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Where we left off: non-uniqueness mechanism

» Decompose u into frequency shells:

u= Z Uk, supp g ~ N, Nk < Niiq
k>0
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Dynamics of two adjacent modes

The mechanism requires the following terms to dominate:

Otl—1 =~ —Py_1 div(uk (024 uk)

Orup ~ Aug — uy - Vug_1

Opup—1 = — Py, Pdivu, ® ug

u (k)




Analogous program: blow-up from a dyadic model

T. Tao, JAMS 2016



Transfer to Navier—Stokes equations

Joint with M. Coiculescu

Define the critical space BMO~! with the norm

1

R? 2
[Ullsmo-1 = sup sup / / |2 U|2dxdt | < oo
R>0x€R3 \J0 JB(x,R)

This is the /argest space where one can implement small data global
regularity.
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Transfer to Navier—Stokes equations

Joint with M. Coiculescu

Define the critical space BMO~! with the norm

1

R? 2
[Ullsmo-1 = sup sup / / |2 U|2dxdt | < oo
R>0x€R3 \J0 JB(x,R)

This is the /argest space where one can implement small data global
regularity.

Theorem (Koch and Tataru 2001)

There exists € > 0 such that if U° is divergence-free with ||u|gpmo-1 < €,
then there exists a global-in-time solution that is regular for t > 0.

Essentially, they show that the Navier-Stokes bilinear operator
t ’
U —/ AP div u(t') @ u(t')dt’
0

is bounded on Xk, the path space corresponding to BMO™!.
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What about large initial data?

Theorem (Coiculescu—P. 2025)

There exists divergence-free initial data U° € BMO™! such that the
Navier-Stokes initial value problem admits two distinct global solutions:

u®, u® e Xur N C23((0, 00) x T3) N ([0, 00); WHP(T3))
for all p < co.

» The solutions are in the Banach space where Koch—Tataru run the
fixed point argument:

2 1/2
sup t2]|u)(t)|| . + sup R_3/ / |uD |2 dxdt < 00
>0 © x,R>0 0 JB(R)

» The data is critical and smooth a.e. (but not L?).
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Idea of the proof

» The initial data is constructed as a lacunary series u® =", V?
where each V{ is (approximately) localized in Fourier space to a
band around |£| = N

» N a rapidly growing sequence of frequency scales.

» Claim: (VQ)ken can be chosen such that at each mode k, there
exist two evolutions consistent with the NSE, up to a small error:

» Heat-dominated flow: let vi(x,t) the heat flow of the data:
Otvk — Avi = l.o.t.

Vk|t:0 = VE

[|vic(t)||Lo= decays exponentially on the time scale N, 2.
» Inverse-cascade-dominated flow: let Vi(x, t) evolve as:

0tVi + Py, Pdiv v @ vy =0

Vile—o = Vi

with vii1 as above. By a particular choice of V,9+1, we can arrange
that ||[Vi(t)[|c decays exponentially to zero on the time scale N, .
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|dea (continued)

» Further, we claim that those are the only interactions that are
non-perturbative.

» Taking for granted that there exist vk, Vi as above, we have two
distinct approximate solutions of NSE with data U° =", , V}:

v =+ Vit vt +, v =T+t TVotvat--.

» The distinctness is immediate from the fact that v, and v, have
different decay rates.
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Heuristic explanation of the non-uniqueness phenomenon

Fix kK > 1.

> V2, is capable of using its nonlinear self-interaction to “annihilate”
the mode below that has initial data V, and this annihilation
occurs on time scale Nk_+21'

> Likewise, V? is capable of annihilating the mode at V}? ; on time
scale N 2.

» These two events are incompatible because the kth mode vanishes
on a time scale (i.e., N,;El) much shorter than the time it needs to
act on VP | (i.e., N 2).

» As a result, the dynamics are only consistent if we alternate
Vot+Vi+vo vt



Constructing the principal parts vk, Vi

» The initial data V?(x) is (very roughly) of the form
ak(x)0 sin(Nx - n)

for some fixed 7,0 € Z3 with n- 0 = 0, where ax(x) is a scalar
coefficient that is principally supported at frequencies |£| < Nk.
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Constructing the principal parts vk, Vi

» The initial data V?(x) is (very roughly) of the form
ak(x)0 sin(Nx - n)

for some fixed 7,0 € Z3 with n- 0 = 0, where ax(x) is a scalar
coefficient that is principally supported at frequencies |£| < Nk.

» Then the heat dominated flow should be
Vi(x, t) = ak(x)8 sin(Nix - 1) exp(— Nz |n|*t)

up to various small errors.

» Recall we require 9,V = —P.p, P div(vki1 ® viki1) which becomes

0V = —P_p, Pdiv (aﬁﬂa ® Osin®(Niy1x - n)) exp(—2NZ,1|n[*t)

Vk|t:0 = V19~
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Constructing vk, Vi, continued

» One can directly integrate this and obtain
Vi) = VP — CN 2 P Bdiv(a 10 © 0)(1 — exp(—2NZ, 4[n[t))

» Recall our claim that ||vk(t)||.~ decays on time scale Nkfl.

» This is achievable if a;,; is chosen so that
VP = CN 2, Pun Pdiv(ai,,0 ® 6).

» This is not quite possible, but it is analogous to a problem
encountered by Nash (1954), and modern works in convex
integration.

» Replace the simple ansatz V = a(x)0 sin(Nkx - i) with one based

on a Mikado flow:
Z aj k0; sin(Nx - m;)
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Constructing vy, Vi, continued

» Write V,? = f]P’Ad)g. This is both divergence-free, and in the form
div(Dy) for Dby a symmetric tensor.

» Use the “Nash lemma": any positive definite symmetric tensor can
be decomposed as
2
Z aj k10 ©0;,
i

so one can solve
V2 =PdivDy) = CN, % P, Pdiv(at 10 ® 6).

> This creates a recursive dependence between the modes: V/
determines V19+1- Roughly,

1

VO o\ 2

Vi1l ~ CilNiga (” il ) :
Ny
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» This leads to

—k
VOl \®

VOl o ~ N Cuoi

Vil k( No

[ ———
~1
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Constructing vy, Vi, continued

» The relation becomes

1
[ Vesallee N < [Vl > :
Nit1 Ny

» This leads to

—k
VOl \®
VOl o ~ N Cuoi
VRl ~ s (L8]
e e
~1

» Two key observations:

» We do not lose constants = V° lies in the critical space BgO{OO:

IVPllgg2 = sup NPVl ~ 1

» The construction cannot produce small data.



Building blocks of the construction

» Pick a small 6o > 0 to be the pipe width, say 1/1000.

» Can place six periodic “pipes” of width &g pointing in the directions
91,---;96 in T?’.

» For an even p € C2°([0,1)), define the pipe profiles

Bi(x) = (8 " dra(x, 63)).




Building blocks of the construction, continued

» Let 7, L 0; be integers.
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Building blocks of the construction, continued

» Let 7, L 0; be integers.

» Sequence of frequencies: My < Np < My < Ny < My < -+, Ny is
the oscillation frequency, Mk_1 is the period.

» Then define the Mikado flow potentials:
WO, (x) = N2 @i(Mix) sin(Nie(x — x;) - ;)6
as well as the (approximately) heat evolved potential
Wjk(x, t) = WP (x) exp(~ |l Nit).
» Then the velocity will be close to

_ij'),k & |77J|2S5J(ka) Sin(Nk(x — Xj) . 771)0]
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Defining the initial data

UOZZV;?

k>0

where
VP (x) = ¢y * curl curl Z ajﬁk(x)\llj-{k(x7 t)
J

» curl curl \Ilj?k is the fast oscillating part, solving Navier—Stokes to
leading order

» a; « oscillates much more slowly, designed carefully so that
Orvk + Pon,Pdiv viis ® vipr = 0,  Vi|i—o = curl curl wg

» a; « is chosen to be supported only on supp v,?_l.
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Upgrading the regularity

» If & € Z2 is lacunary and |ck| ~ |&k], then

> et e B\ BMO™!
k>0

» But if x, are bump functions with ", |supp x«| < oo,

Z cre™ Sy ) € BMO™ 1

k>0

so we just need a small amount of “intermittency”

» By making the pipes (boundedly) narrow and supp vk C supp vk_1,
we obtain

|supp vg| S 27K

which is sufficient.
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Defining the principal parts
» The full solutions u and u® will be the sum of
» an explicit “principal part” v(?,
» and a non-explicit small corrector w)

» We define
V(l):V0+V1+V2—|—V3—|—"'

and
V(2):V()+V1+72+V3+"'

where v, and v are two different continuations of V,?.
» \We have the heat-driven part

vk(t, x) = ¢k *x curl curl Z aj k(X)) k(x, t),
J

and

» the inverse cascade-driven part

1 _ . ol BE
Vi(t, x) = ENk+21Pd'VZAj,k+1|TU\Ze 2PNt 1 (x)6; ® ).
J
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Smallness of the error

> The above construction produces solutions v(1) and v(2) of
8tv(i) — AV £ Pdivv) @ v() = div F(i), V(i)|t:O = U°.
» Claim: F() can be chosen so that it contains terms of size:
Z Ni—1 Nk exp(—NZt) + N exp(—Ng 1 t)
k

Compare to a “critical” non-small upper bound N? exp(—NZ2t)

» Eg.: If N = MK then
> Ni-iNeexp(—NZt) S A1t
k

which is small and critical.

> Eg. If Ne = A" then

Z Ny 1Ny exp(—N,ft) 5 t_%(1+l/b)
k

which is subcritical



Smallness of the error, continued

Define the norm

_ 3 _
||a||Y = sup (tl a||aHLoo(11-3) + t2 “HVaHCN(Ta)) < 00,
te(0,1]

a > 0 a small subcriticality parameter.



Smallness of the error, continued

Define the norm
— 3 _
||a||Y = sup (tl a||aHLoc(T3) + t2 aHVaHCN(Ta)) < 00,
te(0,1]

a > 0 a small subcriticality parameter.

Proposition
F%) can be chosen so that

IF?lly <e.
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Construction of the perturbation

» We have produced solutions v(!) and v(?) of
A,v) — Av) 4 Pdivv() @ v = div F?)
v(i)|t:0 = U°.
» We construct a correction w(’) satisfying
o) — Aw) 4 Pdiv(2v) o wl) 4w @ w) = —div F?
w|—g = 0.

» The linear terms obstruct a fixed point method. The difficulty is
that the drift is large in a very weak space Xkr.



Construction of the perturbation (continued)

» To make the fixed point method possible, we use the semigroup for
the linearized NSE around v(/):
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Construction of the perturbation (continued)

» To make the fixed point method possible, we use the semigroup for
the linearized NSE around v(/):

9:S(t,t")a — ASO(t, t)a + 2P div(v)(t) ® SO (¢, t")a) = 0
SOt t') = Pdiva(t').

» This would let us construct w(?) as a fixed point of
t . .
T(w) = / SO(t, ") (FD — w @ w)(t')dt’
0

» It is not clear the semigroup is well-defined all the way back to
t’ = 0. But it does not need to be because W(')|t=0 =0.
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Estimates on S()(t, t') are comparable to e(*=*)APdiv, with some mild
degeneracy as t/t’ — 0.
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Estimates on S()(t, t') are comparable to e(*=*)APdiv, with some mild
degeneracy as t/t’ — 0.
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Prop: Forall i € {1,2}, ae Y, and 0 < ¢t/ <t <1, we have
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> Every k s.t. N2 € [t/, t] contributes ~ NZ2N, > = O(1) to the
integral.



Construction of the perturbation (continued)

Estimates on S()(t, t') are comparable to e(*=*)APdiv, with some mild
degeneracy as t/t’ — 0.
Prop: Forall i € {1,2}, ae Y, and 0 < ¢t/ <t <1, we have

1SD(t, t')al| oo (rs) + (£ — £')Z(|VSD(2, t)allcrersy S (F)HHE2(2/t)) | ally

Proof idea:
» The semigroup degenerates according to

t
exp( [ [VO(3)]E~ o)
t/

> Every k s.t. N2 € [t/, t] contributes ~ NZ2N, > = O(1) to the
integral.

» By making the separation between Ny large,
exp(#{k : N * € [t 1]})

can be made mild.
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Construction of the perturbation (continued)

» Recall the fixed point problem
t
T(w) = / SO(t, ') (FD — w @ w)(t')dt'.
0

» Define the norm

1_a _a
X ‘= Ssup Lo Cr (0.}
Vi (£27 2|Vl + 72|V V]lcx) <

t€(0,1]
» We have the elementary product rule
lw @ wlix < llwl%-

» Combining with ||F|ly < ¢ and the estimates on S(), the fixed point
argument closes in a small ball.



Construction of the perturbation (continued)

» Explicitly,

t

IT(wW)(t)l|e S 737 [ () dt||F —wa w||y
0

t
< b+ / ()" o=<dt/ (Iwl% + | Fllv)
0

St (w| + eo),

etc.



Construction of the perturbation (continued)

» Explicitly,

t

IT(wW)(t)l|e S 737 [ () dt||F —wa w||y
0

t
< b+ / ()" o=<dt/ (Iwl% + | Fllv)
0
St (w| + eo),

etc.

» leading to

IT(W)llx < Iwll + co.



Construction of the perturbation (continued)

» Explicitly,

t

IT(wW)(t)l|e S 737 [ () dt||F —wa w||y
0

t
< b+ / ()" o=<dt/ (Iwl% + | Fllv)
0
St (w| + eo),

etc.

» leading to

IT(W)llx < Iwll + co.



Construction of the perturbation (continued)

» Explicitly,

t

IT(wW)(t)l|e S 737 [ () dt||F —wa w||y
0

t
< b+ / ()" o=<dt/ (Iwl% + | Fllv)
0
St (w| + eo),

etc.

» leading to
IT(w)lIx < llwllk + €o-

» Similarly, T is a contraction on X, so W(l), w® e X exist.



Construction of the perturbation (continued)

» Explicitly,

t

IT(wW)(t)l|e S 737 [ () dt||F —wa w||y
0

t
< b+ / ()" o=<dt/ (Iwl% + | Fllv)
0
St (w| + eo),

etc.

» leading to
IT(w)lIx < llwllk + €o-

» Similarly, T is a contraction on X, so W(l), w® e X exist.
> We also have, ||w(t)||c-1rarz < t*/4
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Concluding the non-uniqueness theorem

» To conclude, one shows that the two solutions are unique:

» Look at (say) time t = Ny . All the parts of both solutions have
dissipated away except the lowest mode of v(1).

» One can show that v() — 4% in WP (p < o0).
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Concluding remarks

» One can compute that the solutions we construct lie in the exact
path space of Koch and Tataru. So the smallness assumption in the
mild solution theory.

» The initial energy is 400 so that solutions are not Leray—Hopf.
Nonetheless, L2 strictly decreases.

» Constructions are also possible for finite energy data where the
energy comes in from infinite wavenumber.

» This might be a flexible mechanism with further applications: 2D,
other equations, other building blocks, etc.



Thank you!




