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Data loss: fit the data Eqn loss: fit the physics equations

Better extrapolation beyond training data

Loss = LossDATA + LossEQN   

Regular ML Physics-informed ML

Animation from Ben Moseley



Neural network for curve fitting

Gradient descent

Optimization

Updating variables:

Data points

Fully-connected Neural network

OutputInput  

Neuron

Cost function: mean squared error

𝑢𝑢

𝑥𝑥

Karniadakis et. al. (2021), 
Nat. Rev. Phys.



Physics-informed neural networks

Cost function: data + equation loss

Optimization

Eqn: 

Data loss:

Eqn loss:
Updating variables:

Gradient descent

Equation residue

Fully-connected Neural network

OutputInput  

Neuron

Karniadakis et. al. (2021), 
Nat. Rev. Phys.



Learn u with physics equation + ICs + BCs
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𝑢𝑢(𝑥𝑥, 𝑡𝑡)

Use NN to search for a surface that satisfies 
(1) ICs + (2) BCs + (3) physics equation.

1. Initial NN(x,t) = u(x,t). x,t are inputs, u is output

2. For a NN, all derivatives of u w.r.t x and t can be 
calculated analytically because u(x,t) is exact!

3. We can calculate 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, 𝜕𝜕
2𝑢𝑢

𝜕𝜕𝑥𝑥2

4. In the cost function, minimize 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝑎𝑎 𝜕𝜕2𝑢𝑢

𝜕𝜕𝑥𝑥2
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Turn the problem into an optimization problem!

𝑥𝑥
 
𝑡𝑡

𝑢𝑢

Inputs
Outputs

NN



Training data (ground truth):

(1) Initial condition:    
 𝑢𝑢0𝑖𝑖  𝑎𝑎𝑎𝑎 𝑡𝑡 = 0, 𝑥𝑥𝑖𝑖 , 𝑖𝑖 = 1 … .𝑁𝑁

2  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐:
 𝑢𝑢𝑙𝑙𝑙𝑙

𝑗𝑗  𝑎𝑎𝑎𝑎 𝑡𝑡𝑗𝑗, 𝑥𝑥 = −1  & 𝑢𝑢𝑢𝑢𝑢𝑢
𝑗𝑗  𝑎𝑎𝑎𝑎 𝑡𝑡𝑗𝑗, 𝑥𝑥 = 1 , 𝑗𝑗 = 1 … .𝑀𝑀 

Physics-informed NN

What would be the loss function?

Data loss: 
1
𝑁𝑁�

𝑖𝑖

𝑁𝑁

𝑢𝑢0𝑖𝑖 − 𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡 = 0, 𝑥𝑥𝑖𝑖
2

1
𝑀𝑀�

𝑗𝑗

𝑀𝑀

𝑢𝑢𝑙𝑙𝑙𝑙
𝑗𝑗 − 𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑗𝑗, 𝑥𝑥 = −1

2

+
1
𝑀𝑀�

𝑗𝑗

𝑀𝑀

𝑢𝑢𝑢𝑢𝑢𝑢
𝑗𝑗 − 𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑗𝑗, 𝑥𝑥 = 1
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minimize

minimize
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𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺:  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

(1) IC

(2) BC

(1)

(2)

(2)

Data points



What would be the loss function?

Equation loss: 

1
𝑁𝑁𝑓𝑓

�
𝑘𝑘

𝑁𝑁𝑓𝑓 𝜕𝜕𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘

𝜕𝜕𝜕𝜕 − 𝑎𝑎
𝜕𝜕2𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘

𝜕𝜕𝑥𝑥2
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑎𝑎
𝜕𝜕2𝑢𝑢
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𝜕𝜕𝑥𝑥2 = 0
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Physics-informed NN Q: How to incorporate physics equation in the loss function?

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺:  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 
               →  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓 𝑢𝑢 𝑥𝑥, 𝑡𝑡  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (1) ICs + (2) BCs + (3) Eqn   

(3) Eqn

(3)

(1)

(2)

(2)

(3)

Collocation 
points

Recall: NN(x,t) = u(x,t) is a smooth, analytical function 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, 𝜕𝜕
2𝑢𝑢

𝜕𝜕𝑥𝑥2
 can be directly calculated at the collocation points.

Data points
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Physics-informed NN

(1)

(2)

(2)

(3)

Collocation 
points

Given a partial differential equation of a general form:

where          is a nonlinear differential operator.
Define equation residue f as 

Cost function: (MSE: mean squared error)

Equation lossData loss

Data points

Raissi et al (2019)

Collocation 
points

Data points
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(1)

(2)

(2)

Collocation 
pointsData points

Collocation points

Truth 
solution

𝑥𝑥

𝑢𝑢

PINN: searches for a curve that satisfies
𝜕𝜕𝜕𝜕(𝑥𝑥𝑖𝑖)
𝜕𝜕𝜕𝜕

− 𝑎𝑎 𝜕𝜕2𝑢𝑢(𝑥𝑥𝑖𝑖)
𝜕𝜕𝑥𝑥2

≈ 0 at the collocation pts

𝑥𝑥𝑖𝑖 𝑥𝑥𝑖𝑖+1 𝑥𝑥𝑖𝑖+2 𝑥𝑥𝑖𝑖+3

Automatic differentiation: differentiate NN 
output with respect to their input coordinates. 

e.g. NN x = 𝑢𝑢 = 𝜎𝜎 𝑤𝑤2𝜎𝜎 𝑤𝑤1𝑥𝑥 + 𝑏𝑏1 + 𝑏𝑏2 , 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜎𝜎′(𝑧𝑧2)𝑤𝑤2𝜎𝜎′(𝑧𝑧1)𝑤𝑤1  

𝑥𝑥

𝑢𝑢
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕



E.g., Burgers’ equation
Training data (from ground truth):

Physics equations:

Loss function:

Raissi et al (2019)

Equation 
loss

Data 
loss

Collocation points:

Problem statement

Collocation 
points

Data points

𝐼𝐼𝐼𝐼:
𝐵𝐵𝐵𝐵:

𝑥𝑥

𝑢𝑢(𝑡𝑡, 𝑥𝑥)

𝑡𝑡



E.g., Burgers’ equation
Training data (from ground truth):

Physics equations:

Loss function:

Raissi et al (2019)

Equation 
loss

Data 
loss

Collocation points:

Problem statement
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points

Data points
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𝑥𝑥
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𝑥𝑥 𝑥𝑥𝑥𝑥



loss: 0.0319006 
Training time: 173.6166 Error u: 3.554990e-01 

Ex1: Sin activation, Iter: 4800

Activation function: tanh or sin, cos?

Ex2: Sin activation, Iter: 24680
loss: 0.0029452811 
Training time: 1126.4058 Error u: 3.946169e-01 

Ex3: Tanh activation, Iter: 4800
loss: 0.000854328566 
Training time: 163.6977 Error u: 6.638371e-02 



Training data (from ground truth):

Physics equations:

Loss function:

Raissi et al (2019)

Equation 
loss

Data 
loss

Collocation points:

Collocation 
points

Data points
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E.g., Burgers’ equation
Given training data of u, t, x find 𝝀𝝀𝟏𝟏, 𝝀𝝀𝟐𝟐 



What would happen if using ReLU activation?



How to balance different terms in the loss
Learning rate annealing: Wang et al. 
SIAM J. Sci. Comput. (2021)



Learning rate annealing: Wang et al. SIAM J. Sci. Comput. (2021)



Learning Activation Functions for PINN
Adaptive Blending Unit ABU-PINN, Wang et al 2023 https://arxiv.org/pdf/2308.04073.pdf

and is a softmax function

https://arxiv.org/pdf/2308.04073.pdf


Learning Activation Functions for PINN
Adaptive Blending Unit ABU-PINN, Wang et al 2023 https://arxiv.org/pdf/2308.04073.pdf

and is a softmax function

https://arxiv.org/pdf/2308.04073.pdf


Learning Activation Functions for PINN
Adaptive Blending Unit ABU-PINN, Wang et al 2023 https://arxiv.org/pdf/2308.04073.pdf

and is a softmax function

https://arxiv.org/pdf/2308.04073.pdf


Where should I place the collocation points?

Wu, Chenxi, Min Zhu, Qinyang Tan, Yadhu Kartha, and Lu Lu. "A comprehensive study of non-adaptive and residual-based adaptive sampling for 
physics-informed neural networks." Computer Methods in Applied Mechanics and Engineering 403 (2023)



So how do NNs find the finite-
time blow-up solutions?

21



Benchmark example: Burgers equation 

is the self-similar variable.

is the solution that blows up at 𝑡𝑡 = 1.

𝝀𝝀

𝝀𝝀
𝝀𝝀

y

u

x

Self-similar
coordinates 

Original
coordinates 

Shock wave

Steady-state 
self-similar solution



Benchmark example: Burgers equation 

is the self-similar variable.

is the solution that blows up at 𝑡𝑡 = 1.

𝝀𝝀

𝜆𝜆𝜆𝜆

𝝀𝝀
𝝀𝝀

The goal for NN:
1. Find the solution 𝑈𝑈 𝑦𝑦
2. Find the self-similar exponent 𝜆𝜆

Shock wave

This is an inverse problem!



Non-smooth solution found by NN (forward)

Non-smooth point

Prescribe
 𝜆𝜆 = 0.4

Larger residues around the origin

Cusp



But we want to find the smooth solution and 
the corresponding 𝜆𝜆… (inverse problem)

Non-smooth point

Prescribe
 𝜆𝜆 = 0.4

2. Smoothness constraint
1. Tunable 

Larger residues around the origin
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But we want to find the smooth solution and 
the corresponding 𝜆𝜆… (inverse problem)

2. Smoothness constraint
1. Tunable 
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Very precise

But we want to find the smooth solution and 
the corresponding 𝜆𝜆… (inverse problem)

Uniform higher-order derivatives everywhere



A hierarchy of smooth Burgers solutions

28

Smoothness constraint



Incompressible Euler equations

0

Major question:

Does there exist smooth, finite energy initial condition        leading to a solution 
blowing up in finite time?

29

DNS: Luo and Hou, PNAS (2014), Luo and Hou, MMS (2014)
Proof: Chen and Hou, arXiv:2210.07191 (2022), arXiv:2305.05660 (2023)



• Imposing the self-similar ansatz 
for self-similar coordinates

• Assuming 𝑡𝑡 → 1, 
𝑠𝑠 = − log(1 − 𝑡𝑡) → ∞ 
incompressible 3-D 
Euler equation 
becomes

• The Luo-Hou scenario: assume asymmetricity with a cylindrical boundary

Incompressible asymmetric Euler…

30

𝜆𝜆
𝜆𝜆

Luo-Hou (2014): 
Compelling numerical 
evidence for blow-up

Their simulation suggests 
an asymptotic self-similar 
scaling near blowup



Optimization

BC loss:

Eqn loss:

Updating variables:

Automatic 
differentiation Self-similar Euler equations

+

PINN (self-similar coordinate)
6 hidden layer; 30 units per layer

31

PINN: Raissi et. al. (2019), J Comp.Phys
Wang, Lai, Gómez-Serrano, Buckmaster, 
Physical Review Letters (2023)



Adding structures to the NN-PDE solver

32

Change of  coordinate: 
e.g. Domain size

sinh(𝑧𝑧)

𝑧𝑧

2. Smoothness constraint1. Symmetry constraints 3. Map infinite to finite 
domain size

PINN is trained in 
the z coordinate 

e.g., 

e.g., to impose odd symmetry 



Approaching infinite domain (domain size ≈ 1012)

33

Change of coordinate: PINN is trained in the z coordinate; domain size

sinh(𝑧𝑧)

𝑧𝑧



Loss function

Uniform and small equation residues everywhere

Smooth self-similar blow-up solution 

Find self-similar singularities to the Euler equation 

34

Wang, Lai, Gómez-Serrano, Buckmaster, PRL (2023)

Inferred 𝜆𝜆 = 1.917



MSNN gives solution close to machine precision

35

With multistage NN, the error is further reduced.

Inferred 𝜆𝜆 = 1.920560013482733
Proof: Chen and Hou, arXiv:2210.07191 (2022), 
arXiv:2305.05660 (2023)

Loss function Equation residue

Chen and Hou: 𝜆𝜆 = 1.9205600

1st stage

2nd stage



An unstable CCF solution was found

36

The self-similar CCF equation: 

𝑓𝑓

Unstable blow-up solutions are generally 
difficult to find numerically via classical 
time-stepping simulations.



Some challenges and progress
• NN’s function approximation errors 
→ Multistage neural network: Wang & Lai, JCP (2024). Faster optimization: Jnini et al. arXiv:2402.10680

• Approximating high-frequency functions → Jagtap et al., JCP (2020)
Introduce a scaling variable in the activation function, which can be optimized

• Determine the weights for different terms in the cost function 
→ Learning rate annealing: Wang et al. SIAM J. Sci. Comput. (2021), Neural Tangent Kernel: Wang et al., 
JCP (2022), SA-PINN: McClenny & Braga-Neto, JCP (2023)

• Error bounds of  the PINN solutions → Mishra & Molinaro, IMA J. Numer. Anal. (2023)
In addition to saying PDE residues are small, we know that the distance between the PINN approximated 
solution itself  with the true solution, which is not available, would be small

37



So what have we learned?

38

• NN is a powerful tool for searching singularities in fluids; it found solution 
that had not been discovered before

• It requires A TONS of  mathematical knowledge to guide the PINN find the 
right thing

• PINNs are far from being a general method for solving PDEs; however, 
they can be useful for finding solutions by imposing problem-specific 
mathematical structures

• Aims and opportunities: deep learning drives deeper understanding
PDEs,
Symmetry,
Smoothness
…etc

Numerical
Solutions

Proofs
Understanding



Acknowledgement
Yongji Wang Prof. Tristan Buckmaster

Prof. Javier G´omez-Serran

Postdoc (NYU) New York University

Brown University

39

Wang, Lai, Gómez-Serrano, Buckmaster, 
Physical Review Letters (2023)

Wang and Lai, “Multi-stage neural 
networks: Function approximator of  
machine precision”, J. Comput. Phys. 
(2024)

Gonzalo Cao-Labora
Student (MIT Math)


	Physics-informed neural networks��by C. Yao Lai for 2025 Princeton summer school 
	Better extrapolation beyond training data
	Neural network for curve fitting
	Physics-informed neural networks
	Learn u with physics equation + ICs + BCs
	Physics-informed NN
	Slide Number 7
	Slide Number 8
	Slide Number 9
	E.g., Burgers’ equation
	E.g., Burgers’ equation
	Activation function: tanh or sin, cos?
	Slide Number 13
	What would happen if using ReLU activation?
	How to balance different terms in the loss
	Slide Number 16
	Learning Activation Functions for PINN
	Learning Activation Functions for PINN
	Learning Activation Functions for PINN
	Where should I place the collocation points?
	So how do NNs find the finite-time blow-up solutions?�
	Slide Number 22
	Slide Number 23
	Non-smooth solution found by NN (forward)
	But we want to find the smooth solution and the corresponding 𝜆… (inverse problem)
	But we want to find the smooth solution and the corresponding 𝜆… (inverse problem)
	Slide Number 27
	A hierarchy of smooth Burgers solutions
	Incompressible Euler equations
	Incompressible asymmetric Euler…
	PINN (self-similar coordinate)
	Adding structures to the NN-PDE solver
	Approaching infinite domain (domain size ≈ 10 12 )
	Slide Number 34
	Slide Number 35
	An unstable CCF solution was found
	Some challenges and progress
	So what have we learned?
	Acknowledgement

