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Navier–Stokes equations

▶ Incompressible Navier–Stokes equations on Ω = R3 or T3

∂tu − ∆u + div u ⊗ u + ∇p = 0
div u = 0

u(x , 0) = U0(x)

▶ Unknowns are u : Ω → R3 and p : Ω → R
▶ Given initial data U0 with div U0 = 0.

▶ Guiding question: What class of initial data and notion of “solution”
guarantees existence, uniqueness, regularity?
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Navier–Stokes equations—basic properties

▶ Sufficiently regular solutions obey the energy equality
ˆ

Ω

|u(t)|2
2 dx +

ˆ t

0

ˆ
Ω

|∇u|2dxdt =
ˆ

Ω

|U0|2

2 dx

▶ The Navier–Stokes has a natural scaling symmetry: if u(t, x) is a
solution of NSE on R3 with initial data u0, then

uλ(x , t) = λu(λx , λ2t), u0
λ(x) = λu0(λx)

is also a solution for any λ > 0.
▶ A space X is critical if ∥u0

λ∥X = ∥u0∥X .

▶ Natural examples of critical spaces: H 1
2 , L3, L3,w , B−1+3/p

p,∞ (p > 3)
▶ There is small data global existence from data in all these spaces

(Fujita–Kato ’64, Kato ’84, Cannone ’94, Planchon ’98)



Navier–Stokes equations—basic properties

▶ Sufficiently regular solutions obey the energy equality
ˆ

Ω

|u(t)|2
2 dx +

ˆ t

0

ˆ
Ω

|∇u|2dxdt =
ˆ

Ω

|U0|2

2 dx

▶ The Navier–Stokes has a natural scaling symmetry: if u(t, x) is a
solution of NSE on R3 with initial data u0, then

uλ(x , t) = λu(λx , λ2t), u0
λ(x) = λu0(λx)

is also a solution for any λ > 0.

▶ A space X is critical if ∥u0
λ∥X = ∥u0∥X .

▶ Natural examples of critical spaces: H 1
2 , L3, L3,w , B−1+3/p

p,∞ (p > 3)
▶ There is small data global existence from data in all these spaces

(Fujita–Kato ’64, Kato ’84, Cannone ’94, Planchon ’98)



Navier–Stokes equations—basic properties

▶ Sufficiently regular solutions obey the energy equality
ˆ

Ω

|u(t)|2
2 dx +

ˆ t

0

ˆ
Ω

|∇u|2dxdt =
ˆ

Ω

|U0|2

2 dx

▶ The Navier–Stokes has a natural scaling symmetry: if u(t, x) is a
solution of NSE on R3 with initial data u0, then

uλ(x , t) = λu(λx , λ2t), u0
λ(x) = λu0(λx)

is also a solution for any λ > 0.
▶ A space X is critical if ∥u0

λ∥X = ∥u0∥X .

▶ Natural examples of critical spaces: H 1
2 , L3, L3,w , B−1+3/p

p,∞ (p > 3)
▶ There is small data global existence from data in all these spaces

(Fujita–Kato ’64, Kato ’84, Cannone ’94, Planchon ’98)



Navier–Stokes equations—basic properties

▶ Sufficiently regular solutions obey the energy equality
ˆ

Ω

|u(t)|2
2 dx +

ˆ t

0

ˆ
Ω

|∇u|2dxdt =
ˆ

Ω

|U0|2

2 dx

▶ The Navier–Stokes has a natural scaling symmetry: if u(t, x) is a
solution of NSE on R3 with initial data u0, then

uλ(x , t) = λu(λx , λ2t), u0
λ(x) = λu0(λx)

is also a solution for any λ > 0.
▶ A space X is critical if ∥u0

λ∥X = ∥u0∥X .
▶ Natural examples of critical spaces: H 1

2 , L3, L3,w , B−1+3/p
p,∞ (p > 3)

▶ There is small data global existence from data in all these spaces
(Fujita–Kato ’64, Kato ’84, Cannone ’94, Planchon ’98)



Navier–Stokes equations—basic properties

▶ Sufficiently regular solutions obey the energy equality
ˆ

Ω

|u(t)|2
2 dx +

ˆ t

0

ˆ
Ω

|∇u|2dxdt =
ˆ

Ω

|U0|2

2 dx

▶ The Navier–Stokes has a natural scaling symmetry: if u(t, x) is a
solution of NSE on R3 with initial data u0, then

uλ(x , t) = λu(λx , λ2t), u0
λ(x) = λu0(λx)

is also a solution for any λ > 0.
▶ A space X is critical if ∥u0

λ∥X = ∥u0∥X .
▶ Natural examples of critical spaces: H 1

2 , L3, L3,w , B−1+3/p
p,∞ (p > 3)

▶ There is small data global existence from data in all these spaces
(Fujita–Kato ’64, Kato ’84, Cannone ’94, Planchon ’98)



Navier–Stokes equations—basic properties

▶ A space X is subcritical if ∥u0
λ∥X = λc∥u0∥X , c > 0.

▶ Examples: L∞, H1, etc.
▶ Small scales are well-controlled → typically expect local

well-posedness.
▶ A space X is supercritical if ∥u0

λ∥X = λc∥u0∥X , c < 0.

▶ Example: the energy space for initial data L2

▶ No control over small scales → wild behavior possible.
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Navier–Stokes equations—Leray’s picture

Leray 1934:
Local theory

▶ Local well-posedness when
data is in a subcritical space
(e.g. Lp, p > 3)

▶ Solutions are smooth for
positive times

▶ Finite time blow up might
occur

Leray weak solutions
▶ I.e., weak solutions obeying

an energy inequality
▶ Global existence for any L2

data
▶ Weak-strong uniqueness
▶ Global regularity?
▶ Uniqueness?
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Goal of this work:

▶ Construct two weak solutions u1, u2 of 3D Navier–Stokes such that:

▶ they share the same initial data:

u1(0, x) = u2(0, x) = U0(x),

▶ the initial data has finite energy:

U0 ∈ L2,

▶ energy inequality is obeyed:

1
2∥u(t)∥2

2 +
ˆ t

t0

∥∇u(s)∥2
2ds ≤ 1

2∥u(t0)∥2
2 ∀t ≥ t0, a.e. t0 ≥ 0.

▶ Paradox: known approaches to this problem would give a solution
with even stronger properties:

▶ Initial data U0 is critical (e.g., L3,w , BMO−1)
▶ u is a smooth solution for t > 0
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Approach #1: non-uniqueness by instability

Idea of Jia-Sverak (2013):
▶ Write Navier–Stokes in the self-similar coordinates ξ = x/t1/2,

τ = log t with the ansatz

u(t, x) = t−1/2U(ξ, τ)

▶ The question of non-uniqueness for u at t = 0 is transferred to U at
τ = −∞

▶ Find a steady solution U(ξ, τ) = U(ξ) that is nonlinearly unstable in
the self-similar dynamics

▶ Then one can write down infinitely-many distinct solutions:

▶ the stationary (in self-similar coordinates) solution U
▶ solutions on the unstable manifold of U (i.e., converging

exponentially to U as τ → −∞)
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Non-uniqueness by instability cont’d

▶ There is a natural method for constructing such an unstable profile
(both mathematically and numerically):

▶ U obeys a parabolic equation with data encapsulated by the
asymptotics as |ξ| → ∞

▶ Modulate the size of the data at infinity with a parameter σ > 0:

U(ξ) = σa( ξ

|ξ| )|ξ|−1 + o(|ξ|−1)

▶ When σ ≪ 1, there is a unique smooth solution. (GWP for small
data in L3,w )

▶ Conjectured scenario: as σ increases, the solution set bifurcates, an
eigenvalue crosses the imaginary axis.
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Approach #1: non-uniqueness by instability
This scenario is supported by numerics: (Guillod-Šverák, JMFM 2023)



Non-uniqueness by instability (cont’d)

▶ Rigorous justification is challenging

▶ Vishik (2018): these problems can be relaxed by introducing a force
▶ Albritton-Brué-Colombo (2021): non-unique Leray solutions of

forced Navier–Stokes from critical initial data
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Approach #2: convex integration

▶ A very flexible method for constructing wild weak solutions of fluid
equations (De Lellis–Székelyhidi 2009)

▶ For Navier–Stokes: Buckmaster–Vicol 2017,
Buckmaster–Colombo–Vicol 2018, Cheskidov–Luo 2020-21,
Cheskidov–Zeng–Zhang 2025, etc.

▶ Current techniques seem very far from reaching the energy space
L∞

t L2
x ∩ L2

t H1
x .
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Approach #3: breaking a discrete scaling symmetry

▶ Let Nk = N0λk be a sequence of frequency scales (λ > 1). Consider
a Littlewood-Paley decomposition of a solution:

u ∼
∑
k≥1

PNk u.

▶ We model the energy distribution across frequency shells: let the
scalar functions Xk(t) model the L2 of the velocity in the kth shell:

Xk ∼ ∥PNk u∥L2

▶ The Navier-Stokes nonlinearity transfers energy between the modes.
Accounting for the nearest-neighbor interactions:

Ẋk = −N2
k Xk + c1

(
Nα

k−1X 2
k−1 − Nα

k XkXk+1
)

+c2
(
Nα

k−1Xk−1Xk − Nα
k X 2

k+1
)

▶ This model has an analogous theory of Leray solutions which exhibit
weak-strong uniqueness.
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Breaking a discrete scaling symmetry (cont’d)
▶ The scenario is captured by the Obukhov model (c1 = 0, c2 = 1):
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▶ There is an energy identity for regular solutions:
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▶ There is a discrete scaling symmetry:

X 0
k 7→ λ(2−α)nX 0

k−n, Xk(t) 7→ λ(2−α)nXk−n(λ2nt), ∀n ∈ Z

▶ The parameter α ∈ [1, 5
2 ] captures the spatial localization of the

velocity at small scales (“intermittency”)

▶ α < 2: energy is subcritical (local regularity)
▶ α = 2: energy critical
▶ α > 2: energy supercritical (ill-posedness?)
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Breaking a discrete scaling symmetry (cont’d)

▶ Suppose X is now indexed by k ∈ Z and:

▶ Data X 0 is invariant under scaling by λ > 1:

Xk(0) = λ(2−α)nXk−n(0), ∀n ∈ Z

▶ Solution X(t) invariant under scaling by multiples of λ2 (but not λ1):

Xk(t) = (λ2)(2−α)nXk−2n((λ2)2nt), ∀n ∈ Z

▶ It follows that X 0 gives rise to distinct solutions: X (t) and
λ2−αLX (λ2t) where L is the left shift operator.

▶ In practice, the solutions are not exactly discretely self-similar, but
are nearly so (and converge to exactly SS as λ → ∞).

▶ Additional symmetry breaking is necessary to get a finite energy
solution. (Truncation of low frequencies.)
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Non-uniqueness result for the Obukhov model

In the model case, we can solve the full problem.

Theorem (P. 2024)
For any α > 2, there exists initial data X 0 ∈ ∩s<α−2Hs that gives rise to
two distinct Leray solutions of the Obukhov system.
Remarks:
▶ The solutions decay exponentially in Nk for t > 0 and are positive.
▶ We have the stronger critical bound |X0,k | ≲ N−α+2

k corresponding
to data in B−1+2(α−1)/p

p,∞ .
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Idea of the construction

Ẋk = −N2
k Xk + Nα

k−1Xk−1Xk − Nα
k X 2

k+1, k ≥ 1

▶ Consider the system for just two adjacent modes:

Ẋk−1 = (−N2
k−1 + Nα

k−2Xk−2)Xk−1 − Nα
k−1X 2

k

Ẋk = −N2
k Xk + Nα

k−1Xk−1Xk − Nα
k X 2

k+1

▶ Objective: the main dynamics of (Xk−1, Xk) happen on time scale
N−2

k and then then dissipate away.
▶ If one can achieve the objective, then on this time scale,

▶ Xk−2 is roughly constant, and
▶ Xk+1 is exponentially small.
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Idea of the construction

We have (approximately, on a suitable time scale) the decoupled system

Ẋk−1 = bXk−1 − Nα
k−1X 2

k

Ẋk = −N2
k Xk + Nα

k−1Xk−1Xk

For data on the stable manifold, (Xk−1, Xk) → (0, 0) on timescale N−2
k .
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Idea of the construction

▶ This configuration can be sustained for (Xk−1, Xk) across all k even,
or k odd.

▶ In other words, there is a family of data for which (X2j−1, X2j)
annihilate, and another for which (X2j , X2j+1) annihilate.

▶ These families have an intersection, so there exists data for which
either behavior can happen.
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Transfer to the Navier–Stokes equations?

▶ Consider the actual NSE nonlinearity at frequency Nk :

P∼Nk div u ⊗ u.

▶ The Obukhov model captures the interactions

(P∼Nk u) · ∇(P∼Nk−1u)

and

P∼Nk div(P∼Nk+1u) ⊗ (P∼Nk+1u).

▶ To achieve the same mechanism, one needs to find data so that
dominant interactions in the NSE are the following:

∂tu∼Nk−1 ≈ −P∼Nk−1 div(u∼Nk ⊗ u∼Nk )
∂tu∼Nk ≈ ∆u∼Nk − u∼Nk · ∇u∼Nk−1
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∂tu∼Nk ≈ ∆u∼Nk − u∼Nk · ∇u∼Nk−1

▶ Good news: for these particular nonlinear interactions, Nk ≫ Nk−1
is permitted.

▶ More good news: it is well-understood that u∼Nk can be chosen so
that P∼Nk−1 div(P∼Nk u) ⊗ (P∼Nk u) behaves in a prescribed way.
(convex integration)

▶ Bad news: it is not so clear how to capture −u∼Nk · ∇u∼Nk−1 in the
full PDE
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Transfer to Navier–Stokes equations
Joint with M. Coiculescu

Define the critical space BMO−1 with the norm

∥U∥BMO−1 := sup
R>0

sup
x0∈R3

(ˆ R2

0

ˆ
B(x0,R)

|et∆U|2dxdt
) 1

2

< ∞

This is the largest space where one can implement small data global
regularity.

Theorem (Koch and Tataru 2001)
There exists ϵ > 0 such that if U0 is divergence-free with ∥u∥BMO−1 < ϵ,
then there exists a global-in-time solution that is regular for t > 0.
Essentially, they show that the Navier–Stokes bilinear operator

u 7→ −
ˆ t

0
e(t−t′)∆P div u(t ′) ⊗ u(t ′)dt ′

is bounded on XKT , the path space corresponding to BMO−1.
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What about large initial data?

Theorem (Coiculescu–P. 2025)
There exists divergence-free initial data U0 ∈ BMO−1 such that the
Navier–Stokes initial value problem admits two distinct global solutions:

u(1), u(2) ∈ XKT ∩ C∞
t,x ((0, ∞) × T3) ∩ Ct([0, ∞); W −1,p(T3))

for all p < ∞.
▶ The solutions are in the Banach space where Koch–Tataru run the

fixed point argument:

sup
t>0

t 1
2 ∥u(i)(t)∥L∞

x
+ sup

x0, R>0

(
R−3
ˆ R2

0

ˆ
B(R)

|u(i)|2dxdt
)1/2

< ∞

▶ The data is critical and smooth a.e. (but not L2).
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Thank you!


