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Where we left off: non-uniqueness mechanism
▶ Decompose u into frequency shells:

u =
∑
k≥0

uk , supp ûk ∼ Nk , Nk ≪ Nk+1



Dynamics of two adjacent modes

The mechanism requires the following terms to dominate:

∂tuk−1 ≈ −Pk−1 div(uk ⊗ uk)
∂tuk ≈ ∆uk − uk · ∇uk−1



Analogous program: blow-up from a dyadic model

T. Tao, JAMS 2016



Transfer to Navier–Stokes equations
Joint with M. Coiculescu

Define the critical space BMO−1 with the norm

∥U∥BMO−1 := sup
R>0

sup
x0∈R3

(ˆ R2

0

ˆ
B(x0,R)

|et∆U|2dxdt
) 1

2

< ∞

This is the largest space where one can implement small data global
regularity.

Theorem (Koch and Tataru 2001)
There exists ϵ > 0 such that if U0 is divergence-free with ∥u∥BMO−1 < ϵ,
then there exists a global-in-time solution that is regular for t > 0.
Essentially, they show that the Navier–Stokes bilinear operator

u 7→ −
ˆ t

0
e(t−t′)∆P div u(t ′) ⊗ u(t ′)dt ′

is bounded on XKT , the path space corresponding to BMO−1.
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What about large initial data?

Theorem (Coiculescu–P. 2025)
There exists divergence-free initial data U0 ∈ BMO−1 such that the
Navier–Stokes initial value problem admits two distinct global solutions:

u(1), u(2) ∈ XKT ∩ C∞
t,x ((0,∞) × T3) ∩ Ct([0,∞); W −1,p(T3))

for all p < ∞.
▶ The solutions are in the Banach space where Koch–Tataru run the

fixed point argument:

sup
t>0

t 1
2 ∥u(i)(t)∥L∞

x
+ sup

x0, R>0

(
R−3
ˆ R2

0

ˆ
B(R)

|u(i)|2dxdt
)1/2

< ∞

▶ The data is critical and smooth a.e. (but not L2).
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Idea of the proof
▶ The initial data is constructed as a lacunary series u0 =

∑
k≥0 V 0

k
where each V 0

k is (approximately) localized in Fourier space to a
band around |ξ| = Nk

▶ Nk a rapidly growing sequence of frequency scales.
▶ Claim: (V 0

k )k∈N can be chosen such that at each mode k, there
exist two evolutions consistent with the NSE, up to a small error:

▶ Heat-dominated flow: let vk(x , t) the heat flow of the data:

∂tvk − ∆vk = l .o.t.

vk |t=0 = V 0
k .

∥vk(t)∥L∞ decays exponentially on the time scale N−2
k .

▶ Inverse-cascade-dominated flow: let v k(x , t) evolve as:

∂tv k + P∼NkP div vk+1 ⊗ vk+1 = 0
v k |t=0 = V 0

k

with vk+1 as above. By a particular choice of V 0
k+1, we can arrange

that ∥v k(t)∥L∞ decays exponentially to zero on the time scale N−2
k+1.
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Idea (continued)

▶ Further, we claim that those are the only interactions that are
non-perturbative.

▶ Taking for granted that there exist vk , vk as above, we have two
distinct approximate solutions of NSE with data U0 =

∑
k≥0 V 0

k :

v (1) := v0 + v1 + v2 + v3 + · · · , v (2) := v0 + v1 + v2 + v3 + · · · .

▶ The distinctness is immediate from the fact that vk and vk have
different decay rates.
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Heuristic explanation of the non-uniqueness phenomenon

Fix k ≥ 1.

▶ V 0
k+1 is capable of using its nonlinear self-interaction to “annihilate”

the mode below that has initial data V 0
k , and this annihilation

occurs on time scale N−2
k+1.

▶ Likewise, V 0
k is capable of annihilating the mode at V 0

k−1 on time
scale N−2

k .
▶ These two events are incompatible because the kth mode vanishes

on a time scale (i.e., N−2
k+1) much shorter than the time it needs to

act on V 0
k−1 (i.e., N−2

k ).
▶ As a result, the dynamics are only consistent if we alternate

v0 + v1 + v2 + v3 + · · · .
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Constructing the principal parts vk , v k

▶ The initial data V 0
k (x) is (very roughly) of the form

ak(x)θ sin(Nkx · η)

for some fixed η, θ ∈ Z3 with η · θ = 0, where ak(x) is a scalar
coefficient that is principally supported at frequencies |ξ| ≪ Nk .

▶ Then the heat dominated flow should be

vk(x , t) = ak(x)θ sin(Nkx · η) exp(−N2
k |η|2t)

up to various small errors.
▶ Recall we require ∂tvk = −P∼NkP div(vk+1 ⊗ vk+1) which becomes

∂tvk = −P∼NkP div
(

a2
k+1θ ⊗ θ sin2(Nk+1x · η)

)
exp(−2N2

k+1|η|2t)

vk |t=0 = V 0
k .
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Constructing vk , v k , continued

▶ One can directly integrate this and obtain

vk(t) = V 0
k − CN−2

k+1P∼NkP div(a2
k+1θ ⊗ θ)(1 − exp(−2N2

k+1|η|2t))

▶ Recall our claim that ∥vk(t)∥L∞ decays on time scale N−2
k+1.

▶ This is achievable if ak+1 is chosen so that

V 0
k = CN−2

k+1P∼NkP div(a2
k+1θ ⊗ θ).

▶ This is not quite possible, but it is analogous to a problem
encountered by Nash (1954), and modern works in convex
integration.

▶ Replace the simple ansatz V 0
k = ak(x)θ sin(Nkx · η) with one based

on a Mikado flow: ∑
i

ai,kθi sin(Nkx · ηi)
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Constructing vk , v k , continued

▶ Write V 0
k = −P∆ψ0

k . This is both divergence-free, and in the form
div(Dψk) for Dψk a symmetric tensor.

▶ Use the “Nash lemma”: any positive definite symmetric tensor can
be decomposed as ∑

i
a2

i,k+1θi ⊗ θi ,

so one can solve

V 0
k = P div Dψ0

k = CN−2
k+1P∼NkP div(a2

k+1θ ⊗ θ).

▶ This creates a recursive dependence between the modes: V 0
k

determines V 0
k+1. Roughly,

∥V 0
k+1∥L∞ ≈ C1Nk+1

(
∥V 0

k ∥L∞

Nk

) 1
2

.
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Constructing vk , v k , continued

▶ The relation becomes

∥V 0
k+1∥L∞

Nk+1
∼
(

∥V 0
k ∥L∞

Nk

) 1
2

.

▶ This leads to

∥V 0
k ∥L∞ ∼ Nk

(
C ∥V 0

0 ∥L∞

N0

)2−k

︸ ︷︷ ︸
∼1

▶ Two key observations:

▶ We do not lose constants =⇒ V 0 lies in the critical space B−1
∞,∞:

∥V 0∥B−1
∞,∞

:= sup
N

N−1∥PNV 0∥∞ ∼ 1

▶ The construction cannot produce small data.



Constructing vk , v k , continued

▶ The relation becomes

∥V 0
k+1∥L∞

Nk+1
∼
(

∥V 0
k ∥L∞

Nk

) 1
2

.

▶ This leads to

∥V 0
k ∥L∞ ∼ Nk

(
C ∥V 0

0 ∥L∞

N0

)2−k

︸ ︷︷ ︸
∼1

▶ Two key observations:

▶ We do not lose constants =⇒ V 0 lies in the critical space B−1
∞,∞:

∥V 0∥B−1
∞,∞

:= sup
N

N−1∥PNV 0∥∞ ∼ 1

▶ The construction cannot produce small data.



Constructing vk , v k , continued

▶ The relation becomes

∥V 0
k+1∥L∞

Nk+1
∼
(

∥V 0
k ∥L∞

Nk

) 1
2

.

▶ This leads to

∥V 0
k ∥L∞ ∼ Nk

(
C ∥V 0

0 ∥L∞

N0

)2−k

︸ ︷︷ ︸
∼1

▶ Two key observations:

▶ We do not lose constants =⇒ V 0 lies in the critical space B−1
∞,∞:

∥V 0∥B−1
∞,∞

:= sup
N

N−1∥PNV 0∥∞ ∼ 1

▶ The construction cannot produce small data.



Constructing vk , v k , continued

▶ The relation becomes

∥V 0
k+1∥L∞

Nk+1
∼
(

∥V 0
k ∥L∞

Nk

) 1
2

.

▶ This leads to

∥V 0
k ∥L∞ ∼ Nk

(
C ∥V 0

0 ∥L∞

N0

)2−k

︸ ︷︷ ︸
∼1

▶ Two key observations:
▶ We do not lose constants =⇒ V 0 lies in the critical space B−1

∞,∞:

∥V 0∥B−1
∞,∞

:= sup
N

N−1∥PNV 0∥∞ ∼ 1

▶ The construction cannot produce small data.



Constructing vk , v k , continued

▶ The relation becomes

∥V 0
k+1∥L∞

Nk+1
∼
(

∥V 0
k ∥L∞

Nk

) 1
2

.

▶ This leads to

∥V 0
k ∥L∞ ∼ Nk

(
C ∥V 0

0 ∥L∞

N0

)2−k

︸ ︷︷ ︸
∼1

▶ Two key observations:
▶ We do not lose constants =⇒ V 0 lies in the critical space B−1

∞,∞:

∥V 0∥B−1
∞,∞

:= sup
N

N−1∥PNV 0∥∞ ∼ 1

▶ The construction cannot produce small data.



Building blocks of the construction

▶ Pick a small δ0 > 0 to be the pipe width, say 1/1000.
▶ Can place six periodic “pipes” of width δ0 pointing in the directions
θ1, . . . , θ6 in T3.

▶ For an even φ ∈ C∞
c ([0, 1)), define the pipe profiles

φ̃j(x) = φ(δ−1
0 dT3(x , ℓj)).

↗ θj



Building blocks of the construction, continued

▶ Let ηj ⊥ θj be integers.
▶ Sequence of frequencies: M0 ≪ N0 ≪ M1 ≪ N1 ≪ M2 ≪ · · · . Nk is

the oscillation frequency, M−1
k is the period.

▶ Then define the Mikado flow potentials:

Ψ0
j,k(x) = N−2

k φ̃j(Mkx) sin(Nk(x − xj) · ηj)θj

as well as the (approximately) heat evolved potential

Ψj,k(x , t) = Ψ0
j,k(x) exp(−|ηj |2N2

k t).

▶ Then the velocity will be close to

−∆Ψ0
j,k ≈ |ηj |2φ̃j(Mkx) sin(Nk(x − xj) · ηj)θj



Building blocks of the construction, continued

▶ Let ηj ⊥ θj be integers.
▶ Sequence of frequencies: M0 ≪ N0 ≪ M1 ≪ N1 ≪ M2 ≪ · · · . Nk is

the oscillation frequency, M−1
k is the period.

▶ Then define the Mikado flow potentials:

Ψ0
j,k(x) = N−2

k φ̃j(Mkx) sin(Nk(x − xj) · ηj)θj

as well as the (approximately) heat evolved potential

Ψj,k(x , t) = Ψ0
j,k(x) exp(−|ηj |2N2

k t).

▶ Then the velocity will be close to

−∆Ψ0
j,k ≈ |ηj |2φ̃j(Mkx) sin(Nk(x − xj) · ηj)θj



Defining the initial data

U0 =
∑
k≥0

v0
k

where
v0

k (x) = ϕk ∗ curl curl
∑

j
aj,k(x)Ψ0

j,k(x , t)

▶ curl curl Ψ0
j,k is the fast oscillating part, solving Navier–Stokes to

leading order
▶ aj,k oscillates much more slowly, designed carefully so that

∂tvk + P∼NkP div vk+1 ⊗ vk+1 ≈ 0, vk |t=0 = curl curlψ0
k .

▶ aj,k is chosen to be supported only on supp v0
k−1.
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Upgrading the regularity

▶ If ξk ∈ Z3 is lacunary and |ck | ∼ |ξk |, then∑
k≥0

cke ix ·ξk ∈ B−1
∞,∞ \ BMO−1

▶ But if χk are bump functions with
∑

k | suppχk | < ∞,∑
k≥0

cke ix ·ξkχk(x) ∈ BMO−1

so we just need a small amount of “intermittency”
▶ By making the pipes (boundedly) narrow and supp vk ⊂ supp vk−1,

we obtain

| supp v0
k | ≲ 2−k

which is sufficient.
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Defining the principal parts
▶ The full solutions u(1) and u(2) will be the sum of

▶ an explicit “principal part” v (i),
▶ and a non-explicit small corrector w (i)

▶ We define
v (1) = v0 + v1 + v2 + v3 + · · ·

and
v (2) = v0 + v1 + v2 + v3 + · · ·

where vk and vk are two different continuations of V 0
k .

▶ We have the heat-driven part

vk(t, x) = ϕk ∗ curl curl
∑

j
aj,k(x)Ψj,k(x , t),

and
▶ the inverse cascade-driven part

vk(t, x) = 1
2N−2

k+1P div
∑

j
Aj,k+1|ηj |2e−2|ηj |2N2

k+1ta2
j,k+1(x)θj ⊗ θj .
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Smallness of the error
▶ The above construction produces solutions v (1) and v (2) of

∂tv (i) − ∆v (i) + P div v (i) ⊗ v (i) = div F (i), v (i)|t=0 = U0.

▶ Claim: F (i) can be chosen so that it contains terms of size:∑
k

Nk−1Nk exp(−N2
k t) + N2

k exp(−N2
k+1t)

Compare to a “critical” non-small upper bound N2
k exp(−N2

k t)
▶ E.g.: If Nk = λk , then∑

k
Nk−1Nk exp(−N2

k t) ≲ λ−1t−1

which is small and critical.
▶ E.g.: If Nk = λbk , then∑

k
Nk−1Nk exp(−N2

k t) ≲ t− 1
2 (1+1/b)

which is subcritical
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Smallness of the error, continued

Define the norm

∥a∥Y := sup
t∈(0,1]

(t1−α∥a∥L∞(T3) + t 3
2 −α∥∇a∥Cκ(T3)) < ∞,

α > 0 a small subcriticality parameter.

Proposition
F (i) can be chosen so that

∥F (i)∥Y ≤ ϵ.



Smallness of the error, continued

Define the norm

∥a∥Y := sup
t∈(0,1]

(t1−α∥a∥L∞(T3) + t 3
2 −α∥∇a∥Cκ(T3)) < ∞,

α > 0 a small subcriticality parameter.

Proposition
F (i) can be chosen so that

∥F (i)∥Y ≤ ϵ.



Construction of the perturbation

▶ We have produced solutions v (1) and v (2) of

∂tv (i) − ∆v (i) + P div v (i) ⊗ v (i) = div F (i)

v (i)|t=0 = U0.

▶ We construct a correction w (i) satisfying

∂tw (i) − ∆w (i) + P div(2v (i) ⊙ w (i) + w (i) ⊗ w (i)) = − div F (i)

w (i)|t=0 = 0.

▶ The linear terms obstruct a fixed point method. The difficulty is
that the drift is large in a very weak space XKT .



Construction of the perturbation

▶ We have produced solutions v (1) and v (2) of

∂tv (i) − ∆v (i) + P div v (i) ⊗ v (i) = div F (i)

v (i)|t=0 = U0.

▶ We construct a correction w (i) satisfying

∂tw (i) − ∆w (i) + P div(2v (i) ⊙ w (i) + w (i) ⊗ w (i)) = − div F (i)

w (i)|t=0 = 0.

▶ The linear terms obstruct a fixed point method. The difficulty is
that the drift is large in a very weak space XKT .



Construction of the perturbation

▶ We have produced solutions v (1) and v (2) of

∂tv (i) − ∆v (i) + P div v (i) ⊗ v (i) = div F (i)

v (i)|t=0 = U0.

▶ We construct a correction w (i) satisfying

∂tw (i) − ∆w (i) + P div(2v (i) ⊙ w (i) + w (i) ⊗ w (i)) = − div F (i)

w (i)|t=0 = 0.

▶ The linear terms obstruct a fixed point method. The difficulty is
that the drift is large in a very weak space XKT .



Construction of the perturbation (continued)

▶ To make the fixed point method possible, we use the semigroup for
the linearized NSE around v (i):

∂tS(i)(t, t ′)a − ∆S(i)(t, t ′)a + 2P div(v (i)(t) ⊙ S(i)(t, t ′)a) = 0
S(i)(t ′, t ′) = P div a(t ′).

▶ This would let us construct w (i) as a fixed point of

T (w) =
ˆ t

0
S(i)(t, t ′)(F (i) − w ⊗ w)(t ′)dt ′

▶ It is not clear the semigroup is well-defined all the way back to
t ′ = 0. But it does not need to be because w (i)|t=0 = 0.
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Construction of the perturbation (continued)
Estimates on S(i)(t, t ′) are comparable to e(t−t′)∆P div, with some mild
degeneracy as t/t ′ → 0.

Prop: For all i ∈ {1, 2}, a ∈ Y , and 0 < t ′ ≤ t ≤ 1, we have

∥S(i)(t, t ′)a∥L∞(T3) + (t − t ′) 1
2 ∥∇S(i)(t, t ′)a∥Cκ(T3) ≲ (t ′)−1+αt− 1

2 (t/t ′)ϵ∥a∥Y .

Proof idea:
▶ The semigroup degenerates according to

exp(
ˆ t

t′
∥v (i)(s)∥2

L∞ds)

▶ Every k s.t. N−2
k ∈ [t ′, t] contributes ∼ N2

k N−2
k = O(1) to the

integral.
▶ By making the separation between Nk large,

exp(#{k : N−2
k ∈ [t ′, t]})

can be made mild.
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Proof idea:
▶ The semigroup degenerates according to

exp(
ˆ t

t′
∥v (i)(s)∥2

L∞ds)

▶ Every k s.t. N−2
k ∈ [t ′, t] contributes ∼ N2

k N−2
k = O(1) to the

integral.
▶ By making the separation between Nk large,

exp(#{k : N−2
k ∈ [t ′, t]})

can be made mild.



Construction of the perturbation (continued)

▶ Recall the fixed point problem

T (w) =
ˆ t

0
S(i)(t, t ′)(F (i) − w ⊗ w)(t ′)dt ′.

▶ Define the norm

∥V ∥X := sup
t∈(0,1]

(t 1
2 − α

2 ∥V ∥L∞ + t1− α
2 ∥∇V ∥Cκ) < ∞.

▶ We have the elementary product rule

∥w ⊗ w∥X ≲ ∥w∥2
Y .

▶ Combining with ∥F∥Y ≤ ϵ and the estimates on S(i), the fixed point
argument closes in a small ball.
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Construction of the perturbation (continued)

▶ Explicitly,

∥T (w)(t)∥L∞ ≲ t− 1
2 +ϵ

ˆ t

0
(t ′)−1+α−ϵdt ′∥F − w ⊗ w∥Y

≲ t− 1
2 +ϵ

ˆ t

0
(t ′)−1+α−ϵdt ′(∥w∥2

X + ∥F∥Y )

≲ t− 1
2 +α(∥w∥2

X + ϵ0),

etc.

▶ leading to

∥T (w)∥X ≲ ∥w∥2
X + ϵ0.

▶ Similarly, T is a contraction on X , so w (1), w (2) ∈ X exist.
▶ We also have, ∥w(t)∥C−1+α/2 ≲ tα/4.
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Concluding the non-uniqueness theorem

▶ To conclude, one shows that the two solutions are unique:

▶ Look at (say) time t = N−2
0 . All the parts of both solutions have

dissipated away except the lowest mode of v (1).
▶ One can show that v (i) → u0 in W −1,p (p < ∞).
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Concluding remarks

▶ One can compute that the solutions we construct lie in the exact
path space of Koch and Tataru. So the smallness assumption in the
mild solution theory.

▶ The initial energy is +∞ so that solutions are not Leray–Hopf.
Nonetheless, L2 strictly decreases.

▶ Constructions are also possible for finite energy data where the
energy comes in from infinite wavenumber.

▶ This might be a flexible mechanism with further applications: 2D,
other equations, other building blocks, etc.
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Thank you!


