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Some notation

First some conventions:

1 α, β, . . . will be real numbers

2 u, v , . . . will be vectors in Rd

3 U,V , . . . will be d × d symmetric, real matrices

1 û, v̂ , . . . will be random vectors in Rd

2 Û, V̂ , . . . will be random matrices

And please interrupt if you have any questions!
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Motivation

I want to look at self-adjoint linear operators.

Algebraically, think: real, square, symmetric, matrices.

Geometrically, think: image of the unit ball is an ellipse.

The λ are called eigenvalues and the v their associated
eigenvectors.
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Eigenvalues

Theorem (Spectral Decomposition)

Any d × d real symmetric matrix A can be decomposed as

d∑
i=1

λiviv
T
i

where the vi are orthonormal and each pair (λi , vi ) is an eigenpair.

In particular, if λmax is the largest eigenvalue (in absolute value),
then

max
x :‖x‖=1

‖Ax‖ = λmax

and if λmin is the smallest (in absolute value)

min
x :‖x‖=1

‖Ax‖ = λmin
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Frames

The number of non-zero eigenvalues of A is called the rank.

The spectral decomposition is a rank-1 decomposition. General
rank-1 decompositions

V =
∑

i

viv
T
i

are called frames.

When the v̂i are random vectors, then

V̂ =
∑

i

v̂i v̂
T
i

is a random frame.
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Known tools
Well-known techniques exist for bounding the eigenvalues of
random frames. For example,

Theorem (Matrix Chernoff)

Let v̂1, . . . , v̂n be independent random vectors with ‖v̂i‖ ≤ 1 and∑
i v̂i v̂

T
i = V̂ . Then

P
[
λmax(V̂ ) ≤ θ

]
≥ 1− d · e−nD(θ‖λmax (EbV ))

Similar inequalities by Rudelson (1999), Ahlswede–Winter (2002).

All such inequalities have two things in common:

1 They give results with high probability

2 The bounds depend on the dimension

This will always be true — tight concentration (in this respect)
depends on the dimension (consider n/d copies of basis vectors).
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The goal

I want to find a bound on the eigenvalues that is independent of
dimension.

Furthemore, I want to keep the “probabilistic” nature:

Theorem
If θ̂ is a random variable with finite support, then

P
[
θ̂ ≥ Eθ̂

]
> 0 and P

[
θ̂ ≤ Eθ̂

]
> 0

In other words, I want to study one object (here Eθ̂) and then be
able to assert the existence of something at least as good (in both
directions).

Motivation and the Fundamental Lemma 9/66



The goal

I want to find a bound on the eigenvalues that is independent of
dimension.

Furthemore, I want to keep the “probabilistic” nature:

Theorem
If θ̂ is a random variable with finite support, then

P
[
θ̂ ≥ Eθ̂

]
> 0 and P

[
θ̂ ≤ Eθ̂

]
> 0

In other words, I want to study one object (here Eθ̂) and then be
able to assert the existence of something at least as good (in both
directions).

Motivation and the Fundamental Lemma 9/66



In fairy-tale land
So given a random frame V̂ =

∑
i v̂i v̂

T
i , I would like to say:

P
[
λmax(V̂ ) ≥ λmax(EV̂ )

]
> 0

and
P
[
λmax(V̂ ) ≤ λmax(EV̂ )

]
> 0

But this isn’t true (pick just v̂ as (0, 1) or (1, 0) uniformly).

So instead, we make an observation:

Observation
If A is a d × d real, symmetric matrix with eigenvalues λ1, . . . , λd ,
then

χA(x) := det [xI − A] =
d∏

i=1

(x − λi )

Called the characteristic polynomial of A.
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REAL fairy-tale land

So now, maybe we can do what we want in terms of polynomials!

That is, given a random frame V̂ =
∑

i v̂i v̂
T
i , maybe we can say:

P
[
maxroot

(
χbV ) ≥ maxroot

(
E
[
χbV ])] > 0

and
P
[
maxroot

(
χbV ) ≤ maxroot

(
E
[
χbV ])] > 0

Certainly this is nonsense, but let’s play along with a toy problem:

Let A be a matrix and ŵ a random vector (taking values u or v
uniformly).

What can we say about the eigenvalues of A + ŵ ŵT ?
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Still playing along

We would (naively) start by looking at the expected polynomial

p(x) =
1

2
χA+uuT (x) +

1

2
χA+vvT (x)

Why is this naive?

Adding polynomials is a function of the coefficients and we are
interested in the roots.
In general, it is easy to get the coefficients from the roots but hard
to get the roots from the coefficients.

Example: p(x) = (x − 2)2 − 1 (has double root at 1) and
q(x) = (x + 2)2 − 1 (has double root at −1).

p(x) + q(x) = x2 + 6

does not have any real roots (roots are ±
√
−6).
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Unless...

Lemma (Separation Lemma)

Let p1, . . . , pk be polynomials and [s, t] an interval such that

Each pi (s) has the same sign (or is 0)

Each pi (t) has the same sign (or is 0)

each pi has exactly one real root in [s, t].

Then
∑

i pi has exactly one real root in [s, t] and it lies between
the roots of some pa and pb.

Proof.
By picture:

s
t
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A ray of hope

So if we have the right structure, using characteristic polynomials
could actually work!

Pros:

All eigenvalues are tracked in a compact form

Maybe take advantage of polynomial techniques that “don’t
make sense” to matrices

Cons:

You lose rotation (how can we add without knowing rotation?)

Have to worry about matrix operations that “don’t make
sense” to polynomials

What do I mean by “polynomial techniques”?
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Polynomial Techniques

Univariate polynomials inherit techniques from

Convex Analysis

Complex Analysis

Combinatorics

Multivariate polynomials inherit techniques from

(Real) Algebraic Geometry

Matroid theory

Control Theory

Both inherit from recent work in polynomial geometry:

Hyperbolic polynomials

Stable polynomials
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What you need to know

We are interested in the eigenvalues of random frames:

V̂ =
∑

i

v̂i v̂
T
i

All known techniques for this require concentration of measure and
(as a result) weaken as the dimension grows.

We will look for new techniques by doing something seemingly
absurd: study their (random) characteristic polynomials.

In the case that we have root separation, we actually have a
chance for this to work.

In exchange for requiring extra structure, we are hoping to get
some new “polynomial techniques” that we can use.
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Return on investment

To find separating intervals, we can use results in polynomial
theory.

Let p be a real rooted polynomial of degree d and q a real rooted
polynomial of degree d − 1

p(x) =
d∏

i=1

(x − αi ) and q(x) =
d−1∏
i=1

(x − βi )

with α1 ≤ · · · ≤ αd and β1 ≤ · · · ≤ βd−1.

We say q interlaces p if α1 ≤ β1 ≤ α2 · · · ≤ αd−1 ≤ βd−1 ≤ αd .

Think: The roots of q separate the roots of p.

Example: p′(x) interlaces p(x).
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Common Interlacer

We say that degree d real rooted polynomials p1, . . . , pk have a
common interlacer if there exists a q such that q interlaces every
pi simultaneously.

Think: the roots of q split up R into d intervals, each of which
contains exactly one root of each pi .

Note: if the pi have a common interlacer (say q), then the
intervals defined by the βi can serve as separators for the lemma!
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Back to the toy problem
Recall our goal was to understand the roots of

p(x) =
1

2
χA+uuT (x) +

1

2
χA+vvT (x)

=
1

2
q0(x) +

1

2
q1(x)

We will say that p forms an interlacing star with {qi} if

1 p and {qi} have the same degree and are all real rooted
2 The leading coefficients of the {qi} have the same sign
3 The collection of polynomials {qi} has a common interlacer
4 p is a convex combination of the {qi}

Corollary

If p forms an interlacing star with {qi}, then there exist i , j such
that

kthroot (qi ) ≤ kthroot (p) ≤ kthroot (qj)

Exploiting separation: Interlacing Families 20/66
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More help from polynomials
Polynomial theory gives us a nice characterization of interlacing:

Lemma (Chudnovsky–Seymour, among others)

Let {pi} be a collection of degree d polynomials. The following are
equivalent:

Every polynomial in the convex hull of {pi} has d real roots.

The collection {pi} has a common interlacer.

Recall (again) our equation

p(x) =
1

2
χA+uuT (x) +

1

2
χA+vvT (x)

If we could show that

p(x) = λχA+vvT (x) + (1− λ)χA+uuT (x)

was real rooted for all λ ∈ [0, 1], then we would get the interlacing
for free.

Exploiting separation: Interlacing Families 21/66
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Back to reality

But remember we are interested in random frames — that is, sums
of multiple random vectors.

If all of the resulting characteristic polynomials had a common
interlacer, we could study some convex combination and be able
to use the lemma.

p00 p01 p10 p11

p∅

But in general they don’t have a common interlacer...
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Instead...

We can try to group them into smaller stars.

And then try to iterate.

p00 p01 p10 p11

p0 p1

p∅

We will call a rooted, connected tree where each node forms an
interlacing star with its children an interlacing family.
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The punchline

Corollary

Every interlacing family contains leaf nodes pleaf1 and pleaf2 such
that

kthroot (pleaf1) ≤ kthroot (proot) ≤ kthroot (pleaf2) .

To find pleafi :

p00 p01 p10 p11

p0 p1

p∅,

,

,

Exploiting separation: Interlacing Families 24/66



The punchline

Corollary

Every interlacing family contains leaf nodes pleaf1 and pleaf2 such
that

kthroot (pleaf1) ≤ kthroot (proot) ≤ kthroot (pleaf2) .

To find pleafi :

p00 p01 p10 p11

p0 p1

p∅

,

,

,

Exploiting separation: Interlacing Families 24/66



The punchline

Corollary

Every interlacing family contains leaf nodes pleaf1 and pleaf2 such
that

kthroot (pleaf1) ≤ kthroot (proot) ≤ kthroot (pleaf2) .

To find pleafi :

p00 p01 p10 p11

p0 p1

p∅,

,

,

Exploiting separation: Interlacing Families 24/66



The punchline

Corollary

Every interlacing family contains leaf nodes pleaf1 and pleaf2 such
that

kthroot (pleaf1) ≤ kthroot (proot) ≤ kthroot (pleaf2) .

To find pleafi :

p00 p01 p10 p11

p0 p1

p∅,

,

,

Exploiting separation: Interlacing Families 24/66



The punchline

Corollary

Every interlacing family contains leaf nodes pleaf1 and pleaf2 such
that

kthroot (pleaf1) ≤ kthroot (proot) ≤ kthroot (pleaf2) .

To find pleafi :

p00 p01 p10 p11

p0 p1

p∅,

,

,

Exploiting separation: Interlacing Families 24/66



The punchline

Corollary

Every interlacing family contains leaf nodes pleaf1 and pleaf2 such
that

kthroot (pleaf1) ≤ kthroot (proot) ≤ kthroot (pleaf2) .

To find pleafi :

p00 p01 p10 p11

p0 p1

p∅,

,

,

Exploiting separation: Interlacing Families 24/66



The punchline

Corollary

Every interlacing family contains leaf nodes pleaf1 and pleaf2 such
that

kthroot (pleaf1) ≤ kthroot (proot) ≤ kthroot (pleaf2) .

To find pleafi :

p00 p01 p10 p11

p0 p1

p∅,

,

,

Exploiting separation: Interlacing Families 24/66



Outline

Motivation and the Fundamental Lemma

Exploiting separation: Interlacing Families

Interlacing Families associated with Mixed Characteristic
Polynomials

Applications of Mixed Characteristic Polynomials
Ramanujan Families
Kadison–Singer
Traveling Salesman
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Building an interlacing family
Consider the random frame

V̂ =
m∑

i=1

v̂i v̂
T
i

where the v̂i have support size at most n.

We will define a choice vector σ ∈ [n]m where σi is the index of a
vector in the support of v̂i . Then the characteristic polynomial of a
fixed frame V in the support V̂ can be denoted

pσ(x) = χV (x)

We then define partial choice vectors σ′ ∈ [n]k for k < m; the
corresponding polynomial will be the conditional expectation.

pσ′ = Ebvk+1,...,bvd

[
χ(V̂ )(x) | v̂i = v

σ′i
i for 1 ≤ i ≤ k

]
This forms an n-ary tree with fixed assignments at the leaves and
p∅ = E

[
χbV (x)

]
at the root.
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Mixed characteristic polynomials

If we choose the vectors independently, the polynomials take a
special form:

Theorem
Let v̂1, . . . v̂m be independent random vectors such that
E
[
v̂i v̂

T
i

]
= Ai . Then

E
[
χbV (x)

]
=

m∏
i=1

(
1− ∂

∂zi

)
det

[
xI +

m∑
i=1

ziAi

] ∣∣∣∣∣
z1=···=zm=0

In particular, the expected polynomial does not depend on the
vectors or the probabilities — only the expected outer product.

We call this a mixed characteristic polynomial and denote it
µ[A1, . . . ,Am].
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A world of mixed characteristic polynomials
Every polynomial we defined previously is a mixed characteristic
polynomial.

1 Normal characteristic polynomials (for an assignment σ =
v1, . . . , vm with

∑
i viv

T
i = V )

pσ(x) = χV (x) = µ[v1vT
1 , . . . , vmvT

m ](x)

2 The expected characteristic polynomial (with E
[
v̂i v̂

T
i

]
= Ai )

E
[
χbV (x)

]
= µ[A1, . . . ,Am](x)

3 The partial assignment polynomials

pσ′ = Ebvk+1,...,bvd

[
χbV (x) | v̂i = v

σ′i
i for 1 ≤ i ≤ k

]
= µ[v1vT

1 , . . . , vkvT
k ,Ak+1, . . . ,Am]
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Real stable polynomials

The advantage of having a multivariate formula is that we can
utilize the theory of real stable polynomials, a multivariate
extension of real rooted polynomials. Let
H = {x ∈ C | =(zi ) > 0}.

An n-variate polynomial p is called stable if it is never 0 in Hn. (i.e.
if p(z1, . . . , zn) = 0, then some zi has nonnegative imaginary part).
If, in addition, all coefficients of p are real, it is called real stable.

Two important properties:

Univariate polynomials are real rooted if and only if they are
real stable.

Real stable polynomials are closed under substitution of reals
(z1, z2, . . . , zn)→ (a, z2, . . . , zn) for a ∈ R.

Similar to hyperbolic polynomials.
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Real stable techniques
There are numerous techniques for showing real stability. In
particular,

Lemma
Let A1, . . . ,Am be Hermitian positive semidefinite matrices and
x1 . . . xm variables. Then

p(x1, . . . , xm) = det

[
m∑

i=1

xiAi

]

is a real stable polynomial.

Lemma
If p(x1, . . . , xm) is a real stable polynomial, then(

1− ∂

∂xi

)
p(x1, . . . , xm) = p(~x)− ∂p(~x)

∂xi

is a real stable polynomial.
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Cutting to the chase

Theorem
Mixed characteristic polynomials are real rooted.

Proof.
Follows directly from the formula:

µ[A1, . . . ,Am](x) =
m∏

i=1

(
1− ∂

∂zi

)
det

[
xI +

m∑
i=1

ziAi

] ∣∣∣∣∣
z1=···=zm=0

This provides an easy way to generate interlacing families.

Corollary

Any tree of polynomials resulting from choosing independent
random vectors forms an interlacing family.
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Full Circle

So what have we accomplished?

We now have a “probabilistic” way to deal with roots of
polynomials (under certain conditions).

In the case that we are choosing vectors independently and
wanting to track the eigenvalues, those conditions are satisfied.

Hence we have a “probabilistic” way to deal with eigenvalues.
That is, for any given k , let R be the kth root of the expected
characteristic polynomial (under whatever product distribution you
want). Then there exists

1 an assignment of the random vectors that has λk ≥ R

2 an assignment of the random vectors that has λk ≤ R
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Who cares?

Matrices appear in a lot of places.

Because of this, a new tool for understanding eigenvalues can lead
to new understanding (in a lot of places).

To use our tool, however, we must have added structure (an
interlacing family).

So how useful is this new tool?

As it turns out∗, just the subset of interlacing families that comes
from mixed characteristic polynomials can be used to address a
number of open problems.
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Expander graphs

Expander Graphs are sparse, regular, well-connected graphs that
“approximate” random graphs.

Sets of vertices have many external (equivalently, few
internal) neighbors

No “small” cuts

Random walks mix quickly

Can get from a to b using few edges

Extremely important in theoretical computer science:

Error-correcting codes

Pseudorandom generators

Computational complexity

PCP theorem (Dinur 2007)
SL=L (Reingold 2005)
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Adjacency Matrix

Given G with n vertices, the adjacency matrix A is defined as

a

cd

be

f

a c d b e f

a

c

d

b

e

f

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 1

1 1

1 1

1 1

1 1

1 1

1

1

0 0 0 01 1

1 Ai ,j = 1 if and only if {vi , vj} ∈ E

2 If the graph is d-regular, each row sums to d

Since A is symmetric, it has n real eigenvalues.
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Eigenvalues
A d-regular graph has either 1 or 2 trivial eigenvalues

1 d is always the largest eigenvalue
2 G is bipartite if and only if −d is an eigenvalue

|[ ]

0−d d

?

[ ]

−2
√

d − 1 2
√

d − 1

G is a good expander (spectrally) if all nontrivial eigenvalues are
small (in absolute value).

A d-regular graph with all nontrivial eigenvalues inside
[−2
√

d − 1, 2
√

d − 1] is called a Ramanujan graph and an infinite
collection (all d-regular) a Ramanujan family.

Theorem (Alon, Boppana (1996))

No smaller interval can contain all nontrivial eigenvalues of an
infinite collection of d-regular graphs.
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Previous results

Theorem (Margulis, Lubotzky–Phillips–Sarnak (1988))

Ramanujan families exist for d = p + 1 where p is a prime number.

Extended by Morganstern to d = pk + 1, unknown for all other d .

All known constructions are algebraic — they are Cayley graphs of
highly structured groups.

On the other hand, almost everything is almost Ramanujan:

Theorem (Friedman (2008))

A randomly chosen d-regular graph has its non-trivial eigenvalues
in the interval

[−2
√

d − 1− ε, 2
√

d − 1 + ε]

with high probability.

Obvious question: are Ramanujan families really that special?
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Lifts
Using a technique they called lifting, Bilu and Linial (2006)
suggested a method for finding Ramanujan families.

For each edge e ∈ G , assign either +1 or −1. The vector of
assignments s ∈ {±1}|E | is called a signing.

Multiplying each value in A by the corresponding sign from s gives
the signed adjacency matrix As .

a c d b e f

a

c

d

b

e

f

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 1

1 1

1 1

1 1

1 1

1 1

−1

−1

Applications of Mixed Characteristic Polynomials 40/66



Lifts
Using a technique they called lifting, Bilu and Linial (2006)
suggested a method for finding Ramanujan families.

For each edge e ∈ G , assign either +1 or −1. The vector of
assignments s ∈ {±1}|E | is called a signing.

Multiplying each value in A by the corresponding sign from s gives
the signed adjacency matrix As .

a c d b e f

a

c

d

b

e

f

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 1

1 1

1 1

1 1

1 1

1 1

−1

−1

Applications of Mixed Characteristic Polynomials 40/66



Lifts
Using a technique they called lifting, Bilu and Linial (2006)
suggested a method for finding Ramanujan families.

For each edge e ∈ G , assign either +1 or −1. The vector of
assignments s ∈ {±1}|E | is called a signing.

Multiplying each value in A by the corresponding sign from s gives
the signed adjacency matrix As .

a c d b e f

a

c

d

b

e

f

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 1

1 1

1 1

1 1

1 1

1 1

−1

−1

Applications of Mixed Characteristic Polynomials 40/66



Main Eigenvalue lemma

To each signing s, they associate a graph Gs they call a 2-lift.

Theorem (Bilu–Linial (2006))

Let G be a d-regular Ramanujan graph with n vertices and let s be
a signing of G . If all eigenvalues of As lie in the interval

[−2
√

d − 1, 2
√

d − 1]

then the 2-lift Gs is a d-regular Ramanujan graph with 2n vertices.

Conjecture (Bilu–Linial (2006))

Every d-regular graph contains a signing s for which the
eigenvalues of As lie inside the interval

[−2
√

d − 1, 2
√

d − 1]

We prove the conjecture for every bipartite graph G .
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Bipartite Adjacency Matrices
What is so special about being bipartite?

In this case, the signed adjacency matrix can be written in block
form  0 B

BT 0


causing eigenvalues/vectors to come in pairs

vi = [ui | ui ] and vn−i = [ui | −ui ]

for 1 ≤ i ≤ n/2 and so the eigenvalues satisfy λi = −λn−i .

Corollary

A bipartite signed adjacency matrix As has all of its eigenvalues in
the interval

[−2
√

d − 1, 2
√

d − 1]

if and only if all of its eigenvalues are at most 2
√

d − 1.
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Main idea

For each signing, we consider the characteristic polynomial of the
signed adjacency matrix.

These correspond to picking either

(δi + δj), or

(δi − δj)
independently for each edge (vi , vj).

Corollary

The tree corresponding to these polynomials forms an interlacing
family.

Hence it suffices to bound the largest root of the expected
characteristic polynomial.
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The expected characteristic polynomial

Theorem (Godsil–Gutman (1981))

For any graph G ,

µG (x) := Es∈{±}mχAs (x) =
∑

i

xn−2i (−1)imi

where mi is the number of matchings in G of size i .

Heilmann and Lieb had introduced this polynomial in their study of
monomers and dimers, and proved the following bound:

Theorem (Heilmann–Lieb (1972))

Let G be a graph with maximum degree ∆. Then

maxroot (µG ) ≤ 2
√

∆− 1
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Piecing things together

Theorem
There exist bipartite Ramanujan families of degree d for any d.

Proof.
Set G0 = Kd ,d (which is bipartite, d-regular, and Ramanujan for
any d). Given Gi , form Gi+1 as follows:

For each possible signing s ∈ {±1}|Ei |, form the polynomials ps .
By our theorem, this is an interlacing family.

Combining this with Godsil–Gutman and Heilmann–Lieb ensures
some ps∗ such that maxroot(ps∗) ≤ maxroot(p∅) ≤ 2

√
d − 1

Set Gi+1 to be the 2-lift associated with s∗ — this is bipartite,
d-regular, and (by Bilu and Linial) Ramanujan — and proceed by
induction.
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The original problem
In 1959, Kadison and Singer asked the following question:

Question (Kadison–Singer)

Let A be a discrete maximal abelian subalgebra of B(H), the
algebra of bounded linear operators on a (separable, complex)
Hilbert space. Let ρ : A → C be a pure state on that subalgebra.
Is the (pure) extension ρ′ : B(H)→ C of ρ to all of B(H) unique?

Related to the mathematical formalization of quantum physics via
C ∗ algebras — can a quantum state be uniquely determined
without altering it?

Kadison and Singer showed it is NOT true for continuous
subalgebras!

And then people worked on it.
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A World of Equivalences

Kadison–Singer
(1959)

Anderson Paving
(1979)

Bourgain–Tzafriri
(1991)

Akemann–Anderson
Projection Paving

(1991)

Weaver’s KSr

(2004)

Weaver’s KS2

(2004)

Feichtinger, Rε
(2005)
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Weaver’s Conjecture

Conjecture (KS2)

There exist universal constants ε, θ > 0 such that the following
holds: for all w1, . . . ,wm ∈ Cd satisfying∑

i

wiw
∗
i = I and ‖wi‖2 ≤ ε

for all i , there exists a subset of the vectors S such that

θI ≺
∑
i∈S

wiw
∗
i ≺ (1− θ) I

Can a frame be “split” into two pieces such that both pieces have
similar eigenvalues?
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The obvious next question:
Bourgain and Tzafriri (1991) showed that a uniformly random
choice works with high probability if

‖wi‖2 ≤
C

log d

Uses matrix concentration inequalities similar to Rudelson (1999)
and Ahlswede–Winter (2002).

Recall: all of these inequalities have two things in common:
1 They give results with high probability
2 The bounds depend on the dimension

Also recall: this will always be true — tight concentration (in this
respect) depends on the dimension (consider multiple copies of the
basis vectors).

Weaver’s conjecture: you can trade the log d factor in exchange for
nonzero (instead of high) probability.
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Probabilistic framework

First, we need to put this in a probabilistic framework:
Rather than saying wi ∈ S or wi /∈ S , we can say v̂i is a random
vector choosing between{(

wi

0d

)
,

(
0d

wi

)}
each with probability 1/2.

So for a given S , the matrix

MS =

( ∑
i∈S wiw

∗
i 0d×d

0d×d
∑

i /∈S wiw
∗
i

)
Bounding the largest eigenvalue of MS bounds the largest and
smallest eigenvalues of the subset!
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Mixed characteristic polynomials

If we choose the vectors independently, the polynomials form an
interlacing family.

So suffices to bound the largest root of

µ[A1, . . . ,Am](x) =
m∏

i=1

(
1− ∂

∂zi

)
det

[
xI +

m∑
i=1

ziAi

] ∣∣∣∣∣
z1=···=zm=0

over all Ai with
∑

i Ai = I and Tr [Ai ] ≤ ε.

The bound uses the multivariate structure: start at
det [xI +

∑m
i=1 ziAi ], and apply

(
1− ∂

∂zi

)
one at a time.

What happens to the roots?
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“Roots” of multivariate polynomials

Rather than having roots that are points, multivariate polynomials
have zero surfaces.

Allows for techniques from real algebraic geometry and convex
optimization.
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Potential function
We use a multivariate potential function to help understand the
behavior as the operators are applied.

Φi
p(z1, . . . , zm) =

∂

∂zi
log p(z1, . . . , zm)

Applying the operator (1− ∂zj ) causes the roots to shift closer.

Φj
p tells us how much we need to move in the direction of the shift

to get back the original cushion (in all other directions).
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Back to Weaver’s problem

This leads to the following theorem:

Theorem
Let w1, . . .wm ∈ Cd be vectors such that

m∑
i=1

wiw
∗
i = I and ‖wi‖2 ≤ ε

for all i . Then there exists a partition of [m] into sets S1, . . . ,Sr

such that ∥∥∥∥∥∥
∑
i∈Sj

wiw
∗
i

∥∥∥∥∥∥ ≤ 1

r
(1 +

√
rε)2.

for all j .
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Proof 1

Kadison–Singer
(1959)

Anderson Paving
(1979)

Bourgain–Tzafriri
(1991)

Akemann–Anderson
Projection Paving

(1991)

Weaver’s KSr

(2004)

Weaver’s KS2

(2004)

Feichtinger, Rε
(2005)

Our Theorem
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Outline

Motivation and the Fundamental Lemma

Exploiting separation: Interlacing Families

Interlacing Families associated with Mixed Characteristic
Polynomials

Applications of Mixed Characteristic Polynomials
Ramanujan Families
Kadison–Singer
Traveling Salesman

Summary
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Extension

Akemann and Weaver extend the previous theorem to arbitrary
subsums.

Theorem (Akemann, Weaver (2014))

Let w1, . . . ,wm ∈ Cd such that∑
i

wiw
∗
i ≤ I and ‖wi‖2 ≤ ε

for all i . Then for any collection of real numbers
0 ≤ t1, . . . , tm ≤ 1, there exists an S ⊆ [m] such that∥∥∥∥∥∑

i∈S

wiw
∗
i −

∑
i

tiwiw
∗
i

∥∥∥∥∥ ≤ O(ε1/16)

A Lyapunov-type theorem: says fractional sums can be
well-approximated by discrete sums.
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Linear Programming
Given vectors c , a1, . . . , am ∈ Rd and b1, . . . , bm ∈ R

minimize

subject to

〈c , x〉
〈ai , x〉 ≤ bi for all i

x ∈ Zd

(PZ)

Optimization over integers is typically hard to solve! So instead...

minimize

subject to

〈c , x〉
〈ai , x〉 ≤ bi for all i

x ∈ Rd

(PR)

(PR) is called the relaxation of (PZ).

If all fractional solutions are close to some discrete solution, these
are close.
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Traveling Salesman

What is the shortest “tour”?

In general, can have asymmetric costs (one way roads, NYC tolls)

Asymmetric case notoriously harder to understand than symmetric
case.

Known to be NP-hard and representable by an integer linear
program PZ.
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Approximation Algorithm

Theorem (Anari–Oveis Gharan, 2014)

For an asymmetric traveling salesman problem on an n vertex
graph, we have

opt(PZ)

opt(PR)
≤ O(poly log log(n))

Previously best known bound: O(log n).

Proof involves an extension of mixed characteristic polynomials to
homogeneous strong Rayleigh measures.

Then uses a spanning-tree measure to show existence of spectrally
thin trees (which can be used to build a good tour).

Interesting part: proof is completely existential.
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State of the world

Just to be clear:
Assume you are given an asymmetric distance graph on n vertices.

You can provably approximate the best total cost of a tour within
a factor of O(poly log log n), but never find a tour that achieves it.

In particular, given a tour T , you can know that T is suboptimal
without being able to do better.

Could have interesting repercussions in complexity theory...
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Takeaways

So what should you take from this talk?

We have developed a new technique that uses polynomials to
understand eigenvalues of random matrices.

This involves considering the (seemingly unrelated) expectation of
characteristic polynomials.

By using polynomials, we are able to leverage results from areas
such as real algebraic geometry and convex optimization.

As a result, we can show bounds that occur with low probability —
something that was previously impossible.
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Moving Forward

Other results are in progress:

1. Connections to Noncommutative (Free) Probability

2. General techniques for proving inequalities on roots

And other directions are ripe for exploration:

1. Connections to Convex Optimization

2. Weakening the dependence on real rootedness

3. Finding more interlacing families!!
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Thanks

Thank you for inviting me to speak today.

And thank you for your attention!
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