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Outline

* Neural networks in problems governed by PDEs

* NN basics (Lecture 1-3)
Universal function approximation
Gradient descent
Back propagation

* Physics-informed NN (Lecture 4-5)



Von Neumann's elephant

"With four parameters I can fit an elephant, and with five I can make him
wiggle his trunk.” -Von Neumann

" 100 . . .
An approximation using five complex parameters was
found by Mayer, Khairy, Howard (2010) based on
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complex Fourier analysis.
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e Leaning how to discretize PDEs (2019) ... v _8v )
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4 differential equations

a Yohai Bar-Sinai*'?, Stephan Hoyer™'2, Jason Hickey®, and Michael P. Brenner®®
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ML maps discretized solution (Vg ... Uy ) to the stencil coefficients (@ ... y): RNx — RN

* Learning a ML model to predict simple chaotic system (2018) KS egn

PHYSICAL REVIEW LETTERS 120, 024102 (2018)

Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A
Reservoir Computing Approach

Jaideep Pathak,'”" Brian Hunt,”* Michelle Girvan,'™* Zhixin Lu,"” and Edward Ot 150 [
200 =

time

ML maps solution from one time step to the subsequent time step: RVx — RN« 4
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Weather forecast models

ECMWF iS NOW runnin d Series Of data'driven ‘ A(-:curatemedium-rangeglobalweatherforecasting
forecasts as part of its experimental suite. These with 3D neural necworks )

machine-learning based models:are very fast, and i v o
they produce a 10-day forecast with 6-hourly time Science
steps in approximately one minute. The outputs are

available in graphical form.
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Learning skillful medium-range global weather
forecasting
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Article | Open access | Published: 04 December 2024 Global medium-range weather forecasting is critical to decision-making across
Probabilistic weather forecasting with machine many social and economic domains. Traditional numerical weather prediction uses
- | earning increased compute resources to improve forecast accuracy but does not directly
- use historical weather data to improve the underlying model. Here, we introduce
: llan Price &, Alvaro Sanchez-Gonzalez, Ferran Alet, Tom R. Andersson, Andrew El-Kadi, Dominic Masters, GraphCast, a machine learning—based method trained directly from reanalysis
—— H- .:. Timo Ewalds, Jacklynn Stott, Shakir Mohamed, Peter Battaglia ™, Remi Lam & & Matthew Willson & data. It predicts hundreds of weather variables for the next 10 days at 0.25° resolu-

However, these advances have focused primarily on single, deterministic forecasts that fail to . tion globally in under 1 minute. GraphGastsignificantlyoutperformsithemosmac:
represent uncertainty and estimate risk. Overall, MLWP has remained less accurate and ~ curate operational deterministic systems on 90% of 1380 verification targets, and

reliable than state-of-the-art NWP ensemble forecasts. Here we introduce GenCast, a --

tracking, atmospheric rivers, and extreme temperatures. GraphCast is a key ad-
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range weather forecast in the world, ENS, the EROEMBICTORECAst of the European Centre for . f hine 1 ine f deli lex d ical svst
"% of machine learning for modeling complex dynamical systems.

Medium-Range Weather Forecasts®. GenCast is an ML weather prediction method, trained on ®*



https://charts.ecmwf.int/catalogue/packages/ai_models/products/graphcast_medium-mslp-wind850?base_time=202404011200&projection=opencharts_north_america&valid_time=202404091800
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https://charts.ecmwf.int/catalogue/packages/ai_models/products/graphcast_medium-mslp-wind850?base_time=202404011200&projection=opencharts_north_america&valid_time=202404091800

Video source: NVIDIA

ML weather forecast models
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In addition to generating known
results faster, can we leverage neural
networks to discovery new PDE
solutions?



Self-similar blow-up solution for Boussinesg egn

I.oss function
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So...why neural networks?

* Very often in math and science we want to know A as a function of B. NN
has the flexibility to fit that function without prior assumptions about the
functional form, particularly useful when the function is high dimensional
(it is a function approximator).

* Leverages GPU (hardware) and open-source software (e.g. tensoflow,
Pytorch, JAX). The optimization method is well-developed and user
friendly. It can usually be easily adopted for different problems.

* We will talk about the challenges after learning about the basics of NN!
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Outline

* NN basics (Lecture 1-3)
Universal function approximation
Gradient descent
Back propagation

* Physics-informed NN (Lecture 4-5)



What is a neural network?

An analytical model of output y as a function of input x, containing some fitting parameters

1. Linear Regression Model:

y=wx+b

w

n

Given observations of {xé yé}i

Find the w and b that minimizes

O J = B () = i)

2. Logistic Regression Model: make output O to 1

y = o(wx + b),
r .
where o(z) = 1+ oz is a sigmoid function
W b
b (O—> Y 0 -

o(2)
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What is a neural network?

An analytical model of output y as a function of input x, containing some fitting parameters

2. Logistic Regression Model: make output-1to 1

y = a(wyxy + woxy + wixs + b), \
1 ) —> Y

1+ oz is a sigmoid function X3 /W/;-(Z)

where o(z) =

3. Neural network:

y = o(wyo(wixy + woxy, + Wyxs + by) + b)),
where o(z) is a nonlinear activation function

Common choices of 6(2)

sigmoid(z)
\ SiIl(Z)
O—O—» y _
X3 /W/;(2) () E;)rsﬁ(lz()z) Output ranges from-1to 1
higden

layer



What is a neural network?

An analytical model of output y as a function of input x, containing some fitting parameters

3. Neural network: Neural network is a general function approximation

More generally...

-> Universal function approximation

D 4
y = fn(Wj(k)' bj( %),
where ¢(z) is a nonlinear activation function 1D Y s

2D

L-1 hidden layers n-Dimension surface.... .



Why are activation function nonlinear?

Common choices of 0 (z)
o by p®
sigmoid(z) (
sin(z)
cos(z)
tanh(z)

Input  hidden Output
layer layer  layer

e |f activation function is linear,

NN can only represent a linear
function

If activation fn is linear, e.g. 6 (z) = z...
Input X1, X>

In hidden layer, j=1,2

Z W( )x + b(l)
av = (1) (1)
4 U( Zj ) Zj
In output layer;, j=1
- Z w@al® 4 p®

a? = U( 7®) = 7

2
= af) z Wl(i) (Z W(l)xl + b,({l)> + bgz) =Ax; +Bx, + C



NN is a Universal Function Approximator

* NN can approximate continuous and smooth functions

A visual proof (for sigmoid activation)

y A

~

Y

Goal:
Use a NN to approximate f(x)



NN is a Universal Function Approximator

* NN can approximate continuous and smooth functions
A visual proof (for sigmoid activation)

bz=wx+b ; 1
W 2 - ﬁW( Large w gives a step
X y J
0 > X
bil) Y a a(x) .
w0
%’ y — % determines the location of the step
O 0 > X
(1)
W(l)



NN is a Universal Function Approximator

* NN can approximate continuous and smooth functions
A visual proof (for sigmoid activation)

Y4 e
N ) .
W12 Superposition of two steps
w X a(x) )
0 |
- bl(l) bél)
R
Yr  a(x
(x) .
b . .
- determines the location of the step
0 > x
M
w®



NN is a Universal Function Approximator

* NN can approximate continuous and smooth functions
A visual proof (for sigmoid activation)

Y a
72
- (2 o
Wi Superposition of two steps
w X a(x) )
[
0 bf) bél) > X
G 1
Mﬁl 51)
Y a
2@ @)
11 Create a column of height h
0 I 8
bil) _bgl)
SO RN EY

11 21 20



NN is a Universal Function Approximator

* NN can approximate continuous and smooth functions
A visual proof (for sigmoid activation)

YV a

* g |—|Z(2) Wiy | f height h
11 Create a column of height
0 > X 8

bil) bgl)

NG [6)
Wit W1



NN is a Universal Function Approximator

* NN can approximate continuous and smooth functions
A visual proof (for sigmoid activation)

i,
\ Superposition of columns

22



NN is a Universal Function Approximator

* NN can approximate continuous and smooth functions
A visual proof (for sigmoid activation)

y A
/‘:ll Reduce column widths + increasing
. w;a; +b 1 the # of neurons to approximate f(x)
f(x)
0 l » X

For a given continuous smooth f(x) and an arbitrarily small € > 0
There exist z(?) so that

j 2D () — F()] dx < e

23



NN is a Universal Function Approximator

e Approximate a 2D surface

What should be the
input/output units of NN?

Many towers

http://neuralnetworksanddeeplearning.com/chap4.html
24



http://neuralnetworksanddeeplearning.com/chap4.html

NN is a Universal Function Approximator

In summary

* Dimension of the approximated surface is determined by ...
Number of input and output units

* Column size is determined by ...
Number of hidden units, values of weights and biases

25



* Could the following activation function instead of a sigmoid function

approximate a step?
a(z)

0(z) sy, z—>
0(z) > s, z > —®
S1 * Sy

 Could activation function o(z) = z instead of a sigmoid function
approximate a step?



Now we know it is possible to tune weights and biases
in @ NN to approximate functions. We still need an
automated method to find the correct weights and
biases.



How to find w and b?

* E.g., Model y = o(wx + b)

. . . . m
Given observations of {x}, yé}i

Our goal is to find the model
parameters w, b that minimizes the
cost function

1 — | |
J(w, b) = EZ()/(X&) —yi)’
i=1

Training data

32



How to find w and b?

* E.g., Model y = a(wx + b)
* Cost function J(w,b) = —Z 1(3’(Xd) }’d)

Find the w, b that minimizes J(w, b)

a] 9]
€. aw_ab_o

33



How to find w and b? Gradient descent

* E.g., Model y = o(wx + b)

* Cost function J(w,b) = %Z’iﬁl(y(xé) — ycii)z

J(w)

G| o
|. calculate the slope # corresponds to an initial w

Il. Adjust w according to the local slope

0 : :
Whew = Woig — @ #, a > 0 is the learning rate

;.
11l. Iterate until 9 0
ow

https://developers.google.com/machine-learning/crash-course/fitter/graph

34
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How to find w and b? Gradient descent

* E.g., Model y = o(wx + b)

* Cost function J(w,b) = %Z?ﬁl(Y(xciz) — ycii)z

Jw) 1

2

1.0

0.8

0.6

®
oo ®

Which curve has the
smallest learning rate?

0.4f oo e
—H—.—"_.
oooooooooooooooooo - s oeso
5 10 15 20 25
Iterations

35



How to find w and b? Gradient descent

* E.g., Model y = a(wx + b)
* Cost function J(w,b) = %Zﬁl(y(xcil) — ycii)z

Gradient on a surface
e« —V] gives the direction of the steepest

decrease of J
aJ d]
—VJ(w,b) = — (ﬁ,%)

e.g. —VJ(wy, by) = —(10,1) What does this mean?
Changing w reduces J 10 times faster than changing b

e —V] tells you which weights and biases
reduce cost function J the fastest! ..



How to find w and b? Gradient descent

* E.g., Model y = a(wx + b)
* Cost function J(w,b) = —Z 1(3’(Xd) Yd)

Gradient on a surface
e« —V] gives the direction of the steepest
decrease of J

0
—Vj(w,b) = (a] aé)

* (W‘l’leW' bnew) = (Woldr bold) —a Vj(w,b),
« is the learning rate

« lterateuntil V] = 0

https://www.deeplearning.ai/ai-notes/optimization/ 37
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How to find w and b? Gradient descent

* E.g., Model y = a(wx + b)
* Cost function J(w,b) = $2ﬁ1(3’(xciz) — ycii)z

Gradient on a surface
e« —V] gives the direction of the steepest
decrease of J

—V](w,b) = —(

] dJ
ow’ db

d] 0J]

,— calculated?
ow 0b

But how are

38



How to find w and b? Gradient descent

*E.g., Model Yy = O'(WX + b) Defined for every example i
—
* Cost function J(w,b) = —Z 1(y(xd) yd) mLLOYL YD)

_ 1 ] 1 oL
L=Wyx) —yi? ]=;Z?£1L - ﬁ=gzﬁi -

=1 ow

Back propagation (chain rule)
ﬁ _ % dy  Jd(wx+b) . '
ow — dyd(wx+b) ow 20y —ya)o'x

1) For one example
= (w,b,xh, v4) = 2(a(wxl +b) = yh)e” %

aw

2) For the full data set:

L 1 . .
dL . d_ym = __ym 9 i I 1o
What would ™ be for a linear model 0(z) = z? o = m izt 5 = 7 Liz1 2(o(wxg +b) Yd)o-ggxd



https://www.deeplearning.ai/ai-notes/optimization/ How would data shape the loss landscape?

Example: x Oy

* Linear Regression Model y = wx Defined for every example i
SE—
* Cost function J(w,b) = —Z 1(y(xd) yd) Yt L(yhL vy

1) For one example:

— 1 aj 1 JL
L= —ya)? J=-N5L > -=—F2—

Lt L= () -y’ )

Back propagation (chain rule)
ﬁ _ 2 dy Jd(wx) .
ow — dyoa(wx) ow 20y = va)x

v

w
, y 1) For one example' Thi? gradient s
2) For the full data set: E#1 d\ aL .\ ; defined for every
]t iy xb,w — y— JWw) 5y (W, b, Xg, Yd) = 2(wxg — y4) Xq example i, and is a
/ T l function of w
3] 2) For the full data set:
Updatew <= 5, (W) L = IR = B 2w — yi)x

v

40
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Example: x Oy

* Linear Regression Model y = wx Defined for every example i
/—H

. 1 . .82 1 . .
* Cost function J(w,b) = EZﬁl(y(x&) — y&) = 52?;1 Ly ya)

1) For one example:

_ 1 ] 1 oL
L=WMx) —y? ] =;2?£1L - ﬁ=gzm

=15,

Lt L= () = vh) )

Back propagation (chain rule)
ﬁ _ 2 dy Jd(wx) .
ow — dyoa(wx) ow 20y = va)x

v

W . . .
1) For one example: Th'? gradient s
o oL o ; i ; defined for every
What would happen if x; are very o (Wb, x0,v4) = 2(wxi = va) Xi example i, and is a
|arge/sma||? function of w
2) For the full data set:
aj . ‘ - 9] _Ltym 0L _1ym 5 i iYoi
Note that = is analytical fn of w,xg, yg! =R =W 2(wag = ya)xg

41
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How to find w and b? Gradient descent

* E.g., Model y = o(wx + b)
* Cost function J(w,b) = —Z 1(y(xd) yd) Y LY vh)

e —VJ(w,b) = (gvjv Zé) for a given data

set at a given w, b is known analytically

* (W’l’leW' bnew) = (Woldr bold) —a Vj(w,b),
« is the learning rate

« lterateuntil V] = 0

42



So far we have discussed...

* Universal function approximator

* Gradient descent: a method to find weights and biases that minimize J

* Calculate —VJ(w,b) = — (ﬂ ﬂ) for a simple model y = a(wx + b)

ow’ db
- One example
- A full dataset



We know how to find w and b for a simple model
y = o(wx + b).

What about finding w and b in a neural network?



Writing a neural network in terms of vectors

(1)
ij = af) = a(z W(z) (Z W(l)xl + b,(cl)> + b§2))
X1
>y

X2

Input Hidden Output

layer layer layer
# of units =172 j=123 j=1
Forward ang) = Xj Zk 1 W (1) (0) + b(l) Zk 1 W (2) (1) b(z)
propagation (1) (1) (2) (2)

4G = U( Zj ) a; 0( Zj )




Writing a neural network in terms of vectors

(1)

ey @1)
X1 / o)
‘ > w? by

e
X2 bs()l)
e ®:

aV =
Input Hidden Output
layer layer layer
#of units J=12 j=123 j=1
Forward a® = x Zj(l) = Wj(l)Ta(O) + bj(l) Zj(Z) _ (Z)Ta(1) n b§2)
propagation aj@) _ a(zj(l)) ](2) _ a(z(z))

»W;

@ _

46




Writing a neural network in terms of vectors

3x2 3x1 ) w® @
1
W(l), p» @ 1x3 1x1 O X1 w = |, ® (1)
w® p@ X, |’ W1 Wa2
. BCOREY
1 W3y 32
1) 2) . _ _ -
@ Y bil) Zil)
X bV = bgl) ,z(D = Zél) )
by" 23
(g Bl
Input Hidden Output a® =], ®
layer layer layer a |
LD
| Y3
. . . I 2 2
#of units /=12 j=123 Jj=1 W = [W1(1) W1(2) W1(3)]
forward @@ =x| z®O =w®a® £ p® | @ = w@gaO 4 p@
propagation a(l) — 0'(2(1)) a(z) = O'(Z(z))




Writing a neural network in terms of vectors

n® xn® nMx1 _W(l) W(l)_
w® p® @ @ xn® a1 o 4] W 1(1) 1(%
w® p®@ ar = [le'w =W Wy
(1) (1)
*1 W31 Wiy
1) 2) X - o
@ y p 20
X2 pD) = bgl) 71 — Z§1) ,
b3". 25"
el o
Input Hidden Output 20— |
layer layer layer a |
e
| Y3
# of units n®=2 | nM=3 n® =1 W = [WS) Wg) Wg)]
Forward a® = 7D = w®a® 4 p® | ;@ = w@ga® 4 p@
propagation a®® = g(zM) a® = g(z®)




Writing a neural network in terms of vectors

n(l) X n(o) n(l) X1

w® p)_x @Y 2@ xn® 2@ x1
w® p®@

(1)
W11

X
a©® — [ 1] WO = [,

X1

@ i
X2

(d}
Input Hidden Output
layer layer layer

In short, vy = a§ ) = 0(2 Wlk (Z W]Ell)xl + bm) + b§2))

— y=a® = J(W(Z)U(W(l)x + b(l)) + b(®)

p) = bgl)
bV |

a® =

w®@ = [W(Z)

(1)
[ W31

)

Wiw W3

(1)
Wiz

(1)
Wy,

(1)
W3y |




We know how to find w and b for a simple model
y = o(wx + b).

What about finding w and b in a neural network?
y = ql?) = O'(W(Z)O'(W(l)x 1 b(l)) + b(?))



How to find w and b in a neural network?

* E.g.,Model y = a®® = g W@ ag(WDx + pV)) + p(2)
e Cost function ](W(l), w@ pd) b(z)) = %Zﬁl Ly, vh)

* For the full data set (i=1...m), compute

0] 9|
7] = — .
(aw(” ab].(”>

jk

c w, O =, O g% O —pO _ 9
Wiknew ~ Wikola — & aW](-Q’ b]new bfold @ 6b](.l)

« is the learning rate

« lterateuntil V] = 0

51



NN weight Initialization

p

Wy @1)
X1 p©@)

@ @R
Xy )

W, "
(d

Input Hidden Output
layer layer layer

Q: What would happen if all initial weights are
chosen to be the same (e.g., all zeros)?



NN weight Initialization

Input
layer

W1

p

ot

(@5

Hidden
layer

Output
layer

More specifically, if weights are symmetric:

Wi Wy
W(l) = |W Wy , W(Z) — [ ]
Wi Wy
(e.g. all zero weights, all constant weights)
Lo _ @ _ @)
Thena;” =a,”’ =ay
and
0 9
an aWZ
Winew Wanew Wi W 9] aJ
Winew Wonew|=|W1 W2l —q|l=— —
an aWZ
Winew W2anew Wy Wy 9] aJ
ow;  ows
The NN never learns to have non-symmetric
weights -> agl) = agl) = agl) during training

If the NN weights are symmetric — Gradient descent will update these hidden units in the
same way — All hidden units in the same layer will be identical throughout training

iterations — Equivalent to NN with just 1 hidden unit.




NN weight Initialization

https://www.deeplearning.ai/ai-notes/initialization/

To make the different hidden units
approximate different functions

— Initialized weights Wj(,? to random values

p
1)
w@® @
w®)

X1 p

@’
X2

(d
Input Hidden Output
layer layer layer

v
<

What about biases?

— Biases can just be zeros

0
p(D) = H b®@ = [0]
0

If the NN weights are symmetric — Gradient descent will update these hidden units in the
same way — All hidden units in the same layer will be identical throughout training

iterations — Equivalent to NN with just 1 hidden unit.

54
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Neural Networks for
Pattern Recognition

Chapter 4

Christopher M. Bishop The Multi-layer Perceptron

55



Forward & Back Propagation: 1. single neuron

Exercise:

Model: y = o(w,o0(w;x + by) + b,)

Forward propagation—>

Z1 = WX + bl
a; = 0(zy)

Zyo = Whaq + bz
a; = 0(z;)

—

y

a;

| Cost function:

da,

adw,

<— Back propagation

'] =l - Yd)z

d]

da,

V] vary with
o Wl,Wz,bl,bz

i// b 2

How important is w, for
changing the cost function /?

8] _ 9] day

BWZ o aaz aWZ
=2y —ya)o'(zz)a,
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Forward & Back Propagation: 1. single neuron

Exercise:

V] vary with
Model: y = o(w,o0(w;x + by) + b,)

W1, W», bli b2

b b
AWl ! WZ ’

X _,@_. y How important is w, for

changing the cost function /?

Forward propagation—>
propag 0] _ 0] day da,

Zy =WiX + by | | Zp = wpaq + by y = a, ,|Cost function: owq - da, daq dw,

a; =0(z) A a;=0(z) /= —ya)? =2y —yqa)o' (zy)wyo'(z1)x
(3611 ﬂ a_]
(9_W1 5a1 aaz

<— Back propagation
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When training a neural network

Repeat these steps:
1. Forward propagate an input
2. Compute the cost function
3. Compute the gradients of the cost with respect to parameters using
backpropagation
4, Update each parameter using the gradients, according to the optimization
algorithm



Forward & Back Propagation: 1. single neuron

p@L)
x M w @ JA&).@L)_, y
x =a©® y =a®
Back propagation (use chain rules)
Forward propagation o]
(©) w
Input: a =X aJ _ 9] aa® B

ab@) — ga@) gpL)

8 9] 09a®
owTD ~ gaD 5,L-D

(L) — W(L)a(L—l) 4+ p@

qal) = a(z(L))

Output: y = a® aJ ] dal
ap™D  9ad) 5,L-D

=2@a® ~yy) o' G)w'

Cost function | = (v — y4)?



Forward & Back Propagation: 2. multiple hidden units

X —*
x = q®
Back propagation (use chain rules)
Forward propagation aJ 8] dal _
_ _ (L) _ reo (L)Y 1)
0 aWI({L) = 340 awl((L) = 2(a ya) 0 (z") ay,
Input: a( ) = X 3] 9] aa®

— — (L) — '(7 (L)
...L_1 o o ap@L) 9a@ ap@) Z(a yd) o (Z )
RGO NCOINCD

a}({L—l) s ZIEL_l)) aj _ aJ] dad) aal(cL_l)

_ (L-1) — L (L-1) 5 (L—-1)
zB =33, W,EL)a,({L D4 p@ Owy 0a™) a; ™ ow, . .
a®) = g(zL) =2 —y,) O"(Z(L))W,E )0’(2,(( - ))a( ~2)
Output: y = a(l) aJ o] oda® aal((L—l)

6b,((L_1) ~ 3aD) aa}({L—1) ab,({L—l)

Cost function | = (y —y,)? _
Y= Va =2(aP) —y,) a’(z(L))ngL)a’(z,((L 1))
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Forward & Back Propagation: 3. multiple outputs

Forward propagation

Input: a(® = x

(L—1) - (L—l) (L—2) + b]gL—l)
L-1 L-1

< ) ( (-1))

L L L-1 L

() Zklf)a,({ ) 4+ p®
) _ ON

4
Output: y; = a]@

= O'(Z

Cost function | = X7_(y; — Yd,j)z

Y1

Y2

Back propagation (use chain rules)

(L)

a] o] 94; (L) (L)y , (L—1)
= =2 a; o z a,
aw](.i) Y (p)a (L) ( —Yd ]) "(z;7)
(L)
a] o] 99; L (L)
— = 2(a. o (Z;
5D — 24D op® — 2% = Vay) @)
j a; j
L _
3) o 3) aa§. ) aa,((L 1)
6WI(CL_1) J=1 aaE.L) aa(L_l) aw(L_1>
Y2 L) (L) (L) (L-1)y (L-2)
= Zj=1 Z(aj Va,j) O (Z ) o'(z; a
o) <2 9o 947 galV
ab,(f"l) J=1 aag.” aa(L‘” 6b(L_1)

L / L-1
=¥2_,2(aq"” - yd,)(r(z( hwidoz: ™),



summary

* Universal function approximator
* Gradient descent: a method to find weights and biases that minimize J

e Calculate V]
- One example
- A full dataset

* Weight initialization
* Forward and backpropagation (a clever way to get gradients of J)



Outline

* Advanced topics: NN’s spectral bias
* Physics-informed NN (Lecture 4-5)



Spectral bias: A Fourier analysis of NN e oo

For a single-hidden-layer NN with input = € R and output v € R

m

u(x) = Z wtV o (w; Oy b, i),  where 6; = {u( ) fu*( ) . bi}

J
j=1

The mean square loss measures the distance between the NN output u(x) and ground truth u, (x)
J = ffooo %(-u.(;z) — uy(z))*dr = ffooo %|fr'}(k) — G,(k)|[*dk , where 1i(k) denotes the Fourier transform of u(x)
The loss at frequency kis J(k) = 3|a - iy |

For tanh activation function, the gradient of loss at J(&) with respect to NN parameters 6} is

- where A(k) € [0,400) is the amplitude of @ — 7,

0J (k) 3 b (0)|
‘ 0, 'NA(A)E |

This gradient decay rapidly with frequency k!! This 1s a simple explanation of the spectral bias.
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Spectral bias is bad for multiscale problems

* One solution: Fourier feature Y (V) Tancik et al (2020), Wang et al (2021)

Y (V) maps the input coordinates to a feature space before passing them to NN layers.

v(v) = [ay cos(27b] v), a1 sin(27bTv), ..., Ay, cOS(27TDL V), A, sin(27b ] v)]

T

v(v)

O-0O-Q
BIEAIE

@
@

EO
NI/ /AXSTA
oteotel

No Fourier features

With Fourier features

(b) Image regression  (c) 3D shape regression  (d) MRI reconstruction
(z,y) — RGB

(x,y,z) — occupancy

(z,y,z) — density
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Main idea Wang & Tai, J. Comput. Phys. (2024)

When NN training error 1s small, the learning becomes really slow. NN learns better
when u = 0(1). Inspired by the principals of perturbation theory, MSNN includes a

superposition of multi-stage NNs, with each stage using a new NN to fit the residue
rescaled to O(1) from the previous NN.

Wl (2) = up(x) + erur () + eous () + ... + entin(x) = Z €;u;(x)

where 1 > €1 > e > ... > ¢,
up(x), ui(xz) and u,(x) are all of order O(1) NNs of different stages

Related work with similar flavors: Multi-level neural networks: Aldirany et al. (2023), Multifidelity neural
networks: Howard et al. (2023, 2024), Precision Machine Learning: Michaud et al. (2023)...etc 69



Multista ge- NN (MSNN Wang & Lai, |. Comput. Phys. (2024)

2 T T T _4' . . .
a I 10 First-stage residue e;(z) = uy(x) — ug(x Frequency domain of eq(z
( ) _“.(1(37) = tg/(0.0l + t4) @) T T T g T l(l ) ol )I L T T T 1 . v . 42)
- -1st-stage NN: ug(x) L f fa~=6
1k €1y =%
£ 05
-1 —e(z) = uy(z) —up(z)- < H Data required
u — -2nd-stage NN: u;(z) : 67 fa ~ 120
0 2 1 1 1 l L L 1 1 1 d :
-1 0.8 0.6 0.4 02 0 0.2 0.4 0.6 0.8 1 0 5 10 15 20
]_0_8 Second-stage residue es(x) = e1(x) — e1uq () . Frequency domain of ex(x)
-1 sE T T T T T T T T T = p
‘ fa=~29
€2, Eos _
) L L ' e (al) = &yl — i ) < . Data required
-1 —05 0 05 1 5} ' I I : I I I o T 311d—stage 1\'IN uz(x) ] SR ¥ 67de ~ 550
i e : 3
&L -0.8 0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 g & 4 B0 8
10_11 Thlrd-stage resxdue e3(r) = ea(w) — €2U2( ) Frequency domain of e3(x)
; .
o T T
(c) 10 o —— . fa =150
% wwmmm MMWWWNM sl wwwm& WWMWWMWMMW«MMMWW |
‘x € o = es() — eaua(z)] < Data required
w 105} . 102 i “‘t‘ i I - 411(1 stag(‘ NN ug(z) 6 fyq ~ 2800
€3 ¥ €ENMiteps 0.8 06 »o 4 »o 2 o 0. 2 0.4 o.e o 8 1 400 500
op) X s - s
S R Single-stage training 10 13 Residue after four-stage of training e4(z) = e3(z) — ezus(z) Frequency domain of e4(z)
%, 107 T T T T T T T E
ﬁ 10-10 T ~~~ 100 Niters 105‘ 0.8
. £.06
. <)
\/ Niters 2 < 04
E~EXP T o8 Multi-stage training 02
-15 . N " L . ; 1 1 1 1 1 1 I 0 :
10 5 1500

0 100 200 300 400 500 600 -1 0.8 0.6 0.4 -0.2 0 0.2 0.4 0.6 0.8 1 9 - s 1000
frequency f

 Niters €L
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