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Notations and Simplifications

Throughout this talk, the following will (hopefully) hold:
Notations:

I d is the dimension of the vector space

I m is the number of vectors

I v is a (deterministic) vector

I v̂ is a random variable that takes deterministic vectors as its
possible values

I V is a matrix

Simplifications:

I All vectors will be real vectors (in Rd) [though all proofs will
hold for complex vectors by replacing transposes with adjoints]

I All random vectors will choose from 2 possible values [though
proofs can be extended to any type of random vector]

3/66
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Goals

In this talk I plan to

1. Give a brief history of Kadison–Singer and its relatives

2. Convey how we went about attacking the problem

3. Introduce a technique for showing the existence of
combinatorial objects we call ”the method of interlacing
polynomials”

4. Introduce a class of polynomials we call “mixed characteristic
polynomials”.

5. Use these to prove two known equivalents of Kadison–Singer

6. Discuss some related open questions

not necessarily (but mostly) in this order .

And please interrupt if there are any questions.

4/66
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The beginning of quantum mechanics

Dirac wrote in his 1930 book Principles of Quantum Mechanics,
“how to introduce a representation [of a quantum state] in
practice.”

I Measure a complete commuting set of observables (as much
as you can simultaneously without introducing uncertainty).

I Express the observed probability distribution as an ensemble
over pure states (extremal points of the algebra)

I Generalize this to the entire system

This predates the formalization of quantum mechanics using C ∗

algebras.

Brief History 6/66
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Kadison–Singer

Kadison and Singer read this in 1959, and (knowing the C ∗ algebra
formalism) asked if the “generalization” step was unique.

Precisely:

Question
Let A be a discrete maximal abelian subalgebra of B(H), the
algebra of bounded linear operators on a (separable, complex)
Hilbert space. Let ρ : A → C be a pure state on that subalgebra.
Is the (pure) extension ρ′ : B(H)→ C of ρ to all of B(H) unique?

Note: Pure states are the rank 1 operators plus a bunch more
guaranteed by Axiom of Choice (these are the ones Dirac ignored).

Showed it is not true in the continuous case (their counterexample
was H = L2([0, 1])).

Brief History 7/66
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A World of Equivalences

Kadison–Singer
(1959)

Anderson Paving
(1979)

Bourgain–Tzafiri
(1991)

Akemann–Anderson
Projection Paving

(1991)

Weaver’s KSr

(2004)

Weaver’s KS2

(2004)

Feichtinger, Rε
(2005)

Brief History 8/66
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A World of Equivalences

Conjecture (Anderson Paving Conjecture (1979))

For every ε > 0, there is a universal positive integer k = k(ε) so
that for every zero-diagonal finite matrix A with n rows (and
columns), there exists a partition {S1, . . . ,Sk} of [n] so that

‖A[Si ,Si ]‖ ≤ ε‖A‖

for all i ∈ [k].

Brief History 8/66
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A World of Equivalences

Conjecture (Weaver’s KSr (2004))

There exist universal constants η ≥ 2 and θ > 0 such that the
following holds: if w1, . . . ,wm ∈ Cd satisfy ‖wi‖ ≤ 1 for all i and∑

i

|〈u,wi 〉|2 = η

for all unit vectors u ∈ Cd . Then there exists a partition of the
vectors into parts {S1, . . . ,Sr} so that∑

i∈Sj

|〈u,wi 〉|2 ≤ η − θ

for all unit vectors u ∈ Cd and each j ∈ [r ].

Brief History 8/66
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Partitioning Identity
A collection of vectors v1, . . . , vm is called a Parseval frame if∑

i

viv
T
i = I

Parseval frames act like orthonormal bases, but allow you to split
the work over more vectors.
Examples:

1. Orthonormal bases

2. Regular simplex centered at the origin (properly scaled)

3. The union of other Parseval frames (properly scaled)

4. Any collection you want transformed by
(∑

i viv
T
i

)−1/2

Can a Parseval frame be partitioned into subsets which are “almost
Parseval”?

In general, no (there may be huge vectors). So what if the vectors
are all bounded in size?

Brief History 9/66
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What if I choose randomly?

Tropp (2011) showed that a uniformly random choice of vectors
works with high probability if

‖vi‖ ≤
C (ε)

log d

Uses matrix concentration inequalities similar to Rudelson (1999)
and Ahlswede–Winter (2002).

This is known to be best possible (it is tight when each vi is a
scaled elementary basis vector).

The goal would be to trade the log d factor in exchange for
nonzero (instead of high) probability.

Brief History 10/66
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In case you missed something

What you need to know for this talk:

1. Kadison and Singer asked a fundamental question about the
mathematical foundations of quantum physics

2. Numerous other problems have since been shown to be
equivalent

3. The fundamental question is whether a Parseval frame can be
partitioned into two “almost Parseval” frames

4. The fundamental question is true (with high probability) when
the vectors have norm O(1/ log d)

5. We want to know what happens when the vectors bounded in
norm by a constant

Brief History 11/66
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Probabilistic Approach

We want to understand the “random” version of the problem.

Let v̂1, . . . , v̂m be random vectors that are Parseval in expectation:

E
[
v̂i v̂

T
i

]
= I

Will there always be a realization of these vectors that is close to
Parseval?

Again, no. Consider when some vector takes values 2e1 and 2e2

each with probability 1/2.

But what if (as before) the vectors were also bounded in norm?

Attacking the problem 13/66
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Main Theorem
Our main technical theorem says the following:

Theorem
Let ε > 0 and v̂1, . . . v̂m be independent random vectors such that

m∑
i=1

E
[
v̂i v̂

T
i

]
= I

and
E
[
‖v̂i‖2

]
≤ ε

for all i . Then there exists an assignment v̂i = vi such that∥∥∥∥∥
m∑
i=1

viv
T
i

∥∥∥∥∥ ≤ (1 +
√
ε)2.

In this talk, I will assume ε < 1/4 and prove this for (1 + 3
√
ε) (a

slight weakening).
Attacking the problem 14/66
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Translation and experimentation:

There are two benefits to dealing with vectors (rather than
algebras):

1. Translation into the world of polynomials
Given vectors v1, . . . , vm, set V =

∑
i viv

T
i . Then the

maximum eigenvalue of V is the largest root of χV (x) (the
characteristic polynomial). So we can turn this into a question
about the behavior of a special class of polynomials.

2. This formulation is ripe for experimentation.
We can optimize over collections of vectors that satisfy the
given constraints to see what the worst case scenarios are. We
can see what the average scenarios are. We can see what the
worst case average scenarios are.

Attacking the problem 15/66
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Experimental Observations

So that is what we did, and these are the observations we made.

Observation 1: The expected characteristic polynomial E
[
χ
V̂

(x)
]

always seemed to be real-rooted (that is, all roots r had =(r) = 0).

Observation 2: When we looked at all possible values of
V̂ =

∑
i v̂i v̂

T
i (satisfying the hypotheses of the theorem), there

always seemed to be one whose characteristic polynomial χV (x)
had a smaller largest root than the expected characteristic
polynomial E

[
χ
V̂

(x)
]
.

Attacking the problem 16/66
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Experimental Observations, cont.

Observation 3: The expected characteristic polynomial E
[
χ
V̂

(x)
]

seemed to have maximal largest root when E
[
‖v̂i‖2

]
= ε and

E
[
v̂i v̂

T
i

]
= ε

d I for all i .

Observation 4: In the case where E
[
‖v̂i‖2

]
= ε and

E
[
‖v̂i v̂T

i ‖2
]

= ε
d I and for all i , the expected characteristic

polynomial is an associated Laguerre polynomial (a classical
orthogonal polynomial whose roots satisfy the bounds we were
hoping for).

Attacking the problem 17/66
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Suggests an approach

If we could

1. bound the largest root of E
[
χ
V̂

(x)
]

over the set of random
vectors that satisfy the hypotheses of the theorem, and then

2. show there always exists an assignment v1, . . . , vm such that
the largest root of χV (x) is smaller than the largest root of
E
[
χ
V̂

(x)
]

then this would prove our theorem (and this is our approach).

We start with part (2). Main Idea: define a process by which we
pick the assignments one by one and try to understand how the
(now conditional) expected characteristic polynomial changes.

Attacking the problem 18/66
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Formalization

We establish notation to help keep track of assignments that have
been made.

We define a choice vector σ ∈ {0, 1}m where σi corresponds to
which realization vector v̂i takes.
Then we can reference the characteristic polynomial of a fixed
assignment as

pσ(x) = χV (x)

We also define a partial choice vector σ′ ∈ {0, 1}k (k < m). The
corresponding polynomial will be the conditional expectation.

pσ′ = Ev̂k+1,...,v̂d

[
χ(V̂ )(x) | v̂i = v

σ′
i

i for 1 ≤ i ≤ k
]

Note that p∅ = E
[
χ
V̂

(x)
]
, the expected characteristic polynomial

we are interested in.

Interlacing families 20/66
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i

i for 1 ≤ i ≤ k
]

Note that p∅ = E
[
χ
V̂

(x)
]
, the expected characteristic polynomial

we are interested in.
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Sums of polynomials

We have the relation

pσ′(x) = pσ′,0(x)P
[
v̂k+1 = v 0

k+1

]
+ pσ′,1(x)P

[
v̂k+1 = v 1

k+1

]
but now we have reached our first major issue.

Adding polynomials is a function of the coefficients and we are
interested in the roots.
In general, it is easy to get the coefficients from the roots but hard
to get the roots from the coefficients.

Approach: forget this issue and see what we can prove.
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A Lemma

Lemma
Let f and g be monic polynomials. Assume there exists a point
c ∈ R such that f and g each has exactly one real root larger than
c (call these the “extreme roots”). Then the largest real root of
f + g lies between these extreme roots.

Proof.
By picture
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Without c to “anchor”
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So what?

So now we can say something about the real roots, but not
necessarily the complex roots.

But recall Observation 1: the expected characteristic polynomial
seemed to have all real roots. If this was always true, we would be
in good shape.

While our original polynomials (characteristic polynomials of
Hermitian matrices) are real-rooted, in general the sums of
real-rooted polynomials can be arbitrary.

Example: p(x) = (x − 2)2 − 1 (has double root at 1) and
q(x) = (x + 2)2 − 1 (has double root at −1).

p(x) + q(x) = x2 + 6

does not have any real roots (roots are ±
√
−6).
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Equation Revisited

Back to our equation

pσ′(x) = pσ′,0(x)P
[
v̂k+1 = v 0

k+1

]
+ pσ′,1(x)P

[
v̂k+1 = v 1

k+1

]

The lemma tells us that if

1. pσ′(x) is real-rooted

2. pσ′,0(x) is real-rooted

3. pσ′,1(x) is real-rooted

4. There exists a c “anchoring” the largest roots of pσ′,0(x) and
pσ′,1(x)

Then we know the largest root of pσ′ lies between the largest root
of pσ′,0 and the largest root of pσ′,1.

Let’s worry about c for the moment (keeping real-rootedness on
the back burner).
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Interlacing polynomials

Let p be a real-rooted polynomial of degree n and q a real-rooted
polynomial of degree n − 1

p(x) =
n∏

i=1

(x − αi ) and q(x) =
n−1∏
i=1

(x − βi )

with α1 ≤ · · · ≤ αn and β1 ≤ · · · ≤ βn−1

We say q interlaces p if α1 ≤ β1 ≤ α2 · · · ≤ αd−1 ≤ βn−1 ≤ αn.

Think: The roots of q separate the roots of p

Example 1: p′(x) interlaces p(x)
Example 2: If p has no multiple roots (and largest root R), then
let q = p/(x − R). Then q(x + ε) interlaces p(x)
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Common Interlacers

We say that two degree n polynomials p and r have a common
interlacer if there exists a q such that q interlaces both p and r
simultaneously.

Think: the roots of q split up R into n intervals, each of which
contains exactly one root of p and one root of r

Note, if p and r have a common interlacer (say q), then c = βd−1

can serve as the anchor from the lemma!
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Interlacing families

We say {p}σ∈Σ is an interlacing family if for all partial assignments
σ′ we have that

1. Each polynomial pσ′ is real-rooted, and

2. The polynomials pσ′,0 and pσ′,1 have a common interlacer

Corollary

If {p}σ forms an interlacing family, then there exists an assignment
σ0 such that the largest root of pσ0 is at most the largest root of
p∅ (the expected polynomial).

Proof.
Start at the expected polynomial and walk backwards.
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Interlacing for free

Fortunately, the interlacing follows directly from a well-known
lemma:

Lemma (folklore, Fisk)

Let f , g be polynomials of the same degree such that every
λf + (1− λ)g is real-rooted for all λ ∈ [0, 1]. Then f and g have a
common interlacer.

Recall (again) our equation

pσ′(x) = pσ′,0(x)P
[
v̂k+1 = v 0

k+1

]
+ pσ′,1(x)P

[
v̂k+1 = v 1

k+1

]
If we are able to show that pσ′ is real-rooted (independent of the
probabilities on the vectors) then we get interlacing for free!

Time to pull real-rootedness from the back burner.
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Where to start?

The issue with real-rooted polynomials is that it is hard to see how
to get from one to another.
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Parking garage phenomenon

The issue with real-rooted polynomials is that it is hard to see how
to get from one to another.

Unless you consider them to be a projection of higher dimensional
objects.
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Real stable polynomials

There have been many recent advances in understanding
real-rootedness using theory of real stable polynomials, a
multivariate extension of real-rooted polynomials.

A polynomial p is real stable if all coefficients are real and
p(z1, . . . , zn) 6= 0 whenever =(zi ) > 0 for all i (if p(z1, . . . , zn) = 0
then some zi has =(zi ) ≤ 0).

Some important properties:

I Univariate polynomials are real-rooted if and only if they are
real stable.

I Real stable polynomials are closed under substitution of reals
(z1, z2, . . . , zn)→ (a, z2, . . . , zn) for a ∈ R.

Similar to hyperbolic polynomials.
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Borcea and Brändén
Borcea and Brändén developed numerous techniques for showing
real stability. In particular,

Lemma
Let A1, . . . ,Am be Hermitian positive semidefinite matrices and
x1 . . . xm variables. Then

p(x1, . . . , xm) = det

[
m∑
i=1

xiAi

]

is real stable.

Lemma
If p(x1, . . . , xm) is a real stable polynomial, then

p(x1, . . . , xm)− ∂p(x1, . . . , xm)

∂xi

is real stable.
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Our polynomials

Fortunately, our polynomials have a nice general form.

Theorem
Let v̂1, . . . v̂m be random vectors such that E

[
v̂i v̂

T
i

]
= Ai . Then

E
[
χ
V̂

(x)
]

=
m∏
i=1

(
1− ∂

∂zi

)
det

[
xI +

m∑
i=1

ziAi

] ∣∣∣∣∣
z1=···=zm=0

In particular, the expected polynomial does not depend on the
vectors or the probabilities – only the expected outer product.

We call this a mixed characteristic polynomial and denote it
µ[A1, . . . ,Am].

Interlacing families 34/66



page.85

Our polynomials

Fortunately, our polynomials have a nice general form.

Theorem
Let v̂1, . . . v̂m be random vectors such that E

[
v̂i v̂

T
i

]
= Ai . Then

E
[
χ
V̂

(x)
]

=
m∏
i=1

(
1− ∂

∂zi

)
det

[
xI +

m∑
i=1

ziAi

] ∣∣∣∣∣
z1=···=zm=0

In particular, the expected polynomial does not depend on the
vectors or the probabilities – only the expected outer product.

We call this a mixed characteristic polynomial and denote it
µ[A1, . . . ,Am].

Interlacing families 34/66



page.86

A world of mixed characteristic polynomials
Every polynomial we have seen so far is a mixed characteristic
polynomial.

1. Normal characteristic polynomials (for an assignment σ =
v1, . . . , vm with

∑
i viv

T
i = V )

pσ(x) = χV (x) = µ[v1vT
1 , . . . , vmvT

m ](x)

2. The expected characteristic polynomial (with E
[
v̂i v̂

T
i

]
= Ai )

E
[
χ
V̂

(x)
]

= µ[A1, . . . ,Am](x)

3. The partial assignment polynomials

pσ′ = Evk+1,...,vd

[
χ
V̂

(x) | v̂i = v
σ′
i

i for 1 ≤ i ≤ k
]

= µ[v1vT
1 , . . . , vkvT

k ,Ak+1, . . . ,Am]
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Putting it all together

Theorem
Mixed characteristic polynomials are real-rooted.

Proof.
By the first lemma of Borcea and Brändén,

p(z1, . . . , zm) = det

[
xI +

m∑
i=1

ziAi

]

is real stable and so by the second lemma of Borcea and Brändén,

m∏
i=1

(
1− ∂

∂zi

)
det

[
xI +

m∑
i=1

ziAi

]

is real stable.
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Putting it all together, cont.

Since real stability is preserved under substitution by reals, (setting
z1 = · · · = zm = 0), we have

µ[A1, . . . ,Am](x) =
m∏
i=1

(
1− ∂

∂zi

)
det

[
xI +

m∑
i=1

ziAi

] ∣∣∣∣∣
z1=···=zm=0

is univariate and real stable (and therefore real-rooted).

Corollary

Our polynomials form an interlacing family.
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Intermission

A quick review:

1. We defined interlacing families and showed that any such
family has a polynomial whose largest root is smaller than the
largest root of the expected polynomial

2. We argued that (for our polynomials) the interlacing condition
was implied by the real-rootedness of the partial assignment
polynomials (and the recurrence equation)

3. We defined mixed characteristic polynomials and showed that
our partial assignment polynomials belonged to this class.

4. We showed that mixed characteristic polynomials were
real-rooted by using Borcea and Brändén’s theory of real
stable polynomials.

So we are left with bounding the largest root of the expected
characteristic polynomial.
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stable polynomials.

So we are left with bounding the largest root of the expected
characteristic polynomial.

Interlacing families 38/66



page.94

Intermission

A quick review:

1. We defined interlacing families and showed that any such
family has a polynomial whose largest root is smaller than the
largest root of the expected polynomial

2. We argued that (for our polynomials) the interlacing condition
was implied by the real-rootedness of the partial assignment
polynomials (and the recurrence equation)

3. We defined mixed characteristic polynomials and showed that
our partial assignment polynomials belonged to this class.

4. We showed that mixed characteristic polynomials were
real-rooted by using Borcea and Brändén’s theory of real
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Outline

Brief History

Attacking the problem

Interlacing families

Bounding roots

Proving the theorem

Open Problems
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“Roots” of multivariate polynomials
Rather than having roots that are points, multivariate polynomials
have zero surfaces.
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Above the roots

Let p(x1, . . . , xn) be a multivariate real stable polynomial.

We say a point ~w = (w1, . . . ,wn) is above the roots of p if
p(w1 + t1,w2 + t2, . . . ,wn + tn) is nonzero whenever t1, . . . , tn > 0.
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Diagonalization

The diagonalization of p(x1, . . . , xn) is the (univariate) polynomial
p(x , x , . . . , x).

If t1 is above the roots of p, then t is an upper bound on largest
root of its diagonalization.
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Shift

Fortunately, we can transform our target polynomial into a
diagonalization:

Lemma
In the case that

∑
i Ai = I , we have

µ[A1, . . . ,Am](x) =
m∏
i=1

(
1− ∂

∂zi

)
det

[
xI +

m∑
i=1

ziAi

] ∣∣∣∣∣
z1=···=zm=0

=
m∏
i=1

(
1− ∂

∂yi

)
det

[
m∑
i=1

yiAi

] ∣∣∣∣∣
y1=···=ym=x

Proof.
Substitute yi = zi + x .
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The new framework

Recall we are interested in bounding the roots of E
[
χ
V̂

(x)
]

in the
case that

E

[
m∑
i=1

v̂i v̂
T
i

]
= I and E

[
‖v̂i‖2

]
≤ ε.

Given what we know about mixed characteristic polynomials, this
is equivalent to showing (for some t) that t1 is above the roots of

m∏
i=1

(
1− ∂

∂zi

)
det

[
m∑
i=1

ziAi

]

whenever
∑

i Ai = I and Tr [Ai ] ≤ ε for all i .

We will apply the operators one by one and see what happens to
the roots.
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Potential function
We use a multivariate potential function to help understand the
behavior as the operators are applied.

Φi
p(z1, . . . , zm) =

∂

∂zi
log p(z1, . . . , zm)

I Blows up whenever a variable xi gets close to a zero surface of
p

I Monotone nonincreasing at any ~w that is above the roots of p
I Convex at any ~w that is above the roots of p
I Measures the amount of “cushion” we have in a given

direction

Generalization of potential function from Batson, Spielman,
Srivastava (2008)

Φp(x) =
∂

∂x
log p(x) =

p′(x)

p(x)
=
∑
i

1

x − ri
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Testing the water lemma

Lemma
If p is real stable, ~w is above the roots of p, and

Φi
p(~w) < 1

then ~w is above the roots of (1− ∂zi )p

Proof.
Since Φi

p is nonincreasing, Φi
p(~w +~t) ≤ Φi

p(~w) < 1 for all ~t ≥ 0.
Therefore

∂

∂zi
p(~w +~t) < p(~w +~t)

(this is just the definition Φi
p). Rearranging, gives(

1− ∂

∂zi

)
p(~w +~t) > 0
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Interpreting the lemma
Applying the operator (1− ∂zj ) causes the roots to get closer.

If Φj
p < 1 then we are still above the roots after the shift.

But we have messed with the potential functions in the other
directions (we decreased the cushion)!
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Jumping in lemma

Lemma
If p is real stable, ~w is above the roots of p, and

Φi
p(~w) < 1− 1

δ

then ~w is above the roots of (1− ∂zi )p and

Φi
p−pj (~w + δej) ≤ Φi

p(~w)

for all i (where pj = ∂p/∂zj).

Proof.
Uses convexity mentioned above.
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Interpreting the lemma

Applying the operator (1− ∂zj ) causes the roots to get closer.

If Φj
p < 1− 1/δ then we are still above the roots after the shift

and if we then move δ in the direction of the shift, we can get
back the original cushion we had (in all other directions).
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Proof of bound

Theorem
(1 + 3

√
ε)1 is above the roots of

m∏
i=1

(
1− ∂

∂zi

)
det

[
m∑
i=1

ziAi

]

for all ε < 1/4.

Proof.
Start with

Q0(z1, . . . , zm) := det

[
m∑
i=1

ziAi

]
so that t1 is above the roots of Q0 for any t > 0.

We will use t =
√
ε (we’ll need the extra cushion).
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Set ~w0 = t1, so that

Φi
Q0

(~w0) = Tr

 m∑
j=1

tAj

−1

Ai

 =
Tr [Ai ]

t
≤ ε√

ε
=
√
ε.

This satisfies the cushion lemma for any

δ >
1

1−
√
ε

so pick δ = 1 + 2
√
ε (here we use ε < 1/4).
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Apply the operator 1− ∂z1 and then move δ in the direction of ~e1.
By the lemma, ~w1 = ~w0 + δ~e1 is above the roots of

Q1 =

(
1− ∂

∂z1

)
Q0

and we still satisfy the cushion lemma with δ = 1 + 2
√
ε.

Do this for i = 2, . . . ,m (using the lemma each time). This shows
that

~wm = ~w0 + δ
∑
i

~ei = (δ + t)1 = (1 + 3
√
ε)1

is above the roots of

Qm =
m∏
i=1

(
1− ∂

∂zi

)
Q0 =

m∏
i=1

(
1− ∂

∂zi

)
det

[∑
i

ziAi

]

as required.
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Second intermission

A quick review:

1. We defined interlacing families and showed that any such
family has a polynomial pσ such that the largest root of pσ is
smaller than the largest root of the expected polynomial (p∅)

2. We showed that our polynomials formed an interlacing family
by showing they were mixed characteristic polynomials

3. We defined a multivariate barrier function to help us
understand the evolution of the zero surfaces of multivariate
polynomials

4. We used this to show that (for our polynomials) the largest
root of p∅ was at most 1 + 3

√
ε.
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Outline

Brief History

Attacking the problem

Interlacing families

Bounding roots

Proving the theorem

Open Problems
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Our theorem

We have proved our main technical theorem:

Theorem
Let 0 < ε < 1/4 and v̂1, . . . v̂m be independent random vectors
such that

m∑
i=1

E
[
v̂i v̂

T
i

]
= I

and
E
[
‖v̂i‖2

]
≤ ε

for all i . Then there exists an assignment v̂i = vi such that∥∥∥∥∥
m∑
i=1

viv
T
i

∥∥∥∥∥ ≤ 1 + 3
√
ε.
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Claim:

Kadison–Singer
(1959)

Anderson Paving
(1979)

Bourgain–Tzafiri
(1991)

Akemann–Anderson
Projection Paving

(1991)

Weaver’s KSr

(2004)

Weaver’s KS2

(2004)

Feichtinger, Rε
(2005)

Our Theorem
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Recall what KS2 says:

Conjecture (KS2)

There exist universal constants η ≥ 2 and θ > 0 such that the
following holds: if w1, . . . ,wm ∈ Cd satisfy ‖wi‖ ≤ 1 for all i and∑

i

|〈u,wi 〉|2 = η

for all unit vectors u ∈ Cd . Then there exists a partition of the
vectors into two parts S0, S1 so that∑

i∈Sj

|〈u,wi 〉|2 ≤ η − θ

for all unit vectors u ∈ Cd and each j ∈ {0, 1}.

Again, we prove the real case (though the complex case is
identical).
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Proof.
Given the wi , let v̂i be the random vector (in R2d !) taking values in{√

2

η

(
wi

0d

)
,

√
2

η

(
0d

wi

)}

each with probability 1/2 and set ε = 2/η.

Then (this is just a rescaling to fit our main theorem)

m∑
i=1

E
[
v̂i v̂

T
i

]
= I and E

[
‖v̂i‖2

]
≤ ε

for all i , so let σ be the assignment guaranteed by our main
theorem.
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For the given σ, let

M0 =
2

η

∑
i :σ(i)=0

wiw
T
i and M1 =

2

η

∑
i :σ(i)=1

wiw
T
i

Then by the theorem, the matrix(
M0 0d×d

0d×d M1

)
=

(
M0 0d×d

0d×d I −M0

)
=

(
I −M1 0d×d
0d×d M1

)
and so Mσ has largest eigenvalue at most 1 + 3

√
2/η.

Set
S0 = {wi | σi = 0} and S1 = {wi | σi = 1}
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Then for all j ∈ {0, 1} and u ∈ Cd

2

η

∑
i∈Sj

|〈u,wi 〉|2 ≤ 1 + 3

√
2

η

Setting η = 32 gives

∑
i∈Sj

|〈u,wi 〉|2 ≤ 28

proving the theorem for η = 32 and θ = 4.

Using the (stronger) original theorem, we can get η = 18 and
θ = 2.

Casazza showed η = 2 is not possible (optimal answer lies
somewhere in between).
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Or if you prefer paving

Kadison–Singer
(1959)

Anderson Paving
(1979)

Bourgain–Tzafiri
(1991)

Akemann–Anderson
Projection Paving

(1991)

Weaver’s KSr

(2004)

Weaver’s KS2

(2004)

Feichtinger, Rε
(2005)

Our Theorem
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Paving

Conjecture (Casazza)

For all ε > 0 and even integers N > 0, there exists r = r(N, ε)
such that for any d > 0 and any vectors v1, . . . , vm ∈ Cd satisfying

m∑
j=1

vjvj
∗ = Id and ‖vj‖2 ≤ 1

N

for all j , there exists a partition {A1, . . . ,Ar} of [m] such that for
all i ∈ [r ] ∑

j∈Ai

vjvj
∗ ≤ 1 + ε

N
.

Casazza, et al. (2007) and Harvey (2013) showed equivalence to
Anderson’s paving conjecture (including evolution of constants).

Argument similar to proof of KS2 shows this holds for r ≥ 6N/ε2.
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m∑
j=1

vjvj
∗ = Id and ‖vj‖2 ≤ 1

N
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Polynomial problems

Find more interlacing families and use them to solve problems!

Both results here used characteristic polynomials, but any real
rooted polynomials will do (for example, Gurvits has interesting
results using matching polynomials).

Find quantitative extensions of Borcea and Brändén theory.
What happens to roots of polynomials under different
transformations?

Find a computationally efficient version of the method of
interlacing polynomials (or show it is not possible).

Can any of the real-rootedness conditions be relaxed?

Open Problems 64/66



page.152

Polynomial problems

Find more interlacing families and use them to solve problems!

Both results here used characteristic polynomials, but any real
rooted polynomials will do (for example, Gurvits has interesting
results using matching polynomials).

Find quantitative extensions of Borcea and Brändén theory.
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In general

Would direct application of the main theorem give better paving
results (higher up the chain of implications)?

What is the worst (in terms of largest root) µ[A1, . . . ,Am](x)?
We conjecture it is when all Ai are the same (and multiples of the
identity).
This would improve all of the constants in this talk.

“The general feeling in the community is that the original question
(and therefore all equivalent forms) have a negative solution”
(Casazza–Kutinyiok, 2013).

What are the implications of a positive solution?
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Thanks

Thank you to the organizers for providing me the opportunity to
speak to you today.

And thank you for your attention!
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