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divu=20
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» Unknownsare u:Q - R3andp: Q = R
» Given initial data Uy with div Uy = 0.

» Guiding question: What class of initial data and notion of “solution”
guarantees existence, uniqueness, regularity?
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» Sufficiently regular solutions obey the energy equality

2
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» The Navier—Stokes has a natural scaling symmetry: if u(t,x) is a
solution of NSE on R3 with initial data u°, then

un(x, t) = Au(Ax, \2t),  ud(x) = Al(\x)

is also a solution for any A > 0.
> A space X is critical if ||ud]|x = [|u°]|x.
> Natural examples of critical spaces: H2, L3, [3*, B, 25%7 (p > 3)

» There is small data global existence from data in all these spaces
(Fujita—Kato '64, Kato '84, Cannone '94, Planchon '98)
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Navier—Stokes equations—basic properties

» A space X is subcritical if ||ud]|x = A°||u°||x, ¢ > 0.
» Examples: L=, H!, etc.
» Small scales are well-controlled — typically expect local
well-posedness.
» A space X is supercritical if ||ud | x = A°||u®||x, ¢ < 0.
» Example: the energy space for initial data L?
» No control over small scales — wild behavior possible.
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Navier—Stokes equations—Leray’s picture

Leray 1934:
Local theory Leray weak solutions
» Local well-posedness when P l.e., weak solutions obeying
data is in a subcritical space an energy inequality
(e.g. LP, p>3) » Global existence for any L2
» Solutions are smooth for data
positive times » Weak-strong uniqueness
» Finite time blow up might > Global regularity?
occur

» Uniqueness?
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Goal of this work:

» Construct two weak solutions u;, us of 3D Navier—Stokes such that:
» they share the same initial data:

(0, x) = (0, x) = U°(x),
P the initial data has finite energy:
U el?
P energy inequality is obeyed:

1 t 1
EHu(t)ng +/ [V u(s)|3ds < 5Hu(to)u% Vt > to, ae. to > 0.
to

» Paradox: known approaches to this problem would give a solution
with even stronger properties:
> Initial data U° is critical (e.g., L>*, BMO™")
» 1 is a smooth solution for t > 0
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Approach #1: non-uniqueness by instability

Idea of Jia-Sverak (2013):

» \Write Navier—Stokes in the self-similar coordinates & = X/t1/2,
7 = log t with the ansatz

u(t,x) =t 72U, 7)

» The question of non-uniqueness for u at t = 0 is transferred to U at
T =—00

» Find a steady solution U(&,7) = U(&) that is nonlinearly unstable in
the self-similar dynamics

» Then one can write down infinitely-many distinct solutions:

> the stationary (in self-similar coordinates) solution U
» solutions on the unstable manifold of U (i.e., converging
exponentially to U as 7 — —o0)
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Non-uniqueness by instability cont'd

» There is a natural method for constructing such an unstable profile
(both mathematically and numerically):
» U obeys a parabolic equation with data encapsulated by the
asymptotics as |£] — oo
» Modulate the size of the data at infinity with a parameter o > 0:

U(©) = raerlel™ + o(l€ ™)
» When o < 1, there is a unique smooth solution. (GWP for small

data in [>")
» Conjectured scenario: as o increases, the solution set bifurcates, an
eigenvalue crosses the imaginary axis.



Approach #1: non-uniqueness by instability
This scenario is supported by numerics: (Guillod—éverék, JMFM 2023)

Azimuthal component of the non-symmetric solution: |x|Py(U, + V)

o =200 o =250 & =300

36 200 40 250.0 44 300
150 187.5
0 100 0 1250 0
50 62.5
0.0

350.0

262.5
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Non-uniqueness by instability (cont'd)

» Rigorous justification is challenging
» Vishik (2018): these problems can be relaxed by introducing a force

» Albritton-Brué-Colombo (2021): non-unique Leray solutions of
forced Navier—Stokes from critical initial data
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» A very flexible method for constructing wild weak solutions of fluid
equations (De Lellis—=Székelyhidi 2009)

» For Navier-Stokes: Buckmaster—Vicol 2017,
Buckmaster—Colombo—Vicol 2018, Cheskidov—Luo 2020-21,
Cheskidov—Zeng—Zhang 2025, etc.

» Current techniques seem very far from reaching the energy space
L2 N [2HE.
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> Let Ny = No\¥ be a sequence of frequency scales (A > 1). Consider
a Littlewood-Paley decomposition of a solution:

un~ ZPNku'

k>1

» We model the energy distribution across frequency shells: let the
scalar functions Xx(t) model the L2 of the velocity in the kth shell:

X~ [[Prul 2

» The Navier-Stokes nonlinearity transfers energy between the modes.
Accounting for the nearest-neighbor interactions:

Xie = =NiXie + e (Ng_ X7 — Ng XiXiey1)
+o (NP X1 Xk — NgXZ41)

» This model has an analogous theory of Leray solutions which exhibit
weak-strong uniqueness.
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Breaking a discrete scaling symmetry (cont’d)
» The scenario is captured by the Obukhov model (¢; =0, ¢; = 1):
Xi = —NZ Xk + N X1 X — NEXZ 4
Xi(0) = Xg
» There is an energy identity for regular solutions:
1 2 ‘ 232 _ 1 02
Sy [ - 1300
k>0 k>0 k>0
» There is a discrete scaling symmetry:

X0 AC=Inx0 X (1) = ACTNX (A2"t), VneZ

> The parameter a € [1, 2] captures the spatial localization of the
velocity at small scales (“intermittency”)
P> o < 2: energy is subcritical (local regularity)
» o = 2: energy critical
» «a > 2: energy supercritical (ill-posedness?)
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Breaking a discrete scaling symmetry (cont’d)

» Suppose X is now indexed by k € Z and:
» Data X° is invariant under scaling by A > 1:

X(0) = A?="X, _(0), VneZ
» Solution X(t) invariant under scaling by multiples of A* (but not \!):

Xe(t) = Q)X 5n((A2)?"t), VneZ

> It follows that X° gives rise to distinct solutions: X(t) and
A2=YLX()N%t) where L is the left shift operator.

» In practice, the solutions are not exactly discretely self-similar, but
are nearly so (and converge to exactly SS as A — o).

» Additional symmetry breaking is necessary to get a finite energy
solution. (Truncation of low frequencies.)
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Non-uniqueness result for the Obukhov model

In the model case, we can solve the full problem.

Theorem (P. 2024)

For any o > 2, there exists initial data X° € Ns-o_oH® that gives rise to
two distinct Leray solutions of the Obukhov system.

Remarks:
» The solutions decay exponentially in N for t > 0 and are positive.

» \We have the stronger critical bound [ Xo x| < N,:O‘+2 corresponding
to data in B,;éf(a_l)/p.
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Xi = —NgXe + Ng_y Xe—1 X — Ng X2y, k>1
» Consider the system for just two adjacent modes:

Xk—l = (*Nf,l ol N[((172Xk72)Xk—1 - NI?—IX‘E
X = = N2Xy + NE_ Xio1 X — NgXZ

» Objective: the main dynamics of (Xx—_1, Xk) happen on time scale
Nk_2 and then then dissipate away.
» If one can achieve the objective, then on this time scale,

» Xi_» is roughly constant, and
» Xii1 is exponentially small.
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Idea of the construction

We have (approximately, on a suitable time scale) the decoupled system

Xi—1 = bXx_1 — N2 X?
Xk = —N,%Xk aF N;(xlek,;[Xk

4

(k)
~

u(k—-1)
For data on the stable manifold, (Xk_1, Xx) — (0,0) on timescale N, 2.
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Idea of the construction

u(k-1)

» This configuration can be sustained for (Xx_1, Xx) across all k even,
or k odd.

» In other words, there is a family of data for which (X2j_1, X))
annihilate, and another for which (X3, X5;+1) annihilate.

» These families have an intersection, so there exists data for which
either behavior can happen.
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Transfer to the Navier—Stokes equations?

» Consider the actual NSE nonlinearity at frequency Ny:
Pon, divu® u.
» The Obukhov model captures the interactions
(Pon,u) - V(Pup,_,u)
and
P, div(Pep,. ) ® (P, U)-

» To achieve the same mechanism, one needs to find data so that
dominant interactions in the NSE are the following:

Ortnn,_, = —Pun,_, div(uon, ® uop,)

Orup, = Auoy, — Uup, - Vi,
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O, = —Pop,_, div(uwn, @ un,)

Ortuopn, = Auoy, — Uy, - Vuop,

» Good news: for these particular nonlinear interactions, N, > Ny _1
is permitted.

» More good news: it is well-understood that u..p, can be chosen so
that Pop,_, div(Pop,u) ® (Pwn,u) behaves in a prescribed way.
(convex integration)

» Bad news: it is not so clear how to capture —u.p, - Vuop,_, in the
full PDE
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Transfer to Navier—Stokes equations

Joint with M. Coiculescu

Define the critical space BMO~! with the norm

1

R? 2
[Ullsmo-1 = sup sup / / |2 U|2dxdt | < oo
R>0x€R3 \J0 JB(x,R)

This is the /argest space where one can implement small data global
regularity.

Theorem (Koch and Tataru 2001)

There exists € > 0 such that if U° is divergence-free with ||u|gpmo-1 < €,
then there exists a global-in-time solution that is regular for t > 0.

Essentially, they show that the Navier-Stokes bilinear operator
t ’
U —/ AP div u(t') @ u(t')dt’
0

is bounded on Xk, the path space corresponding to BMO™!.
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What about large initial data?

Theorem (Coiculescu—P. 2025)

There exists divergence-free initial data U° € BMO™! such that the
Navier-Stokes initial value problem admits two distinct global solutions:

u®, u® e Xur N C23((0, 00) x T3) N ([0, 00); WHP(T3))
for all p < co.

» The solutions are in the Banach space where Koch—Tataru run the
fixed point argument:

2 1/2
sup t2]|u)(t)|| . + sup R_3/ / |uD |2 dxdt < 00
>0 © x,R>0 0 JB(R)

» The data is critical and smooth a.e. (but not L?).



Thank you!



