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We consider the incompressible Navier-Stokes and Euler equations
in d > 2 dimensions

Otu+u-Vu+Vp—vAu=0,

V-u=0. (1)

where u: D x [0, T] — R9 is the velocity field, p: D x [0, T] — R
is the pressure, and v > 0. In components

Oy + Ujajuk + Okp — vAu, =0,

2
ajUj =0. ( )
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e The pressure is such that the incompressibility condition is
propagated by the flow

Ap + ak(uj(?juk) =0 = p= Rij(UjUk),

where R; denotes the Riesz transform R; = 9;|V|~1.

e Several possible frameworks: periodic domain x € T9, Euclidean
domain x € RY, chanel (x,y) € T x R, bounded domains D C R
(with suitable boundary conditions).

e The case v = 0 corresponds to the Euler equations, which are
time reversible.
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e Local wellposedness: one has local regularity for sufficiently
smooth initial data in Sobolev spaces. There are also continuation
criteria that guarantee regularity as long as certain quantities are
controlled.

e Long term regularity: in certain cases one can prove long term
(sometimes global) regularity: the solutions exist globally in time if
the initial data is "small” in suitable critical spaces or if d = 2.
The question of global regularity of solutions of the Navier-Stokes
or the Euler equations in dimension d = 3 is a fundamental open
problem in Fluid Mechanics and one of the Millennium Problems.
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e Stability of certain classes of solutions: shear flows and
vortices are sometimes "stable” both at the linear and nonlinear
level in 2D.

e Formation of singularities: loss of regularity of solutions
starting with smooth initial data (completely open).

e Derived models: many important equations, like the water
waves system, the KdV equation, and the Schrodinger equation
can be derived from the basic Fluid equations.

e Numerical analysis: solutions of the Euler equations can be
very complicated, and numerics have played a critical role in
understanding their dynamics.
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Local

Theorem 1 (local well-posedness): (i) Assume v € [0,1] and
¢ € H5(T9), s > d/2 + 1 satisfies 9;¢; = 0. Then there is

T = T(s,||¢||ns) > 0 and a unique solution

u € C([0, T] : H*(T9)) of the initial value problem

Oiu+u-Vu+Vp—vAu=0, V-u=0, 3)
u(0) = ¢.
Moreover
sup [lu(t)|ls < C(s. [|9]lHe)-

te[0,T]

(ii) For any R > 0 the mapping ¢ — u is a continuous mapping
from Br(HS(T9)) to C([0, T] : H5(TY)).
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Local r

Duhamel formula: v is a solution of the Navier-Stokes equations
(3) if and only if

u(t) = e’ ¢ + /0 t e"(t=AN (u, u)(s) ds, @
N(u,u):==(Vp+u-Vu),  p=p(u) = RRi(ujux).

When v > 0 this can be solved using a fixed-point argument in the
space Z := C([0, T,] : H®) provided that T, is sufficiently small
depending on v > 0 and ||¢|| s.

To prove local well-posedness in the Euler case v = 0 we need to
prove apriori control of high order energy functionals.
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Local

Energy dissipation:

t
Ju(t)[I7> = [u(0)]17- — 21//0 /Td |Vu(s)|? dxds.

High order energy inequality:
t
Eu(t) < £,(0) + cs/ () |V u(t)]| = dt
0

where

Es(t) ::/ | S u(t, x)|? dx,
Td

and J° is defined by the Fourier multiplier & — (1 + |£[?)%/2. The
proof uses the Kato-Ponce inequality: if s > 0 then

[V v) = V| o Ss IV ull s Ve + [V V]l e

for any u, v € H5(TY).



Set v = 1, so the incompressible Navier-Stokes equations are
Oru+u-Vu+Vp—Au=0, V-u=0.
Solutions are formally invariant under parabolic scaling

ux(t, x) = Au(\2t, \x),
p)\(t,X) = >‘2p()‘2t7 )‘X)

for A € R. The well-posedness theory and regularity criteria are
best expressed in terms of scaling-invariant (critical) norms like

Lerd, LRI P19 2/p+d/q =1,

t =x»
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Theorem 2 (Kato 1984): Assume d > 2, ¢ € L9(TY) satisfies
dj¢; = 0. Then there is a unique solution u € C([0, T] : L9) of the
initial value problem

Oru+u-Vu+Vp—Au=0, V-u=0,
u(0) = ¢,

where T = T(¢) > 0. Moreover, T = oo (meaning global
regularity) if ||¢]| ¢ < eq < 1.
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To prove this we use a fixed-point argument in the space

Zy:={|f e C([0.T]: L)
11z, := o [IF()o + £2[IF(8)]|a] < oo}

where g € (d,00) and a=1/2 — d/(2q).
We use the general inequality
d/1 1
€2 F e + VEIAVFlL S 0l bi=F(5 - ).

which holds for all exponents 1 < p < g < oo and numbers t > 0,

~

provided that f(0) = 0.
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The vorticity equation

8tw,-j + ukakw,-j + wjka,-uk — w,-k(?juk —vAw;j =0

In dimension d = 2 the equation becomes
Oiw + u-Vw —vAw = 0.
LP conservation laws:

llw(t)|lee < |lw(0)]cr for any t € [0, T] and p € [1, oq].
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2D glo

Theorem 3 (global well-posedness in 2D): (i) Assume d = 2,
v € [0,1] and ¢ € H5(T9), s > 2 satisfies J;¢; = 0. Then there is
a unique global solution u € C([0, 00 : H*(T?)) of the initial value
problem

Otu+u-Vu+Vp—vAu=0, V-u=0,

u(0) = ¢.

Moreover

[u(®)l[ms S C(s,t,[[@lls)  for any t € [0, 00),
lw()l[ o < [lwol| Lo
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Theorem 4: Assume v € [0,1], s > d/2+ 1, and
u € C([0, T] : H5(T9)), is a solution of the Navier-Stokes equation

Otu+u-Vu+Vp—vAu=0, V-u=0.
on some interval [0, T].

(i) Then

sup )l < C (s 10O [ [V0(s) 1 o)

t€[0,T]

(ii) (Beale-Kato-Majda) Moreover

)
sup_[lu(t) 14+ < C(s. () - /O Jeo(s)] ).

te[0,T]
where w is the associated vorticity of the velocity field

wjj = 8,'UJ' - 8ju,-.
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Theorem 5: (Prodi-Serrin regularity criterion): Assume
s>d/2+1,and ¢ € C([0, T] : H5(T?)), is a solution of the
Navier-Stokes equation

Oru+u-Vu+Vp—Au=0, V-u=0.

on some interval [0, T]. If 2/p+ d/q =1 then

sup_[lu()lle < C (s, 1u(0)1 ks, 1l s )
tel0,T]
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Fourie

The Fourier transform on R¥:

Fle) = / F(x)e ¢ d.

Rd
The Fourier inversion formula:
1 - )
F(x) =g | F(E)e™CdeE.

() = gy [, Pl e

The Plancherel theorem:

1fll2 = Callfll 2.

The heat flow e2 is defined by the Fourier multiplier £ — e~ tlél*:

etAf i= FY(F(€)e ),
etBf(x) = f % Ke(x)
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Fourie

where Kj; is the heat kernel

1 —t|¢|? Jix- Cd —|x|?/4
Kt(X):(27r)d/Rde tlgl* o Edgzme Ix|?/4t

e It is easy to see that for p € [1, 0]

K| = t~972¢9/P),
e Young's inequality
I Ko < IflleellKl[r, - —=—4+ =1
qg p
then gives the heat flow estimates

~

drl 1
| Fllia + Vel Vel S €00l bi=2 (5 - 2),

holds for all exponents 1 < p < g < 0o and numbers t > 0.
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Fourier

e Littlewood-Paley theory: Assume ¢ : R — [0, 1] is a smooth
even function supported in the interval [—2,2] and equal to 1 in
the interval [—2,2]. For any k € Z we define

k() = w(I€1/2) — p(€]/257)

so oy is supported in the annulus {|¢| € [2571, 2K+1]. We define
the Littlewood-Paley projections

Pif i= F p(€)F(€)] = F * Ly,
1

L) = G337 [ e€)e< de = 2915(2),

Many properties:

F=Y Puf,  |fllfs = > (2% + 1)||Pufll,
keZ keZ

1P l[a S [IF]| o2 /P7HD 1 < p < q < oo,

~
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Fourie

e Calderén-Zygmund theory: if T is an operator defined by a
Hormander-Michlin multiplier m satisfying

| Dgm(&)] Sjay 16177
then T is a bounded operator on LP(R?), p € (1,00) and
ITFlle S [IFlleoe [1 + log (24 [[Fll1s /11 oe) ]-

if s> d/2.
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Fourie

e The Kato-Ponce inequality: if s > 0 then
|2 (uVv) = ul V| o Ss IVullee vl + [Vl s [v] e

for any u, v € H5(RY), where J* is defined by the Fourier
multiplier &€ — (1 + |£[?)%/2.
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e In vorticity formulation

Orw + 1 O1w + u0hw = 0,
up = —021), upr = O, AY = w.

e Shear flows:

(u, )(x,y) = (U(y),0),  w(x,y)=-U(y).

These are stationary solutions of the 2D Euler equations.
e Vortices:

wix,y) =QvVx2+y?),  P(xy)=V(Vx>+y?),
t(x,y) = W' (/%2 + y2)— =2
/X2 _|_y2
X
w(x,y) = V' (VX2 + y?)— .
/ x2 +y2
These are also stationary solutions of the 2D Euler equations.
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Theorem (Arnold stability): (i) Assume D =T x [0,1]. Then
shear flows defined by strictly convex functions U : [0,1] — R are
globally stable under the norm

/\u—u\zdx—i-/]w—w\zdx.
D D

(i) Assume D = Bg,. Then vortices defined by strictly monotonic
functions Q : [0,00) — R are globally stable under the same norm
as above.
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