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Abstract

Let G be a non-compact connected semisimple Lie group of real rank one with finite

center, K a maximal compact subgroup of G and X = G/K an associated symmetric

space of real rank one. We will prove that L2,1(G) ∗ L2,1(G) ⊆ L2,∞(G), which is a

sharp endpoint estimate for the Kunze-Stein phenomenon. We will also show that

the noncentered maximal operator

M2f(z) = sup
z∈B

1

|B|

∫

B

f(z′)dz′

is bounded from L2,1(X) to L2,∞(X) and from Lp(X) to Lp(X) in the sharp range of

exponents p ∈ (2,∞]. The supremum in the definition of M2f(z), is taken over all

balls B containing the point z.

In the second part of this thesis we investigate Lp boundedness properties of a

certain class of radial Fourier integral operators on the symmetric space X. We will

prove that if uτ is the solution at some fixed time τ of the natural wave equation on

X with initial data f and g and 1 < p <∞ then

||uτ ||Lp(X) ≤ Cp(τ)
(
||f ||Lp

bp
(X) + (1 + τ)||g||Lp

bp−1(X)

)
.

We will obtain both the precise behavior in τ of the norm Cp(τ) and the sharp

regularity assumptions on the functions f and g (i.e. the exponent bp) that make this

inequality possible. Our last theorem is concerned with the analog of Stein’s maximal

spherical averages introduced in [23] and we prove exponential decay estimates (of a

highly non-Euclidean nature) on the Lp norm of sup
T≤τ≤T+1

|f ∗ dστ (z)|.
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1 Introduction

In this thesis we study boundedness properties of certain convolution-type operators

on semisimple Lie Groups and on associated symmetric spaces. A central result in the

theory of such operators is the Kunze-Stein phenomenon, which, in its classical form,

states that if G is a connected semisimple Lie group with finite center and p ∈ [1, 2)

then

L2(G) ∗ Lp(G) ⊆ L2(G) (1.1)

(the usual convention, which will be used throughout this thesis, is that if U, V and

W are Banach spaces of functions on G then U ∗V ⊆ W means both the set inclusion

and the associated norm inequality). The inclusion (1.1) has been established by

Kunze and Stein [14] in the case when the group G is SL(2,R) (and, later on, for

a number of other particular groups) and by Cowling [7] in the general case stated

above. For a more complete account of the development of ideas leading to (1.1) we

refer the reader to [7] and [8].

More recently, Cowling, Meda and Setti noticed that if the group G has real rank

one then the inclusion (1.1) can be strengthened. Following earlier work of Lohoué

and Rychener [17], the key ingredient in their approach is the use of Lorentz spaces

Lp,q(G) and it is proved in [8] that if G is a connected semisimple Lie group of real

rank one with finite center, p ∈ (1, 2) and (α, β, γ) ∈ [1,∞]3 have the property that

1 + 1/γ ≤ 1/α + 1/β, then

Lp,α(G) ∗ Lp,β(G) ⊆ Lp,γ(G). (1.2)

In particular, Lp,1 convolves Lp into Lp for any p ∈ [1, 2). Our first theorem is an

endpoint estimate for (1.2) that shows what happens when p = 2.

Theorem A. If G is a non-compact connected semisimple Lie group of real rank one
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with finite center then

L2,1(G) ∗ L2,1(G) ⊆ L2,∞(G). (1.3)

Notice that (1.2) follows from Theorem A and a bilinear interpolation theorem ([8,

Theorem 1.2]). However, unlike the classical proof of the Kunze-Stein phenomenon,

our proof of Theorem A will be based on real-variable techniques only. Easy examples,

involving only K-biinvariant functions, show that the inclusion (1.3) is sharp in the

sense that none of the L2,1 spaces or the L2,∞ space can be replaced with some L2,α

space for some α ∈ (1,∞).

Assume from now on that the group G satisfies the hypothesis stated in Theorem

A. Let g denote its Lie algebra, θ a Cartan involution of g and g = k⊕p the associated

Cartan decomposition. Let K = exp k be a maximal compact subgroup of G and let

X = G/K be an associated symmetric space with origin 0 = {K}. The Killing form

on g induces a G-invariant distance function d on X. Let B(x, r) denote the ball in X

centered at x of radius r (with respect to the distance function d) and let |A| denote

the measure of the set A ⊂ X. For any locally integrable function f on X, let

M̃2f(z) = sup
r≥1

1

|B(z, r)|1/2

∫

B(z,r)

f(z′)dz′ (1.4)

and

M2f(z) = sup
z∈B

1

|B|

∫

B

f(z′)dz′, (1.5)

where the supremum in the definition of M2f(x) is taken over all balls B containing

z. We will prove the following two theorems on these maximal operators:

Theorem B. The operator M̃2 is a bounded operator from L2,1(X) to L2,∞(X).

Theorem C. The operator M2 is a bounded operator from L2,1(X) to L2,∞(X) and

from Lp(X) to Lp(X) in the sharp range of exponents p ∈ (2,∞].

Notice that the operator M̃2 does not have a suitable Euclidean analogue and its
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L2,1 → L2,∞ boundedness is related to Theorem A. On the other hand, unlike in the

case of Euclidean spaces, the exponential increase of the volume of large balls shows

that the noncentered maximal operator M2 is not bounded from Lp(X) to Lp(X) if

p ∈ [1, 2]. We recall that the more standard centered maximal operator

M1f(z) = sup
r>0

1

|B(z, r)|

∫

B(z,r)

f(z′)dz′

is bounded from L1(X) to L1,∞(X) and from Lp(X) to Lp(X) for any p > 1, as shown

in [5] and [26] (without the assumption that G has real rank one). Our proof of

Theorem B follows the same idea as in [26], which is understanding the connection

between the Iwasawa decomposition of G and its Cartan decomposition. Theorem C

will turn out to be an easy consequence of Theorem B.

In order to state our last two theorems we need to introduce some more notation.

Recall that the Lie algebra g of the Lie group G has a Cartan decomposition g =

k ⊕ p. Let a be a maximal abelian subspace of p and, since G has real rank one,

dimRa = 1. Let a∗
R

denote the real dual of a and, for α ∈ a∗
R
, let gα = {X ∈ g :

[H,X] = α(H)X for all H ∈ a}. Let Σ = {α ∈ a∗
R
\ {0} : dimRgα > 0} be the set of

nonzero roots; it is well known that Σ is either of the form {−α, α} or of the form

{−2α,−α, α, 2α}. Assume that the Lie algebras k and a are fixed once and for all.

In order to simplify the exposition, we identify from the very beginning the space a∗
C

(the complex dual of a) with C using the map λ→ λα for λ ∈ C. We also renormalize

the Killing form on g such that |H0| = 1 where H0 is the unique vector in a with the

property that α(H0) = 1.

One has a Fourier transform on the symmetric space X that associates to any

smooth compactly supported function f on X a function f̃ : a∗
C
× K/M → C, where

M is the centralizer of a in K ([12, Chapter III]). By Plancherel’s theorem and the

inversion formula, any bounded even function m : R → C defines a bounded operator
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Tm on L2(X) given by T̃mf(λ, b) = m(λ)f̃(λ, b) (recall that we identified a∗
C

with C

and this gives an identification of a∗
R

with R). The question of Lp boundedness of

operators defined by analytic multipliers m that satisfy suitable symbol estimates has

been subject of extensive research (see [5] for the case of complex groups G, [22] for

real rank one groups, [2] when G is a normal real form and [1] for groups of arbitrary

real rank). More details on the development of these ideas can be found in Anker’s

work [1]. Suitable classes of symbols are defined as follows: for any a ≥ 0 and b ∈ R,

let Sb
a be the set of continuous functions m(λ) defined on the tube {λ ∈ C, |ℑλ| ≤ a},

analytic in the interior of the tube, infinitely differentiable on the two lines |ℑλ| = a

and which satisfy the symbol inequalities

∣∣∣∣
∂α

∂λα
m(λ)

∣∣∣∣ ≤ C(1 + |ℜλ|)b−α for any α = 0, 1 . . . N and |ℑλ| ≤ a, (1.6)

where N = ⌊n/2⌋ + 1 is a “large” integer (n is the dimension of X).

The main objects of study in the second part of this thesis are operators defined by

Fourier multipliers of the form mτ (λ) cos(λτ) or mτ (λ)λ−1 sin(λτ) where the symbol

mτ belongs to a suitable class Sb
a. Our next theorem is the following Lp estimate:

Theorem D. If 1 < p <∞, τ ≥ 0, a = |ρ|αp, b = −dαp and m ∈ Sb
a (the notation is

explained in (1.11)) then the operators T1,τ and T2,τ defined by the Fourier multipliers

[m(λ) cos(λτ)], respectively
[
m(λ) (λ2 + |ρ|2)

1/2
λ−1 sin(λτ)

]
are bounded from Lp(X)

to Lp(X) and 



||T1,τ ||Lp→Lp ≤ Cpe
|ρ|αpτ ;

||T2,τ ||Lp→Lp ≤ Cpe
|ρ|αpτ (1 + τ).

(1.7)

Let uτ be the solution to the Cauchy problem





∂2

∂τ2uτ = (∆ + |ρ|2)uτ ,

u0 = f ; ∂
∂τ
uτ |τ=0 = g.

(1.8)
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Recall that the spectrum of the Laplace-Beltrami operator ∆ is (−∞,−|ρ|2], there-

fore the Fourier transform of uτ is given (formally) by ũτ (λ, b) = cos(λτ)f̃(λ, b) +

λ−1 sin(λτ)g̃(λ, b). Theorem D gives the following:

Corollary 1.1. If p ∈ (1,∞) and τ ≥ 0 then

||uτ ||Lp ≤ Cpe
|ρ|αpτ

(
||f ||Lp

dαp
+ (1 + τ)||g||Lp

dαp−1

)
. (1.9)

The Euclidean counterpart of Corollary 1.1 has been proven by Peral [18] and

a local variable coefficient version has been considered in [19]. As pointed out in

these two papers, the exponents dαp, respectively dαp − 1 that appear in the Sobolev

spaces on the right hand side of (1.9) are sharp. In addition, the exponential part of

the bound depending on τ in (1.9) (i.e. e|ρ|αpτ ) is best possible (this can be checked

easily if the dimension of X is odd using an explicit formula for uτ ([12, Chapter

5])). Strichartz-type estimates (i.e. Lp → Lp′ , p ≤ 2) on the solution of the wave

equation on hyperbolic spaces have been obtained by Tataru [27]. The problem of

finding Lp → Lq bounds on the solution of the heat equation on symmetric spaces of

arbitrary real rank has been considered in [9].

The question of Lp boundedness of “pseudo-differential” operators on non-compact

symmetric spaces (defined by multipliers m that satisfy suitable symbol-type esti-

mates) seems completely settled by the results in [1] (except possibly for the precise

hypothesis one needs to make on the behavior of the symbol m on the boundary

of the tube in which it is analytic). On the other hand, much less is known about

the Lp boundedness of “Fourier integral” operators on symmetric spaces defined by

kernels with large singular supports (as it is the case with the solution of the wave

equation at large time). A slightly weaker result than Theorem D (without the sharp

regularity assumption) has been obtained in [11] at time τ = 1. Some Lp estimates

on the solution of the wave equation on manifolds satisfying very general conditions
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have been obtained by Lohoué [16].

In our last theorem we deal with the analog of Stein’s maximal spherical operator

on symmetric spaces. Let dστ be the normalized spherical measure such that

∫

X

fdστ =

∫

K

f(ka(τ) · 0)dk

for any continuous function f : X → C. For any continuous compactly supported

function f and for any T ≥ 0 we define the maximal operator

MTf(z) = sup
τ∈[T,T+1]

|f ∗ dστ (z)|.

With the notation in (1.11), we have the following:

Theorem E. If n
n−1

< p <∞ and T ≥ 0 then:

||MTf ||Lp(X) ≤ Cpe
−|ρ|(1−αp)T (T + 1)β||f ||Lp(X). (1.10)

The constant β may be taken β = 1 if n ≥ 3 and β = 2 if n = 2.

Corollary 1.2. If n
n−1

< p ≤ ∞ then

∣∣∣∣
∣∣∣∣ sup
0≤τ<∞

|f ∗ dστ (z)|

∣∣∣∣
∣∣∣∣
p

≤ Cp||f ||p.

The Euclidean counterpart of Corollary 1.2 has been first proven by Stein [23] in

the case n ≥ 3 and by Bourgain [3] in the case n = 2; the corollary (which clearly

follows from Theorem B by summation over integers T ≥ 0 for any p <∞) has been

proven in the case of hyperbolic spaces of dimension n ≥ 3 by Kohen [13]. As in

Euclidean spaces, the proof of Theorem B is harder when n = 2, in which case an

extra argument, based on the proof of the main theorem in [20], is needed. Moreover

the exponential part of the decay of the norm in (1.10) (i.e. e−|ρ|(1−αp)T ) is sharp.
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The thesis is organized as follows: in Section 2 we prove theorems A, B and C

together with two corollaries: a covering lemma on X and a general rearrangement

inequality. In Section 3 we prove theorems D and E and in Appendix A we prove

certain estimates (somewhat sharper than the ones I found in the literature) on the

Harish-Chandra function and on the elementary spherical functions on X. These

estimates are used in the proofs of theorems D and E.

1.1 Notation

The following table summarizes most of our notation and we will often refer to it:

g = k ⊕ p – a Cartan decomposition of the semisimple Lie algebra g;

a – a maximal abelian subspace of p; A = exp a; K = exp k;

Σ = {−2α,−α, α, 2α} (or Σ = {−α, α}) – the set of nonzero roots;

m1,m2 – the dimensions of the root spaces g−α, respectively g−2α;

n = g−α + g−2α; N = exp n;

n = m1 +m2 + 1 – the dimension of the symmetric space X;

d = (n− 1)/2 = (m1 +m2)/2; |ρ| = (m1 + 2m2)/2;

αp = |1 − 2/p|, 1 ≤ p ≤ ∞;

Sb
a – the set of analytic symbols inside the tube |ℑλ| ≤ a satisfying (1.6).

(1.11)

2 Real-Variable Theory on G and X

It is well known that the group G possesses an Iwasawa decomposition G = NAK and

a Cartan decomposition KA+K where A+ = exp a+ and a+ = {H ∈ a : α(H) > 0}.

Our proofs of theorems A, B and C in this section are based on relating these two

decompositions and, fortunately, for real rank one groups, one has a very precise

formula ([12, Ch.2, Theorem 6.1]) in this sense. A similar idea has been used by
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Strömberg [26] for groups of arbitrary real rank. Let H0 ∈ a+ be the unique element

of a for which α(H0) = 1 and let a(s) = exp(sH0) for s ∈ R be a parametrization of

the subgroup A. Clearly A+ = {a(s) : s > 0}. Using [12, Ch.2, Theorem 6.1] one

can identify the Lie algebra n with Rm1 × Rm2 and find suitable constants c1 and c2

such that the diffeomorphism n : Rm1 × Rm2 → N, n(X,Y ) = exp(c1X + c2Y ) has

the property that n(X,Y )a(s) ∈ Ka(l)K if and only if l ≥ 0 and

(cosh l)2 =
[
cosh s+ es|X|2

]2
+ e2s|Y |2. (2.1)

In addition

a(t)n(X,Y )a(−t) = n(e−tX, e−2tY ). (2.2)

Let ρ = 1
2
(m1 · α + m2 · 2α) (such that ρ(log[a(s)]) = |ρ|s for all s ∈ R) and let dg,

dn and dk denote Haar measures on G, N and K, the last one normalized such that
∫

K
1dk = 1. Then the following integral formulae hold for any continuous function f

with compact support:

∫

G

f(g)dg = C1

∫

K

∫

R+

∫

K

f(k1a(l)k2)(sinh l)m1(sinh 2l)m2dk2dldk1 (2.3)

and

∫

G

f(g)dg = C2

∫

K

∫

R

∫

N

f(na(s)k)e2|ρ|sdndsdk

= C ′
2

∫

K

∫

R

∫

Rm1×Rm2

f(n(X,Y )a(s)k)e2|ρ|sdXdY dsdk.

(2.4)

The following simple proposition explains the role of the L2,1 spaces:

Proposition 2.1. If f is a K-biinvariant function (i.e. f(kgk′) = f(g) for any

8



k, k′ ∈ K, g ∈ G) then:

∫

N

f(na)dn ≤ Ce−ρ(log a)||f ||L2,1(G).

In other words, the Abel transform Af(a) = eρ(log a)
∫

N
f(na)dn is bounded from

L2,1(G//K) to L∞(A).

Proof of Proposition 2.1. The usual theory of Lorentz spaces (see, for example, [25,

Chapter V]) shows that it suffices to prove the proposition under the additional

assumption that f is the characteristic function of an open K-biinvariant set of finite

measure. For any l ≥ 0, let F (l) = f(ka(l)k′) such that

||f ||L2,1(G) = C

[∫

R+

F (l)(sinh l)m1(sinh 2l)m2dl

]1/2

. (2.5)

Let a = a(s) and for any l ≥ |s| let

Tl,s = {(X,Y ) ∈ Rm1 × Rm2 : (cosh l)2 =
[
cosh s+ es|X|2

]2
+ e2s|Y |2} (2.6)

be the set of points P ∈ Rm1 ×Rm2 with the property that n(P )a(s) ∈ Ka(l)K (these

surfaces will play a key role in the proof of Theorem A). Let dωl,s be the induced mea-

sure on Tl,s such that
∫

Rm1×Rm2
φ(X,Y )dXdY =

∫
l≥|s|

[∫
Tl,s

φ(P )dωl,s(P )
]
dl. Then,

since the function f is K-biinvariant

∫

N

f(na)dn = C

∫

Rm1×Rm2

f(n(X,Y )a(s))dXdY = C

∫

l≥|s|

F (l)

[∫

Tl,s

1dωl,s

]
dl.

(2.7)

Let ψ(l, s) = e|ρ|s
∫

Tl,s
1dωl,s. The substitutions X = [e−s(α cosh l − cosh s)]

1/2
ωX and

Y = e−s cosh l(1 − α2)1/2ωY for ωX ∈ Sm1−1, ωY ∈ Sm2−1 (assume that m2 ≥ 1) and

9



α ∈ [ cosh s
cosh l

, 1] show that

ψ(l, s) = C sinh l(cosh l)m2

∫ 1

cosh s
cosh l

(α cosh l − cosh s)(m1−2)/2(1 − α2)(m2−2)/2dα

which shows that

ψ(l, s) ≈ sinh l(cosh l)m2/2(cosh l − cosh s)(m1+m2−2)/2. (2.8)

The computation of the function ψ is slightly easier if m2 = 0 and the result is also

given by (2.8). In view of (2.5) and (2.7), it suffices to prove that

∫

l≥|s|

F (l)ψ(l, s)dl ≤ C

[∫

R+

F (l)(sinh l)m1(sinh 2l)m2dl

]1/2

(2.9)

for any measurable function F : R+ → {0, 1}. Notice that if l ≥ 1 + |s| then

ψ(l, s) ≈ e|ρ|l, (sinh l)m1(sinh 2l)m2 ≈ e2|ρ|l and it follows from Lemma 2.2 below that

∫

l≥|s|+1

F (l)ψ(l, s)dl ≤ C

[∫

l≥|s|+1

F (l)(sinh l)m1(sinh 2l)m2dl

]1/2

. (2.10)

In order to deal with the integral over l ∈ [|s|, |s| + 1], we consider two cases: |s| ≥ 1

and |s| ≤ 1. If |s| ≥ 1 and l ∈ [|s|, |s| + 1], then ψ(l, s) ≈ e|ρ||s|(l − |s|)(m1+m2−2)/2,

(sinh l)m1(sinh 2l)m2 ≈ e2|ρ||s| and, since (m1 +m2 − 2)/2 ≥ −1/2, it follows that

∫ |s|+1

|s|

F (l)ψ(l, s)dl ≤ Ce|ρ||s|
∫ |s|+1

|s|

F (l)(l − |s|)−1/2dl = Ce|ρ||s|
∫ 1

0

F (|s| + u2)du

≤ C

[
e2|ρ||s|

∫ 1

0

F (|s| + u2)udu

]1/2

≤ C

[∫ |s|+1

|s|

F (l)(sinh l)m1(sinh 2l)m2dl

]1/2

(one of the inequalities follows from (2.11) below) which, together with (2.10), com-

pletes the proof of the lemma in the case |s| ≥ 1. The estimation of the integrals over

the interval [|s|, |s| + 1] is similar in the case |s| ≤ 1.
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Lemma 2.2. If β 6= 0 and dµ1(t) = eβtdt, dµ2(t) = e2βtdt are two measures on R

then

||f ||L1(R,dµ1) ≤ Cβ||f ||L2,1(R,dµ2).

Proof of Lemma 2.2. One can assume that f is the characteristic function of some

measurable set. The change of variable t = (log s)/β and the substitution g(s) =

f((log s)/β)) show that it suffices to prove that

1

|β|

∫

R+

g(s)ds ≤ Cβ

[
1

|β|

∫

R+

g(s)sds

]1/2

(2.11)

for any measurable function g : R+ → {0, 1}, which follows by a rearrangement

argument.

2.1 Proof of the Maximal Theorems B and C

We will first prove the maximal theorems B and C since they are easier than Theorem

A and still capture the main idea of our approach. Let 0 be the origin of the space

X = G/K and let χr be the characteristic function of the K-biinvariant set {g ∈ G :

d(g · 0,0) ≤ r}. Since the measure of a ball of radius r in X is proportional to e2|ρ|r

if r ≥ 1, it follows that

M̃2f(g · 0) ≈ sup
r≥1

[
e−|ρ|r

∫

G

f(g′ · 0)χr(g
′−1
g)dg′

]
.

The changes of variables g = na(t)k, g′ = n′a(t′)k′ and the formula (2.4) show that

M̃2f(na(t) · 0)

≤ C sup
r≥1

[
e−|ρ|r

∫

R

(∫

N

f(n′a(t′) · 0)χr(a(−t
′)n′−1

na(t))dn′

)
e2|ρ|t

′

dt′
]
.

(2.12)

We first deal with the integral over the space N and dominate the right hand
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side of (2.12) using a standard maximal operator along the nilpotent group N. For

any u > 0 let Bu be the ball in N defined as the set {n(X,Y ) : |X| ≤ u and |Y | ≤

u2}. Clearly
∫

Bu
1dn = Cu2|ρ|. The group N is equipped with nonisotropic dilations

δu(n(X,Y )) = n(uX, u2Y ), which are group automorphisms, therefore the maximal

operator

Mg(n) = sup
u>0

[
1

u2|ρ|

∫

Bu

|g(nm−1)|dm

]

is bounded from Lp(N) to Lp(N) for any p > 1 ([29, Lemma 2.2]). For any measurable

function f : X → R+ let

Mf(na · 0) = sup
u>0

[
1

u2|ρ|

∫

Bu

|f(nm−1a · 0)|dm

]

and it follows that ||Mf ||Lp(X) ≤ Cp||f ||Lp(X) for any p > 1. We will now use the func-

tion Mf to control the N integral in (2.12). Notice that (2.1) and (2.2), together with

the fact that d(ka(l) ·0,0) = l for any l ≥ 0, k ∈ K, show that if χr(a(−t
′)ma(t)) = 1

for some m ∈ N then m has to belong to the ball Be(r−t−t′)/2 , therefore

∫

N

f(n′a(t′) · 0)χr(a(−t
′)n′−1

na(t))dn′ =

∫

N

f(nm−1a(t′) · 0)χr(a(−t
′)ma(t))dm

≤

∫

B
e(r−t−t′)/2

f(nm−1a(t′) · 0)dm

≤ Ce|ρ|(r−t−t′)Mf(na(t′) · 0).

If we substitute this inequality in (2.12) we conclude that

M̃2f(na(t) · 0) ≤ Ce−|ρ|t

∫

R

Mf(na(t′) · 0)e|ρ|t
′

dt′. (2.13)

We can now estimate the L2,∞ norm of M̃2f : for some λ > 0, the set Eλ = {z ∈

X : M̃2f(z) > λ} is included in the set {na(t) · 0 : e−|ρ|t
∫

R
Mf(na(t′) · 0)e|ρ|t

′
dt′ >

λ/C}. Since the density measure dz in X is proportional to the density measure

12



e2|ρ|tdndt in N × R under the identification z = na(t) · 0, the measure of this last set

is equal to

C
∫

N

[∫
R
Mf(na(t′) · 0)e|ρ|t

′
dt′
]2
dn

λ2

therefore

||M̃2f ||
2

L2,∞ ≤ C

∫

N

[∫

R

Mf(na(t′) · 0)e|ρ|t
′

dt′
]2

dn. (2.14)

One can now use the following simple lemma to dominate the right hand side of

(2.14):

Lemma 2.3. If A and B are two measure spaces with measures da, respectively db,

and H is a measurable function H : A×B → R+ then

[∫

A

||H(a, .)||2L2,1(B,db)da

]1/2

≤ C||H||L2,1(A×B,dadb).

The proof of this lemma is straightforward. Combining Lemma 2.2 and Lemma

2.3, we have

∫

N

[∫

R

Mf(na(t′) · 0)e|ρ|t
′

dt′
]2

dn ≤ C

∫

N

||Mf(na(.) · 0)||2L2,1(R,e2|ρ|t′dt′)dn

≤ C||Mf(na(t′) · 0)||
2
L2,1(N×R,e2|ρ|t′dndt′)

≤ C||Mf ||2L2,1(G/K).

(2.15)

Finally, since ||Mf ||Lp(X) ≤ Cp||f ||Lp(X) for any p > 1 one also has ||Mf ||L2,1(X) ≤

C||f ||L2,1(X) (by the general form of Marcinkiewicz interpolation theorem) and Theo-

rem B follows from (2.14) and (2.15).

Theorem C is an easy consequence of Theorem B: let





M0
2f(z) = sup

z∈B,r(B)≤1

1
|B|

∫
B
f(z′)dz′,

M1
2f(z) = sup

z∈B,r(B)≥1

1
|B|

∫
B
f(z′)dz′,

13



where r(B) is the radius of the ball B. The operator M0
2, the local part of M2 is

clearly bounded from Lp(X) → Lp(X) for any p > 1. On the other hand, if z belongs

to a ball B of radius r ≥ 1, then B(z, 2r) contains the ball B and |B(z, 2r)| ≈ e2|ρ|·2r ≈

|B|2. Therefore

1

|B|

∫

B

f(z′)dz′ ≤
C

|B(z, 2r)|1/2

∫

B(z,2r)

f(z′)dz′

which shows that M1
2f(z) ≤ CM̃2f(z) and the conclusion of Theorem C follows by

interpolation with the trivial L∞ estimate.

2.2 A Covering Lemma

A simple connection between covering lemmata and boundedness of maximal opera-

tors is explained in [6]. In our setting we have:

Corollary 2.4. If a collection of balls Bi ⊂ X, i ∈ I has the property that |∪Bi| <∞

then one can select a finite subset J ⊂ I such that

(i) c

∣∣∣∣ ∪i∈I
Bi

∣∣∣∣ ≤
∣∣∣∣ ∪j∈J

Bj

∣∣∣∣ ;

(ii)

∣∣∣∣∣

∣∣∣∣∣
∑

j∈J

χBj

∣∣∣∣∣

∣∣∣∣∣
L2,∞(X)

≤ C

∣∣∣∣ ∪i∈I
Bi

∣∣∣∣
1/2

.
(2.16)

The corollary is an immediate consequence of Theorem C and the proof of Propo-

sition 1 in [6] (in fact Corollary 2.4 and Theorem C are equivalent statements). The

inequality (ii) in (2.16) is the natural analog of the requirement that the selected balls

are disjoint: if Bi, i ∈ I are standard balls in some Euclidean space, then one can

select disjoint balls Bj, j ∈ J that satisfy inequality (i) in (2.16). Notice that the

disjointness property of the balls Bj is equivalent to

∣∣∣∣∣

∣∣∣∣∣
∑
j∈J

χBj

∣∣∣∣∣

∣∣∣∣∣
L∞

≤ ||χ∪Bi
||L∞ . Since

balls on symmetric spaces do not have the basic doubling property (i.e. |B(z, r)| is

not proportional to |B(z, 2r)|) the disjointness property of the selected balls has to

14



be replaced by (2.16)(ii).

2.3 Proof of Theorem A

In this subsection we will prove Theorem A. In view of the general theory of Lorentz

spaces, it suffices to prove that

∫∫

G×G

f(z)g(z−1z′)h(z′)dz′dz ≤ C||f ||L2,1||g||L2,1||h||L2,1 (2.17)

whenever f, g, h : G → {0, 1} are characteristic functions of open sets of finite mea-

sure. We can also assume that g is supported far from the origin of the group, for

example in the set ∪
l>1

Ka(l)K. The main part of our argument is devoted to proving

that the left hand side of (2.17) is controlled by an integral involving suitable rear-

rangements of the functions f , g and h, as in (2.34). Let z = na(t)k, z′ = n′a(t′)k′

and the left hand side of (2.17) becomes

∫

K

∫

K

∫

R

∫

R

dt′dtdk′dk e2|ρ|(t+t′)·

[∫∫

N×N

f(na(t)k)g(k−1a(−t)n−1n′a(t′)k′)h(n′a(t′)k′)dn′dn

]
.

(2.18)

We will show how to dominate the expression in (2.18) in four steps.

Step1. Integration along the subgroup N. As in the proof of the maximal theo-

rems, we start by integrating along N. Define F1, H1 : K × R → R+ as F1(k, t) =
∫

N
f(na(t)k)dn and H1(k

′, t′) =
∫

N
h(n′a(t′)k′)dn′. Using the simple inequality

∫∫

N×N

a(n)b(n−1n′)c(n′)dn′dn

≤

(∫

N

b(n)dn

)[
min

((∫

N

a(n)dn

)
,

(∫

N

c(n)dn

))]

for any measurable functions a, b, c : N → [0, 1], it follows that the inner integral in
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(2.18) is dominated by

min [F1(k, t), H1(k
′, t′)]

[∫

N

g(k−1a(−t)n1a(t
′)k′)dn1

]
. (2.19)

Using (2.2), n1 → a(−t)n1a(t) = n2 is a dilation of N with dn1 = e−2|ρ|tdn2, therefore

∫

N

g(k−1a(−t)n1a(t
′)k′)dn1 = e−2|ρ|t

∫

N

g(k−1n2a(t
′ − t)k′)dn2

= Ce−2|ρ|t

∫

Rm1×Rm2

g(k−1n(X,Y )a(t′ − t)k′)dXdY

= Ce−2|ρ|t

∫

l≥|t′−t|

∫

Tl,t′−t

g(k−1n(P )a(t′ − t)k′)dωl,t′−t(P )dl.

(2.20)

The surfaces Tl,s defined in (2.6) for {(l, s) ∈ R+ × R : l ≥ |s|} and the associated

measures dωl,s have the same meaning as in the proof of Proposition 2.1. Let

G1(k, k
′, l, s) =

(∫

Tl,s

1dωl,s

)−1 [∫

Tl,s

g(k−1n(P )a(s)k′)dωl,s(P )

]
(2.21)

be a suitable average of the function P → g(k−1n(P )a(s)k′) on the surface Tl,s (clearly,

the domain of definition of G1 is {(k, k′, l, s) ∈ K × K × R+ × R : l ≥ |s|} and

G1(k, k
′, l, s) ∈ [0, 1]). If we substitute this definition in (2.20), we conclude that

∫

N

g(k−1a(−t)n1a(t
′)k′)dn1 = Ce−|ρ|(t+t′)

∫

l≥|t′−t|

G1(k, k
′, l, t′ − t)ψ(l, t′ − t)dl.

The function ψ(l, s) has been defined in the proof of Proposition 2.1 and is given

by (2.8). Finally, if we substitute this last formula in (2.19), we find that the inner

integral in (2.18) is dominated by

Ce−|ρ|(t+t′) min [F1(k, t), H1(k
′, t′)]

∫

l≥|t′−t|

G1(k, k
′, l, t′ − t)ψ(l, t′ − t)dl

16



which shows that the left hand side of (2.17) is dominated by

C

∫

K

∫

K

dk′dk

[∫

R

∫

R

∫

l≥|t′−t|

min [F1(k, t), H1(k
′, t′)]G1(k, k

′, l, t′ − t)ψ(l, t′ − t)e|ρ|(t+t′)dldt′dt

]
.

(2.22)

For later use, we record the following properties of the functions F1 and H1:





||f ||L2,1(G) =
[
C2

∫
K

∫
R
F1(k, t)e

2|ρ|tdtdk
]1/2

,

||h||L2,1(G) =
[
C2

∫
K

∫
R
H1(k

′, t′)e2|ρ|t
′
dt′dk′

]1/2
.

(2.23)

Step 2. Integration along the subgroup A. Let χ1, respectively χ2, be the

characteristic function of the set {(k, k′, t, t′) : F1(k, t) ≤ H1(k
′, t′)}, respectively

{(k, k′, t, t′) : H1(k
′, t′) ≤ F1(k, t)} so, for any k, k′, t, t′ one has





F1(k, t)χ1(k, k
′, t, t′) ≤ H1(k

′, t′),

H1(k
′, t′)χ2(k, k

′, t, t′) ≤ F1(k, t)

(2.24)

and the expression (2.22) is the sum of two similar expressions of the form

C

∫

K

∫

K

dk′dk

[∫

R

∫

R

∫

l≥|t′−t|

F1(k, t)χ1(k, k
′, t, t′)G1(k, k

′, l, t′ − t)ψ(l, t′ − t)e|ρ|(t+t′)dldt′dt

]
.

The change of variable t′ = t+ s in the expression above shows that it is equal to

C

∫

K

∫

K

∫

R

∫

R

∫

l≥|s|

F1(k, t)χ1(k, k
′, t, t+ s)G1(k, k

′, l, s)ψ(l, s)e2|ρ|te|ρ|sdldtdsdk′dk.

(2.25)
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and the first of the inequalities in (2.24) becomes

F1(k, t)χ1(k, k
′, t, t+ s)e2|ρ|t ≤ H1(k

′, t+ s)e2|ρ|t. (2.26)

Let F (k) =
[∫

R
F1(k, t)e

2|ρ|tdt
]1/2

, H(k′) =
[∫

R
H1(k

′, t′)e2|ρ|t
′
dt′
]1/2

and let

A(k, k′, s) =

∫

R

F1(k, t)χ1(k, k
′, t, t+ s)e2|ρ|tdt.

The expression (2.25) becomes

C

∫

K

∫

K

∫

R

∫

l≥|s|

A(k, k′, s)G1(k, k
′, l, s)ψ(l, s)e|ρ|sdldsdk′dk. (2.27)

Clearly, A(k, k′, s) ≤ F (k)2 (since χ1 ≤ 1) and A(k, k′, s) ≤ e−2|ρ|sH(k′)2 by (2.26),

therefore

e|ρ|sA(k, k′, s) ≤





e|ρ|sF (k)2 if e|ρ|s ≤ H(k′)/F (k),

e−|ρ|sH(k′)2 if e|ρ|s ≥ H(k′)/F (k).

If we substitute this inequality in (2.27) we find that the left hand side of (2.17) is

dominated by

C

∫

K

∫

K

∫

e|ρ|s≤H(k′)/F (k)

∫

l≥|s|

F (k)2G1(k, k
′, l, s)ψ(l, s)e|ρ|sdldsdk′dk+

C

∫

K

∫

K

∫

e|ρ|s≥H(k′)/F (k)

∫

l≥|s|

H(k′)2G1(k, k
′, l, s)ψ(l, s)e−|ρ|sdldsdk′dk.

(2.28)

We pause for a moment to notice that our estimations so far, together with the

proof of Proposition 2.1, would suffice to prove that L2,1(G)∗L2,1(G//K) ⊆ L2,∞(G):

if g is a K-biinvariant function, then G1(k, k
′, l, s) depends only on l and (2.9) shows

that
∫

l≥|s|
G1(k, k

′, l, s)ψ(l, s)dl ≤ C||g||L2,1 . As a consequence, both terms in (2.28)
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are dominated by C||g||L2,1

∫
K

∫
K
F (k)H(k′)dk′dk, therefore

∫∫

G×G

f(z)g(z−1z′)h(z′)dz′dz ≤ C||g||L2,1

∫

K

∫

K

F (k)H(k′)dk′dk

≤ C||g||L2,1

[∫

K

∫

K

F (k)2H(k′)2dk′dk

]1/2

= C||f ||L2,1 ||g||L2,1 ||h||L2,1 .

Here we used the fact that, as a consequence of (2.23)





||f ||L2,1(G) =
[
C2

∫
K
F (k)2dk

]1/2
,

||h||L2,1(G) =
[
C2

∫
K
H(k′)2dk′

]1/2
.

(2.29)

Step 3. A rearrangement inequality. In the general case (if g is not K-biinvariant)

we will show that both terms in (2.28) are dominated by some expression of the form

C

∫ 1

0

∫ 1

0

∫

R+

F ∗(x)H∗(y)G∗∗(x, y, l)e|ρ|ldldydx

where F ∗, H∗ : (0, 1] → R+ are the usual nonincreasing rearrangements of the func-

tions F and H (recall that the measure of K is equal to 1) and G∗∗ : (0, 1] × (0, 1] ×

R+ → {0, 1} is a suitable “double” rearrangement of g. The precise definitions are

the following: if a : K → R+ is a measurable function then the nonincreasing rear-

rangement a∗ : (0, 1] → R+ is the right semicontinuous nonincreasing function with

the property that

|{k ∈ K : a(k) > λ}| = sup ({x ∈ (0, 1] : a∗(x) > λ}) for any λ ∈ [0,∞).

Next, assume that a : K × K → R+ is a measurable function. For a.e. k ∈ K let

a∗(k, y), y ∈ (0, 1], be the nonincreasing rearrangement of the function k′ → a(k, k′)

and let a∗∗(x, y) be the nonincreasing rearrangement of the function k → a∗(k, y)

(clearly a∗∗ : (0, 1] × (0, 1] → R+). The following simple lemma summarizes some of
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the properties of the functions a∗ and a∗∗:

Lemma 2.5. (a) If a : K → R+ is a measurable function then

[∫

K

a(k)2dk

]1/2

=

[∫

(0,1]

a∗(x)2dx

]1/2

.

(b) If a : K × K → R+ is a measurable function then

(i) ∫

K

∫

K

a(k, k′)dk′dk =

∫ 1

0

∫ 1

0

a∗∗(x, y)dydx.

(ii) The function a∗∗ is nonincreasing: a∗∗(x, y) ≤ a∗∗(x′, y′) whenever x ≥ x′ and

y ≥ y′.

(iii) For any measurable sets D,E ⊂ K with measures |D| and |E|

∫

D

∫

E

a(k, k′)dk′dk ≤

∫ |D|

0

∫ |E|

0

a∗∗(x, y)dydx.

The proofs of the statements of the lemma are straightforward. Returning to

our setting, let F ∗ and H∗ be the nonincreasing rearrangements of F and H, let g̃ :

K×K×R+ → {0, 1} be given by g̃(k, k′, l) = g(k−1a(l)k′) and let G∗∗ : (0, 1]×(0, 1]×

R+ → {0, 1} be the double rearrangement of the function g̃ (such that G∗∗(., ., l) is

the double rearrangement of g̃(., ., l) for all l ≥ 0). Recall that we assumed that the

function g is supported in the set ∪
l>1

Ka(l)K, therefore

||g||L2,1(G) ≈

[∫

R+

∫ 1

0

∫ 1

0

G∗∗(x, y, l)e2|ρ|ldydxdl

]1/2

. (2.30)

We will now show how to use these rearrangements to dominate the two expres-

sions in (2.28). For any integers m, n let Dm = {k ∈ K : F (k) ∈ [e|ρ|m, e|ρ|(m+1)]},

En = {k′ ∈ K : H(k′) ∈ [e|ρ|n, e|ρ|(n+1)]} and let D−∞ = {k ∈ K : F (k) = 0},

E−∞ = {k′ ∈ K : H(k′) = 0} such that K = ∪
m
Dm = ∪

n
En. Let δm, respectively εn, be
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the measures of the sets Dm, respectively En, as subsets of K. The first of the two

expressions in (2.28) is dominated by

C
∑

m,n

∫

Dm

∫

En

∫

s≤(n−m+1)

∫

l≥|s|

e2|ρ|(m+1)G1(k, k
′, l, s)ψ(l, s)e|ρ|sdldsdk′dk. (2.31)

Combining the definition (2.21) of the function G1 (recall that the surfaces Tl,s are

defined as the set of points P ∈ Rm1×Rm2 with the property that n(P )a(s) ∈ Ka(l)K),

the fact that dk is a Haar measure on K and the last statement of Lemma 2.5 we can

conclude that

∫

Dm

∫

En

G1(k, k
′, l, s)dk′dk ≤

∫ δm

0

∫ εn

0

G∗∗(x, y, l)dydx

for any s with the property that |s| ≤ l. Substituting this inequality in (2.31) we find

that the expression in (2.31) is dominated by

C
∑

m,n

∫

R+

e2|ρ|m
[∫ δm

0

∫ εn

0

G∗∗(x, y, l)dydx

] [∫

s≤(n−m+1),|s|≤l

ψ(l, s)e|ρ|sds

]
dl. (2.32)

The formula (2.8) shows that the last of the integrals in the expression above is

dominated by Ce|ρ|le|ρ|(n−m), therefore the first of the two expressions in (2.28) is

dominated by

C

∫

R+

∑

m,n

[
e|ρ|(m+n)

∫ δm

0

∫ εn

0

G∗∗(x, y, l)dydx

]
e|ρ|ldl. (2.33)

Let

S(x, y) =
∑

m,n

[
e|ρ|(m+n)χδm(x)χεn(y)

]

where χδm , χεn are the characteristic functions of sets (0, δm), respectively (0, εn). If

mx = max{m : δm > x} and ny = max{n : εn > y} then S(x, y) ≤ Ce|ρ|(mx+ny).
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Clearly F ∗(x) ≥ e|ρ|mx , H∗(y) ≥ e|ρ|ny so the expression (2.33) is dominated by

C

∫

R+

∫ 1

0

∫ 1

0

F ∗(x)H∗(y)G∗∗(x, y, l)e|ρ|ldydxdl.

One can deal with the second of the two expressions in (2.28) in a similar way,

therefore

∫∫

G×G

f(z)g(z−1z′)h(z′)dz′dz ≤ C

∫

R+

∫ 1

0

∫ 1

0

F ∗(x)H∗(y)G∗∗(x, y, l)e|ρ|ldydxdl.

(2.34)

Step 4. Final estimates. Let K be a suitable constant (to be chosen later) and

let U = {(x, y, l) : F ∗(x)H∗(y) ≤ Ke|ρ|l} and V = {(x, y, l) : F ∗(x)H∗(y) ≥ Ke|ρ|l}.

Using (2.30)

∫

U

F ∗(x)H∗(y)G∗∗(x, y, l)e|ρ|ldydxdl ≤

∫

R+

∫ 1

0

∫ 1

0

KG∗∗(x, y, l)e2|ρ|ldydxdl

≤ CK||g||2L2,1 .

Using Lemma 2.5(a), (2.29) and the fact that G∗∗(x, y, l) ≤ 1

∫

V

F ∗(x)H∗(y)G∗∗(x, y, l)e|ρ|ldydxdl ≤ C

∫ 1

0

∫ 1

0

[F ∗(x)H∗(y)]2

K
dydx

≤ C
||f ||2L2,1 ||h||

2
L2,1

K
.

Finally, if one lets K = (||g||L2,1)
−1 (||f ||L2,1||h||L2,1), the theorem follows from (2.34).

2.4 A General Rearrangement Inequality

We will now extend the rearrangement inequality (2.34) to the case when f , g, h

are arbitrary measurable functions (not just characteristic functions of sets). For

any measurable function f : G → R+ we define the function F ∗ : (0, 1] → R+

by the following procedure: first, let f̃ : K × (0,∞) → R+ be defined, for a.e.
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k ∈ K, as the usual nonincreasing rearrangement of the function na → f(nak) with

respect to the measure e2ρ(log a)dnda. Using the function f̃ we define the function

F̃ : (0, 1] × (0,∞) → R+: for each u > 0 fixed, the function F̃ (., u) is the usual the

nonincreasing rearrangement of the function k → f̃(k, u). Finally, let

F ∗(x) =
1

2

∫ ∞

0

F̃ (x, u)u−1/2du (2.35)

be the L2,1 norm of the function u → F̃ (x, u). Notice that this definition of the

function F ∗ agrees with our earlier definition if f is a characteristic function.

Corollary 2.6. If f, g, h : G → R+ are measurable functions then

∫∫

G×G

f(z)g(z−1z′)h(z′)dz′dz ≤ C

∫

R+

∫ 1

0

∫ 1

0

F ∗(x)H∗(y)G∗∗(x, y, l)φ(l)dydxdl

(2.36)

where G∗∗ : (0, 1] × (0, 1] × R+ → R+ is the double rearrangement of the function

(k, k′, l) → g(k−1a(l)k′) (the same meaning as before), F ∗ and H∗ are defined in

the previous paragraph and φ(l) = sup
d∈[−l,l]

e−|ρ|d
∫

s≤d,|s|≤l
ψ(l, s)e|ρ|sds (clearly, φ(l) ≈

lm1+m2 if l ≤ 1 and φ(l) ≈ e|ρ|l if l ≥ 1).

Notice that if f and h are characteristic functions of sets then (2.36) is equivalent

to (2.34). If f, h are simple positive functions, one can write (uniquely up to sets

of measure zero) f =
M∑
1

cifi, h =
N∑
1

djhj where ci, dj > 0 and fi, respectively hj,

are characteristic functions of sets Ui, respectively Vj with the property that for all

i, respectively j, Ui+1 ⊂ Ui, respectively Vj+1 ⊂ Vj. Simple manipulations involving

rearrangements show that F ∗ =
M∑
1

ciF
∗
i and H∗ =

N∑
1

djH
∗
j (this explains the reason

why we chose the apparently complicated definition of the function F ∗ in (2.35))

and (2.36) follows by summation. Finally, a standard limiting argument shows that

(2.36) holds for arbitrary measurable functions f , g and h for which the right hand

side integral in (2.36) converges.
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3 Radial Fourier Integral Operators on X

In this section we will prove theorems D and E. We start however with a rather

surprising BMO theory on symmetric spaces, well adapted to the geometry of these

spaces. The motivation for this BMO theory is the following: in Theorem D we

prove Lp → Lp boundedness properties of a Fourier integral operator under sharp

regularity assumptions. As in Euclidean spaces, this does not seem to be possible

by interpolating with a suitable L1 → L1 (or L∞ → L∞) estimate. The standard

way to deal with this difficulty is to prove an H1
loc → L1

comp estimate ([18], [19]). In

our case, however, the K-invariant kernels of the operators T1,τ and T2,τ are singular

on the sphere of radius τ (which is large if τ large). Thus, it appears that the best

approach to keep both the regularity assumption and the exponential behavior of the

norm (1.7) sharp is to work with a genuine H1 or BMO space that may substitute

for interpolation purposes the space L1, respectively L∞ (a slightly different line of

approach has been pointed out by A. Seeger). It is more convenient to define the

space BMO(X) and prove a suitable L∞ → BMO estimate.

Recall that we identified the subgroup A of G with the real line R (as explained

at the beginning of the second section) and we also identified a∗
C
, the complex dual

of the Lie algebra a, with the complex plane C (as explained in the introduction). It

is well known that

d(a(s) · 0, a(s′) · 0) = |s− s′| for all s, s′ ∈ R. (3.1)

In view of the Cartan decomposition G = KA+K, we can identify any K-invariant

function K : X → C (i.e. K(k · z) = K(z) for all z ∈ X, k ∈ K) with the function

K : R+ → C given by K(s) = K(a(s) ·0); in this section we will always use the same

letter to denote a K-invariant function on X and the associated function defined on

R+. Using this convention, the convolution between a smooth compactly supported
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function f : X → C and a K-invariant locally integrable kernel K is

f ∗K(z) =

∫

G

f(g · 0)K(g−1 · z)dg =

∫

X

f(z′)K(d(z, z′))dz′. (3.2)

3.1 BMO Theory on Symmetric Spaces

For any locally integrable function f on X let

f ♯(z) = sup
z∈B, r(B)≤1

1

|B|

∫

B

|f(z′) − fB|dz
′,

and, if d ≥ 0,

Mdf(z) = sup
z∈B, r(B)≤d

1

|B|

∫

B

|f(z′)|dz′.

The supremum in the two definitions is taken over all the balls B containing z of radius

≤ 1, respectively of radius ≤ d, and, for any measurable set Q, fQ = 1
|Q|

∫
Q
f(z)dz.

Let B(z, r) denote the open ball centered at z ∈ X of radius r. Let C0 be a fixed

constant such that

|B(z, 2r)| ≤ C0|B(z, r)|

for any point z ∈ X and any r ∈ [0, 1]. We define

||f ||BMO(X) = ||f ♯||L∞(X).

One clearly has

||f ♯||p ≤ Cp||f ||p, (3.3)

for any p > 1 since f ♯(z) ≤M1(z) and M1 is a bounded Lp operator if p > 1. Notice,

however, that this inequality would not hold for any p ≤ 2 if the supremum in the

definition of f ♯(z) was taken over all balls containing z (as it is done in the setting of

Euclidean spaces). The main step in proving an interpolation theorem is the following
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proposition that shows that inequality (3.3) can be reversed.

Proposition 3.1. Converse Inequality. If 1 ≤ p <∞ and f ∈ Lp, then

||f ||p ≤ Ap||f
♯||p. (3.4)

The bound Ap depends only on p and n.

Easy examples (characteristic functions of large balls) show that the converse

inequality (3.4) fails to hold in the setting of Euclidean spaces if in the definition

of the sharp function f ♯ the supremum is taken only over balls of radius ≤ 1. The

relevant difference is based on the observation that a positive fraction of the volume

of any set ⊂ X lies close to the boundary of the set. More precisely:

Lemma 3.2. For any δ > 0, there exists ε(δ) > 0 such that for any measurable set of

finite measure A ⊂ X, the measure of the set A(δ) = {z ∈ A : B(z, δ) ⊂ A} satisfies

the inequality

|A(δ)| ≤ (1 − ε(δ)) |A|. (3.5)

Proof of Lemma 3.2. One can clearly assume that the set A is bounded, open, 0 ∈ A

and, for any k ∈ K let Ak = {a ∈ A+ : ka · 0 ∈ A}. As explained before, the

set Ak is identified with {s ∈ R+ : ka(s) · 0 ∈ A}; the relevant measure on R+

is dµ = (sinh s)m1(sinh 2s)m2ds. For any bounded, nonempty open set O ⊂ R+ let

O(δ) = {s ∈ O : [(s− δ, s+ δ) ∩ R+] ⊂ O}. Since the set O is assumed to be bounded

and nonempty, the set O(δ) is bounded as well and let u = supO(δ). It follows that

µ (O(δ))

µ(O)
≤

µ (O(δ))

µ (O(δ)) + µ([u, u+ δ))
≤

µ([0, u))

µ([0, u+ δ))
.

An elementary calculation shows that

µ([0, u))

µ([0, u+ δ))
≤ (1 − ε(δ))
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for any u ∈ R+ (it is here that the exponential increase of the measure is important),

therefore

µ (O(δ))

µ(O)
≤ (1 − ε(δ))

for all bounded, nonempty open sets O. This inequality can be applied to the sets Ak

(clearly (A(δ))k ⊂ (Ak)(δ) by (3.1)) and one integrates over k ∈ K to prove (3.5).

A consequence of Lemma 3.2 is the following covering lemma:

Lemma 3.3. If O ⊂ X is an open set, |O| < ∞ and O ⊂ ∪
i∈I
Bi, where Bi are open

balls of radius ≤ 1, then one can select a finite subset of disjoint balls B1, B2 . . . Bk

such that

(i) |B1| + |B2| + . . . |Bk| ≥ c0|O|;

(ii) the balls B1, B2 . . . Bk are close to the boundary of O in the sense that d(Bj,
cO) ≤

1/10 for any j = 1, 2 . . . k.

Proof of Lemma 3.3. Let Õ = {z ∈ O : d(z,cO) < 1/10} and J = {i ∈ I : Bi ∩ Õ 6=

∅}. By Lemma 1, |Õ| ≥ ε(.1)|O| and clearly Õ ⊂ ∪
i∈J
Bi. One may now use standard

arguments (as in [24, Chapter 1]) to select a finite set of disjoint balls Bi1 , Bi2 . . . Bik

such that i1, i2 . . . ik ∈ J with the property that |Bi1 | + |Bi2 | + . . . |Bik | ≥ |Õ|/(2C0).

These balls satisfy the two conditions (i) and (ii) in the lemma and one may take

c0 = ε(.1)/(2C0).

Proof of Proposition 3.1. The proposition is an easy consequence of the following

distributional inequality relating f ♯ and the maximal function M1/4:

|{z : M1/4f(z) > α, f ♯(z) ≤ εα}| ≤ a|{z : M1/4f(z) > bα}|, (3.6)

for any α > 0, for some constants b close to 1, ε close to 0 and a = 1 − δ(b, ε) (the

precise conditions on b and ε and the formula for a will become clear during the

proof). To prove (3.6), let A = {z ∈ X : M1/4f(z) > bα} and notice that for any
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z ∈ A one can find a ball Bz containing z such that |f |Bz > bα and with the following

maximality property: either 1/8 ≤ r(Bz) ≤ 1/4 or, for any ball B′
z containing z of

radius r(B′
z) ≥ 2r(Bz), one has |f |B′

z
≤ bα. Clearly, A = ∪

z∈A
Bz, |A| <∞, so one can

apply Lemma 3.3 to select a finite number of disjoint balls Bzi
close to the boundary

of A such that

|Bz1| + |Bz2| + . . . |Bzk
| ≥ c0|A|. (3.7)

We will first prove that for any of the maximal balls Bzi
selected above, which

will be denoted by B in the next paragraphs, one has

|{z ∈ B : M1/4f(z) > α, f ♯(z) ≤ εα} ≤ a′|B| (3.8)

where a′ = C·ε
1−b

, C is a large constant depending only on n, and the numbers b and ε

are such that b+ C · ε < 1. To prove (3.8), we have to analyze two different cases.

Case 1: r(B) ≥ 1/10. Let Q = {z ∈ B : M1/4f(z) > α, f ♯(z) ≤ εα}. One can

cover the set Q with a reunion of balls of radius ≤ 1/4 such that |f |B′ > α for any

of these balls B′ and then, using Lemma 3.3, one can select a set of disjoint balls

B′
1, B

′
2 . . . B

′
k′ , all of them intersecting the ball B, with the properties that

|B′
1| + |B′

2| + . . . |B′
k′| ≥ c0|Q| (3.9)

and |f |B′
i
> α for i = 1, 2 . . . k′. Since the ball B is close to the boundary of the region

A, there exists a ball B̃, say of radius 1/10, such that |f | eB ≤ bα and d(B, B̃) ≤ 1/10.

Clearly, one can now find a larger ball B∗ of radius 1 containing all the balls B, B̃,

B′
1, B

′
2 . . . B

′
k′ . If Q is not empty then

1

|B∗|

∫

B∗

|f(z′) − fB∗|dz′ ≤ εα
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therefore 



∫
eB
|f(z′) − fB∗|dz′ ≤ εα|B∗|

∑∫
B′

i
|f(z′) − fB∗|dz′ ≤ εα|B∗|

which shows that





|B̃| (|fB∗| − bα) ≤ εα|B∗|

(α− |fB∗|) (|B′
1| + |B′

2| + . . . |B′
k′|) ≤ εα|B∗|.

Clearly, (3.8) follows in this case by using inequality (3.9) and eliminating |fB∗| in

the inequalities above.

Case 2: r(B) < 1/10. We start by defining the sets Q and the balls B′
i as in

the first case. Let r′ = max(r(B), r(B′
1) . . . r(B

′
k′)) and let B∗ be a ball of radius 2r′

containing all the balls B,B′
1 . . . B

′
k′ . By the maximality assumption on the ball B,

one either has |f |B∗ ≤ bα or r′ ≥ 1/8. If r′ ≥ 1/8, it follows by the same argument

as in the first case that the set Q is empty provided that one takes Cε < 1 − b for a

large enough constant C. If |f |B∗ ≤ bα and Q is not empty, then

1

|B∗|

∫

B∗

|f(z′) − fB∗|dz′ ≤ εα

therefore
∑∫

B′
i

|f(z′) − fB∗|dz′ ≤ εα|B∗|

which shows that

(1 − b) (|B′
1| + |B′

2| + . . . |B′
k′|) ≤ ε|B∗| (3.10)

This last equation shows in particular that the only nontrivial case is when r′ = r;

otherwise, r(B∗) = 2r(B′
i) for some i, so inequality (3.10) could not hold if one lets

ε≪(1− b). Moreover, if r = r′, it follows that |B∗| ≤ C0|B|, so one can combine (3.9)

and (3.10) to complete the proof of the inequality (3.8).
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Let Ã = ∪
i
Bzi

. The inequality (3.8) clearly shows that

|{z ∈ Ã : M1/4f(z) > α, f ♯(z) ≤ εα}| ≤
Cε

1 − b
|Ã| ≤

Cε

1 − b
|A|.

The main distributional inequality (3.6) follows by using (3.7). One has to assume

that ε≪ 1 − b and the bound a in (3.6) is a = 1 −
(
c0 −

C·ε
1−b

)
.

We are now in the position to use the general lemma in [24, page 152] to conclude

that ||M1/4f ||p ≤ Ap||f
♯||p for p < ∞. We only need to choose suitable constants b

and ε such that a < bp. For given p, we first choose b such that bp = 1 − c0
4

and then

we choose ε small enough such that a ≤ 1 − c0
2
. The conclusion of the proposition

follows with the constant Ap in (3.4) satisfying Ap ≤ C · p.

We conclude this discussion with an interpolation theorem.

Theorem 3.4. Analytic interpolation. Let S denote the closed strip 0 ≤ ℜσ ≤ 1

and assume that for any σ ∈ S one has a bounded linear operator Tσ : L2(X) → L2(X)

with the following properties:

(i) There exists K ≥ 0 such that ||Tσ(f)||2 ≤ K||f ||2 for all σ ∈ S and any simple

function f . The uniform bound K will not enter in the quantitative conclusion below.

(ii) For any simple functions f , g, the function σ →
∫

X
Tσ(f)(z)g(z)dz is continuous

in S and analytic in the interior of S.

(iii) There exist bounds A0 and A1 such that for any simple function f

||Tσ(f)||2 ≤ A0||f ||2 if ℜσ = 0,

||Tσ(f)||BMO ≤ A1||f ||∞ if ℜσ = 1.

Then for any p ∈ [2,∞) and any simple function f

||Tσ(f)||p ≤ Ap||f ||p
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if ℜσ = (p− 2)/p. Moreover, the bound Ap satisfies the inequality

Ap ≤ Cp · A
2/p
0 A

(p−2)/p
1 , (3.11)

where Cp is a constant depending only on p.

Since both inequalities (3.3) and (3.4) hold, the proof of the corresponding Eu-

clidean interpolation theorem ([10, page 156]) goes through with only straightforward

modifications.

3.2 Proof of Theorem D

All of our Lp estimates in this section will be proved in a priori forms. This means

that, in order to insure the convergence of the integrals throughout, we will always

assume that all the symbols m(λ) that appear at different places are premultiplied

with symbols of the form e−δ2λ2
. This approach is based on the observation that if

m ∈ Sb
a, then the symbols mδ(λ) = m(λ)e−δ2λ2

belong to Sb
a uniformly in δ ∈ [0, 1].

Of course, our estimates will be independent of δ ∈ (0, 1] and they will depend only on

the constant C that appears in the definition of the symbol m. We will also assume

that all the functions f on which various operators are tested are complex-valued

smooth compactly supported functions on X. Once one proves suitable estimates

uniform in δ ∈ (0, 1], standard limiting arguments allow one to pass to the general

theorems. These assumptions will be implicit in all the computations we make and

the subscripts δ will be omitted.

The following proposition is the real rank one version of the main theorem in [1]:

Proposition 3.5. If 1 < p < ∞ and m ∈ S0
|ρ|αp

is an even symbol then the operator

defined by the Fourier multiplier m is bounded from Lp(X) to itself.

An application of Proposition 3.5 shows that one can assume that the symbol

m in Theorem D is of the form (λ2 + ρ′2)−dαp/2 where ρ′ = |ρ| + 1/10 > |ρ|. This
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allows one to expand the region in which m is analytic and satisfies suitable symbol

estimates. Notice also that it suffices to prove Theorem D for p ∈ [2,∞), since the

operators T1,τ and T2,τ are essentially selfadjoint. The theorem follows by analytic

interpolation (Theorem 3.4 in the previous subsection) once one proves the following

L∞ → BMO estimate:

Proposition 3.6. If m ∈ S−d
|ρ| is an even symbol and the operators T1,τ , T2,τ are

defined by the multipliers [m(λ) cos(λτ)], respectively
[
m(λ)

(
λ2 + ρ′2

)1/2
λ−1 sin(λτ)

]

then 



||T1,τf ||BMO(X) ≤ Ce|ρ|τ ||f ||L∞(X);

||T2,τf ||BMO(X) ≤ Ce|ρ|τ (1 + τ)||f ||L∞(X).

(3.12)

The notation is explained in (1.11). We will need the following easy lemma:

Lemma 3.7. If 2 ≤ q < ∞, b = n
q
− n

2
, and m ∈ Sb

0 is an even symbol then the

operator U defined by the Fourier multiplier m satisfies the inequality

||Uf ||q ≤ Cq||f ||2.

This Sobolev-type lemma is a particular instance of a general situation covered

in [15]. As it stands, the lemma follows also from [22, Theorem 6.1(c)(ii)]. One

starts by writing down explicitly an integral formula of the K-invariant kernel K of

the operator U (using the inversion formula of the Fourier transform); next, one uses

estimates on the spherical functions and the Harish-Chandra function (Propositions

A1 and A2 in the appendix) to show that if s = d(0, z) then |K(z)| ≤ Cs−(b+n) if

s ≤ 1 and |K(z)| ≤ Ce−|ρ|ss−3 if s ≥ 1/2. Finally, one uses a local version of the

Hardy-Littlewood-Sobolev inequality to deal with the local part of the operator U (if

b < 0) and a variant of the Kunze-Stein phenomenon to deal with its non-local part.

We would like to point out the following endpoint estimate related to this lemma: if

b = −n/2 and m ∈ Sb
0 is an even symbol then the operator U defined by the Fourier
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multiplier m is bounded from L2(X) to BMO(X). The proof of this endpoint estimate

is similar, but easier than the proof of Proposition 3.6 below.

Proof of Proposition 3.6. We will only prove the estimate (3.12) for the operator T1,τ

since the estimate for T2,τ is similar. Notice first that Plancherel’s theorem and

Lemma 3.7 show that

||T1,τf ||2n ≤ C||f ||2 (3.13)

(since
∣∣(λ2 + ρ′2)1/2λ−1 sin(λτ)

∣∣ ≤ C(1 + τ), the estimate (3.13) for T2,τf becomes

||T2,τf ||2n ≤ C(1 + τ)||f ||2). Assume first that τ ≥ 1/2. Let B = B(z0, r) be any ball

in X with radius r ≤ 1 and let B∗ = {z ∈ X : d(z, z0) ∈ [τ − 10r, τ + 10r]} be the

main “region of influence” of B. Clearly |B| ≈ rn, |B∗| ≈ re2|ρ|τ and it suffices to

prove that

1

|B|

∫

B

|T1,τf(z) − (T1,τf)B|dz ≤ Ce|ρ|τ ||f ||∞ (3.14)

with a constant C independent of the function f and the radius of the ball B. Let

f = f1 + f2 where f1 = f · (1 − χB∗) and f2 = f · χB∗ . To deal with the function f2,

we use (3.13):

1

|B|

∫

B

|T1,τf2(z) − (T1,τf2)B|dz ≤
2

|B|

∫

B

|T1,τf2(z)|dz ≤ 2

(
1

|B|

)1/2n

||T1,τf2||2n

≤ Cr−1/2||f2||2 ≤ Cr−1/2||f ||∞ · |B∗|1/2

≤ Ce|ρ|τ ||f ||∞.

(3.15)

Let K1,τ be the kernel of the operator T1,τ , which is a smooth function on X in view

of the a priori assumption on the symbol m. The inversion formula of the spherical

Fourier transform shows that

K1,τ (z) = c1

∫

R

(m(λ) cos(λτ))Φλ(z)|c(λ)|−2dλ (3.16)
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where Φλ(z) are the elementary spherical functions and c is the Harish-Chandra func-

tion. We will use from now on the convention explained in the paragraph preceding

(3.2). To deal with the function f1 we evaluate the left hand side of (3.14):

1

|B|

∫

B

|T1,τf1(z) − (T1,τf1)B|dz =

=
1

|B|

∫

B

∣∣∣∣
∫

X

f1(z
′)K1,τ (d(z, z

′))dz′ −
1

|B|

∫

B

∫

X

f1(z
′)K1,τ (d(z

′′, z′))dz′dz′′
∣∣∣∣ dz

=
1

|B|2

∫

B

∣∣∣∣
∫

X

f1(z
′)

(∫

B

K1,τ (d(z, z
′)) −K1,τ (d(z

′′, z′))dz′′
)
dz′
∣∣∣∣ dz

≤ ||f ||∞ ·
1

|B|2

∫∫

B×B

(∫

cB∗

|K1,τ (d(z, z
′)) −K1,τ (d(z

′′, z′))|dz′
)
dzdz′′.

(3.17)

It would therefore suffice to prove that

∫

cB∗

|K1,τ (d(z, z
′)) −K1,τ (d(z

′′, z′))|dz′ ≤ Ce|ρ|τ (3.18)

for any z, z′′ ∈ B. By the inversion formula (3.16)

K1,τ (s) = c1

∫

R

(m(λ) cos(λτ)) Φλ(s)|c(λ)|−2dλ (3.19)

Let A1,τ (s) = φτ (s)K1,τ (s) and B1,τ (s) = (1 − φτ (s))K1,τ (s) where the function

φτ is a C∞ cutoff function with the properties that φτ (s) = 1 if |s − τ | ≤ 1/10 and

φτ (s) = 0 if |s − τ | ≥ 2/10 such that K1,τ = A1,τ + B1,τ . The main estimate on the

kernel B1,τ is

|B1,τ (s)| ≤





Ce|ρ|τe−2|ρ|s(1 + |τ − s|)−2 if s ≥ τ ;

Ce−|ρ|s(1 + |τ − s|)−2 if 1/10 ≤ s ≤ τ ;

Cs−(d+1) if s ≤ 1/10.

(3.20)
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To prove this estimate when s ≥ 1/10, one starts from Proposition A2(c) and writes:

B1,τ (s) = 2c1 (1 − φτ (s)) e
−|ρ|s

∫

R

(m(λ) cos(λτ)) eiλsa2(λ, s)c(−λ)−1dλ.

Notice that the function under the integral above is analytic in the region 0 ≤ ℑλ ≤

|ρ|. If s ≥ τ , we first move the contour of integration to the line i|ρ| + R in order

to get the essential decreasing factor e−|ρ|se−|ρ|(s−τ). Next, we use (A.6) and (A.2)

together with classical estimates on Fourier transforms of symbols ([24, page 241])

to prove (3.20) in this case. A similar argument (without changing the contour of

integration) shows that (3.20) holds if 1/10 ≤ s ≤ τ . To prove the estimate for small

s let η0 be an even, smooth cutoff function on R such that η0(µ) = 1 if |µ| ≤ 1 and

η0(µ) = 0 if |µ| ≥ 2 and notice that, using proposition A2(b), the kernel B1,τ can be

written in the form

B1,τ (s) = 2c1(1 − φτ (s))

∫

R

(1 − η0(λs))m(λ) cos(λτ)eiλsa1(λ, s)|c(λ)|−2dλ

+ c1(1 − φτ (s))

∫

R

[η0(λs)Φλ(s) + (1 − η0(λs))O(λ, s)]m(λ) cos(λτ)|c(λ)|−2dλ.

By (A.2), (A.4) and (A.5), the second of the integrals in the expression above is

dominated by Cs−(d+1). Also, one integrates by parts twice in λ and uses (A.5) and

(A.2) to prove that the first integral is dominated by Cs−d, which completes the proof

of (3.20). An immediate consequence of (3.20) and (2.3) is that ||Bτ ||L1(X) ≤ Ce|ρ|τ ,

therefore

∫

cB∗

|B1,τ (d(z, z
′)) −B1,τ (d(z

′′, z′))|dz′ ≤ 2||B1,τ ||L1(X) ≤ Ce|ρ|τ

for any z, z′′ ∈ B. It remains to prove a similar inequality for the kernel A1,τ which,

35



since τ ≥ 1/2, is given by the formula

A1,τ (s) = 2c1φτ (s)e
−|ρ|s

∫

R

(m(λ) cos(λτ)) eiλsa2(λ, s)c(−λ)−1dλ. (3.21)

Since the function λ → m(λ)a2(λ, s)c(−λ)−1 is a symbol on the real line of order 0

one has ∣∣∣∣
∂

∂s
A1,τ (s)

∣∣∣∣ ≤ Ce−|ρ|τ 1

|τ − s|2

if |τ − s| ≤ 2/10 which shows that

∫

cB∗

|A1,τ (d(z, z
′)) − A1,τ (d(z

′′, z′))|dz′ ≤ C

∫

cB∗

r · sup
z∈B

∣∣∣∣
∂

∂s
A1,τ (d(z, z

′))

∣∣∣∣ dz
′

≤ C·re|ρ|τ
∫

5r≤|s−τ |≤2/10

1

|τ − s|2
ds ≤ Ce|ρ|τ .

(3.22)

This finishes the proof of the proposition in the case τ ≥ 1/2. The proof if τ ≤ 1/2

proceeds along the same line. Let B = B(z0, r) be any ball in X and it suffices again

to prove inequality (3.14). Let B∗ = {z ∈ X : d(z, z0) ∈ [τ − 10r, τ + 10r] ∪ [0, 10r]}

such that |B| ≈ rn, |B∗| ≤ C · r. Let f1 = f(1 − χB∗), f2 = fχB∗ ; the inequalities

in (3.15) and (3.17) do not change, so it suffices again to prove (3.18). We define

the kernels A1,τ (s) = φ0(s)K1,τ (s) and B1,τ (s) = (1 − φ0(s))K1,τ (s) using a smooth

function φ0 : R+ → [0, 1] such that φ0(s) = 1 if s ≤ 3/4 and φ0(s) = 0 if s ≥ 1. The

estimate (3.20) becomes

|B1,τ (s)| ≤ Ce−2|ρ|s(1 + |τ − s|)−2

which shows that ||B1,τ ||L1(X) ≤ C. To deal with the kernel A1,τ one uses again the
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cutoff function η0 defined in the proof of (3.20) and Proposition A2(b):

A1,τ (s) = c1φ0(s)

∫

R

[η0(λs)Φλ(s) + (1 − η0(λs))O(λ, s)]m(λ) cos(λτ)|c(λ)|−2dλ

+ 2c1φ0(s)

∫

R

(1 − η0(λs))m(λ) cos(λτ)eiλsa1(λ, s)|c(λ)|−2dλ

= I1,τ (s) + J1,τ (s).

By (A.2), (A.4) and (A.5) I1,τ (s), the first of the two integrals above, is bounded by

Cs−(d+1) i.e. it is an L1 function. In addition

∣∣∣∣
∂

∂s
J1,τ (s)

∣∣∣∣ ≤ C
1

sd

(
1

|τ − s|2
+

1

s|τ − s|

)

by (A.5) and standard estimates on Fourier transforms of symbols on the real line.

An estimate similar to (3.22) completes the proof of the proposition.

3.3 Proof of Theorem E. Part I

As in the previous subsection, we make the a priori assumption that all the functions

f on which various operators are tested are smooth, compactly supported functions

on X. Notice first that the “local” part of Theorem E, that is if, for example, T ≤ 10,

follows from the more general maximal operators studied in [21] if n ≥ 3 and [20] if

n = 2 (see the remark following Corollary 2.2 in [20]). Assume therefore that T ≥ 10.

If τ ≥ 10 then the Fourier transform of dστ is

d̃στ (λ) = Φλ(τ) = e−|ρ|τ
(
eiλτc(λ)a2(λ, τ) + e−iλτc(−λ)a2(−λ, τ)

)
.

Let φT : R+ → [0, 1] be a C∞ cutoff function φT : R+ → [0, 1] such that φT (s) = 1

if s ∈ [T − 1/2, T + 3/2] and φT (s) = 0 if s /∈ [T − 1, T + 2]. Let η0 be the

even cutoff function defined in the proof of (3.20) and, for j = 1, 2, . . ., let ηj(µ) =

η0(2
−jµ) − η0(2

−j+1µ). Clearly, supp ηj ⊂ {µ ∈ R : |µ| ∈ [2j−1, 2j+1]} for any j ≥ 1.
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If τ ∈ [T, T + 1], the Littlewood-Paley decomposition of the singular kernel dστ is

dστ =
∞∑

j=0

Aj
τ (in the sense of distributions) where

Aj
τ (s) = c1φT (s)

∫

R

ηj(λ)Φλ(τ)Φλ(s)|c(λ)|−2dλ

= 2c1φT (s)e−|ρ|(s+τ)

∫

R

ηj(λ)a2(λ, τ)e
iλτ

(
c(λ)

c(−λ)
a2(λ, s)e

iλs + a2(−λ, s)e
−iλs

)
dλ

(3.23)

and, as before, Aj
τ (z) = Aj

τ (d(0, z)) for z ∈ X. The estimate (A.6) and integration by

parts show that for any τ ∈ [T, T + 1]

|Aj
τ (s)| ≤ C · 2je−2|ρ|T (1 + 2j|τ − s|)−N (3.24)

if s ∈ [T − 1, T + 2] and Aj
τ (s) = 0 otherwise. Let

Mj
Tf(z) = sup

τ∈[T,T+1]

|f ∗ Aj
τ (z)|.

The estimate (3.24) and the integral formula (2.3) show that

∫

X

|Aj
τ (z)|dz ≤ C

uniformly in τ ∈ [T, T + 1] and j ≥ 0, therefore

||Mj
Tf ||∞ ≤ C||f ||∞ (3.25)

with a universal constant C. There is also a very crude L1 estimate: notice that

sup
τ∈[T,T+1]

|Aj
τ (s)| ≤





C · 2je−2|ρ|T if s ∈ [T − 1, T + 2],

0 otherwise,
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which shows that

||Mj
Tf ||1 ≤

∣∣∣∣∣

∣∣∣∣∣|f | ∗ sup
τ∈[T,T+1]

|Aj
τ |

∣∣∣∣∣

∣∣∣∣∣
1

≤ C · 2j||f ||1. (3.26)

Our next task, which will suffice if n ≥ 3, is to prove the L2 estimate

||Mj
Tf ||2 ≤ C · 2−j(n−2)/2 · e−|ρ|T (T + 1)||f ||2. (3.27)

This would be a standard consequence of the following two estimates:





||f ∗ Aj
τ ||2 ≤ C · 2−jd · e−|ρ|T (T + 1)||f ||2,

∣∣∣∣ ∂
∂τ

(f ∗ Aj
τ )
∣∣∣∣

2
≤ C · 2−j(d−1) · e−|ρ|T (T + 1)||f ||2

(3.28)

for any τ ∈ [T, T + 1]. To prove (3.28) let

Bj
τ (s) = c1(1 − φT (s))

∫

R

ηj(λ)Φλ(τ)Φλ(s)|c(λ)|−2dλ

= 2c1(1 − φT (s))e−|ρ|(s+τ)

∫

R

ηj(λ)a2(λ, τ)c(λ)c(−λ)−1a2(λ, s)e
iλ(τ+s)dλ

+ 2c1(1 − φT (s))e−|ρ|(s+τ)

∫

R

ηj(λ)a2(λ, τ)a2(−λ, s)e
−iλ(τ−s)dλ

be the complementary kernel of Aj
τ such that ˜(Aj

τ +Bj
τ )(λ) = ηj(λ)Φλ(τ). Using

Plancherel’s theorem, the estimates in Proposition A2(c) and (A.2) one has

||f ∗ (Aj
τ +Bj

τ )||2 ≤ C · 2−jd · e−|ρ|T (T + 1)||f ||2.

(the factor (T +1) appears only if j = 0). Easy estimates on |Bj
τ | (similar to the ones

in Proposition 3.6) show that

|Bj
τ (s)| ≤ Ce−|ρ|(s+τ)2−Nj(1 + |τ − s|)−N
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therefore, by Plancherel’s theorem and (A.4)

||f ∗Bj
τ ||2 ≤ C||f ||2

∫ ∞

0

|Bj
τ (s)|e

−|ρ|s(s+ 1)(sinh s)m1(sinh 2s)m2ds

≤ C2−Nje−|ρ|T (T + 1)||f ||2

and the first of the estimates in (3.28) follows. The proof of the second estimate in

(3.28) is similar, the only difference being that differentiation with respect to τ may

bring down an extra factor of λ ≈ 2j. One can now apply the general lemma in [24,

page 499] to complete the proof of the main L2 estimate (3.27).

If n ≥ 3, we interpolate between the estimates (3.27) and (3.25) or between

(3.27) and (3.26) and conclude that for any p ∈ (n/(n− 1),∞) there exists ε(p) > 0

(ε(p) = (n− 2)/p if p ≥ 2 and ε(p) = n− 1 − n/p if p ≤ 2) such that

||Mj
Tf ||p ≤ C · 2−ε(p)j · e−(1−αp)|ρ|T (T + 1)||f ||p.

A final summation over positive integers j finishes the proof of Theorem B when

n ≥ 3.

3.4 Proof of Theorem E. Part II (n = 2)

If n = 2 then the only possibility is that X = H2 (the hyperbolic space of dimension

2) thus m1 = 1, m2 = 0 and |ρ| = 1/2. The estimate (3.27) becomes

||Mj
Tf ||2 ≤ C · e−T/2(T + 1)||f ||2. (3.29)

This is not sufficient since one has to sum over j. The essential step in proving the

theorem in this case is the following:
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Lemma 3.8. There exist universal constants ε0 > 0 and N0 such that

||Mj
Tf ||4 ≤ C · 2−ε0jeN0T ||f ||4. (3.30)

Let us first see how one can use Lemma 3.8 to complete the proof of the theorem

when n = 2. If one interpolates between (3.30) and (3.25) or between (3.30) and

(3.29), one finds that for any p ∈ (2,∞) there exists ε0(p) > 0 such that

||Mj
Tf ||p ≤ C · 2−ε0(p)jeN0T ||f ||p. (3.31)

One can also interpolate between (3.25) and (3.29) to conclude that

||Mj
Tf ||p ≤ C · e−(1−αp)T/2(T + 1)||f ||p, p ∈ [2,∞]. (3.32)

In order to sum over j, one uses (3.32) for j ≤ C0(p)T and (3.31) for j ≥ C0(p)T

where C0(p) = N0+(1−αp)/2

log 2·ε0(p)
is such that the two norms in (3.31) and (3.32) are essen-

tially equal. The result is:

||MTf ||p ≤

j≤C0(p)T∑

j=0

||Mj
Tf ||p +

∑

j≥C0(p)T

||Mj
Tf ||p ≤ Cp · e

−(1−αp)T/2(T + 1)2||f ||p.

which proves Theorem B in the case n = 2.

Proof of Lemma 3.8. Roughly speaking, the favorable factor 2−ε0j in (3.30) comes

from the proof of the main theorem in [20] while the unfavorable but (fortunately)

not very important factor eN0T is due to several localizations we have to make and to

quantitative estimates on the rotational curvature of defining functions of circles of

radius ≈ T . We start by localizing the operator Mj
T . Notice that it suffices to prove

that for any smooth cutoff functions ψ0, ψ1 : H2 → [0, 1] with small supports (say of
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diameter at most c0, where c0 is a small constant to be fixed later), one has

∣∣∣∣∣

∣∣∣∣∣ sup
τ∈[T,T+1]

∣∣∣∣ψ0(z)

∫

H2

f(z′)ψ1(z
′)Aj

τ (d(z, z
′))dz′

∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
4

≤ C · 2−ε0jeN ′
0T ||fψ1||4. (3.33)

To show that (3.33) suffices we define a suitable family of smooth cutoff functions

with small supports ψi, indexed over a countable sets I, with the properties that
∑
i∈I

ψi = 1 and any ball B ⊂ H2 of radius 1 intersects at most a constant number

C of the supports of the functions ψi (C depends only on c0, the size of the sup-

ports of the functions ψi) . For any i ∈ I, let Li = {i′ ∈ I : ∃z ∈ supp(ψi), z
′ ∈

supp(ψi′) such that d(z, z′) ∈ [T −1, T +2]}. Clearly, each set Li has at most CeT el-

ements. Recall also that the kernels Aj
τ (d(z, z

′)) vanish unless d(z, z′) ∈ [T −1, T +2],

therefore

∫

H2

∣∣Mj
Tf(z)

∣∣4 dz ≤ C
∑

i∈I

∫

H2

∣∣ψi(z)M
j
Tf(z)

∣∣4 dz

≤ C
∑

i∈I

∫

H2

|ψi(z)
∑

i′∈Li

Mj
T (ψi′f)(z)|4dz

≤ Ce3T
∑

i∈I

∑

i′∈Li

∫

H2

|ψi(z)M
j
T (ψi′f)(z)|4dz

≤ Ce3T ·
(
2−ε0jeN ′

0T
)4∑

i∈I

∑

i′∈Li

∫

H2

|(ψi′f)(z′)|4dz′

≤ Ce3T ·
(
2−ε0jeN ′

0T
)4

· eT

∫

H2

|f(z′)|4dz′

which proves (3.30) with N0 = N ′
0 + 1. It remains to prove (3.33). By the G-

invariance of the measure on X, we may assume that the cutoff function ψ1 in (3.33)

has small support around the point 0 ∈ H2 and ψ0 has small support around the

point a(T0) · 0 ∈ H2 (clearly, the only nontrivial case is when T0 ∈ [T − 1, T + 2]).

The formula (3.23) shows that we may also replace the kernel ψ0(z)ψ1(z
′)Aj

τ (d(z, z
′))
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with a kernel Kj
τ (z, z

′) of the form

Kj
τ (z, z

′) = 2c1e
−τφT (τ)ψ0(z)ψ1(z

′)

∫

R

ηj(λ)eiλ(τ−d(z,z′))b(λ, τ)dλ (3.34)

where b is a symbol of order 0 (uniformly in τ ∈ [T − 1, T + 2]) and it remains to

prove that

∣∣∣∣∣

∣∣∣∣∣ sup
τ∈[T,T+1]

∣∣∣∣
∫

H2

f(z′)Kj
τ (z, z

′)dz′
∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
4

≤ C · 2−ε0jeN ′
0T ||f ||4 (3.35)

(the error made in replacing ψ0(z)ψ1(z
′)Aj

τ (d(z, z
′)) by Kj

τ (z, z
′) is controlled by

Cψ0(z)ψ1(z
′)e−T (1 + 2j|τ − d(z, z′)|)−N and it is easily seen that the L4 → L4 norm

of the corresponding maximal operator is dominated by Ce−T 2−3j/4).

The estimate (3.35) will follow from the following simplified version of Sogge’s

main theorem in [20]. Let X and Y be two Riemannian manifolds of dimension 2 and

let ψ̃0(x) and ψ̃1(y) be two cutoff functions with small compact supports included in

small open sets K ⊂ X, respectively L ⊂ Y . Let Ψ : K × L → [T − 1, T + 2] be a

smooth function with the following properties

∣∣∣∣∣∣∣
det




0 ∂Ψ/∂x

∂Ψ
∂y

∂2Ψ
∂x∂y




∣∣∣∣∣∣∣
≥ c > 0 for all x ∈ K, y ∈ L

and

||Ψ′
x(x, y)|| ≡ 1 for all x ∈ K, y ∈ L.

The first property is usually referred to as rotational curvature while the second

property is a simplified version of Sogge’s cinematic curvature hypothesis (the norm

of the vector Ψ′
x(x, y) is related to the Riemannian metric on X). Using the functions
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b and ηj from (3.34) let

K̃j
τ (x, y) = ψ̃0(x)ψ̃1(y)

∫

R

ηj(λ)eiλ(τ−Ψ(x,y))b(λ, τ)dλ.

Theorem. (C.D. Sogge [20]). With this notation, there exists ε0 > 0 such that for

any j ≥ 0

∣∣∣∣∣

∣∣∣∣∣ sup
τ∈[T,T+1]

∣∣∣∣
∫

Y

f(y)K̃j
τ (x, y)dy

∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
L4(X)

≤ C · 2−ε0j||f ||L4(Y ).

Remark. Most calculations in [20] are done using an apparently different form of

the kernels K̃j
τ (see equation (3.18) in [20]). However, as explained at various places

in [20] the two forms are equivalent modulo O(2−Nj) errors.

In order to apply Sogge’s theorem and prove (3.35) one has to rescale the problem

(our situation is somewhat degenerate in the sense that the Monge-Ampere determi-

nant associated to d(., .) is ≈ e−T ). We will use natural coordinates on H2 induced by

the Iwasawa decomposition of the group G = SOe(2, 1). Using the notation in [4], one

has the Iwasawa decomposition SOe(2, 1) = NAK and there exists a diffeomorphism

n : R → N such that

a(u)n(v) = n(euv)a(u) for all u, v ∈ R (3.36)

and

cosh[d(n(v)a(u) · 0,0)] = coshu+ e−uv2/2 for all u, v ∈ R. (3.37)

Furthermore, one can identify H2 with R × R using the map (u, v) → n(v)a(u) · 0

and the change of measure is dz = C2e
−ududv. The functions ψ0 and ψ1 in the

formula (3.34) have small supports around the points a(T0) · 0 and 0; if one lets

z = a(T0)n(v)a(u) · 0 and z′ = n(v′)a(u′) · 0, a simple calculation using (3.36), (3.37)

and the G-invariance of the distance function shows that cosh[d(z, z′)] = cosh(T0 +
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u− u′) + eT0−u−u′
(v − e−T0v′)2/2. This suggest to rescale v′.

Let therefore z(u, v) = a(T0)n(v)a(u) · 0 and z′(u∗, v∗) = n(eT0v∗)a(u∗) · 0 for

|u|, |v|, |u∗| ≤ c0 and |v∗| ≤ c0e
−T0 . One has

d(z, z′) = ΨT0((u, v), (u
∗, v∗)) = arccosh

[
cosh(T0 + u− u∗) + eT0−u−u∗

(v − v∗)2/2
]
.

(3.38)

Notice that the problem in [(u, v), (u∗, v∗)]-coordinates is not degenerate any longer.

Indeed, one can easily check that [(∂ΨT0/∂u)
2 + e2u(∂ΨT0/∂v)

2]1/2 ≡ 1, which is the

simplified version of the cinematic curvature condition. Also, the function ΨT0 can

be written in the form

ΨT0((u, v), (u
∗, v∗)) = T0 + u− u∗ + (v − v∗)2 · CT0(u, v, u

∗, v∗)

where C−1 ≤ CT0(0, 0, 0, 0) ≤ C (uniformly if T0 ≥ 1) and all the first and second

order derivatives of the function C around the point (0, 0, 0, 0) are bounded by an

absolute constant (independent of T0). Thus the rotational curvature hypothesis is

satisfied if one chooses c0 small enough (depending only on this absolute constant).

Sogge’s theorem applies to the maximal operator with kernels Kj
τ ((u, v), (u

∗, v∗)) de-

fined as in (3.34) (replacing of course d(z, z′) by ΨT0((u, v), (u
∗, v∗)) and ψ1(z

′) by a

suitable non-degenerate cutoff function ψ̃1(u
∗, v∗)). One can finally trace back the eT

factors and conclude that (3.35) holds with a small ε0 > 0 and N ′
0 = −1+3/4 = −1/4

(the term −1 comes from the factor e−τ ≈ e−T in front of the integral in (3.34)) and

the lemma follows with N0 = 3/4.
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A Estimates on the Harish-Chandra Function and

the Spherical Functions

Throughout this section we will use the notation summarized in (1.11) and the identifi-

cations described in the paragraph preceding (3.2). In particular, the Harish-Chandra

function c(λ) is defined for λ ∈ C and the elementary spherical functions Φλ(s) are

defined for λ ∈ C and s ∈ R+. Also, let ρ′ = |ρ| + 1/10 be a fixed number slightly

greater than |ρ|. We will prove the following two propositions:

Proposition A1. Let c be the Harish-Chandra function on X.

(a) For all λ ∈ R

|c(λ)|−2 = c(λ)−1c(−λ)−1. (A.1)

(b) The function λ→ λ−1c(−λ)−1 is analytic inside the region ℑλ ≥ 0 and

∣∣∣∣
∂α

∂λα
(λ−1c(−λ)−1)

∣∣∣∣ ≤ C(1 + |ℜλ|)d−1−α (A.2)

for all integers α ∈ [0, N ] and for all λ with the property 0 ≤ ℑλ ≤ ρ′.

(c) The function λ→ λc(λ) is analytic in a neighborhood of the real axis and

∣∣∣∣
∂α

∂λα
(λc(λ))

∣∣∣∣ ≤ C(1 + |ℜλ|)1−d−α (A.3)

for all integers α ∈ [0, N ] and for all λ ∈ R.

Proposition A2. (a) If λ ∈ R then

|Φλ(s)| ≤ Ce−|ρ|s(s+ 1). (A.4)

(b) If s ≤ 1, λ ∈ R and s|λ| ≥ 1 then Φλ(s) can be written in the form

Φλ(s) = eiλsa1(λ, s) + e−iλsa1(−λ, s) +O(λ, s)
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where the functions a1, O : {(λ, s) ∈ R × [0, 1] : s|λ| ≥ 1} → C satisfy





∣∣∣ ∂α

∂λα
∂l

∂sla1(λ, s)
∣∣∣ ≤ C[s(1 + |λ|)]−ds−l(1 + |λ|)−α,

|O(λ, s)| ≤ C[s(1 + |λ|)]−d−N−1,

(A.5)

for all integers α ∈ [0, N ], l ∈ {0, 1} and s, λ in the suitable ranges stated above.

(c) If s ≥ 1/10 then Φλ(s) can be written in the form

Φλ(s) = e−|ρ|s(eiλsc(λ)a2(λ, s) + e−iλsc(−λ)a2(−λ, s))

where the function a2 satisfies the inequalities

∣∣∣∣
∂α

∂λα

∂l

∂sl
a2(λ, s)

∣∣∣∣ ≤ C[(1 + |ℜλ|)]−α (A.6)

for all integers α ∈ [0, N ], l ∈ {0, 1} and for all s ≥ 1/10 and λ in the region

0 ≤ ℑλ ≤ ρ′. Also, the function λ→ a2(λ, s) is analytic inside the region ℑλ ≥ 0.

As usual, C denotes an absolute constant independent of s and λ. Proposition A1

follows easily from the formula

c(λ) = c
Γ(iλ)Γ

(
1
2

(
iλ+ m1

2

))

Γ
(
iλ+ m1

2

)
Γ
(

1
2
(iλ+ |ρ|)

) ,

which can be found in [22, Section 3]. To prove (A.1) one only uses the fact that

Γ(z) = Γ(z) for all complex numbers z. Also, (A.2) and (A.3) are easy consequences

of Stirling’s formula ([28, Chapter 4]).

Proof of Proposition A2. The function Φλ(s) has the integral formula

Φλ(s) = c(cosh s)−m2/2(sinh s)1−2d

∫ s

−s

eiλµ(cosh s− coshµ)d−1F
(m2

2
, 1 −

m2

2
; 2d; z(s, µ)

)
dµ
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([22, Lemma 2.2]) where z(s, µ) = (cosh s− coshµ)/(2 cosh s) and F is the hyperge-

ometric function. Part (a) of the proposition follows easily once one notices that the

expression involving the hypergeometric function is bounded by an absolute constant.

For part (b), we use Theorem 2.1 in [22]. If s ≤ 1, Φλ(s) can be written as

Φλ(s) = c

[
sn−1

D(s)

]1/2 N∑

j=0

s2jaj(s)J(n−2)/2+j(λs) + E(λ, s)

where D(s) = (sinh s)m1(sinh 2s)m2 , E(λ, s) ≤ C(λs)−d−N−1, |aj(s)| ≤ C, |a′j(s)| ≤ C

and

Jm(µ) =

∫ 1

−1

eiµr(1 − r2)m−1/2.

The estimate |a′j(s)| ≤ C is not stated as part of the theorem but follows easily, at

least if s ≤ 1. Also, it is well known that if |µ| ≥ 1 and m > −1/2 then Jm(µ) can

be written as

Jm(µ) = eiµψm(µ) + e−iµψm(−µ) +Om(µ)

where for all integers α ∈ [0, N ] and real numbers µ, |µ| ≥ 1

∣∣∣∣
∂α

∂µα
ψm(µ)

∣∣∣∣ ≤ Cm|µ|
−m−1/2−α. (A.7)

Also |Om(µ)| ≤ Cm|µ|
−N−d−1. Let therefore





a1(λ, s) = c
[

sn−1

D(s)

]1/2 N∑
j=0

s2jaj(s)ψ(n−2)/2+j(λs),

O(λ, s) = E(λ, s) + c
[

sn−1

D(s)

]1/2 N∑
j=0

s2jaj(s)O(n−2)/2+j(λs),

and (A.5) follows from (A.7) and the estimates on the error terms.

To prove part (c), we start from the formula

Φλ(s) = e−|ρ|t(c(λ)eiλta2(λ, t) + c(−λ)e−iλta2(−λ, t))
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where

a2(λ, t) =
∞∑

k=0

Γk(λ)e−2kt

and the functions Γk satisfy the recursion

Γk(λ) =
k−1∑

j=0

αk
j (λ)Γj(λ) for k ≥ 1 and Γ0(λ) = 1. (A.8)

This is shown in [22, Theorem 3.1]. The coefficients αk
j (λ) have the formula

αk
j (λ) =

(m1/2 + δk
jm2)

k

(
1 +

2j + |ρ| − k

k − iλ

)
(A.9)

where δk
j = 1 if j ≡ k(mod 2) and δk

j = 0 otherwise. We will prove that for all integers

α ∈ [0, N ] there exist constants A and bα such that

∣∣∣∣
∂α

∂λα
Γk(λ)

∣∣∣∣ ≤ Akbα(1 + |ℜλ|)−α (A.10)

for all integers k ≥ 1 and all complex numbers λ, 0 ≤ ℑλ ≤ ρ′. This would clearly

suffice to prove the estimates (A.6). In [22, Theorem 3.2], the authors prove weaker

estimates on the functions Γk (involving an exponential increase in k); their estimates

would only suffice to prove (A.6) for s ≥ R0 > 1. Notice that for all integers k ≥ 2

and real numbers b ≥ 4

1 +
k−1∑

j=1

jb ≤
kb+1

b
. (A.11)

Also, the formula (A.9) shows that there exists an absolute constant A ≥ 4 such that

∣∣∣∣
∂α

∂λα
αk

j (λ)

∣∣∣∣ ≤
A

k(1 + |ℜλ|)α
(A.12)

for all integers k ≥ 1, j ≤ k − 1, α ∈ [0, N ] and all complex numbers λ, 0 ≤ ℑλ ≤ ρ′

(this is a simple consequence of the fact that |k + 1 − iλ| ≥ max (k, |ℜλ|)). We now
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prove (A.10) for α = 0 by induction over k ≥ 1. Clearly |Γ1(λ)| ≤ A by (A.12).

Assume that (A.10) holds for all 1 ≤ j ≤ k − 1 (a suitable power b0 will be fixed

momentarily). Then, by (A.8), (A.11) and (A.12) with α = 0

|Γk(λ)| ≤
k−1∑

j=0

A

k
|Γj(λ)| ≤

A

k

Akb0+1

b0
= Akb0

A

b0

The induction works if we set b0 = A. To prove (A.10) for an arbitrary integer α ≤ N ,

assume, by induction, that we found suitable powers bβ, such that (A.10) holds for

all β ∈ {0, 1 . . . α − 1} and for all k. We can also assume that b0 ≤ b1 ≤ . . . ≤ bα−1.

Clearly
∣∣ ∂α

∂λα Γ1(λ)
∣∣ ≤ A(1 + |ℜλ|)−α by (A.12) and we only need to find a suitable

number bα ≥ bα−1 that would allow us to prove (A.10) by induction over k. Assume

that (A.10) holds for α and for all j ∈ {1, 2 . . . k− 1}. Then, by (A.8), (A.11), (A.12)

and the induction hypothesis

∣∣∣∣
∂α

∂λα
Γk(λ)

∣∣∣∣ ≤ 2α

α∑

β=0

k−1∑

j=0

∣∣∣∣
∂(α−β)

∂λ(α−β)
αk

j (λ)

∣∣∣∣
∣∣∣∣
∂β

∂λβ
Γj(λ)

∣∣∣∣

≤ 2α

α∑

β=0

k−1∑

j=0

A

k(1 + |ℜλ|)α−β

Amax(j, 1)bβ

(1 + |ℜλ|)β

≤ 2α(1 + |ℜλ|)−α

α∑

β=0

A2kbβ

bβ
≤ Akbα(1 + |ℜλ|)−αA2α(α+ 1)

bα
.

Clearly, the induction works as long as bα ≥ max(bα−1, A2α(α + 1)). Notice that in

fact one can set bα = A2α(α+ 1) for all integers α ∈ [0, N ].
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