Publications and preprints:
- A. D. Ionescu, B. Pausader, X. Wang, and K. Widmayer, Nonlinear Landau damping and wave operators in sharp Gevrey spaces, Preprint (2023), arxiv_2405.04473.
- J. Gomez-Serrano, A. D. Ionescu, and J. Park, Quasiperiodic solutions of the generalized SQG equation, Preprint (2023), arxiv_2303.03992.
- A. D. Ionescu, S. Iyer, and H. Jia, On the stability of shear flows in bounded channels, II: non-monotonic shear flows, Preprint (2022), arxiv_2301.00288.
- Y. Deng, A. D. Ionescu, and F. Pusateri, On the wave turbulence theory of 2D gravity waves, I: deterministic energy estimates, Preprint (2022), arxiv_2211.10826.
- A. D. Ionescu, B. Pausader, X. Wang, and K. Widmayer, Nonlinear Landau damping for the Vlasov-Poisson system in $\mathbb{R}^3$: the Poisson equilibrium, Annals of PDE 10, Paper No. 2, 78 pp (2024).
- A. D. Ionescu and H. Jia, On the nonlinear stability of shear flows and vortices, Proceedings of the International Congress of Mathematicians 2022, Volume 5, 3776-3799, EMS Press, Berlin (2023).
- A. D. Ionescu, A. Magyar, M. Mirek, and T. Z. Szarek, Polynomial sequences in discrete nilpotent groups of step 2, Advanced Nonlinear Studies 23 (Special Issue in honor of David Jerison), Paper No. 20230085, 24 pp (2023).
- A. D. Ionescu, B. Pausader, X. Wang, and K. Widmayer, On the stability of homogeneous equilibria in the Vlasov-Poisson system on $\mathbb{R}^3$, Classical and Quantum Gravity 40 (Focus Issue on the Mathematics of Gravitation in the Non-Vaccum Regime), 185007 (2023).
- A. D. Ionescu, A. Magyar, M. Mirek, and T. Szarek, Polynomial averages and pointwise ergodic theorems on nilpotent groups, Inventiones Mathematicae 231, 1023-1140 (2023).
- A. D. Ionescu and H. Jia, Nonlinear inviscid damping near monotonic shear flows, Acta Mathematica 230, 321-399 (2023).
- A. D. Ionescu and H. Jia, Linear vortex symmetrization: the spectral density function, Archive for Rational Mechanics and Analysis 246, 61-137 (2022).
- A. D. Ionescu, B. Pausader, X. Wang, and K. Widmayer, On the asymptotic behavior of solutions to the Vlasov-Poisson system, International Mathematics Research Notices 2022, 8865-8889 (2022).
- A. D. Ionescu and B. Pausader, The Einstein-Klein-Gordon Coupled System: Global Stability of the Minkowski Solution. Annals of Mathematics Studies 213. Princeton University Press, Princeton, NJ (2022).
- A. D. Ionescu and H. Jia, Axi-symmetrization near point vortex solutions for the 2D Euler equation, Communications on Pure and Applied Mathematics 75, 818-891 (2022).
- C. Fefferman, A. D. Ionescu, T. Tao, and S. Wainger, Analysis and applications: the mathematical work of Elias Stein. Bulletin of the American Mathematical Society 57, 523-594 (2020).
- A. D. Ionescu and B. Pausader, Global regularity of solutions of the Einstein-Klein-Gordon system: a review, Quarterly of Applied Mathematics 78, 277-303 (2020).
- P. Germain, A. D. Ionescu, and M. B. Tran, Optimal local well-posedness theory for the kinetic wave equation, Journal of Functional Analysis 279, 108570 (2020).
- A. D. Ionescu and H. Jia, Inviscid damping near the Couette flow in a channel, Communications in Mathematical Physics 374, 2015-2096 (2020).
- A. D. Ionescu and B. Pausader, On the global regularity for a Wave-Klein-Gordon coupled system, Acta Mathematica Sinica (English Series) 35 (Special Issue in honor of Carlos Kenig on his 65th birthday), 933-986 (2019).
- A. D. Ionescu and F. Pusateri, Long-time existence for multi-dimensional periodic water waves, Geometric and Functional Analysis 29, 811-870 (2019).
- D. Cordoba, J. Gomez-Serrano, and A. D. Ionescu, Global solutions for the generalized SQG patch equation, Archive for Rational Mechanics and Analysis 233, 1211-1251 (2019).
- A. D. Ionescu and F. Pusateri, Recent advances on the global regularity for irrotational water waves, Philosophical Transactions of the Royal Society A 376 20170089, 28 pp (2018).
- A. D. Ionescu and V. Lie, Long term regularity of the one-fluid Euler-Maxwell system in 3D with vorticity, Advances in Mathematics 325, 719-769 (2018).
- A. D. Ionescu and F. Pusateri, Global regularity for 2D water waves with surface tens
ion, Memoirs of the American Mathematical Society 256, Memo 1227 (2018).
- Y. Deng, A. D. Ionescu, B. Pausader, and F. Pusateri, Global solutions of the gravity-capillary water-wave system in three dimensions, Acta Mathematica 219, 213-402 (2017).
- Y. Guo, A. D. Ionescu, and B. Pausader, Global solutions of the Euler-Maxwell two-fluid system in 3D. Proceedings of the Sixth International Congress of Chinese Mathematicians. Vol. I, 79-93, Advanced Lectures in Mathematics (ALM) 36, Int. Press, Somerville, MA, 2017.
- Y. Deng, A. D. Ionescu, and B. Pausader, The Euler-Maxwell system for electrons: global solutions in 2D, Archive for Rational Mechanics and Analysis 225, 771-871 (2017).
- A. D. Ionescu and F. Pusateri, Global analysis of a model for capillary water waves in two dimensions, Communications on Pure and Applied Mathematics 69, 2015-2071 (2016).
- C. Fefferman, A. D. Ionescu, and V. Lie, On the absence of "splash" singularities in the case of two-fluid interfaces, Duke Mathematical Journal 165, 417-462 (2016).
- Y. Guo, A. D. Ionescu, and B. Pausader, Global solutions of the Euler--Maxwell two-fluid system in 3D, Annals of Mathematics 183, 377-498 (2016).
- I. Bejenaru, A. D. Ionescu, C. E. Kenig, and D. Tataru, Equivariant Schrodinger maps in two spatial dimensions: the $H^2$ target, Kyoto Journal of Mathematics 56, 283-323 (2016).
- A. D. Ionescu and F. Pusateri, Global solutions for the gravity water waves system in 2D, Inventiones Mathematicae 199, 653-804 (2015).
- A. D. Ionescu and S. Klainerman, Rigidity results in general relativity: a review. Surveys in differential geometry 2015. One hundred years of general relativity, 123-156, Surveys in Differential Geometry 20, Int. Press, Boston, MA, 2015.
- A. D. Ionescu and S. Klainerman, On the global stability of the wave-map equation in Kerr Spaces with small angular momentum, Annals of PDE 1, 1-78 (2015).
- S. Alexakis, A. D. Ionescu, and S. Klainerman, Rigidity of stationary black holes with small angular momentum on the horizon, Duke Mathematical Journal 163, 2603-2615 (2014).
- Y. Guo, A. D. Ionescu, and B. Pausader, Global solutions of certain plasma fluid models in three-dimension, Journal of Mathematical Physics 55, 123102 (2014).
- A. D. Ionescu and F. Pusateri, Nonlinear fractional Schrodinger equations in one dimension, Journal of Functional Analysis 266, 139-176 (2014).
- A. D. Ionescu and B. Pausader, Global solutions of quasilinear systems of Klein--Gordon equations in 3D, Journal of the European Mathematical Society 16, 2355-2431 (2014).
- A. D. Ionescu, A. Magyar, and S. Wainger, Averages along polynomial sequences in discrete nilpotent Lie groups: singular Radon transforms. Advances in analysis: the legacy of Elias M. Stein, 146-188, Princeton Mathematical Series 50, Princeton Univ. Press, Princeton, NJ, 2014.
- A. D. Ionescu and B. Pausader, The Euler-Poisson system in 2D: global stability of the constant equilibrium solution, International Mathematics Research Notices 2013, 761-826 (2013).
- A. D. Ionescu and S. Klainerman, On the local extension of Killing vector-fields in Ricci flat manifolds, Journal of the American Mathematical Society 26, 563-593 (2013).
- I. Bejenaru, A. D. Ionescu, C. E. Kenig, and D. Tataru, Equivariant Schrodinger maps in two spatial dimensions, Duke Mathematical Journal 162, 1967-2025 (2013).
- A. D. Ionescu and B. Pausader, The energy-critical defocusing NLS on $\T^3$, Duke Mathematical Journal 161, 1581-1612 (2012).
- A. D. Ionescu and B. Pausader, Global well-posedness of the energy-critical defocusing NLS on $\R\times\T^3$, Communications in Mathematical Physics 312, 781-831 (2012).
- A. D. Ionescu, B. Pausader, and G. Staffilani, On the global well-posedness of energy-critical Schrodinger equations in curved spaces, Analysis & PDE 5 705-746 (2012).
- I. Bejenaru, A. D. Ionescu, C. E. Kenig, and D. Tataru, Global Schrodinger maps in dimensions $d\geq 2$: small data in the critical Sobolev spaces, Annals of Mathematics 173, 1443-1506 (2011).
- I. Bejenaru, A. D. Ionescu, and C. E. Kenig, On the stability of certain spin models in $2+1$ dimensions, The Journal of Geometric Analysis 21, 1-39 (2011).
- S. Herr, A. D. Ionescu, C. E. Kenig, and H. Koch, A para-differential renormalization technique for nonlinear dispersive equations, Communications in Partial Differential Equations 35, 1827-1875 (2010).
- S. Alexakis, A. D. Ionescu, and S. Klainerman, Uniqueness of smooth stationary black holes in vacuum: small perturbations of the Kerr spaces, Communications in Mathematical Physics 299, 89-127 (2010).
- S. Alexakis, A. D. Ionescu, and S. Klainerman, Hawkings's local rigidity theorem without analyticity, Geometric and Functional Analysis 20, 845-869 (2010).
- A. D. Ionescu and G. Staffilani, Semilinear Schrodinger flows on hyperbolic spaces: scattering in $H^1$, Mathematische Annalen 345, 133-158 (2009).
- A. D. Ionescu and S. Klainerman, Uniqueness results for ill posed characteristic problems in curved space-times, Communications in Mathematical Physics 285, 873-900 (2009).
- A. D. Ionescu and S. Klainerman, On the uniqueness of smooth, stationary black holes in vacuum, Inventiones Mathematicae 175, 25-102 (2009).
- A. D. Ionescu, C. E. Kenig, and D. Tataru, Global well-posedness of the KP-I initial-value problem in the energy space, Inventiones Mathematicae 173, 265-304 (2008).
- J. Colliander, A. D. Ionescu, C. E. Kenig, and G. Staffilani, Weighted low-regularity solutions of the KP-I initial-value problem, Discrete and Continuous Dynamical Systems - Series A 20, 219-258 (2008).
- I. Bejenaru, A. D. Ionescu, and C. E. Kenig, Global existence and uniqueness of Schr\"{o}dinger maps in dimensions $d\geq 4$, Advances in Mathematics 215, 263-291 (2007).
- A. D. Ionescu and C. E. Kenig, Low-regularity Schr\"{o}dinger maps, II: global well-posedness in dimensions $d\geq 3$, Communications in Mathematical Physics 271, 523-559 (2007).
- A. D. Ionescu and C. E. Kenig, Complex-valued solutions of the Benjamin-Ono equation, Contemporary Mathematics 428, 61-74 (2007).
- A. D. Ionescu and C. E. Kenig, Global well-posedness of the Benjamin-Ono equation in low regularity spaces, Journal of the American Mathematical Society 20, 753-798 (2007).
- A. D. Ionescu and C. E. Kenig, Local and global well-posedness of periodic KP-I equations. Mathematical aspects of nonlinear dispersive equations, 181-211, Annals of Mathematics Studies 163, Princeton University Press, Princeton, NJ, 2007.
- A. D. Ionescu, A. Magyar, E. M. Stein, and S. Wainger, Discrete Radon transforms and applications to ergodic theory, Acta Mathematica 198, 231-298, (2007).
- A. D. Ionescu and S. Wainger, L^p boundedness of discrete singular Radon transforms, Journal of the American Mathematical Society 19, 357-383 (2006).
- B. Ammann, A. D. Ionescu and V. Nistor, Sobolev spaces and regularity for polyhedral domains, Documenta Mathematica 11, 161-206 (2006).
- A. D. Ionescu and C. E. Kenig, Low-regularity Schrodinger maps, Differential and Integral Equations 19, 1271-1300 (2006).
- A. D. Ionescu and C. E. Kenig, Uniqueness properties of solutions of Schrodinger equations, Journal of Functional Analysis 232, 90-136 (2006)
- A. D. Ionescu and W. Schlag, Agmon-Kato-Kuroda theorems for a large class of perturbations, Duke Mathematical Journal 131, 397-440 (2006).
- A. D. Ionescu, Rearrangement inequalities on semisimple Lie groups, Mathematische Annalen 322, 739-758 (2005).
- A. D. Ionescu and C. E. Kenig, Well-posedness and local smoothing of solutions of Schrodinger equations, Mathematical Research Letters 12, 193-205 (2005).
- A. D. Ionescu and C. E. Kenig, $L^p$ Carleman inequalities and uniqueness of solutions of nonlinear Schrodinger equations, Acta Mathematica 193, 193-239 (2004).
- A. D. Ionescu, An endpoint estimate for the discrete spherical maximal function, Proceedings of the American Mathematical Society 132, 1411-1417 (2004).
- A. D. Ionescu and D. Jerison, On the absence of positive eigenvalues of Schrodinger operators with rough potentials, Geometric and Functional Analysis 13, 1029-1081 (2003).
- A. D. Ionescu, Singular integrals on symmetric spaces, II, Transactions of the American Mathematical Society 355, 3359-3378 (2003).
- A. D. Ionescu, Singular integrals on symmetric spaces of real rank one, Duke Mathematical Journal 114, 101-122 (2002).
- A. D. Ionescu, On the Poisson transform on symmetric spaces of real rank one, Journal of Functional Analysis 174, 513-523 (2000).
- A. D. Ionescu, A maximal operator and a covering lemma on non-compact symmetric spaces, Mathematical Research Letters 7, 83-93 (2000).
- A. D. Ionescu, An endpoint estimate for the Kunze-Stein phenomenon and related maximal operators, Annals of Mathematics 152, 259-275 (2000).
- A. D. Ionescu, Fourier integral operators on noncompact symmetric spaces of real rank one, Journal of Functional Analysis 174, 274-300 (2000).
- A. D. Ionescu, Real-variable theory and Fourier integral operators on semisimple Lie groups and symmetric spaces of real rank one, Ph. D. Thesis, Princeton University (1999). pdf-file
This research was supported in part by NSF grants, an Alfred P. Sloan research fellowship, and a David and Lucile Packard Fellowship.