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Introduction

We consider the incompressible Navier-Stokes and Euler equations
in d ≥ 2 dimensions

∂tu + u · ∇u +∇p − ν∆u = 0,

∇ · u = 0.
(1)

where u : D × [0,T ] → Rd is the velocity field, p : D × [0,T ] → R
is the pressure, and ν ≥ 0. In components

∂tuk + uj∂juk + ∂kp − ν∆uk = 0,

∂juj = 0.
(2)
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Introduction

• The pressure is such that the incompressibility condition is
propagated by the flow

∆p + ∂k(uj∂juk) = 0 =⇒ p = RjRk(ujuk),

where Rj denotes the Riesz transform Rj = ∂j |∇|−1.

• Several possible frameworks: periodic domain x ∈ Td , Euclidean
domain x ∈ Rd , chanel (x , y) ∈ T× R, bounded domains D ⊆ Rd

(with suitable boundary conditions).

• The case ν = 0 corresponds to the Euler equations, which are
time reversible.
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Basic questions

• Local wellposedness: one has local regularity for sufficiently
smooth initial data in Sobolev spaces. There are also continuation
criteria that guarantee regularity as long as certain quantities are
controlled.

• Long term regularity: in certain cases one can prove long term
(sometimes global) regularity: the solutions exist globally in time if
the initial data is ”small” in suitable critical spaces or if d = 2.
The question of global regularity of solutions of the Navier-Stokes
or the Euler equations in dimension d = 3 is a fundamental open
problem in Fluid Mechanics and one of the Millennium Problems.
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Basic questions

• Stability of certain classes of solutions: shear flows and
vortices are sometimes ”stable” both at the linear and nonlinear
level in 2D.

• Formation of singularities: loss of regularity of solutions
starting with smooth initial data (completely open).

• Derived models: many important equations, like the water
waves system, the KdV equation, and the Schrödinger equation
can be derived from the basic Fluid equations.

• Numerical analysis: solutions of the Euler equations can be
very complicated, and numerics have played a critical role in
understanding their dynamics.
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Local regularity

Theorem 1 (local well-posedness): (i) Assume ν ∈ [0, 1] and
ϕ ∈ Hs(Td), s > d/2 + 1 satisfies ∂jϕj = 0. Then there is
T = T (s, ∥ϕ∥Hs ) > 0 and a unique solution
u ∈ C ([0,T ] : Hs(Td)) of the initial value problem

∂tu + u · ∇u +∇p − ν∆u = 0, ∇ · u = 0,

u(0) = ϕ.
(3)

Moreover
sup

t∈[0,T ]
∥u(t)∥Hs ≲ C (s, ∥ϕ∥Hs ).

(ii) For any R ≥ 0 the mapping ϕ 7→ u is a continuous mapping
from BR(H

s
0(Td)) to C ([0,T ] : Hs(Td)).
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Local regularity

Duhamel formula: u is a solution of the Navier-Stokes equations
(3) if and only if

u(t) = eνt∆ϕ+

∫ t

0
eν(t−s)∆N (u, u)(s) ds,

N (u, u) := −(∇p + u · ∇u), p = p(u) = RjRk(ujuk).

(4)

When ν > 0 this can be solved using a fixed-point argument in the
space Z := C ([0,Tν ] : H

s) provided that Tν is sufficiently small
depending on ν > 0 and ∥ϕ∥Hs .

To prove local well-posedness in the Euler case ν = 0 we need to
prove apriori control of high order energy functionals.

Alexandru Ionescu On the Regularity Theory of Incompressible Flows



Local regularity

Energy dissipation:

∥u(t)∥2L2 = ∥u(0)∥2L2 − 2ν

∫ t

0

∫
Td

|∇u(s)|2 dxds.

High order energy inequality:

Es(t) ≤ Es(0) + Cs

∫ t

0
Es(t ′)∥∇u(t ′)∥L∞ dt ′

where

Es(t) :=
∫
Td

|Jsu(t, x)|2 dx ,

and Js is defined by the Fourier multiplier ξ → (1 + |ξ|2)s/2. The
proof uses the Kato-Ponce inequality: if s ≥ 0 then∥∥Js(u∇v)− uJs∇v

∥∥
L2

≲s ∥∇u∥L∞∥v∥Hs + ∥∇v∥L∞∥u∥Hs

for any u, v ∈ Hs(Td).
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Critical well-posedness theory

Set ν = 1, so the incompressible Navier-Stokes equations are

∂tu + u · ∇u +∇p −∆u = 0, ∇ · u = 0.

Solutions are formally invariant under parabolic scaling

uλ(t, x) = λu(λ2t, λx),

pλ(t, x) = λ2p(λ2t, λx)

for λ ∈ R. The well-posedness theory and regularity criteria are
best expressed in terms of scaling-invariant (critical) norms like

L∞t Ldx , L∞t Ḣd/2−1, Lpt L
q
x , 2/p + d/q = 1,
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Critical well-posedness theory

Theorem 2 (Kato 1984): Assume d ≥ 2, ϕ ∈ Ld(Td) satisfies
∂jϕj = 0. Then there is a unique solution u ∈ C ([0,T ] : Ld) of the
initial value problem

∂tu + u · ∇u +∇p −∆u = 0, ∇ · u = 0,

u(0) = ϕ,

where T = T (ϕ) > 0. Moreover, T = ∞ (meaning global
regularity) if ∥ϕ∥Ld ≤ εd ≪ 1.
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Critical well-posedness theory

To prove this we use a fixed-point argument in the space

Zq :=
{
∥f ∈ C ([0,T ] : Ld) :

∥f ∥Zq := sup
t∈[0,T ]

[
∥f (t)∥Ld + ta∥f (t)∥Lq

]
<∞

}
.

where q ∈ (d ,∞) and a = 1/2− d/(2q).

We use the general inequality

∥et∆f ∥Lq +
√
t∥et∆∇f ∥Lq ≲ t−b∥f ∥Lp , b :=

d

2

(1
p
− 1

q

)
,

which holds for all exponents 1 < p ≤ q <∞ and numbers t > 0,
provided that f̂ (0) = 0.
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2D global regularity

The vorticity equation

∂tωij + uk∂kωij + ωjk∂iuk − ωik∂juk − ν∆ωij = 0

In dimension d = 2 the equation becomes

∂tω + u · ∇ω − ν∆ω = 0.

Lp conservation laws:

∥ω(t)∥Lp ≤ ∥ω(0)∥Lp for any t ∈ [0,T ] and p ∈ [1,∞].
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2D global regularity

Theorem 3 (global well-posedness in 2D): (i) Assume d = 2,
ν ∈ [0, 1] and ϕ ∈ Hs(Td), s > 2 satisfies ∂jϕj = 0. Then there is
a unique global solution u ∈ C ([0,∞ : Hs(T2)) of the initial value
problem

∂tu + u · ∇u +∇p − ν∆u = 0, ∇ · u = 0,

u(0) = ϕ.

Moreover

∥u(t)∥Hs ≲ C (s, t, ∥ϕ∥Hs ) for any t ∈ [0,∞),

∥ω(t)∥L∞ ≤ ∥ω0∥L∞ .
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Regularity criteria

Theorem 4: Assume ν ∈ [0, 1], s > d/2 + 1, and
u ∈ C ([0,T ] : Hs(Td)), is a solution of the Navier-Stokes equation

∂tu + u · ∇u +∇p − ν∆u = 0, ∇ · u = 0.

on some interval [0,T ].
(i) Then

sup
t∈[0,T ]

∥u(t)∥Hs ≤ C
(
s, ∥u(0)∥Hs ,

∫ T

0
∥∇xu(s)∥L∞ ds

)
(ii) (Beale-Kato-Majda) Moreover

sup
t∈[0,T ]

∥u(t)∥Hs ≤ C
(
s, ∥u(0)∥Hs ,

∫ T

0
∥ω(s)∥L∞ ds

)
,

where ω is the associated vorticity of the velocity field

ωij := ∂iuj − ∂jui .
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Regularity criteria

Theorem 5: (Prodi-Serrin regularity criterion): Assume
s > d/2 + 1, and ϕ ∈ C ([0,T ] : Hs(Td)), is a solution of the
Navier-Stokes equation

∂tu + u · ∇u +∇p −∆u = 0, ∇ · u = 0.

on some interval [0,T ]. If 2/p + d/q = 1 then

sup
t∈[0,T ]

∥u(t)∥Hs ≤ C
(
s, ∥u(0)∥Hs , ∥u∥Lpt Lqx

)
.
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Fourier analysis and harmonic analysis

The Fourier transform on Rd :

f̂ (ξ) :=

∫
Rd

f (x)e−ix ·ξ dx .

The Fourier inversion formula:

f (x) =
1

(2π)d

∫
Rd

f̂ (ξ)e ix ·ξ dξ.

The Plancherel theorem:

∥f ∥L2 = Cd∥f̂ ∥L2 .

The heat flow et∆ is defined by the Fourier multiplier ξ → e−t|ξ|2 :

et∆f := F−1(f̂ (ξ)e−t|ξ|2),

et∆f (x) = f ∗ Kt(x)
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Fourier analysis and harmonic analysis

where Kt is the heat kernel

Kt(x) =
1

(2π)d

∫
Rd

e−t|ξ|2e ix ·ξ dξ =
Cd

td/2
e−|x |2/4t .

• It is easy to see that for p ∈ [1,∞]

∥Kt∥Lp ≈ t−d/2td/(2p).

• Young’s inequality

∥f ∗ K∥Lq ≤ ∥f ∥Lp∥K∥Lr ,
1

q
=

1

p
+

1

r
− 1

then gives the heat flow estimates

∥et∆f ∥Lq +
√
t∥et∆∇f ∥Lq ≲ t−b∥f ∥Lp , b :=

d

2

(1
p
− 1

q

)
,

holds for all exponents 1 ≤ p ≤ q ≤ ∞ and numbers t > 0.
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Fourier analysis and harmonic analysis

• Littlewood-Paley theory: Assume φ : R → [0, 1] is a smooth
even function supported in the interval [−2, 2] and equal to 1 in
the interval [−2, 2]. For any k ∈ Z we define

φk(ξ) := φ(|ξ|/2k)− φ(|ξ|/2k−1)

so φk is supported in the annulus {|ξ| ∈ [2k−1, 2k+1]. We define
the Littlewood-Paley projections

Pk f := F−1[φk(ξ)f̂ (ξ)] = f ∗ Lk ,

Lk(x) :=
1

(2π)d

∫
Rd

φk(ξ)e
ix ·ξ dξ = 2kdL0(2

kx).

Many properties:

f =
∑
k∈Z

Pk f , ∥f ∥2Hs ≈
∑
k∈Z

(22ks + 1)∥Pk f ∥2L2 ,

∥Pk f ∥Lq ≲ ∥f ∥Lp2dk(1/p−1/q), 1 ≤ p ≤ q ≤ ∞.
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Fourier analysis and harmonic analysis

• Calderón-Zygmund theory: if T is an operator defined by a
Hörmander-Michlin multiplier m satisfying

|Dα
ξ m(ξ)| ≲|α| |ξ|−α

then T is a bounded operator on Lp(Rd), p ∈ (1,∞) and

∥Tf ∥L∞ ≲s ∥f ∥L∞
[
1 + log

(
2 + ∥f ∥Hs/∥f ∥L∞

)]
.

if s > d/2.

Alexandru Ionescu On the Regularity Theory of Incompressible Flows



Fourier analysis and harmonic analysis

• The Kato-Ponce inequality: if s ≥ 0 then∥∥Js(u∇v)− uJs∇v
∥∥
L2

≲s ∥∇u∥L∞∥v∥Hs + ∥∇u∥L∞∥v∥Hs

for any u, v ∈ Hs(Rd), where Js is defined by the Fourier
multiplier ξ → (1 + |ξ|2)s/2.
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The Euler equations in 2D: Arnold stability

• In vorticity formulation

∂tω + u1∂1ω + u2∂2ω = 0,

u1 = −∂2ψ, u2 = ∂1ψ, ∆ψ = ω.

• Shear flows:

(u1, u2)(x , y) = (U(y), 0), ω(x , y) = −U ′(y).

These are stationary solutions of the 2D Euler equations.
• Vortices:

ω(x , y) = Ω(
√
x2 + y2), ψ(x , y) = Ψ(

√
x2 + y2),

u1(x , y) = −Ψ′(
√

x2 + y2)
y√

x2 + y2

u2(x , y) = Ψ′(
√
x2 + y2)

x√
x2 + y2

.

These are also stationary solutions of the 2D Euler equations.
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The Euler equations in 2D: Arnold stability

Theorem (Arnold stability): (i) Assume D = T× [0, 1]. Then
shear flows defined by strictly convex functions U : [0, 1] → R are
globally stable under the norm∫

D
|u − u|2 dx +

∫
D
|ω − ω|2 dx .

(ii) Assume D = BR0 . Then vortices defined by strictly monotonic
functions Ω : [0,∞) → R are globally stable under the same norm
as above.
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