On the Regularity Theory of Incompressible Flows

Alexandru Ionescu

August 16, 2025

Introduction

We consider the incompressible Navier-Stokes and Euler equations in $d \ge 2$ dimensions

$$\begin{aligned}
\partial_t u + u \cdot \nabla u + \nabla p - \nu \Delta u &= 0, \\
\nabla \cdot u &= 0.
\end{aligned} \tag{1}$$

where $u: \mathcal{D} \times [0, T] \to \mathbb{R}^d$ is the velocity field, $p: \mathcal{D} \times [0, T] \to \mathbb{R}$ is the pressure, and $\nu \geq 0$. In components

$$\partial_t u_k + u_j \partial_j u_k + \partial_k p - \nu \Delta u_k = 0,
\partial_j u_j = 0.$$
(2)

Introduction

 The pressure is such that the incompressibility condition is propagated by the flow

$$\Delta p + \partial_k(u_j\partial_j u_k) = 0 \implies p = R_jR_k(u_ju_k),$$

where R_j denotes the Riesz transform $R_j = \partial_j |\nabla|^{-1}$.

- Several possible frameworks: periodic domain $x \in \mathbb{T}^d$, Euclidean domain $x \in \mathbb{R}^d$, chanel $(x,y) \in \mathbb{T} \times \mathbb{R}$, bounded domains $\mathcal{D} \subseteq \mathbb{R}^d$ (with suitable boundary conditions).
- The case $\nu=0$ corresponds to the Euler equations, which are time reversible.

Basic questions

- Local wellposedness: one has local regularity for sufficiently smooth initial data in Sobolev spaces. There are also continuation criteria that guarantee regularity as long as certain quantities are controlled.
- Long term regularity: in certain cases one can prove long term (sometimes global) regularity: the solutions exist globally in time if the initial data is "small" in suitable critical spaces or if d=2. The question of global regularity of solutions of the Navier-Stokes or the Euler equations in dimension d=3 is a fundamental open problem in Fluid Mechanics and one of the Millennium Problems.

Basic questions

- Stability of certain classes of solutions: shear flows and vortices are sometimes "stable" both at the linear and nonlinear level in 2D.
- **Formation of singularities:** loss of regularity of solutions starting with smooth initial data (completely open).
- **Derived models:** many important equations, like the water waves system, the KdV equation, and the Schrödinger equation can be derived from the basic Fluid equations.
- **Numerical analysis:** solutions of the Euler equations can be very complicated, and numerics have played a critical role in understanding their dynamics.

Local regularity

Theorem 1 (local well-posedness): (i) Assume $\nu \in [0,1]$ and $\phi \in H^s(\mathbb{T}^d)$, s > d/2 + 1 satisfies $\partial_j \phi_j = 0$. Then there is $T = T(s, \|\phi\|_{H^s}) > 0$ and a unique solution $u \in C([0,T]: H^s(\mathbb{T}^d))$ of the initial value problem

$$\partial_t u + u \cdot \nabla u + \nabla p - \nu \Delta u = 0, \qquad \nabla \cdot u = 0,$$

$$u(0) = \phi.$$
 (3)

Moreover

$$\sup_{t \in [0,T]} \|u(t)\|_{H^s} \lesssim C(s, \|\phi\|_{H^s}).$$

(ii) For any $R \geq 0$ the mapping $\phi \mapsto u$ is a continuous mapping from $B_R(H_0^s(\mathbb{T}^d))$ to $C([0,T]:H^s(\mathbb{T}^d))$.

Local regularity

Duhamel formula: u is a solution of the Navier-Stokes equations (3) if and only if

$$u(t) = e^{\nu t \Delta} \phi + \int_0^t e^{\nu(t-s)\Delta} \mathcal{N}(u, u)(s) ds,$$

$$\mathcal{N}(u, u) := -(\nabla p + u \cdot \nabla u), \qquad p = p(u) = R_j R_k(u_j u_k).$$
(4)

When $\nu>0$ this can be solved using a fixed-point argument in the space $Z:=C([0,T_{\nu}]:H^s)$ provided that T_{ν} is sufficiently small depending on $\nu>0$ and $\|\phi\|_{H^s}$.

To prove local well-posedness in the Euler case $\nu=0$ we need to prove apriori control of high order energy functionals.

Local regularity

Energy dissipation:

$$||u(t)||_{L^2}^2 = ||u(0)||_{L^2}^2 - 2\nu \int_0^t \int_{\mathbb{T}^d} |\nabla u(s)|^2 dxds.$$

High order energy inequality:

$$\mathcal{E}_s(t) \leq \mathcal{E}_s(0) + C_s \int_0^t \mathcal{E}_s(t') \|\nabla u(t')\|_{L^{\infty}} dt'$$

where

$$\mathcal{E}_s(t) := \int_{\mathbb{T}^d} |J^s u(t,x)|^2 dx,$$

and J^s is defined by the Fourier multiplier $\xi \to (1+|\xi|^2)^{s/2}$. The proof uses the Kato-Ponce inequality: if $s \ge 0$ then

$$\left\|J^{s}(u\nabla v)-uJ^{s}\nabla v\right\|_{L^{2}}\lesssim_{s}\|\nabla u\|_{L^{\infty}}\|v\|_{H^{s}}+\|\nabla v\|_{L^{\infty}}\|u\|_{H^{s}}$$

for any $u, v \in H^s(\mathbb{T}^d)$.

Critical well-posedness theory

Set $\nu=1$, so the incompressible Navier-Stokes equations are

$$\partial_t u + u \cdot \nabla u + \nabla p - \Delta u = 0, \qquad \nabla \cdot u = 0.$$

Solutions are formally invariant under parabolic scaling

$$u_{\lambda}(t,x) = \lambda u(\lambda^{2}t, \lambda x),$$

$$p_{\lambda}(t,x) = \lambda^{2}p(\lambda^{2}t, \lambda x)$$

for $\lambda \in \mathbb{R}$. The well-posedness theory and regularity criteria are best expressed in terms of scaling-invariant (critical) norms like

$$L_t^{\infty} L_x^d$$
, $L_t^{\infty} \dot{H}^{d/2-1}$, $L_t^p L_x^q$, $2/p + d/q = 1$,

Critical well-posedness theory

Theorem 2 (Kato 1984): Assume $d \geq 2$, $\phi \in L^d(\mathbb{T}^d)$ satisfies $\partial_j \phi_j = 0$. Then there is a unique solution $u \in C([0,T]:L^d)$ of the initial value problem

$$\partial_t u + u \cdot \nabla u + \nabla p - \Delta u = 0, \qquad \nabla \cdot u = 0,$$

 $u(0) = \phi,$

where $T=T(\phi)>0$. Moreover, $T=\infty$ (meaning global regularity) if $\|\phi\|_{L^d}\leq \varepsilon_d\ll 1$.

Critical well-posedness theory

To prove this we use a fixed-point argument in the space

$$Z_q := \{ \| f \in C([0, T] : L^d) : \\ \| f \|_{Z_q} := \sup_{t \in [0, T]} [\| f(t) \|_{L^d} + t^a \| f(t) \|_{L^q}] < \infty \}.$$

where $q \in (d, \infty)$ and a = 1/2 - d/(2q).

We use the general inequality

$$\|e^{t\Delta}f\|_{L^q} + \sqrt{t}\|e^{t\Delta}\nabla f\|_{L^q} \lesssim t^{-b}\|f\|_{L^p}, \qquad b := \frac{d}{2}\left(\frac{1}{p} - \frac{1}{q}\right),$$

which holds for all exponents 1 and numbers <math>t > 0, provided that $\widehat{f}(0) = 0$.

2D global regularity

The vorticity equation

$$\partial_t \omega_{ij} + u_k \partial_k \omega_{ij} + \omega_{jk} \partial_i u_k - \omega_{ik} \partial_j u_k - \nu \Delta \omega_{ij} = 0$$

In dimension d = 2 the equation becomes

$$\partial_t \omega + \mathbf{u} \cdot \nabla \omega - \nu \Delta \omega = 0.$$

L^p conservation laws:

$$\|\omega(t)\|_{L^p} \leq \|\omega(0)\|_{L^p}$$
 for any $t \in [0, T]$ and $p \in [1, \infty]$.

2D global regularity

Theorem 3 (global well-posedness in 2D): (i) Assume d=2, $\nu \in [0,1]$ and $\phi \in H^s(\mathbb{T}^d)$, s>2 satisfies $\partial_j \phi_j = 0$. Then there is a unique global solution $u \in C([0,\infty:H^s(\mathbb{T}^2)))$ of the initial value problem

$$\partial_t u + u \cdot \nabla u + \nabla p - \nu \Delta u = 0, \qquad \nabla \cdot u = 0,$$

 $u(0) = \phi.$

Moreover

$$\|u(t)\|_{H^s} \lesssim C(s,t,\|\phi\|_{H^s})$$
 for any $t \in [0,\infty)$, $\|\omega(t)\|_{L^\infty} \leq \|\omega_0\|_{L^\infty}$.

Regularity criteria

Theorem 4: Assume $\nu \in [0,1]$, s > d/2 + 1, and $u \in C([0,T]:H^s(\mathbb{T}^d))$, is a solution of the Navier-Stokes equation

$$\partial_t u + u \cdot \nabla u + \nabla p - \nu \Delta u = 0, \qquad \nabla \cdot u = 0.$$

on some interval [0, T].

(i) Then

$$\sup_{t \in [0,T]} \|u(t)\|_{H^s} \le C\Big(s, \|u(0)\|_{H^s}, \int_0^T \|\nabla_x u(s)\|_{L^\infty} \, ds\Big)$$

(ii) (Beale-Kato-Majda) Moreover

$$\sup_{t \in [0,T]} \|u(t)\|_{H^s} \leq C\Big(s, \|u(0)\|_{H^s}, \int_0^T \|\omega(s)\|_{L^\infty} \, ds\Big),$$

where ω is the associated vorticity of the velocity field

$$\omega_{ij} := \partial_i u_j - \partial_j u_i.$$

Regularity criteria

Theorem 5: (Prodi-Serrin regularity criterion): Assume s > d/2 + 1, and $\phi \in C([0, T] : H^s(\mathbb{T}^d))$, is a solution of the Navier-Stokes equation

$$\partial_t u + u \cdot \nabla u + \nabla p - \Delta u = 0, \qquad \nabla \cdot u = 0.$$

on some interval [0, T]. If 2/p + d/q = 1 then

$$\sup_{t \in [0,T]} \|u(t)\|_{H^s} \leq C\Big(s, \|u(0)\|_{H^s}, \|u\|_{L^p_t L^q_x}\Big).$$

The Fourier transform on \mathbb{R}^d :

$$\widehat{f}(\xi) := \int_{\mathbb{R}^d} f(x) e^{-ix\cdot\xi} dx.$$

The Fourier inversion formula:

$$f(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \widehat{f}(\xi) e^{ix \cdot \xi} d\xi.$$

The Plancherel theorem:

$$||f||_{L^2} = C_d ||\widehat{f}||_{L^2}.$$

The heat flow $e^{t\Delta}$ is defined by the Fourier multiplier $\xi \to e^{-t|\xi|^2}$:

$$e^{t\Delta}f := \mathcal{F}^{-1}(\widehat{f}(\xi)e^{-t|\xi|^2}),$$

 $e^{t\Delta}f(x) = f * K_t(x)$

where K_t is the heat kernel

$$K_t(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{-t|\xi|^2} e^{ix\cdot\xi} d\xi = \frac{C_d}{t^{d/2}} e^{-|x|^2/4t}.$$

• It is easy to see that for $p \in [1, \infty]$

$$||K_t||_{L^p} \approx t^{-d/2} t^{d/(2p)}.$$

Young's inequality

$$\|f * K\|_{L^q} \le \|f\|_{L^p} \|K\|_{L^r}, \qquad \frac{1}{q} = \frac{1}{p} + \frac{1}{r} - 1$$

then gives the heat flow estimates

$$\|e^{t\Delta}f\|_{L^q} + \sqrt{t}\|e^{t\Delta}\nabla f\|_{L^q} \lesssim t^{-b}\|f\|_{L^p}, \qquad b := \frac{d}{2}\left(\frac{1}{p} - \frac{1}{q}\right),$$

holds for all exponents $1 \le p \le q \le \infty$ and numbers t > 0.

• Littlewood-Paley theory: Assume $\varphi: \mathbb{R} \to [0,1]$ is a smooth even function supported in the interval [-2,2] and equal to 1 in the interval [-2,2]. For any $k\in\mathbb{Z}$ we define

$$\varphi_k(\xi) := \varphi(|\xi|/2^k) - \varphi(|\xi|/2^{k-1})$$

so φ_k is supported in the annulus $\{|\xi| \in [2^{k-1}, 2^{k+1}]$. We define the Littlewood-Paley projections

$$P_k f := \mathcal{F}^{-1}[\varphi_k(\xi)\widehat{f}(\xi)] = f * L_k,$$

$$L_k(x) := \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \varphi_k(\xi) e^{ix \cdot \xi} d\xi = 2^{kd} L_0(2^k x).$$

Many properties:

$$f = \sum_{k \in \mathbb{Z}} P_k f, \qquad \|f\|_{H^s}^2 \approx \sum_{k \in \mathbb{Z}} (2^{2ks} + 1) \|P_k f\|_{L^2}^2,$$
$$\|P_k f\|_{L^q} \lesssim \|f\|_{L^p} 2^{dk(1/p - 1/q)}, \qquad 1 \le p \le q \le \infty.$$

• Calderón-Zygmund theory: if T is an operator defined by a Hörmander-Michlin multiplier m satisfying

$$|D_{\xi}^{\alpha}m(\xi)|\lesssim_{|\alpha|}|\xi|^{-\alpha}$$

then T is a bounded operator on $L^p(\mathbb{R}^d)$, $p \in (1, \infty)$ and

$$||Tf||_{L^{\infty}} \lesssim_{s} ||f||_{L^{\infty}} [1 + \log (2 + ||f||_{H^{s}}/||f||_{L^{\infty}})].$$

if s > d/2.

• The Kato-Ponce inequality: if $s \ge 0$ then

$$\left\|J^{s}(u\nabla v)-uJ^{s}\nabla v\right\|_{L^{2}}\lesssim_{s}\|\nabla u\|_{L^{\infty}}\|v\|_{H^{s}}+\|\nabla u\|_{L^{\infty}}\|v\|_{H^{s}}$$

for any $u, v \in H^s(\mathbb{R}^d)$, where J^s is defined by the Fourier multiplier $\xi \to (1 + |\xi|^2)^{s/2}$.

The Euler equations in 2D: Arnold stability

In vorticity formulation

$$\begin{aligned} \partial_t \omega + u_1 \partial_1 \omega + u_2 \partial_2 \omega &= 0, \\ u_1 &= -\partial_2 \psi, \qquad u_2 &= \partial_1 \psi, \qquad \Delta \psi &= \omega. \end{aligned}$$

Shear flows:

$$(u_1, u_2)(x, y) = (U(y), 0), \qquad \omega(x, y) = -U'(y).$$

These are stationary solutions of the 2D Euler equations.

Vortices:

$$\begin{split} &\omega(x,y) = \Omega(\sqrt{x^2 + y^2}), & \psi(x,y) = \Psi(\sqrt{x^2 + y^2}), \\ &u_1(x,y) = -\Psi'(\sqrt{x^2 + y^2}) \frac{y}{\sqrt{x^2 + y^2}} \\ &u_2(x,y) = \Psi'(\sqrt{x^2 + y^2}) \frac{x}{\sqrt{x^2 + y^2}}. \end{split}$$

These are also stationary solutions of the 2D Euler equations.

The Euler equations in 2D: Arnold stability

Theorem (Arnold stability): (i) Assume $D = \mathbb{T} \times [0,1]$. Then shear flows defined by strictly convex functions $U:[0,1] \to \mathbb{R}$ are globally stable under the norm

$$\int_D |u - \overline{u}|^2 dx + \int_D |\omega - \overline{\omega}|^2 dx.$$

(ii) Assume $D=B_{R_0}$. Then vortices defined by strictly monotonic functions $\Omega:[0,\infty)\to\mathbb{R}$ are globally stable under the same norm as above.