0
for which Eq. (A.1) holds.

Proof. It can be verified that whenever a, ν, γ are real and ℑ(z) > 0, the solution
m must not be real. Define the domain D := {(a, ν, γ, z), γ > 0, 0 < a2 <
ν,ℑ(z) > 0} which has two connected components D+ = D∩{a > 0} and D− =
D ∩ {a < 0}. The three solutions of the cubic equation depend continuously on
the coefficients, thus if we let (a, ν, γ, z) vary continuously in D+, the imaginary
parts of the three solutions never change sign, and similarly for D−. As a result,
it suffices to show that for one choice of (a, ν, γ, z) ∈ D+ and one choice in D−,
there is a unique solution with positive imaginary part. This can be done, for
example, by choosing a = ±1/2, ν = 1, γ = 1 and z = i.

The explicit expression for y(u) defined in Eq. (3.6) is given by

y(u; a, ν, γ) =

{

0, D ≤ 0,√
3
2 ((

√
D +R)

1
3 + (

√
D −R)

1
3 ), D > 0,

(A.2)

where

D = Q3 +R2,

R = (9α2α1 − 27α0 − 2α3
2)/54,

Q = (3α1 − α2
2)/9,
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and
m3 + α2m

2 + α1m+ α0 = 0

is derived from Eq. (A.1) by multiplying (aνγ )−1on both sides. Explicitly,

α2 = (ν+au)γ
a(ν−a2) ,

α1 = (a+γu)γ
a(ν−a2) ,

α0 = γ2

a(ν−a2) .

So all of α2, α1, α0, and thus R, Q and D are real numbers. D is the “discrim-
inant” of cubic equation, where D turning from negative to positive signals the
emergence of a pair of complex solutions. The function y(u; a, ν, γ) is plotted in
Fig. 3 where ν = 1, a =

√

2/π and γ = 0.1, 0.2, 0.3. Notice the invariance of Eq.
(A.1) under the transformation

νc2 → ν, ac → a, zc → z, m/c → m

where c is any positive constant, which corresponds to multiplying the kernel
function by c.

Appendix B: Lemma in Sec. 2

Proof of Lemma 2.4. We need the Burkholder’s Inequality (Lemma 2.12. of [4]),
which says that for {γk, 1 ≤ k ≤ n} being a (complex-valued) martingale differ-
ence sequence, for β > 1,

E|
n
∑

k=1

γk|β ≤ KβE

(

n
∑

k=1

|γk|2
)β/2

, (B.1)

where Kβ is a positive constant depending on β. Using the i.i.d. random vectors
{Xi, 1 ≤ i ≤ n}, we will define the martingale to be

Mk = E(Tr(A− zI)−1|σ{Xk+1, · · · , Xn}) := EkTr(A− zI)−1, 0 ≤ k ≤ n,

where σ{Xk+1, · · · , Xn} := Fn−k denotes the σ-algebra generated by {Xi, k +
1 ≤ i ≤ n} and E(·|G) the conditional expectation with respect to the sub-
σ-algebra G. We have Mn = ETr(A − zI)−1 and M0 = Tr(A − zI)−1, and
Mn, · · · ,M0 form an martingale with respect to the filtration {Ft, t = 0, · · · , n}.
The martingale difference

γk = Mk−1 −Mk

= Ek−1Tr(A− zI)−1 − EkTr(A− zI)−1

= Ek(Tr(A− zI)−1 −Tr(A(k) − zI)−1)

− Ek−1(Tr(A− zI)−1 −Tr(A(k) − zI)−1) (B.2)
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where A(k) is an (n− 1)-by-(n− 1) matrix that is obtained from the matrix A
by eliminating its k-th column and k-th row. Notice that A(k) is independent of
Xk, Ek−1Tr(A

(k) − zI)−1 = EkTr(A
(k) − zI)−1, which verifies the last line of

Eq. (B.2). At the same time, we have

|Tr(A− zI)−1 −Tr(A(k) − zI)−1| ≤ 4

v
, (B.3)

where v = ℑ(z) > 0, using an argument similar to that in Sec. 2.4. of [18] (see
Eq. (2.96)). The way to show Eq. (B.3) is by making use of (1) that the ordered
n− 1 eigenvalues of a minor of a symmetric (or Hermitian) matrix A ‘interlace’
the ordered n eigenvalues of A, which follows from the Courant-Fischer theorem
(see, for example, Exercise 1.3.14 of [18]), and (2) that for fixed z both real and
imaginary parts of (t− z)−1 as functions of t have bounded total variation. As
a result,

|γk| ≤ |Ek(Tr(A− zI)−1 −Tr(A(k) − zI)−1)|
+ |Ek−1(Tr(A− zI)−1 −Tr(A(k) − zI)−1)|

≤ 2
4

v
:= C,

and then with Eq. (B.1), choosing β = 4,

E|mA − EmA|4 =
1

n4
E|

n
∑

k=1

γk|4

≤ 1

n4
K4

(

n
∑

k=1

|γk|2
)2

≤ 1

n4
K4(nC

2)2 = O(1)n−2.

This implies the almost sure convergence of mA − EmA to 0 by Borel-Cantelli
lemma. Also, Eq. (2.8) follows by Jensen’s inequality.

Lemma B.1. Notations as in Sec. 2.2

E

∣

∣

∣

∣

∣

∣

mA(z)−
(

−z −
(

1−
(

1 +
1

γ
Em̃(z)

)−1
))−1

∣

∣

∣

∣

∣

∣

→ 0.

Remark B.2. The proof provided below can be replaced by a simpler one. The
reason we give this proof is that it contains many of the techniques that are
used in showing the main result.

Proof. Continue from Eq. (2.15). We first observe that when p is large, |Xn|2
concentrates at 1, and specifically, with p large enough

Pr

[

||Xn|2 − 1| >
√

40 ln p

p

]

< p−9, (B.4)
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which can be verified by standard large deviation inequality techniques. How-
ever, at this stage the following moment bound will be enough for our purpose:

E
∣

∣|Xn|2 − 1
∣

∣ ≤
√

E (|Xn|2 − 1)
2
=

√

2

p
→ 0. (B.5)

We then write the denominator in Eq. (2.15) as

ηT (Ã(n) −Dη − zIn−1)
−1η =

1

p
Tr(Ã(n) − zIn−1)

−1 + r

=
1

γ
Em̃(z) +

1

γ
r̃ + r,

(B.6)

where r = ηT (Ã(n)−Dη−zIn−1)
−1η− 1

pTr(Ã
(n)−zIn−1)

−1, m̃(z) := 1
nTr(Ã

(n)−
zIn−1)

−1, and r̃ := (m̃(z)− Em̃(z)). We have that

1. E|r̃| ≤ O(1)n−1/2 as n → ∞: Because Ã(n) is itself an (n − 1) × (n − 1)
kernel matrix by Eq. (2.14), Lemma 2.4 applies.

2. r splits into two terms

r =
(

ηT (Ã(n) −Dη − zIn−1)
−1η − ηT (Ã(n) − zIn−1)

−1η
)

+

(

ηT (Ã(n) − zIn−1)
−1η − 1

p
Tr(Ã(n) − zIn−1)

−1

)

:= r1 + r2,

where (1) E|r2| ≤ O(1)p−1/2, by Lemma B.4; (2) |r1|1Ωδ
≤ O(1)p−1/2,

where Ωδ is a large probability set depending on p, defined as

Ωδ = {|ηi| < δ, 1 ≤ i ≤ n− 1, δ =
M√
p
}, M =

√

20 ln p,

by Lemma B.3. Notice that M = o(pǫ) for any ǫ > 0.

Back to Eq. (2.10). By Eqs. (2.15) and (B.6), we have

EmA(z) = E
(

(A− zI)−1
)

nn

= E

(

−z − |Xn|2
(

1− (1 +
1

p
Tr(Ã(n) − zIn−1)

−1 + r)−1

))−1

.

The following bounds (1) - (4) can be verified:

(1) (Lemma B.8) On Ωδ, |ηT (A(n) − zIn−1)
−1η| and |(1 + ηT (Ã(n) − Dη −

zIn−1)
−1η)−1| are both bounded by M

′
= 1 + O(1)M2, M

′
= o(pǫ) for

any ǫ > 0.

(2) (Lemma B.7) On Ωr ∩ Ωδ,

∣

∣

∣

∣

(

1 + 1
γEm̃(z)

)−1
∣

∣

∣

∣

≤ 2M
′
, where we define

Ωr = {|r̃| < p−1/4, |r2| < p−1/4},



X. Cheng and A. Singer/Inner-product Random Kernel Matrices 28

and by Markov inequality, we have

Pr(Ωc
r) ≤ p1/4E|r̃|+ p1/4E|r2| ≤ O(1)p−1/4

when p is large.
(3)

∣

∣

(

(A− zI)−1
)

nn

∣

∣ ≤ 1
v , which is Eq. (2.4).

(4)

∣

∣

∣

∣

∣

(

−z −
(

1−
(

1 + 1
γEm̃(z)

)−1
))−1

∣

∣

∣

∣

∣

≤ 1
v : By ℑ

(

−
(

1 + 1
γEm̃(z)

)−1
)

equals a positive number times ℑ
(

1
γEm̃(z)

)

which is also positive, one

verifies that

ℑ
(

−z −
(

1−
(

1 +
1

γ
Em̃(z)

)−1
))

< ℑ(−z) = −v,

so
∣

∣

∣

∣

∣

−z −
(

1−
(

1 +
1

γ
Em̃(z)

)−1
)∣

∣

∣

∣

∣

> v.

With (1) and (2), we have

E

∣

∣

∣

∣

∣

(

1 + ηT (Ã(n) −Dη − zIn−1)
−1η

)−1

−
(

1 +
1

γ
Em̃(z)

)−1
∣

∣

∣

∣

∣

· 1Ωδ∩Ωr

≤ E(M
′ · 2M ′

)(|r| + 1

γ
|r̃|) · 1Ωδ∩Ωr

≤ 2M
′2(E|r2|+ E|r1| · 1Ωδ

+ γ−1
E|r̃|)

≤ 2M
′2(O(1)p−1/2 +O(1)p−1/2 +O(1)n−1/2)

= O(1)M
′2p−1/2. (B.7)
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Using bounds (1)-(4), together with Eqs. (B.7) and (B.5), we have

E

∣

∣

∣

∣

∣

∣

mA(z)−
(

−z −
(

1−
(

1 +
1

γ
Em̃(z)

)−1
))−1

∣

∣

∣

∣

∣

∣

= E

∣

∣

∣

∣

∣

∣

(

−z − |Xn|2ηT (A(n) − zIn−1)
−1η

)−1

−
(

−z −
(

1−
(

1 +
1

γ
Em̃(z)

)−1
))−1

∣

∣

∣

∣

∣

∣

≤ 2

v
(Pr(Ωc

δ) + Pr(Ωc
r))

+ E

∣

∣

∣

∣

∣

∣

(

−z − |Xn|2ηT (A(n) − zIn−1)
−1η

)−1

−
(

−z −
(

1−
(

1 +
1

γ
Em̃(z)

)−1
))−1

∣

∣

∣

∣

∣

∣

· 1Ωδ∩Ωr

≤ 2

v
(Pr(Ωc

δ) + Pr(Ωc
r))

+ E
1

v2
∣

∣|Xn|2 − 1
∣

∣ · |ηT (A(n) − zIn−1)
−1η| · 1Ωδ∩Ωr

+ E
1

v2

∣

∣

∣

∣

∣

(

1 + ηT (Ã(n) −Dη − zIn−1)
−1η

)−1

−
(

1 +
1

γ
Em̃(z)

)−1
∣

∣

∣

∣

∣

· 1Ωδ∩Ωr

≤ 2

v
(Pr(Ωc

δ) + Pr(Ωc
r)) + E

1

v2
∣

∣|Xn|2 − 1
∣

∣M
′

1Ωδ∩Ωr
+

1

v2
O(1)M

′2p−1/2

≤ O(1)p−9 +O(1)p−1/4 +M
′O(1)p−1/2 +O(1)M

′2p−1/2

= o(p−1/2+ǫ),

for any ǫ > 0, which proves the statement.

Lemma B.3. Notations as in Lemma B.1,

|r1|1Ωδ
≤ O(1)p−1/2

Proof. By

Pr[|ηi| > δ] = 2

∫ ∞

M

1√
2π

e−
u2

2 du

≤ 1√
2
e−

M2

2

=
1√
2
p−10, 1 ≤ i ≤ n− 1, (B.8)

and the union bound, we have

Pr(Ωc
δ) ≤ (n− 1)Pr[|ηi| > δ] ≤ O(1)p−9.

Now (recall that s(·) denotes the magnitude of the largest singular value/spectral
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norm of a matrix)

|r1| =
∣

∣

∣ηT (Ã(n) −Dη − zIn−1)
−1η − ηT (Ã(n) − zIn−1)

−1η
∣

∣

∣

=
∣

∣

∣ηT (Ã(n) −Dη − zIn−1)
−1Dη(Ã

(n) − zIn−1)
−1η

∣

∣

∣

≤ s
(

(Ã(n) −Dη − zIn−1)
−1Dη(Ã

(n) − zIn−1)
−1
)

|η|2.

Notice that on Ωδ

s(Dη) ≤ max
1≤i≤n−1

η2i ≤ δ2,

also |η|2 ≤ (n − 1)δ2. At the same time both s((Ã(n) − Dη − zIn−1)
−1) and

s((Ã(n)−zIn−1)
−1) is bounded by 1

v an absolute constant. Adding together (for
Hermitian matrices A and B, s(AB) ≤ s(A)s(B)) we have

|r1|1Ωδ
≤ 1

v2
δ2 · (n− 1)δ2 =

M4(n− 1)

v2p2
< O(1)p−1/2. (B.9)

Lemma B.4. Notations as in Sec. 2.2,

E|r2| ≤ O(1)p−1/2.

Remark B.5. The technique is similar to the moment bound method in [4,
Chapter 3.3], where the main observation is that Ã(n) is independent of the
vector η.

Proof. Define (Ã(n) − zIn−1)
−1 as B̃ which is Hermitian, we have

E|r2|2 = E

∣

∣

∣

∣

∣

∣

n−1
∑

i=1

(

η2i −
1

p

)

B̃ii +
∑

i1 6=i2

ηi1ηi2B̃i1i2

∣

∣

∣

∣

∣

∣

2

= E

∑

i,i′

(

η2i −
1

p

)(

η2
i′
− 1

p

)

B̃iiB̃i′ i′

+ E

∑

i

∑

i1 6=i2

(

η2i −
1

p

)

ηi1ηi2

(

B̃iiB̃i1i2 + B̃iiB̃i1i2

)

+ E

∑

i1 6=i2

∑

i
′
1 6=i

′
2

ηi1ηi2ηi′1
ηi′2

B̃i1i2 B̃i
′
1i

′
2
.

By taking expectation over ηi’s first, we see many terms vanish due to the
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independence of ηi1 and ηi2 for i1 6= i2, and what remains gives

E|r2|2 ≤ E





∑

i

E

(

η2i −
1

p

)2

|B̃ii|2 +
∑

i1 6=i2

2
1

p2
|B̃i1i2 |2





= E
2

p2





∑

i

|B̃ii|2 +
∑

i1 6=i2

|B̃i1i2 |2




= E
2

p2
Tr(B̃

T
B̃).

Observe that

Tr(B̃
T
B̃) =

n−1
∑

i=1

1

|λ̃i − z|2
≤

n−1
∑

i=1

1

v2
=

n− 1

v2
,

where v = ℑ(z) > 0 and λ̃i are the eigenvalues of Ã(n). Then

2

p2
Tr(B̃

T
B̃) ≤ 2

v2
n− 1

p2
≤ 2

v2γ
· 1
p
,

which means that

E|r2|2 ≤ O(1)

p
,

so we have E|r2| ≤
√

E|r2|2 ≤ O(1)p−1/2 .

Lemma B.6. Notations as in Sec. 2.2,

E|mA(z)− m̃(z)| → 0.

Proof. First, |mA(z) −mA(n)(z)| ≤ 4
v · n−1 → 0, due to Eq. (B.3). Second, we

show that E|mA(n) −mÃ(n) | → 0. By

Tr(A(n) − zIn−1)
−1 −Tr(Ã(n) − zIn−1)

−1

= Tr(−(A(n) − zIn−1)
−1(ηηT −Dη)(Ã

(n) − zIn−1)
−1)

= −ηT (A(n) − zIn−1)
−1(Ã(n) − zIn−1)

−1η

+Tr((A(n) − zIn−1)
−1Dη(Ã

(n) − zIn−1)
−1),

and using a similar argument as before, we can show that on Ωδ

∣

∣

∣ηT (A(n) − zIn−1)
−1(Ã(n) − zIn−1)

−1η
∣

∣

∣ ≤ 1

v2
|η|2 ≤ 1

v2
(n− 1)δ2 ≤ O(1)M2,

and
∣

∣

∣Tr((A(n) − zIn−1)
−1Dη(Ã

(n) − zIn−1)
−1)
∣

∣

∣

≤ (n− 1)s((A(n) − zIn−1)
−1Dη(Ã

(n) − zIn−1)
−1)

≤ 1

v2
(n− 1)δ2 = O(1)M2.



X. Cheng and A. Singer/Inner-product Random Kernel Matrices 32

As a result,

E|mA(n) −mÃ(n) | = 2

v
Pr(Ωc

δ) + E|mA(n) −mÃ(n) | · 1Ωδ

≤ O(1)p−9 +
1

n
O(1)M2

which goes to 0 as n, p → ∞ with p/n = γ.

Lemma B.7. Notations as in Sec. 2.2, on Ωr ∩ Ωδ,
∣

∣

∣

∣

∣

(

1 +
1

γ
Em̃(z)

)−1
∣

∣

∣

∣

∣

≤ 2M
′

.

Proof. On Ωr ∩ Ωδ, with Eq. (B.9) |r1| < O(1)p−1/2 thus |r| ≤ |r1| + |r2| is
bounded by O(1)p−1/4,

∣

∣

∣

∣

∣

1

1 + 1
γEm̃(z)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

1 + ηT (Ã(n) −Dη − zIn−1)−1η − r − 1
γ r̃

∣

∣

∣

∣

∣

≤ 1
∣

∣

∣1 + ηT (Ã(n) −Dη − zIn−1)−1η
∣

∣

∣− |r| − 1
γ |r̃|

≤ 2M
′

as
∣

∣

∣1 + ηT (Ã(n) −Dη − zIn−1)
−1η

∣

∣

∣ ≥ 1/M
′ ≫ (|r| + 1

γ |r̃|), where the latter is

bounded by O(1)p−1/4.

Lemma B.8. Notation as in Sec. 2.2, on Ωδ, both |ηT (A(n) − zIn−1)
−1η| and

|(1 + ηT (Ã(n) −Dη − zIn−1)
−1η)−1| are bounded by M

′
.

Proof. On Ωδ, |ηT (A(n)− zIn−1)
−1η| ≤ s((A(n)− zIn−1)

−1)|η|2 ≤ 1
v δ

2(n− 1) =
O(1)M2, and also

∣

∣

∣

∣

(

1 + ηT (Ã(n) −Dη − zIn−1)
−1η

)−1
∣

∣

∣

∣

=
∣

∣

∣1− ηT (ηηT + Ã(n) −Dη − zIn−1)
−1η

∣

∣

∣

≤ 1 + |ηT (A(n) − zIn−1)
−1η|

≤ 1 +O(1)M2 := M
′

.

Appendix C: Lemma in Sec. 3

Lemma C.1. Model and notations as in Sec. 3.1. Due to Eqn. (4.3), the result
in Lemma 4.1 holds.

Suppose that k(x; p) is in HN and Hp for all p, and satisfies
∫

R

k(x; p)2|qp(x)− q(x)|dx → 0, p → ∞.
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Let

bl,p =

∫

R

k(x; p)hl(x)q(x)dx,

al,p =

∫

R

k(x; p)Pl,p(x)qp(x)dx,

for l = 0, 1, · · · . Then for each l, |bl,p − al,p| → 0 as p → ∞.

Proof.

|bl,p − al,p|

= |
∫

R

khl(q − qp)dx +

∫

R

k(hl − Pl,p)qpdx|

≤
∫

|khl||q − qp|dx+

∫

|k||hl − Pl,p|qpdx

:= (1) + (2).

For (1), by Cauchy-Swarchz

(1)2 ≤ (

∫

k2|q − qp|dx)(
∫

h2
l |q − qp|dx),

where
∫

h2
l |q − qp|dx ≤

∫

h2
l qdx +

∫

h2
l qpdx = 1 + (1 +Ol(1)p

−1),

which is bounded as p → ∞, and
∫

k2|q − qp|dx → 0, thus (1) → 0. For (2),

(2)2 ≤ (

∫

k2qpdx)(

∫

(hl − Pl,p)
2qpdx),

where
∫

k2qpdx →
∫

k2qdx which is bounded, and by Lemma 4.1

hl(x) − Pl,p(x) =

l
∑

j=0

(δl,p)jx
j , max

0≤j≤l
|(δl,p)j | < Ol(1)p

−1,

thus
(∫

(hl − Pl,p)
2qpdx

)1/2

≤ Ol(1)p
−1,

so (2) → 0.

Lemma C.2. Model and notations as in Sec. 3.2, and suppose that k(x) is as
in Remark 3.2. Eqn. (3.4) implies that Ek(ξp)

2 → Ek(ζ)2 = νN . Without loss
of generality, k(x) is in Hp for all p. Define bl,p and al,p as in Lemma C.1, and
notice that since k(x) does not depend on p, bl,p = bl independent of p.

Then conditions (C.Variance), (C.p-Unform) and (C.α1) are satisfied by
k(x; p) = k(x)− a0,p. Also, νp → νN , and a1,p → aN = b1.
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Proof. By definition Ek(ξp; p) = 0. In this case,

νp = Ek(ξp; p)
2 = Ek(ξp)

2 − a20,p.

Since Lemma C.1 applies to k(x), we know that

a0,p → b0 = Ek(ζ) = 0.

Together with the fact that Ek(ξp)
2 → Ek(ζ)2 = νN , we know that νp → νN as

p → ∞. Thus (C.Variance) is satisfied.
Also a1,p → b1 which is a constant, thus (C.α1) holds.
For (C.p-Unform) to be satisfied, it suffices to show that

∑∞
l=L+1 a

2
l,p can

be made p-uniformly small. Notice that

∞
∑

l=0

a2l,p = Ek(ξp)
2 → νN ,

∞
∑

l=0

b2l = νN ,

and meanwhile for each l, al,p → bl by Lemma C.1, thus for any finite L

∞
∑

l=L+1

a2l,p = Ek(ξp)
2 −

L
∑

l=0

a2l,p

→ νN −
L
∑

l=0

b2l =

∞
∑

l=L+1

b2l ,

which can be made small by choosing L large independently of p.

Lemma C.3. Notations as in Sec. 3.2. If f(ξ; p) = f(ξ) is C1 at ξ = 0, then
the theorem applies and a2 = ν. Specifically, a = f

′
(0).

Proof. We first truncate f(ξ) to be f̂(ξ; p) = f(ξ)1{|ξ|≤δ}, where δ = δ(p) = M√
p ,

M =
√
20 ln p. Using a similar argument as in Lemma D.1, we have

Pr[∃i 6= j, |XT
i Xj| > δ] ≤ O(1)p−7.

Thus, if we denote Â as the random kernel matrix with kernel function f̂ , then
for fixed z = u+ iv

E|mA(z)−mÂ(z)| ≤
2

v
Pr[∃i 6= j, |XT

i Xj | > δ] → 0,

where mA(z) and mÂ(z) are the Stieltjes transforms of A and Â respectively.
Since the convergence of EmA(z) implies the convergence of the spectral density,

if suffices to show that the claim in the lemma holds for f̂(ξ; p).
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Since f(ξ) is C1 at ξ = 0, for any ǫ > 0 there exists a neighborhood [−R,R]
on which

f(ξ) = f(0) + f
′

(0)ξ + r(ξ), |r(ξ)| ≤ ǫ|ξ|.
Since δ → 0 when p → ∞, we assume that p is large enough so that δ < R.
Let k(x; p) =

√
pf̂(x/

√
p), and assume that f(0) = 0 since it only contributes

to Ek(ξp, p) = a0,p, we have

k(x; p) =

(

f
′

(0)x+
√
pr(

x√
p
)

)

1{|x|≤M}

:= k1 + k2,

where |k2(x; p)| ≤ ǫ|x|, so Ek2(ξp; p)2 ≤ ǫ2. Thus, the L2 norm of k2 is arbitrarily
small in Hp, and νp = V ar(k(ξp; p)) and a1,p = Eξp(k(ξp; p) − Ek(ξp; p)) are

decided by k1. For k1(x; p) = f
′
(0)x1{|x|≤M}, Ek1(ξp; p) = 0, and since M →

∞ as p → ∞, Ek1(ξp; p)
2 → (f

′
(0))2 and Eξpk1(ξp; p) → f

′
(0). Thus νp →

(f
′
(0))2 = ν, and a1,p → f

′
(0) = a.

Lemma C.4. Let ξp be as in Sec. 3.2, and equivalently ξp = p−1/2
∑p

i=1 xiyi
where xi and yi i.i.d.∼ N (0, 1). Then for p > 2,

Pr[|ξp| > R] ≤ (2e)e−R.

Proof. Since for |t| < √
p, Ee

t
x1y1√

p = (1− t2/p)−1/2, by choosing t = 1 we have

Pr[ξp > R] ≤ e−M (Ee
x1y1√

p )p

= e−M (1− 1

p
)−p/2

≤ e−Me,

where the last line is due to that x = 1/p satisfies log(1 − x)/x > −2 when
0 < x < 1/2. The argument for bounding Pr[ξp < −R] is similar.

Lemma C.5. Notations as in Sec. 3.2. Suppose k(x) is (Case 1) bounded, or
(Case 2) in HN and Hp for all p, is bounded on |x| ≤ R for any R > 0, and
satisfies

∫

|x|>R

k(x)2qp(x)dx → 0, R → ∞

uniformly in p, then Eqn. (3.4) holds.

Proof. First, we reduce (Case 2) to (Case 1). Notice that
∫

R

k(x)2|qp(x)− q(x)|dx

≤
∫

|x|≤R

k(x)2|qp(x)− q(x)|dx +

∫

|x|>R

k(x)2qp(x)dx

+

∫

|x|>R

k(x)2q(x)dx.
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The last two terms can be made arbitrarily small independently of p by choosing
R large, and for fixed R, the first term goes to 0 given that (Case 1) is proved.

To show the claim for (Case 1), it suffices to show that
∫

|qp − q|dx → 0.
Since ξp converge in distribution to N (0, 1), we know that for any finite R,
∫

|x|<R
|qp(x)− q(x)|dx → 0. Thus, it suffices to show that

∫

|x|>R

qp(x)dx → 0, R → ∞

uniformly in p. This follows from the large deviation bound that is given in
Lemma C.4.

Appendix D: Lemma in Sec. 4

Proof of Lemma 4.2 . Let {λi, 1 ≤ i ≤ n} be the eigenvalues of A. Since

s(A)4 ≤
n
∑

i=1

λ4
i = Tr(A4) =

∑

i,j,k,l

AijAjkAklAli,

we have
Es(A) ≤ (Es(A)4)1/4 ≤ (

∑

i,j,k,l

EAijAjkAklAli)
1/4. (D.1)

We observe that for EAijAjkAklAli to be non-zero, in {i, j, k, l} neighboring in-
dices must differ since Aii = 0. Also, the conditions in the lemma are equivalent
to

1. Ef(XT
i Xj ; p) = O(1)p−3/2,

2. Ef(XT
i Xj ; p)

2 ≤ m2p−1,
3. Ef(XT

i Xj ; p)
4 = O(1)p−2,

for any i 6= j. Then we have

EAijAjkAklAli

= Ef(XT
i Xj)f(X

T
j Xk)f(X

T
k Xl)f(X

T
l Xi)

=











Ef(XTY ; p)4 = O(1)p−2, i = k, j = l,

(Ef(XTY ; p)2)2 = m2
2p

−2, i = k, j 6= l or i 6= k, j = l,

(Ef(XTY ; p))4 = O(1)p−6, i 6= k, l 6= j.

Thus
∑

i,j,k,l

EAijAjkAklAli

≤ n2O(1)p−2 + 2n3m2
2p

−2 + n4O(1)p−6

=
2

γ2
m2

2n+Oγ(1),

which combined with Eq. (D.1) gives the bound wanted.
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Proof of Lemma 4.5. Let {λi(A), i = 1, · · · , n} be the eigenvalues of A in de-
scending order and similar for λi(B)’s. Then

|mA(z)−mB(z)| =
∣

∣

∣

∣

∣

1

n

n
∑

i=1

(

1

λi(A) − z
− 1

λi(B) − z

)

∣

∣

∣

∣

∣

≤ 1

n

n
∑

i=1

1

v2
|λi(A)− λi(B)|

≤ 1

nv2

√

√

√

√

n
∑

i=1

|λi(A)− λi(B)|2 · √n.

By Weilandt inequality (see, for example Eq. (1.68) of [18])

n
∑

i=1

|λi(A)− λi(B)|2 ≤ Tr((A−B)2) =

n
∑

i,j=1

|Aij −Bij |2,

we get

E|mA(z)−mB(z)|2 ≤ 1

v4
1

n
E

n
∑

i=1

|λi(A)− λi(B)|2

≤ 1

v4
1

n
E

n
∑

i,j=1

|Aij −Bij |2

=
1

v4
1

n

n
∑

i,j=1

E(fA(X
T
i Xj; p)− fB(X

T
i Xj; p))

2

≤ 1

v4
1

n
n2p−1ǫ

= O(1)ǫ.

Lemma D.1. Let Ωδ be defined as in Eq. (4.11),

Pr(Ωc
δ) ≤ O(1)p−7.

Proof. For ηi we have the concentration inequality Eq. (B.8); For each ξ̃ij , we
write it as

ξ̃ij = |X̃i|η̃ij ,
where η̃ij has marginal distribution N (0, p−1) and is independent of |X̃i|. With
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inequality Eq. (B.4) which also holds for |Xi| in place of |Xn|, we have

Pr[|X̃i||η̃ij | > δ] ≤ Pr

[

|X̃i|2 > 1 +

√

40 lnp

p

]

+ Pr

[

|X̃i||η̃ij | > δ, |X̃i|2 < 1 +

√

40 ln p

p

]

≤ p−9 + Pr[|η̃ij | >
δ

1.01
]

≤ p−9 +
1√
2
p−9,

thus
Pr[|ξ̃ij | > δ] < O(1)p−9.

Then, a union bound gives

Pr(Ωc
δ) ≤ (n− 1)Pr[|ηi| > δ]

+
(n− 1)(n− 2)

2
Pr[|ξ̃ij | > δ] + Pr[

∣

∣|Xn|2 − 1
∣

∣ >
√
2δ]

≤ O(1)p−9 +O(1)p−7 + p−9 = O(1)p−7.

Lemma D.2. Notation as in Sec. 4.3. r2 defined in Eq. (4.17) satisfies

E|r2| · 1Ωδ
≤ OL(1)M

2p−1/2.

Proof. From Eq. (4.18), firstly,

r2,1 = fT
(2)(Ã

(n) − zIn−1)
−1(|Xn|η)

satisfies E|r2,1| ≤ OL(1)p
−1/2 by a moment bound: recall that

1. Eξ1n = 0, Eξ21n = p−1,
2. Ef>1(ξ1n) = 0, Ef>1(ξ1n)

2 = ν>1,pp
−1 ≤ O(1)p−1,

3. Ef>1(ξ1n)ξ1n = 0, Ef>1(ξ1n)ξ
2
1n = OL(1)p

−3/2, Ef>1(ξ1n)
2ξ21n = OL(1)p

−2.

Since E|Xn|2 = 1 and Xn is independent of other random variables in r2,1, we
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have, denoting B̃ = (Ã(n) − zIn−1)
−1,

E|r2,1|2 = E

∣

∣

∣

∣

∣

∣

n−1
∑

i1,i2=1

f>1(ξi1n)ξi2nB̃i1i2

∣

∣

∣

∣

∣

∣

2

= E

∑

i1,i2

∑

i
′
1,i

′
2

f>1(ξi1n)ξi2nf>1(ξi′1n
)ξi′2n

B̃i1i2B̃i
′
1i

′
2

= {i1 = i2 = i
′

1 = i
′

2}+ {i1, i2 = i
′

1 = i
′

2, or i
′

1as i1}
+ {i2 = i

′

2, i1, i
′

1}+ {i1 = i2, i
′

1 = i
′

2, or i
′

1as i1}+ {i1 = i
′

1, i2 = i
′

2}

≤ OL(1)p
−2 · n 1

v2
+ 0 + 0 + 0 +

1

p

ν>1,p

p
E

∑

i1 6=i2

|B̃i1i2 |2

= OL(1)p
−1 + ν>1,pp

−2
ETr(B̃

T

B̃)

≤ OL(1)p
−1 +O(1) · p−2 n

v2
= OL(1)p

−1.

By {i1, i2 = i
′

1 = i
′

2} we denote the term in summation where the last three
indices take the same value while i1 is distinct from them, and similar for others.

Secondly,

r2,2 = (fT
(2)(Ã

(n) − zIn−1)
−1(|Xn|η))(a1(p)ηT (Â(n) − zIn−1)

−1η)

= r2,1(a1(p)η
T (Â(n) − zIn−1)

−1η),

where

|a1(p)ηT (Â(n) − zIn−1)
−1η| · 1Ωδ

≤ 1.01s((Â(n) − zIn−1)
−1)||η||2 · 1Ωδ

≤ 1.01

v
O(1)M2 = O(1)M2,

thus

E|r2,2| · 1Ωδ
≤ O(1)M2

E|r2,1| ≤ O(1)M2 · OL(1)p
−1/2 = OL(1)M

2p−1/2.

Then

E|r2| · 1Ωδ
≤ 2 · 1.01 · (E|r2,1|+ E|r2,2| · 1Ωδ

) ≤ OL(1)M
2p−1/2.

Lemma D.3. Notations as in Sec. 4.4,

E(ξ
′

p)
k =

{

(k − 1)!! +Ok(1)p
−1, k even;

0, k odd.

Proof. The odd moments vanish since the distribution of ξ′p is symmetric with

respect to 0. For even moments, let k = 2m. Let ξp =
√
pXTY where X and
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Y are i.i.d N (0, p−1Ip), and we have that ξp and ξ′p|X ||Y | observe the same
probability distribution. Notice that ξ′p, |X | and |Y | are independent, so

Eξ2mp = E|X |2mE|Y |2mE(ξ′p)
2m = (E|X |2m)2E(ξ′p)

2m.

By Eq. (4.3), to show the claim it suffices to show that E|X |2m = 1+Om(1)p−1.
To do this, define

r = |X |2 − 1 =

p
∑

j=1

(

X2
j − 1

p

)

.

Due to the mutual independence of the Xj’s, the odd moments of r vanish;
Er2 = 2p−1, and generally for even l

E

(√

p

2
r

)l

= (l − 1)!! +Ol(1)p
−1,

so Erl = Ol(1)p
−l/2. Then

E|X |2m = E(1 + r)m

= 1 +

m
∑

l=2,l even

c(l,m)Erl

= 1 +

m
∑

l=2,l even

c(l,m)Ol(1)p
−l/2

= 1 +Om(1)p−1.
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