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Goals

In this talk I plan to

1. Give a brief introduction to graph expansion

2. Give a brief survey of what is known about Ramanujan families

3. Motivate the approach we took in trying to find Ramanujan
families

4. Introduce a technique for showing the existence of
combinatorial objects we call “the method of interlacing
polynomials”

5. Use this to prove the existence of Ramanujan families of
arbitrary degree

6. Discuss some related open questions

not necessarily (but mostly) in this order.
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Simplifications

Throughout the talk, the following things will hold:

I G = (V ,E ) will be a d-regular graph

I We will assume a fixed ordering on E = {e1, . . . , em}.
I We will assume a fixed ordering on V = {v1, . . . , vn}.

And please interrupt if there are any questions.
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Expander graphs

Expander Graphs are sparse, regular, well-connected graphs that
“approximate” random graphs.

I Sets of vertices have many external (equivalently, few
internal) neighbors

I No “small” cuts

I Random walks mix quickly

I Can get from a to b using few edges

Used throughout computer science.

I Error-correcting codes

I Pseudorandom generators
I Computational complexity

I PCP theorem (Dinur 2007)
I SL=L (Reingold 2005)
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Types of Expansion

There are different definitions of “expansion”

I Edge expansion

hE (G ) = min
0<|S|≤n/2

|{e ∈ E : |e ∩ S | = 1}|
|S |

I Vertex expansion

hV (G ) = min
0<|S |≤n/2

|{v ∈ V (G ) : v ∼ S}|
|S |

I Spectral Expansion (defined momentarily)

For constant degree graphs, these are interchangable (up to a
constant).
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Adjacency Matrix

Given G , the adjacency matrix A is defined as

a

cd

be

f

a c d b e f

a

c

d

b

e

f

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 1

1 1

1 1

1 1

1 1

1 1

1

1

0 0 0 01 1

1. Ai ,j = 1 if and only if {vi , vj} ∈ E

2. Since the graph is d-regular, each row sums to d

Brief Introduction 8/58
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The spectrum
Since A is symmetric, it has all real eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn

Since the rows sum to d , 1 is an eigenvector with eigenvalue d .
This (as well as −d if G is bipartite) is called a trivial eigenvalue.

G is a good expander (spectrally) if all non-trivial eigenvalues are
small (in absolute value).

|[ ]

0−d d

For example, Kd+1 has all non-trivial eigenvalues −1 and Kd ,d has
all non-trivial eigenvalues 0.

But in practice, we need big graphs with small degree.

In particular, we would like infinite families of such graphs.

Brief Introduction 9/58
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What can we hope for?

Theorem (Alon–Boppana (1986))

For every ε > 0, there exists an N such that any d-regular graph on
N vertices has a non-trivial eigenvalue α with |α| ≥ 2

√
d − 1− ε

A d-regular graph that has all non-trivial eigenvalues inside the
interval [−2

√
d − 1, 2

√
d − 1] is called Ramanujan.

|[ ]

0−d d

[ ]

−2
√

d − 1 2
√

d − 1

Alon–Boppana asserts no smaller interval is possible (for an infinite
collection).

We will call an infinite collection of d-regular Ramanujan graphs a
Ramanujan family.

Brief History 11/58
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Brief Aside

Recall that expander graphs have the property “sets of vertices
have many external neighbors”.

In this sense, the “ultimate” d-regular expander is the d-regular
infinite tree.

The largest eigenvalue of the d-regular infinite tree is 2
√

d − 1
(the smallest is −2

√
d − 1).

So being Ramanujan can be seen as being a good (finite)
approximation of a d-regular infinite tree.

Brief History 12/58
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Previous results

Theorem (Margulis, Lubotzky–Phillips–Sarnak (1988))

Ramanujan families exist for d = p + 1 where p is a prime number.

Proof depends heavily on algebraic techniques (they show certain
collections of Cayley graphs are Ramanujan).

Question: Are “algebraic graphs” the only families?

Answer: Almost no.

Theorem (Friedman (2008))

A randomly chosen d-regular graph has its non-trivial eigenvalues
in the interval

[−2
√

d − 1− ε, 2
√

d − 1 + ε]

with high probability.

So are Ramanujan families “special” or are they just “everywhere”?

Brief History 13/58
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Main result

We prove the existence of Ramanujan families of every degree d .

Furthermore, the proof technique will show that such families are
more “everywhere” than they are “special”.

Two caveats:

1. The families guaranteed in our proof will be families of
bipartite graphs

2. Despite showing that such families are “everywhere”, we are
not actually able to construct one

Instead, we use a new technique for showing existence of
combinatorial objects we call “the method of interlacing
polynomials”.

Brief History 14/58
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Garbage Collection

What you need to keep in your brain:

1. Expander graphs are useful.

2. An infinite family of optimal (in a spectral sense) d-regular
expanders is called a Ramanujan family

3. Optimal (in a spectral sense) means all non-trivial eigenvalues
are in the range [−2

√
d − 1, 2

√
d − 1]

4. Such families were known to exist but only for certain values
of d and only for algebraic reasons

5. We will prove the existence of (bipartite) Ramanujan families
of every degree

Brief History 15/58
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General Idea

Start with a good graph.

a

cd

be

f

a1

d1

e1

f1

b1

c1

a2

d2

e2

f2

b2

c2

And make a copy of it. And perturb it.

Want to find perturbations that cause new graph to be good.

The Approach 17/58
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2-lifts

Bilu and Linial (2006) studied perturbations called 2-lifts.

For each edge (a, b) in the original graph, choose either

a1

b1

a2

b2

Positive Edge Lift

or

a1

b1

a2

b2

Negative Edge Lift

for a total of 2|E | possible 2-lifts.

We will refer to a 2-lift by its signing s ∈ {±}m and refer to the
corresponding (lifted) graph as Gs .

The Approach 18/58
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Important properties

Let ei = (a, b) be an edge in G . Then (depending on the value of
si ) we have either

a1

b1

a2

b2

Positive Edge Lift

or

a1

b1

a2

b2

Negative Edge Lift

in Gs .

We can observe that

1. deg(a) = deg(a1) = deg(a2) for all vertices a

2. xi ∼ yj for some i , j if and only if x ∼ y

So, in particular, if G is bipartite and d-regular, then Gs is bipartite
and d-regular (for all signings s).

The Approach 19/58
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Examples

For example:

a1

d1

e1

f1

a2

d2

e2

f2

b2

c2

b1

c1

1. All positive

2. All negative

3. (a, b) and (c, f ) negative (rest positive)

The Approach 20/58
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Signed Adjacency Matrix

Let A be the adjacency matrix of G and s a signing of G .

a c d b e f

a

c

d

b

e

f

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 1

1 1

1 1

1 1

1 1

1 1

−1

−1

Multiply each value in A by the corresponding sign from s.

This is called the signed adjacency matrix As .
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Same Examples
For example:
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a

c

d

b

e
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−1 −1

−1 −1

−1 −1

−1 −1

−1 −1

−1 −1

a c d b e f

a

c

d

b

e

f

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1

1

1 1

1

1 1

1

−1

−1

−1

−1

1. All positive

2. All negative
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Main Eigenvalue lemma

Theorem (Bilu–Linial (2006))

Let G be any graph, s a signing of G and Gs the 2-lift of G
corresponding to s.
Then the eigenvalues of A(Gs) (the new adjacency matrix) are the
union of the eigenvalues of A (the original adjacency matrix) and
the eigenvalues of As (the signed adjacency matrix).

Therefore if G was Ramanujan and the eigenvalues of As were in
the interval [−2

√
d − 1, 2

√
d − 1], then Gs would be Ramanujan.

Conjecture (Bilu–Linial (2006))

Every d-regular graph contains a signing s for which all of the
eigenvalues of As (the signed adjacency matrix) lie inside the
interval

[−2
√

d − 1, 2
√

d − 1]

The Approach 23/58
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Implications

If the conjecture was true, this would imply the existence of
Ramanujan families of degree d (for any d).

1. Start with a d-regular Ramanujan graph G

2. Find a signing s for which all eigenvalues of As lie in the
range [−2

√
d − 1, 2

√
d − 1]

3. Perform the 2-lift associated with the signing to get graph Gs

(with twice as many vertices).

4. Then Gs is Ramanujan, so iterate

Note: we can always start with G = Kd+1 or G = Kd ,d .

We will prove the conjecture for every bipartite graph G .

Since 2-lifts preserve bipartiteness, the same proof applies.

The Approach 24/58
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Bipartite Adjacency Matrices
What is so special about being bipartite?

In this case, the adjacency matrix can be written in block form 0 B

BT 0


causing eigenvalues/vectors to come in pairs

vi = [ui | ui ] and vn−i = [ui | −ui ]

for 1 ≤ i ≤ n/2 and so the eigenvalues satisfy λi = −λn−i .

Corollary

A bipartite graph G has all of its non-trivial eigenvalues in the
range

[−2
√

d − 1, 2
√

d − 1]

if and only if it has all non-trivial eigenvalues at most 2
√

d − 1.

The Approach 25/58
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Intermission
Recall our goal: to show the existence of Ramanujan families of
any degree d .

To do this, we are going to use an idea of Bilu and Linial that
involves making a new graph from an old one using 2-lifts (and
iterating)

To show that the iteration produces a Ramanujan family, it suffices
to show the following

Theorem
Every d-regular bipartite graph has a signing s such that the largest
eigenvalue of the signed adjacency matrix is at most 2

√
d − 1.

Side note: a random signing does not (in general) work:

Es [‖As‖]� 2
√

d − 1

as noted by Bilu and Linial.

The Approach 26/58
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Step By Step

Our approach will be to build the signing one edge at a time and
see what happens to the eigenvalues.

To “keep track” we will use a generalization of the characteristic
polynomial of a matrix

χM(x) = det(xI −M) =
∏
i

(x − λi )

where the λi are the eigenvalues of M.

Given a vector t ∈ {±}k for k ≤ m, define the partial assignment
polynomial

pt(x) := Es∈{±}m [χAs (x) | s1 = t1, . . . , sk = tk ]

The Approach 27/58
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Some notes

For s ∈ {±}m, the partial assignment polynomial is just the
characteristic polynomial of the matrix As

ps(x) = χAs (x)

Also,
p∅(x) = Es∈{±}mχAs (x)

is the expected characteristic polynomial over all possible signed
adjacency matrices.

Miraculously, the expected characteristic polynomial is something
we can get our hands on.

The Approach 28/58
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Miracle 1

Theorem (Godsil–Gutman (1981))

For any graph G ,

Es∈{±}mχAs (x) =
∑
i

xn−2i (−1)imi

where mi is the number of matchings (subsets of E that touch
each vertex at most once) in G of size i .

Proof.
Expand the determinant as a sum over permutations:

1. Permutations that hit any off-diagonal non-edge are 0

2. Permutations that hit Ai ,j but not Aj ,i cancel (in expectation)

3. All that remains are permutations with n − 2i entries on the
diagonal and matchings of size i

The Approach 29/58
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Matching polynomials

For a graph G with mi matchings of size i , the polynomial

µG (x) :=
∑
i

xn−2i (−1)imi

is (fittingly) called the matching polynomial.

Some properties:

1. m0 = 1

2. m1 = |E |
3. m2 is the number of pairs of edges that do not share an

endpoint

4. mn/2 is the number of perfect matchings

In particular, µG (0) is (in general) NP-hard to compute.
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Miracle 2

The matching polynomial was introduced by Heilmann and Lieb in
their study of monomers–dimers. In their paper, they prove the
somewhat remarkable theorem:

Theorem (Heilmann–Lieb (1972))

Let G be a graph with maximum degree ∆. Then

1. µG (x) is real-rooted

2. µG (y) > 0 for all y > 2
√

∆− 1

Proof.
Use the identity

µG (x) = µG−e(x)− µG\{u,v}(x)

for some e = (u, v) ∈ E and (a clever) induction.

The Approach 31/58
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Suggests an approach

We now have a bunch of polynomials.

The average of these polynomials has a largest root that is exactly
the bound we want.

Approach: Look for Miracle 3 (some way of relating the roots of
individual polynomials to the roots of the average polynomial).

And that is the approach we will take.

The Approach 32/58
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Outline

Brief Introduction

Brief History

The Approach

Method of Interlacing Polynomials

Wrap Up
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In search of a miracle

Unwinding the definition, we get the recurrence equation

pt(x) =
1

2
pt+(x) +

1

2
pt−(x)

but now we have reached our first major issue.

Adding polynomials is a function of the coefficients and we are
interested in the roots.

In general, it is easy to get the coefficients from the roots but hard
to get the roots from the coefficients.

Approach: forget this and see what we can prove.

Method of Interlacing Polynomials 34/58
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A Lemma

Lemma
Let f and g be monic polynomials. Assume there exists a point
c ∈ R such that f and g each has exactly one real root larger
than c (call these the “extreme roots”). Then the largest real root
of f + g lies between these extreme roots.

Proof.
By picture
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Without c to “anchor”
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Without c to “anchor”
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So what?
But we have reached our second issue: we can say something
about the real roots, but not necessarily the complex roots.

While each ps(x) was real-rooted for s ∈ {±}m (characteristic
polynomials of symmetric matrices), in general the sums of
real-rooted polynomials can be arbitrary.

Example: p(x) = (x − 2)2 − 1 (has double root at 1) and
q(x) = (x + 2)2 − 1 (has double root at −1).

p(x) + q(x) = x2 + 6

does not have any real roots (roots are ±
√
−6).

But recall that

1. ps(x) is real-rooted for any s ∈ {±}m (see above)

2. p∅(x) = µG (x) is real-rooted (by Heilmann and Lieb)

Perhaps this is true in more generality?
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polynomials of symmetric matrices), in general the sums of
real-rooted polynomials can be arbitrary.

Example: p(x) = (x − 2)2 − 1 (has double root at 1) and
q(x) = (x + 2)2 − 1 (has double root at −1).

p(x) + q(x) = x2 + 6
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√
−6).
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Equation Revisited

Back to our equation

pt(x) =
1

2
pt+(x) +

1

2
pt−(x)

The lemma tells us that if

1. pt(x) is real-rooted

2. pt+(x) is real-rooted

3. pt−(x) is real-rooted

4. There exists a c “anchoring” the largest roots of pt+(x) and
pt−(x)

Then we know the largest root of pt(x) lies between the largest
root of pt+(x) and the largest root of pt−(x).

Let’s worry about c for the moment (keeping real-rootedness on
the back burner).
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Interlacing polynomials

Let p be a real-rooted polynomial of degree n and q a real-rooted
polynomial of degree n − 1

p(x) =
n∏

i=1

(x − αi ) and q(x) =
n−1∏
i=1

(x − βi )

with α1 ≤ · · · ≤ αn and β1 ≤ · · · ≤ βn−1

We say q interlaces p if α1 ≤ β1 ≤ α2 · · · ≤ αd−1 ≤ βn−1 ≤ αn.

Think: The roots of q separate the roots of p

Example 1: p′(x) interlaces p(x)
Example 2: If p has no multiple roots (and largest root R), then
let q = p/(x − R). Then q(x + ε) interlaces p(x)
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Common Interlacers

We say that two degree n polynomials p and r have a common
interlacer if there exists a q such that q interlaces both p and r
simultaneously.

Think: the roots of q split up R into n intervals, each of which
contains exactly one root of p and one root of r

Note, if p and r have a common interlacer (say q), then c = βd−1
can serve as the anchor from the lemma!
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Interlacing families

We say {p}s∈{±}m is an interlacing family if for all partial
assignments t we have that

1. Each polynomial pt is real-rooted, and

2. The polynomials pt+ and pt− have a common interlacer

Corollary

If {p}s forms an interlacing family, then there exists an assignment
s∗ such that the largest root of ps∗ is at most the largest root of
p∅ (the expected polynomial).

Proof.
Start at the expected polynomial and walk backwards.
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Interlacing for free

Fortunately, interlacing follows directly from a well-known lemma:

Lemma (folklore, Fisk)

Let f , g be polynomials of the same degree such that every
λf + (1− λ)g is real-rooted for all λ ∈ [0, 1]. Then f and g have a
common interlacer.

Note this is similar to our recurrence equation:

pt(x) =
1

2
pt+(x) +

1

2
pt−(x)

with 1/2 replaced by λ ∈ [0, 1].

So if we can prove that our polynomials are real-rooted for all
independent distributions, we get interlacing for free!

Method of Interlacing Polynomials 42/58



page.115

Interlacing for free

Fortunately, interlacing follows directly from a well-known lemma:

Lemma (folklore, Fisk)

Let f , g be polynomials of the same degree such that every
λf + (1− λ)g is real-rooted for all λ ∈ [0, 1]. Then f and g have a
common interlacer.

Note this is similar to our recurrence equation:

pt(x) =
1

2
pt+(x) +

1

2
pt−(x)

with 1/2 replaced by λ ∈ [0, 1].

So if we can prove that our polynomials are real-rooted for all
independent distributions, we get interlacing for free!

Method of Interlacing Polynomials 42/58



page.116

Interlacing for free

Fortunately, interlacing follows directly from a well-known lemma:

Lemma (folklore, Fisk)

Let f , g be polynomials of the same degree such that every
λf + (1− λ)g is real-rooted for all λ ∈ [0, 1]. Then f and g have a
common interlacer.

Note this is similar to our recurrence equation:

pt(x) =
1

2
pt+(x) +

1

2
pt−(x)

with 1/2 replaced by λ ∈ [0, 1].

So if we can prove that our polynomials are real-rooted for all
independent distributions, we get interlacing for free!

Method of Interlacing Polynomials 42/58



page.117

Intermission 2

We defined a collection of partial assignment polynomials.

We defined an interlacing family {p}s and showed that any such
family has a polynomial ps∗ whose largest root is at most the
largest root of p∅ (the expected polynomial)

If we can show the collection of polynomials

P =

 ∑
s∈{±}m

∏
si=+

θi
∏
si=−

(1− θi )ps(x)

∣∣∣∣ θi ∈ [0, 1]


are all real-rooted, then our polynomials form an interlacing family.
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Even more general
In fact, we will prove something more general.

Note that

ps(x − d) = χAs (x − d) = det[xI − (dI + As)]

and that dI + As can be written

dI + As =
∑
si=−

(δi − δj)(δi − δj)T +
∑
si=+

(δi + δj)(δi + δj)
T

so we can write∑
s∈{±}m

∏
si=+

θi
∏
si=−

(1− θi )ps(x) = E det

[
xI −

∑
e∈E

~ue~u
T
e

]

where for ek = {i , j}

~ue =

{
(δi + δj) with probability θk
(δi − δj) with probability 1− θk
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Master Real-rootedness theorem

Thus the real-rootedness of P would follow from the following
theorem:

Theorem
Let ~u1, . . . , ~um be any independent random vectors. Then the
expected characteristic polynomial

E det

[
xI −

∑
i

~ui~u
T
i

]

is real-rooted.

Time to prove some real-rootedness.
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Where to start?

The issue with real-rooted polynomials is that it is hard to see how
to get from one to another.
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Parking garage phenomenon

The issue with real-rooted polynomials is that it is hard to see how
to get from one to another.

Unless you consider them to be a projection of higher dimensional
objects.
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Real stable polynomials

There have been many recent advances in understanding
real-rootedness using theory of real stable polynomials, a
multivariate extension of real-rooted polynomials.

A polynomial p is real stable if all coefficients are real and
p(z1, . . . , zn) 6= 0 whenever =(zi ) > 0 for all i (if p(z1, . . . , zn) = 0
then some zi has =(zi ) ≤ 0).

Some important properties:

I Univariate polynomials are real-rooted if and only if they are
real stable.

I Real stable polynomials are closed under substitution of reals
(z1, z2, . . . , zn)→ (a, z2, . . . , zn) for a ∈ R.

Similar to hyperbolic polynomials.
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Borcea and Brändén
Borcea and Brändén developed numerous techniques for showing
real stability. In particular,

Lemma
Let A1, . . . ,Am be Hermitian positive semidefinite matrices and
x1 . . . xm variables. Then

p(x1, . . . , xm) = det

[
m∑
i=1

xiAi

]

is real stable.

Lemma
If p(x1, . . . , xm) is a real stable polynomial, then

p(x1, . . . , xm)− ∂p(x1, . . . , xm)

∂xi

is real stable.
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Master Identity

We can write the polynomial we want using these operations:

Theorem
Let ~u1, . . . ~um be independent random vectors with E~ui~u

T
i := Ai .

Then

E det

[
xI +

∑
i

~ui~u
T
i

]
=

m∏
i=1

(
1− ∂

∂zi

)
det

[
xI +

m∑
i=1

ziAi

] ∣∣∣∣∣
z1=···=zm=0

In particular, the expected polynomial does not depend on the
vectors or the probabilities — only the expected outer products.

We call this a mixed characteristic polynomial and denote it
µ[A1, . . . ,Am].

Method of Interlacing Polynomials 50/58



page.133

Master Identity

We can write the polynomial we want using these operations:

Theorem
Let ~u1, . . . ~um be independent random vectors with E~ui~u

T
i := Ai .

Then

E det

[
xI +

∑
i

~ui~u
T
i

]
=

m∏
i=1

(
1− ∂

∂zi

)
det

[
xI +

m∑
i=1

ziAi

] ∣∣∣∣∣
z1=···=zm=0

In particular, the expected polynomial does not depend on the
vectors or the probabilities — only the expected outer products.

We call this a mixed characteristic polynomial and denote it
µ[A1, . . . ,Am].

Method of Interlacing Polynomials 50/58



page.134

Putting it all together

Theorem
Mixed characteristic polynomials are real-rooted.

Proof.
By the first lemma of Borcea and Brändén,

p(z1, . . . , zm) = det

[
xI +

m∑
i=1

ziAi

]

is real stable. By the second lemma of Borcea and Brändén,

m∏
i=1

(
1− ∂

∂zi

)
det

[
xI +

m∑
i=1

ziAi

]

is real stable.
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Putting it all together, cont.

Since real stability is preserved under substitution by reals, (setting
z1 = · · · = zm = 0), we have

µ[A1, . . . ,Am](x) =
m∏
i=1

(
1− ∂

∂zi

)
det

[
xI +

m∑
i=1

ziAi

] ∣∣∣∣∣
z1=···=zm=0

is univariate and real stable (and therefore real-rooted).

Corollary

Our polynomials form an interlacing family.
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Quick Review

A quick review:

1. We defined interlacing families and showed that any such
family has a polynomial whose largest root is smaller than the
largest root of the expected polynomial

2. We argued that (for our polynomials) the interlacing condition
was implied by the real-rootedness of the partial assignment
polynomials (and the recurrence equation)

3. We defined mixed characteristic polynomials and showed that
our partial assignment polynomials belonged to this class.

4. We showed that mixed characteristic polynomials were
real-rooted by using Borcea and Brändén’s theory of real
stable polynomials.
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Outline

Brief Introduction
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Piecing things together

Theorem
There exist bipartite Ramanujan families of degree d for any d.

Proof.
Set G0 = Kd ,d (which is bipartite, d-regular, and Ramanujan for
any d) and let Gi be a bipartite, d-regular, Ramanujan graph (for
some i).

For each possible signing s ∈ {±}|Ei |, form the polynomials ps . By
our theorem, this is an interlacing family.

Combining this with Godsil–Gutman and Heilmann–Lieb ensures
some ps∗ such that maxroot(ps∗) ≤ maxroot(p∅) ≤ 2

√
d − 1

Set Gi+1 to be the 2-lift associated with s∗ — this is bipartite,
d-regular, and (by Bilu and Linial) Ramanujan — and proceed by
induction.

Wrap Up 55/58



page.146

Piecing things together

Theorem
There exist bipartite Ramanujan families of degree d for any d.

Proof.
Set G0 = Kd ,d (which is bipartite, d-regular, and Ramanujan for
any d) and let Gi be a bipartite, d-regular, Ramanujan graph (for
some i).

For each possible signing s ∈ {±}|Ei |, form the polynomials ps . By
our theorem, this is an interlacing family.

Combining this with Godsil–Gutman and Heilmann–Lieb ensures
some ps∗ such that maxroot(ps∗) ≤ maxroot(p∅) ≤ 2

√
d − 1

Set Gi+1 to be the 2-lift associated with s∗ — this is bipartite,
d-regular, and (by Bilu and Linial) Ramanujan — and proceed by
induction.

Wrap Up 55/58



page.147

Piecing things together

Theorem
There exist bipartite Ramanujan families of degree d for any d.

Proof.
Set G0 = Kd ,d (which is bipartite, d-regular, and Ramanujan for
any d) and let Gi be a bipartite, d-regular, Ramanujan graph (for
some i).

For each possible signing s ∈ {±}|Ei |, form the polynomials ps . By
our theorem, this is an interlacing family.

Combining this with Godsil–Gutman and Heilmann–Lieb ensures
some ps∗ such that maxroot(ps∗) ≤ maxroot(p∅) ≤ 2

√
d − 1

Set Gi+1 to be the 2-lift associated with s∗ — this is bipartite,
d-regular, and (by Bilu and Linial) Ramanujan — and proceed by
induction.

Wrap Up 55/58



page.148

Piecing things together

Theorem
There exist bipartite Ramanujan families of degree d for any d.

Proof.
Set G0 = Kd ,d (which is bipartite, d-regular, and Ramanujan for
any d) and let Gi be a bipartite, d-regular, Ramanujan graph (for
some i).

For each possible signing s ∈ {±}|Ei |, form the polynomials ps . By
our theorem, this is an interlacing family.

Combining this with Godsil–Gutman and Heilmann–Lieb ensures
some ps∗ such that maxroot(ps∗) ≤ maxroot(p∅) ≤ 2

√
d − 1

Set Gi+1 to be the 2-lift associated with s∗ — this is bipartite,
d-regular, and (by Bilu and Linial) Ramanujan — and proceed by
induction.

Wrap Up 55/58



page.149

Piecing things together

Theorem
There exist bipartite Ramanujan families of degree d for any d.

Proof.
Set G0 = Kd ,d (which is bipartite, d-regular, and Ramanujan for
any d) and let Gi be a bipartite, d-regular, Ramanujan graph (for
some i).

For each possible signing s ∈ {±}|Ei |, form the polynomials ps . By
our theorem, this is an interlacing family.

Combining this with Godsil–Gutman and Heilmann–Lieb ensures
some ps∗ such that maxroot(ps∗) ≤ maxroot(p∅) ≤ 2

√
d − 1

Set Gi+1 to be the 2-lift associated with s∗ — this is bipartite,
d-regular, and (by Bilu and Linial) Ramanujan — and proceed by
induction.

Wrap Up 55/58



page.150

Open Problem 1

Show that there exist non-bipartite Ramanujan families of all
degrees.

Note that we used “bipartiteness” as a way to bound the largest
and smallest eigenvalues simultaneously.

It is possible to do this in the general case using polynomials like

qs(x) = ps(x)ps(−x)

but this would require new proofs of all three stages of the
“method of interlacing polynomials”.

1. Showing that the {qs} form an interlacing family

2. Calculating the expected polynomial, and

3. Bounding the largest root of the expected polynomial
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Open Problem 2

Find constructions for Ramanujan families of arbitrary degrees.

The families found by Margulis and Lubotzky–Phillips–Sarnak are
constructive, but only exist for d = p + 1.

Our methods are highly nonconstructive; µG (0) alone is NP-hard
to compute.

Is it possible to determine the “better” signing without
constructing the polynomial?

Remember, these things are essentially “everywhere”!
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Thanks

Thank you to the organizers for providing me the opportunity to
speak to you today.

And thank you for your attention!
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