Publications:

[Google Scholar]

In Preparation:

  • Elizabeth N. Davison, Z. Aminzare, Biswadip Dey, and Naomi Ehrich Leonard. Mixed mode oscillations and firing onset in coupled systems of FitzHugh-Nagumo type. [PDF] [Poster] [BibTex]

  • Z. Aminzare and P. Holmes. The effect of noise on gait transitions in a model of insect central pattern generators. [PDF] [Poster] [BibTex]

    Articles in Journal or Book chapter:

  • Z. Aminzare, B. Dey, E. N. Davison, and N. Ehrich Leonard. Cluster synchronization of diffusively coupled nonlinear systems: A contraction based approach. Under Review. [PDF] [Poster] [BibTex]

  • Z. Aminzare, V. Srivastava, and P. Holmes. Gait transitions in a phase oscillator model of insect central pattern generators. Under Review. [PDF] [Poster] [BibTex]

  • F. Menolascina, R. Rusconi, V. I. Fernandez, S. P. Smriga, Z. Aminzare, E. D. Sontag, and R. Stocker. Logarithmic sensing in Bacillus subtilis aerotaxis. Nature Systems biology and Applications, 3:16036-, 2017. [PDF] [BibTex]

  • Z. Aminzare and E.D. Sontag. Some remarks on spatial uniformity of solutions of reaction-diffusion PDEs. 2015. Nonlinear Analysis: Theory, Methods & Applications, 147:125-144, 2016. [PDF] [BibTex]

  • J. L. Gevertz, Z. Aminzare, Kerri-Ann Norton, J. Pérez-Velázquez, A. Volkening, K. A. Rejniak. Emergence of Anti-Cancer Drug Resistance: Exploring the Importance of the Microenvironmental Niche via a Spatial Model.
  • In A. Radunskaya and T. Jackson, editors, Applications of Dynamical Systems in Biology and Medicine, IMA Volumes in Mathematics and its Applications, 158:1- 34, Springer-Verlag, 2015. [PDF] [BibTex]

  • Z. Aminzare and E.D. Sontag. Synchronization of diffusively-connected nonlinear systems: results based on contractions with respect to general norms. IEEE Transactions on Network Science and Engineering, 1(2):91-106, 2014. [PDF] [BibTex]

  • Z. Aminzare, Y. Shafi, M. Arcak, E.D. Sontag. Remarks on weighted L² norm contractions of reaction-diffusion systems. In V. Kulkarni, K. Raman, and G.-B. Stan, editors, System Theoretic Approaches to Systems and Synthetic Biology, 73-110. Springer-Verlag, 2014. [PDF] [BibTex]

  • Z. Aminzare and E.D. Sontag. Logarithmic Lipschitz norms and diffusion-induced instability. Nonlinear Analysis: Theory, Methods & Applications, 83:31-49, 2013. [PDF] [BibTex]

    Conference Papers:

  • Z. Aminzare and E. D. Sontag. Contraction methods for nonlinear systems: A brief introduction and some open problems. In Proc. IEEE Conf. Decision and Control, Los Angeles, Dec. 2014, pages 3835-3847, 2014. [PDF] [BibTex]

  • Z. Aminzare and E. D. Sontag. Remarks on diffusive-link synchronization using non-Hilbert logarithmic norms. In Proc. IEEE Conf. Decision and Control, Los Angeles pages 6086-6091, 2014. [PDF] [BibTex]

  • Y. Shafi, Z. Aminzare, M. Arcak, E.D. Sontag. Spatial uniformity in diffusively-coupled systems using weighted $L^2$ norm contractions In Proc. American Control Conference 2013. pages 5639-5644. [PDF] [BibTex]

    Internal Reports:

  • Z. Aminzare and E. D. Sontag. Remarks on a population-level model of chemotaxis: advection-diffusion approximation and simulations. Technical report, arXiv:1302.2605, 2013. [PDF] [BibTex]