GLOBAL SOLUTIONS OF THE GRAVITY-CAPILLARY WATER WAVE SYSTEM IN 3 DIMENSIONS

Y. DENG, A. D. IONESCU, B. PAUSADER, AND F. PUSATERI

Abstract. In this paper we prove global regularity for the full water waves system in 3 dimensions for small data, under the influence of both gravity and surface tension. This problem presents essential difficulties which were absent in all of the earlier global regularity results for other water wave models.

To construct global solutions we use a combination of energy estimates and matching dispersive estimates. There is a significant new difficulty in proving energy estimates in our problem, namely the combination of slow pointwise decay of solutions (no better than $|t|^{-5/6}$) and the presence of a large, codimension 1, set of quadratic time-resonances.

To deal with such a situation we propose here a new mechanism, which exploits a non-degeneracy property of the time-resonant hypersurfaces and some special structure of the quadratic part of the nonlinearity, connected to the conserved energy of the system.

The dispersive estimates rely on analysis of the Duhamel formula in the Fourier space. The main contributions come from the set of space-time resonances, which is a large set of dimension 1. To control the corresponding bilinear interactions we use Harmonic Analysis techniques, such as orthogonality arguments in the Fourier space and atomic decompositions of functions. Most importantly, we construct and use a refined norm which is well adapted to the geometry of the problem.

CONTENTS

1. Introduction 2
2. The main propositions 14
3. The “improved good variable” and strongly semilinear structures 18
4. Energy estimates, I: setup and the main L^2 lemma 27
5. Energy estimates, II: proof of Proposition 4.2 33
6. Energy estimates, III: proof of the main L^2 lemma 43
7. Dispersive analysis, I: setup and the main proposition 49
8. Dispersive analysis, II: the function $\partial_t \mathcal{V}$ 58
9. Dispersive analysis, III: proof of Proposition 7.1 67
10. Analysis of phase functions 92
11. The functions Υ 105

Appendix A. Paradifferential calculus 110
Appendix B. The Dirichlet-Neumann operator 120
Appendix C. Taylor expansion of the Dirichlet–Neumann operator 129
References 135

Y. Deng was supported in part by a Jacobus Fellowship from Princeton University. A. D. Ionescu was supported in part by NSF grant DMS-1265818 and NSF-FRG grant DMS-1463753. B. Pausader was supported in part by NSF grant DMS-1362940, and a Sloan fellowship. F. Pusateri was supported in part by NSF grant DMS-1265875.
1. Introduction

The study of the motion of water waves, such as those on the surface of the ocean, is a classical question, and one of the main problems in fluid dynamics. The origins of water waves theory can be traced back\(^1\) at least to the work of Laplace and Lagrange, Cauchy [11] and Poisson, and then Russel, Green and Airy, among others. Classical studies include those by Stokes [63], Levi-Civita [54] and Struik [61] on progressing waves, the instability analysis of Taylor [65], the works on solitary waves by Friedrichs and Hyers [32], and on steady waves by Gerber [33].

The main questions one can ask about water waves are the typical ones for any physical evolution problem: the local in time well-posedness of the Cauchy problem, the regularity of solutions and the formation of singularities, the existence of special solutions (such as solitary waves) and their stability, and the global existence and long-time behavior of solutions. There is a vast body of literature dedicated to all of these aspects. As it would be impossible to give exhaustive references, we will mostly mention works that are connected to our results, and refer to various books and review papers for others.

Our main interest here is the existence of global solutions for the initial value problem. In particular, we will consider the full irrotational water waves problem for a three dimensional fluid occupying a region of infinite depth and infinite extent below the graph of a function. This is a model for the motion of waves on the surface of the deep ocean. We will consider such dynamics under the influence of the gravitational force and surface tension acting on particles at the interface. Our main result is the existence of global classical solutions for this problem, for sufficiently small initial data.

1.1. Free boundary Euler equations and water waves. The evolution of an inviscid perfect fluid that occupies a domain $$\Omega_t \subset \mathbb{R}^n$$, for $$n \geq 2$$, at time $$t \in \mathbb{R}$$, is described by the free boundary incompressible Euler equations. If $$v$$ and $$p$$ denote respectively the velocity and the pressure of the fluid (with constant density equal to 1) at time $$t$$ and position $$x \in \Omega_t$$, these equations are

\[
(\partial_t + v \cdot \nabla) v = -\nabla p - ge_n, \quad \nabla \cdot v = 0, \quad x \in \Omega_t,
\]

where $$g$$ is the gravitational constant. The first equation in (1.1) is the conservation of momentum equation, while the second is the incompressibility condition. The free surface $$S_t := \partial \Omega_t$$ moves with the normal component of the velocity according to the kinematic boundary condition

\[
\partial_t + v \cdot \nabla \text{ is tangent to } \bigcup_t S_t \subset \mathbb{R}^{n+1}. \tag{1.2}
\]

The pressure on the interface is given by

\[
p(x,t) = \sigma \kappa(x,t), \quad x \in S_t, \tag{1.3}
\]

where $$\kappa$$ is the mean-curvature of $$S_t$$ and $$\sigma \geq 0$$ is the surface tension coefficient. At liquid-air interfaces, the surface tension force results from the greater attraction of water molecules to each other than to the molecules in the air.

One can also consider the free boundary Euler equations (1.1)-(1.3) in various types of domains $$\Omega_t$$ (bounded, periodic, unbounded) and study flows with different characteristics (rotational/irrotational, with gravity and/or surface tension), or even more complicated scenarios where the moving interface separates two fluids.

In the case of irrotational flows, $$\text{curl} \, v = 0$$, one can reduce (1.1)-(1.3) to a system on the boundary. Indeed, assume also that $$\Omega_t \subset \mathbb{R}^n$$ is the region below the graph of a function

\(^1\)We refer to the review paper of Craik [27], and references therein, for more details about these early studies.
Theorem 1.1

For simplicity of notation, we sometimes let

\(\Omega = \{ (x, y) \in \mathbb{R}^{n-1} \times \mathbb{R} : y \leq h(x, t) \} \) and \(S_t = \{ (x, y) : y = h(x, t) \} \).

Let \(\Phi \) denote the velocity potential, \(\nabla_{x,y} \Phi(x, y, t) = v(x, y, t) \), for \((x, y) \in \Omega_t \). If \(\phi(x, t) := \Phi(x, h(x, t), t) \) is the restriction of \(\Phi \) to the boundary \(S_t \), the equations of motion reduce to the following system for the unknowns \(h, \phi : \mathbb{R}^{n-1} \times I_t \rightarrow \mathbb{R} \):

\[
\begin{aligned}
\partial_t h &= G(h)\phi, \\
\partial_t \phi &= -gh + \sigma \text{div} \left[\frac{\nabla h}{\sqrt{1 + |\nabla h|^2}} \right] - \frac{1}{2} |\nabla \phi|^2 + \frac{(G(h)\phi + \nabla h \cdot \nabla \phi)^2}{2(1 + |\nabla h|^2)}.
\end{aligned}
\] (1.4)

Here

\[
G(h) := \sqrt{1 + |\nabla h|^2} \mathcal{N}(h),
\] (1.5)

and \(\mathcal{N}(h) \) is the Dirichlet-Neumann map associated to the domain \(\Omega_t \). Roughly speaking, one can think of \(G(h) \) as a first order, non-local, linear operator that depends nonlinearly on the domain. We refer to [64, chap. 11] or the book of Lannes [53] for the derivation of (1.4). For sufficiently small smooth solutions, this system admits the conserved energy

\[
\mathcal{H}(h, \phi) := \frac{1}{2} \int_{\mathbb{R}^{n-1}} G(h)\phi \cdot \phi \, dx + \int_{\mathbb{R}^{n-1}} h^2 \, dx + \sigma \int_{\mathbb{R}^{n-1}} \frac{|\nabla h|^2}{1 + \sqrt{1 + |\nabla h|^2}} \, dx
\approx \| \nabla^{1/2} \phi \|_{L^2}^2 + \| (g - \sigma \Delta)^{1/2} h \|_{L^2}^2,
\] (1.6)

which is the sum of the kinetic energy corresponding to the \(L^2 \) norm of the velocity field and the potential energy due to gravity and surface tension. It was first observed by Zakharov [75] that (1.4) is the Hamiltonian flow associated to (1.6).

One generally refers to the system (1.4) as the gravity water waves system when \(g > 0, \sigma = 0 \), as the capillary water waves system when \(g = 0, \sigma > 0 \), and as the gravity-capillary water waves system when \(g > 0, \sigma > 0 \).

1.2. The main theorem.

Our results in this paper concern the gravity-capillary water waves system (1.4), in the case \(n = 3 \). In this case \(h \) and \(\phi \) are real-valued functions defined on \(\mathbb{R}^2 \times I_t \).

To state our main theorem we first introduce some notation. The rotation vector-field

\[
\Omega := x_1 \partial_{x_2} - x_2 \partial_{x_1}
\] (1.7)

commutes with the linearized system. For \(N \geq 0 \) let \(H^N \) denote the standard Sobolev spaces on \(\mathbb{R}^2 \). More generally, for \(N, N' \geq 0 \) and \(b \in [-1/2, 1/2] \), \(b \leq N \), we define the norms

\[
\| f \|_{H^N} := \sum_{j \leq N'} \| \Omega^j f \|_{H^N}, \quad \| f \|_{H^N,b} := \| (|\nabla|^N + |\nabla|^b) f \|_{L^2}.
\] (1.8)

For simplicity of notation, we sometimes let \(H^N_{\Omega} := H^N_{\Omega}^{N',0} \). Our main theorem is the following:

Theorem 1.1 (Global Regularity). Assume that \(g, \sigma > 0, \delta > 0 \) is sufficiently small, and \(N_0, N_1, N_3, N_4 \) are sufficiently large\(^2\) (for example \(\delta = 1/2000 \), \(N_0 := 4170 \), \(N_1 := 2070 \), \(N_3 :=

\(^2\)The values of \(N_0 \) and \(N_1 \), the total number of derivatives we assume under control, can certainly be decreased by reworking parts of the argument. We prefer, however, to simplify the argument wherever possible instead of aiming for such improvements. For convenience, we arrange that \(N_1 - N_4 = (N_0 - N_3)/2 - N_4 = 1/\delta \).
30, $N_4 := 70$, compare with Definition 2.5. Assume that the data (h_0, ϕ_0) satisfies
\begin{equation}
\|U_0\|_{H^{N_0} \cap H^{N_1,N_3}_t} + \sup_{2m+|\alpha| \leq N_1+N_4} \|(1+|x|)^{1-5\delta} D^\alpha \Omega^m U_0\|_{L^2} = \varepsilon_0 \leq \varepsilon_0',
\end{equation}
for ε_0 is a sufficiently small constant and $D^\alpha = \partial_1^{\alpha_1} \partial_2^{\alpha_2}$, $\alpha = (\alpha_1, \alpha_2)$. Then, there is a unique global solution $(h, \phi) \in C([0,\infty) : H^{N_0+1} \times H^{N_0+1/2,1/2})$ of the system (1.4), with $(h(0), \phi(0)) = (h_0, \phi_0)$. In addition
\begin{equation}
(1+t)^{-\delta^2} \|U(t)\|_{H^{N_0} \cap H^{N_1,N_3}_t} \lesssim \varepsilon_0,
\end{equation}
(1+t)^{5/6-3\delta^2} \|U(t)\|_{L^\infty} \lesssim \varepsilon_0,

for any $t \in [0,\infty)$, where $U := (g - \sigma \Delta)^{1/2} h + i|\nabla|^{1/2} \phi$.

Remark 1.2. (i) One can derive additional information about the global solution (h, ϕ). Indeed, by rescaling we may assume that $g = 1$ and $\sigma = 1$. Let
\begin{equation}
U(t) := (1-\Delta)^{1/2} h + i|\nabla|^{1/2} \phi,
V(t) := e^{t\Lambda} U(t),
\Lambda(\xi) := \sqrt{\xi^2 + |\xi|^2}.
\end{equation}
Here Λ is the linear dispersion relation, and V is the profile of the solution U. The proof of the theorem gives the strong uniform bound
\begin{equation}
\sup_{t \in [0,\infty)} \|V(t)\|_Z \lesssim \varepsilon_0,
\end{equation}
see Definition 2.5. The pointwise decay bound in (1.10) follows from this and the linear estimates in Lemma 7.5 below.

(ii) The global solution U scatters in the Z norm as $t \to \infty$, i.e. there is $V_\infty \in Z$ such that
\begin{equation}
\lim_{t \to \infty} \|e^{t\Lambda} U(t) - V_\infty\|_Z = 0.
\end{equation}
However, the asymptotic behavior is somewhat nontrivial since $|\hat{U}(\xi,t)| \gtrsim \log t \to \infty$ for frequencies ξ on a circle in \mathbb{R}^2 (the set of space-time resonance outputs) and for some data. This unusual behavior is due to the presence of a large set of space-time resonances.

(iii) The function $U := (g - \sigma \Delta)^{1/2} h + i|\nabla|^{1/2} \phi$ is called the “Hamiltonian variable”, due to its connection to the Hamiltonian (1.6). This variable is important in order to keep track correctly of the relative Sobolev norms of the functions h and ϕ during the proof.

1.3. Background. We now discuss some background on the water waves system and review some of the history and previous work on this problem.

1.3.1. The equations and the local well-posedness theory. The free boundary Euler equations (1.1)-(1.3) are a time reversible system of evolution equations which preserve the total (kinetic plus potential) energy. Under the Rayleigh-Taylor sign condition [65]
\begin{equation}
-\nabla \cdot n(x,t) \hat{p}(x,t) < 0,
\end{equation}
where n is the outward pointing unit normal to Ω_t, the system has a (degenerate) hyperbolic structure. This structure is somewhat hard to capture because of the moving domain and the quasilinear nature of the problem. Historically, this has made the task of establishing local wellposedness (existence and uniqueness of smooth solutions for the Cauchy problem) non-trivial.

Early results on the local wellposedness of the system include those by Nalimov [56], Yoshihara [84], and Craig [22]; these results deal with small perturbations of a flat interface for which
(1.13) always holds. It was first observed by Wu [71] that in the irrotational case the Rayleigh-
Taylor sign condition holds without smallness assumptions, and that local-in-time solutions can
be constructed with initial data of arbitrary size in Sobolev spaces [70, 71].

Following the breakthrough of Wu, in recent years the question of local wellposedness of
the water waves and free boundary Euler equations has been addressed by several authors.
Christodoulou–Lindblad [14] and Lindblad [55] considered the gravity problem with vorticity,
Beyer–Gunther [9] took into account the effects of surface tension, and Lannes [52] treated the
case of non-trivial bottom topography. Subsequent works by Coutand–Shkoller [20] and Shatah-
Zeng [59, 60] extended these results to more general scenarios with vorticity and surface tension,
including two-fluids systems [12, 60] where surface tension is necessary for wellposedness. Some
recent papers that include surface tension and/or low regularity analysis are those by Ambrose-
Masmoudi [8], Christianson–Hur–Staffilani [13], and Alazard–Burq–Zuily [1, 2].

Thanks to all the contributions mentioned above the local well-posedness theory is presently
well-understood in a variety of different scenarios. In short, one can say that for sufficiently nice
initial configurations, it is possible to find classical smooth solutions on a small time interval,
which depends on the smoothness of the initial data.

1.3.2. Asymptotic models. We note that many simplified models have been derived and studied
in special regimes, with the goal of understanding the complex dynamics of the water wave
system. These include the KdV equation, the Benjamin–Ono equation, the Boussinesq and the
KP equations, as well as the nonlinear Schrödinger equation. We refer to [22, 57, 7, 66] and to
the book [53] and references therein for more about approximate models.

1.3.3. Previous work on long-time existence. The problem of long time existence of solutions is
more challenging, and fewer results have been obtained so far. As in all quasilinear problems,
the long-time regularity has been studied in a perturbative (and dispersive) setting, that is in
the regime of small and localized perturbations of a flat interface. Large perturbations can lead
to breakdown in finite time, see for example the papers on “splash” singularities [10, 21].

The first long-time result for the water waves system (1.4) is due to Wu [72] who showed
almost global existence for the gravity problem \((g > 0, \sigma = 0)\) in two dimensions (1d interfaces).
Subsequently, Germain–Masmoudi–Shatah [35] and Wu [73] proved global existence of gravity
waves in three dimensions (2d interfaces). Global regularity in 3d was also proved for the
capillary problem \((g = 0, \sigma > 0)\) by Germain–Masmoudi–Shatah [36]. See also the recent work
of Wang [68, 69] on the gravity problem in 3d over a finite flat bottom.

Global regularity for the gravity water waves system in 2d (the harder case) has been proved
by two of the authors in [45] and, independently, by Alazard–Delort [3, 4]. A different proof of
Wu’s 2d almost global existence result was later given by Hunter–Ifrim–Tataru [39], and then
complemented to a proof of global regularity in [40]. Finally, Wang [67] proved global regularity
for a more general class of small data of infinite energy, thus removing the momentum condition
on the velocity field that was present in all the previous 2d results. For the capillary problem in
2d, global regularity was proved by two of the authors in [47] and, independently, by Ifrim–Tataru
[41] in the case of data satisfying an additional momentum condition.

We remark that all the global regularity results that have been proved so far require 3 basic
assumptions: small data (small perturbations of the rest solution), trivial vorticity inside the
fluid, and flat Euclidean geometry. Additional properties are also important, such as the Hamil-
tonian structure of the equations, the rate of decay of the linearized waves, and the resonance
structure of the bilinear wave interactions.
1.4. Main ideas. The classical mechanism to establish global regularity for quasilinear equations has two main components:

1) Propagate control of high frequencies (high order Sobolev norms);
2) Prove dispersion/decay of the solution over time.

The interplay of these two aspects has been present since the seminal work of Klainerman [50, 51] on nonlinear wave equations and vector-fields, Shatah [58] on Klein-Gordon and normal forms, and Christodoulou-Klainerman [15] on the stability of Minkowski space, and Delort [29] on 1d Klein-Gordon equations. We remark that even in the weakly nonlinear regime (small perturbations of trivial solutions) smooth and localized initial data can lead to blow-up in finite time, see John [48] on quasilinear wave equations and Sideris [62] on compressible Euler.

In the last few years new methods have emerged in the study of global solutions of quasilinear evolutions, inspired by the advances in semilinear theory. The basic idea is to combine the classical energy and vector-fields methods with refined analysis of the Duhamel formula, using the Fourier transform. This is the essence of the “method of space-time resonances” of Germain-Masmoudi-Shatah [35, 36, 34], see also Gustafson-Nakanishi-Tsai [38], and of the refinements in [42, 43, 44, 45, 46, 47, 31, 30], using atomic decompositions and more sophisticated norms.

The situation we consider in this paper is substantially more difficult, due to the combination of the following factors:

- Strictly less than $|t|^{-1}$ pointwise decay of solutions. In our case, the dispersion relation is $\Lambda(\xi) = \sqrt{g|\xi| + \sigma|\xi|^3}$ and the best possible pointwise decay, even for solutions of the linearized equation corresponding to Schwartz data, is $|t|^{-5/6}$ (see Fig. 1 below).
- Large set of time resonances. In certain cases one can overcome the slow pointwise decay using the method of normal forms of Shatah [58]. The critical ingredient needed is the absence of time resonances (or at least a suitable “null structure” of the quadratic nonlinearity matching the set of time resonances). Our system, however, has a full (codimension 1) set of time resonances (see Fig. 2 below) and no meaningful null structures.

We remark that all the previous work on long term solutions of water waves models was under the assumption that either $g = 0$ or $\sigma = 0$. This is not coincidental: in these cases the combination of slow decay and full set of time resonances was not present. More precisely, in all the previous global results in 3 dimensions in [35, 73, 36, 68, 69] it was possible to prove $1/t$ pointwise decay of the nonlinear solutions and combine this with high order energy estimates with slow growth.

On the other hand, in all the two-dimensional models analyzed in [72, 45, 3, 4, 39, 40, 47, 41, 67] there were no significant time resonances for the quadratic terms. As a result, in all of these papers it was possible to prove a quartic energy inequality of the form:

$$|E_N(t) - E_N(0)| \lesssim \int_0^t E_N(s) \cdot \|U(s)\|^2_{W^{N/2+4, \infty}} ds,$$

for a suitable functional $E_N(t)$ satisfying $E_N(t) \approx \|U(t)\|^2_{H^N}$. The point is to get two factors of $\|U(s)\|_{W^{N/2+4, \infty}}$ in the right-hand side, in order to have suitable decay, and simultaneously avoid loss of derivatives. A quartic energy inequality of this form cannot hold in our case due to the presence of large resonant sets.

More precisely, the only time resonances are at the 0 frequency, but they are canceled by a suitable null structure. Some additional ideas are needed in the case of capillary waves [47] where certain singularities arise. Moreover, new ideas, which exploit the Hamiltonian structure of the system as in [45], are needed to prove global (as opposed to almost-global) regularity.
To address these issues, in this paper we use a combination of improved energy estimates and Fourier analysis. The main components of our analysis are:

- The energy estimates, which are used to control high Sobolev norms and weighted norms (corresponding to the rotation vector-field). They rely on several new ingredients, most importantly on a strongly semilinear structure of the space-time integrals that control the increment of energy, and on a restricted nondegeneracy condition (see (1.24)) of the time resonant hypersurfaces. The strongly semilinear structure is due to an algebraic correlation (see (1.28)) between the size of the multipliers of the space-time integrals and the size of the modulation, and is related to the Hamiltonian structure of the original system.

- The dispersive estimates, which lead to decay and rely on a partial bootstrap argument in a suitable \mathcal{Z} norm. We analyze carefully the Duhamel formula, in particular the quadratic interactions related to the slowly decaying frequencies and to the set of space-time resonances. The choice of the \mathcal{Z} norm in this argument is very important; we use an atomic norm, based on a space-frequency decomposition of the profile of the solution, which depends in a significant way on the location and the shape of the space-time resonant set, thus on the quadratic part of the nonlinearity.

We hope that such ideas can be used in other quasilinear problems in two and three dimensions (such as other fluid and plasma models) that involve large resonant sets and slowly decaying solutions. We illustrate some of these main ideas in a simplified model below.

1.5. A simplified model. To illustrate these ideas, consider the initial-value problem

\[
(\partial_t + i\Lambda)U = \nabla V \cdot \nabla U + (1/2)\Delta V \cdot U, \quad U(0) = U_0,
\]

\[
\Lambda(\xi) := \sqrt{|\xi| + |\xi|^3}, \quad V := P_{[-10,10]}\mathbb{R}U.
\]

(1.14)

Compared to the full equation, this model has the same linear part and a quadratic nonlinearity leading to similar resonant sets. It is important that V is real-valued, such that solutions of (1.14) satisfy the L^2 conservation law

\[
\|U(t)\|_{L^2} = \|U_0\|_{L^2}, \quad t \in [0, \infty).
\]

(1.15)

The model (1.14) carries many of the difficulties of the real problem and has the advantage that it is much more transparent algebraically. There are, however, significant additional issues when dealing with the full problem, see subsection 1.5.3 below for a short discussion.

The specific dispersion relation $\Lambda(\xi) = \sqrt{|\xi| + |\xi|^3}$ in (1.14) is important. It is radial and has stationary points when $|\xi| = \gamma_0 := (2/\sqrt{3} - 1)^{1/2} \approx 0.393$ (see Figure 1 below). As a result, linear solutions can only have $|t|^{-5/6}$ pointwise decay, i.e.

\[
\|e^{it\Lambda}\phi\|_{L^\infty} \approx |t|^{-5/6},
\]

even for Schwartz functions ϕ whose Fourier transforms do not vanish on the sphere $\{|\xi| = \gamma_0\}$.

1.5.1. Energy estimates. We would like to control the increment of both high order Sobolev norms and weighted norms for solutions of (1.14). It is convenient to do all the estimates in the Fourier space, using a quasilinear I-method as in some of our earlier work. This has similarities with the well-known I-method of Colliander–Keel–Staffilani–Takaoka–Tao [16, 17] used in semilinear problems, and to the energy methods of [34, 3, 4, 39]. Our main estimate is the following partial bootstrap bound:

\[
\text{if } \sup_{t \in [0,T]} \left[(1+t)^{-\delta^2} \mathcal{E}(t)^{1/2} + \|e^{it\Lambda}U(t)\|_Z \right] \leq \varepsilon_1 \text{ then } \sup_{t \in [0,T]} (1+t)^{-\delta^2} \mathcal{E}(t)^{1/2} \lesssim \varepsilon_0 + \varepsilon_1^{3/2},
\]

(1.16)
The curves represent the dispersion relation $\lambda(r) = \sqrt{r^3 + r}$ and the group velocity λ', for $g = 1 = \sigma$. Notice that $\lambda''(r)$ vanishes at $r = \gamma_0 \approx 0.393$. The frequency $\gamma_1 = \sqrt{2}$ corresponds to the sphere of space-time resonant outputs. Notice that while the slower decay at γ_0 is due to some degeneracy in the linear problem, γ_1 is unremarkable from the point of view of the linear dispersion.

where U is a solution on $[0, T]$ of (1.14),

$$E(t) = \|U(t)\|_{H^N}^2 + \|U(t)\|_{H^N_1}'^2,$$

and the initial data has small size $\sqrt{E(0)} + \|U(0)\|_Z \leq \varepsilon_0$. The Z norm is important and will be discussed in detail in the next subsection. For simplicity, we focus on the high order Sobolev norms, and divide the argument into four steps.

Step 1. For N sufficiently large, let

$$W := W_N := (\nabla)^N_0 U, \quad E_N(t) := \int_{\mathbb{R}^2} |\hat{W}(\xi, t)|^2 d\xi.$$ \hspace{1cm} (1.17)

A simple calculation, using the equation and the fact that V is real, shows that

$$\frac{d}{dt} E_N = \int_{\mathbb{R}^2 \times \mathbb{R}^2} m(\xi, \eta) \hat{W}(\eta) \hat{W}(-\xi) \hat{V}(\xi - \eta) d\xi d\eta,$$ \hspace{1cm} (1.18)

where

$$m(\xi, \eta) = \frac{(\xi - \eta) \cdot (\xi + \eta)}{2} \left(\frac{1 + |\eta|^2}{1 + |\xi|^2} \right)^N_1 - \frac{(1 + |\xi|^2)^N}{(1 + |\eta|^2)^{N/2}(1 + |\xi|^2)^{N/2}}.$$ \hspace{1cm} (1.19)

Notice that $|\xi - \eta| \in [2^{-11}, 2^{11}]$ in the support of the integral, due to the Littlewood-Paley operator in the definition of V. We notice that m satisfies

$$m(\xi, \eta) = d(\xi, \eta)m'(\xi, \eta), \quad \text{where} \quad d(\xi, \eta) := \frac{[(\xi - \eta) \cdot (\xi + \eta)]^2}{1 + |\xi + \eta|^2}, \quad m' \approx 1.$$ \hspace{1cm} (1.20)

The *depletion factor* d is important in establishing energy estimates, due to its correlation with the modulation function Φ (see (1.28) below). The presence of this factor is related to the exact conservation law (1.15).
Step 2. We would like to estimate now the increment of $E_N(t)$. We use (1.18) and consider only the main case, when $|\xi|, |\eta| \approx 2^k \gg 1$, and $|\xi - \eta|$ is close to the slowly decaying frequency γ_0. So we need to bound space-time integrals of the form

$$I := \int_0^t \int_{\mathbb{R}^2 \times \mathbb{R}^2} m(\xi, \eta) \hat{P}_k W(\eta, s) \hat{P}_k W(-\xi, s) \hat{U}(\xi - \eta, s) \chi_{\gamma_0}(\xi - \eta) d\xi d\eta ds,$$

where χ_{γ_0} is a smooth cutoff function supported in the set $\{\xi : ||\xi| - \gamma_0| \ll 1\}$, and we replaced V by U (replacing V by U leads to a similar calculation). Notice that it is not possible to estimate $|I|$ by moving the absolute value inside the time integral, due to the slow decay of U in L^∞. So we need to integrate by parts in time; for this define the profiles

$$u(t) := e^{it\Lambda} U(t), \quad w(t) := e^{it\Lambda} W(t).$$

Then decompose the integral in dyadic pieces over the size of the modulation and over the size of the time variable. In terms of the profiles u, w, we need to consider the space-time integrals

$$I_{k,m,p} := \int_{\mathbb{R}} q_m(s) \int_{\mathbb{R}^2 \times \mathbb{R}^2} e^{is\Phi(\xi,\eta)} m(\xi, \eta) \hat{P}_k w(\eta, s) \hat{P}_k \pi(-\xi, s) \times \hat{u}(\xi - \eta, s) \chi_{\gamma_0}(\xi - \eta) \varphi_p(\Phi(\xi, \eta)) d\xi d\eta ds,$$

where $\Phi(\xi, \eta) := \Lambda(\xi) - \Lambda(\eta) - \Lambda(\xi - \eta)$ is the associated modulation, q_m is smooth and supported in the set $s \approx 2^m$ and φ_p is supported in the set $\{x : |x| \approx 2^p\}$.

![Figure 2](image-url)

Figure 2. The first picture illustrates the resonant set $\{\eta : 0 = \Phi(\xi, \eta) = \Lambda(\xi) - \Lambda(\eta) - \Lambda(\xi - \eta)\}$ for a fixed large frequency ξ (in the picture $\xi = (100, 0)$). The second picture illustrates the intersection of a neighborhood of this resonant set with the set where $|\xi - \eta|$ is close to γ_0. Note in particular that near the resonant set $\xi - \eta$ is almost perpendicular to ξ (see (1.20), (1.28)). Finally, the colors show the level sets of $\log |\Phi|$.

Step 3. To estimate the integrals $I_{k,m,p}$ we consider several cases depending on the relative size of k, m, p. Assume that k, m are large, i.e. $2^k \gg 1, 2^m \gg 1$, which is the harder case. To deal with the case of small modulation, when one cannot integrate by parts in time, we need an L^2 bound on the Fourier integral operator

$$T_{k,m,p}(f)(\xi) := \int_{\mathbb{R}^2} e^{is\Phi(\xi, \eta)} \varphi_k(\xi) \varphi_{\leq p}(\Phi(\xi, \eta)) \chi_{\gamma_0}(\xi - \eta) f(\eta) d\eta,$$
where $s \approx 2^m$ is fixed. The critical bound we prove in Lemma 4.7 ("the main L^2 lemma") is
\[
\|T'_{k,m,p}(f)\|_{L^2} \lesssim \epsilon \cdot 2^m (2^{(3/2)(p-k/2)} + 2^{p-k/2-m/3}) \|f\|_{L^2}, \quad \epsilon > 0,
\]
provided that $p - k/2 \in [-0.99m, -0.01m]$. The main gain here is the factor $3/2$ in $2^{(3/2)(p-k/2)}$ in the right-hand side (Schur's test would only give a factor of 1).

The proof of (1.23) uses a TT^* argument, which is a standard tool to prove L^2 bounds for Fourier integral operators. This argument depends on a key nondegeneracy property of the function Φ, more precisely on what we call the restricted nondegeneracy condition
\[
\Upsilon(\xi, \eta) = \nabla^2_{\xi, \eta} \Phi(\xi, \eta)[\nabla^\perp_{\xi} \Phi(\xi, \eta), \nabla^\perp_{\eta} \Phi(\xi, \eta)] \neq 0 \quad \text{if} \quad \Phi(\xi, \eta) = 0. \tag{1.24}
\]
This condition, which appears to be new, can be verified explicitly in our case, when $||\xi - \eta| - \gamma_0| \ll 1$. The function Υ does in fact vanish at two points on the resonant set $\{\eta : \Phi(\xi, \eta) = 0\}$ (where $||\xi - \eta| - \gamma_0| \approx 2^{-k}$), but our argument can tolerate vanishing up to order 1.

The nondegeneracy condition (1.24) can be interpreted geometrically: the nondegeneracy of the mixed Hessian of Φ is a standard condition that leads to optimal L^2 bounds on Fourier integral operators. In our case, however, we have the additional cutoff function $\varphi_{<\rho}(\Phi(\xi, \eta))$, so we can only integrate by parts in the directions tangent to the level sets of Φ. This explains the additional restriction to these directions in the definition of Υ in (1.24).

Given the bound (1.23), we can control the contribution of small modulations, i.e.
\[
p - k/2 \leq -2m/3 - \epsilon m. \tag{1.25}
\]

Step 4. In the high modulation case we integrate by parts in time in the formula (1.22). The main contribution is when the time derivative hits the high frequency terms, so we focus on estimating the resulting integral
\[
I'_{k,m,p} := \int_{\mathbb{R}} q_m(s) \int_{\mathbb{R}^2 \times \mathbb{R}^2} e^{i\sigma \Phi(\xi, \eta)} m(\xi, \eta) \frac{d}{ds}[\hat{P}_k w(\eta, s) \hat{P}_k w(-\xi, s)] \nabla^\perp \chi(\xi - \eta) \frac{\varphi_{<\rho}(\Phi(\xi, \eta))}{\Phi(\xi, \eta)} d\xi d\eta ds.
\]

Notice that $\partial_\xi w$ satisfies the equation
\[
\partial_\xi w = (\nabla)^N e^{it\Lambda} [\nabla V \cdot \nabla U + (1/2) \Delta V \cdot U]. \tag{1.27}
\]

The right-hand side of (1.27) is quadratic. We thus see that replacing w by $\partial_\xi w$ essentially gains a unit of decay (which is $|t|^{-5/6+}$), but loses a derivative. This causes a problem in some range of parameters, for example when $2^p \approx 2^{k/2 - 2m/3}$, $1 \ll 2^k \ll 2^m$, compare with (1.25).

We then consider two cases: if the modulation is sufficiently small then we can use the depletion factor σ in the multiplier m, see (1.20), and the following key algebraic correlation
\[
\text{if} \quad |\Phi(\xi, \eta)| \lesssim 1 \quad \text{then} \quad |m(\xi, \eta)| \lesssim 2^{-k}. \tag{1.28}
\]

See Fig. 2. As a result, we gain one derivative in the integral $I'_{k,m,p}$, which compensates for the loss of one derivative in (1.27), and the integral can be estimated again using (1.23).

On the other hand, if the modulation is not small, $2^p \geq 1$, then the denominator $\Phi(\xi, \eta)$ becomes a favorable factor, and one can use the formula (1.27) and reiterate the symmetrization procedure implicit in the energy estimates. This symmetrization avoids the loss of one derivative and gives suitable estimates on $|I'_{k,m,p}|$ in this case. The proof of (1.16) follows.
1.5.2. Dispersive analysis. It remains to prove a partial bootstrap estimate for the Z norm, i.e. if

$$\sup_{t \in [0,T]} \left((1 + t)^{-\delta} \mathcal{E}(t)^{1/2} + \|e^{itA}U(t)\|_Z \right) \leq \varepsilon_1 \quad \text{then} \quad \sup_{t \in [0,T]} \|e^{itA}U(t)\|_Z \lesssim \varepsilon_0 + \varepsilon_1^2. \quad (1.29)$$

This complements the energy bootstrap estimate (1.16), and closes the full bootstrap argument.

The first main issue is to define an effective Z norm. We use the Duhamel formula, written in terms of the profile u (recall the equation (1.14))

$$\tilde{u}(\xi, t) = \tilde{u}(\xi, 0) - \frac{1}{2} \int_0^t \int_{\mathbb{R}^2} e^{isA(\xi)}(|\xi|^2 - |\eta|^2) \tilde{V}(\xi - \eta, s)e^{-isA(\eta)}\tilde{u}(\eta, s) \, d\eta \, ds. \quad (1.30)$$

For simplicity, consider one of the terms, corresponding to the component U of V (the contribution of \tilde{U} is similar). So we are looking to understand bilinear expressions of the form

$$\tilde{h}(\xi, t) := \int_0^t \int_{\mathbb{R}^2} e^{isA(\xi, \eta)}n(\xi, \eta)\tilde{u}(\xi - \eta, s)\tilde{u}(\eta, s) \, d\eta \, ds,$n(\xi, \eta) := (|\xi|^2 - |\eta|^2)\varphi_{[-10, 10]}(\xi - \eta), \quad \Phi(\xi, \eta) = \Lambda(\xi) - \Lambda(\eta) - \Lambda(\xi - \eta). \quad (1.31)$$

The idea is to estimate the function \tilde{h} by integrating by parts either in ξ or in η. This is the method of space-time resonances of Germain–Masmoudi–Shatah [35]. The main contribution is expected to come from the set of space-time resonances (the stationary points of the integral)

$$\mathcal{SR} := \{(\xi, \eta) : \Phi(\xi, \eta) = 0, (\nabla_\eta \Phi)(\xi, \eta) = 0\}. \quad (1.32)$$

To illustrate this analysis works in our problem, we consider the contribution of the integral over $s \approx 2^m \gg 1$ in (1.31), and assume that the frequencies are ≈ 1.

Case 1. Start with the contribution of small modulations,

$$\tilde{h}_{m, l}(\xi) := \int_{\mathbb{R}} q_m(s) \int_{\mathbb{R}^2} \varphi_{\leq l}(\Phi(\xi, \eta))e^{isA(\xi, \eta)}n(\xi, \eta)\tilde{u}(\xi - \eta, s)\tilde{u}(\eta, s) \, d\eta \, ds, \quad (1.33)$$

where $l = -m + \delta m$ (δ is a small constant) and $q_m(s)$ restricts the time integral to $s \approx 2^m$. Assume that $u(., s)$ is a Schwartz function supported at frequency ≈ 1, independent of s (this is the situation at the first iteration). Integration by parts in η (using the formula (7.30) to avoid taking η derivatives of the factor $\varphi_{\leq l}(\Phi(\xi, \eta))$) shows that the main contribution comes from a small neighborhood of the stationary points where $|\nabla_\eta \Phi(\xi, \eta)| \leq 2^{-m/2 + \delta m}$, up to negligible errors. Thus, the main contribution comes from space-time resonant points as in (1.32).

In our case, the space-time resonant set is

$$\{(\xi, \eta) \in \mathbb{R}^2 \times \mathbb{R}^2 : |\xi| = \gamma_1 = \sqrt{2}, \eta = \xi/2\}. \quad (1.34)$$

Moreover, the space-time resonant points are nondegenerate (according to the terminology introduced in [43]), in the sense that the Hessian of the matrix $\nabla^2_{\eta^m}\Phi(\xi, \eta)$ is non-singular at these points. A simple calculation shows that

$$\tilde{h}_{m, l}(\xi) \approx c(\xi)\varphi_{\leq -m}(|\xi| - \gamma_1),$$

up to smaller contributions, where we have also ignored factors of $2^{\delta m}$, and c is smooth.

We are now ready to describe more precisely the Z space. This space should include all Schwartz functions. It also has to include functions like $\tilde{u}(\xi) = \varphi_{\leq -m}(|\xi| - \gamma_1)$, due to the calculation above, for any m large. It should measure localization in both space and frequency, and be strong enough, at least, to recover the $t^{-5/6+}$ pointwise decay.
We use the framework introduced by two of the authors in [42], which was later refined by some of the authors in [43, 37, 31]. The idea is to decompose the profile as a superposition of atoms, using localization in both space and frequency,
\[f = \sum_{j,k} Q_{jk} f, \quad Q_{jk} f = \varphi_j(x) \cdot P_k f(x). \]

The \(Z \) norm is then defined by measuring suitably every atom. We define first
\[\|f\|_{Z_1} = \sup_{j,k} 2^j \cdot \|\|\xi| - \gamma_1\|^1/2 Q_{jk} f(\xi)\|_{L^2_{\xi}} \]
up to small corrections (see Definition 2.5 for the precise formula, including the small but important \(\delta \)-corrections), and then we define the \(Z \) norm by applying a suitable number of vector-fields \(D \) and \(\Omega \).

These considerations and (1.30) can also be used to justify the approximate formula
\[(\partial_t \tilde{u})(\xi, t) \approx (1/t) \sum_j g_j(\xi) e^{it\Phi(\xi, \eta_j(\xi))} + \text{lower order terms}, \]
as \(t \to \infty \), where \(\eta_j(\xi) \) denote the stationary points where \(\nabla_\eta \Phi(\xi, \eta_j(\xi)) = 0 \). This approximate formula, which holds at least as long as the stationary points are nondegenerate, is consistent with the asymptotic behavior of the solution described in Remark 1.2 (ii). Indeed, at space-time resonances \(\Phi(\xi, \eta_j(\xi)) = 0 \), which leads to logarithmic growth for \(\tilde{u}(\xi, t) \), while away from these space-time resonances the oscillation of \(e^{it\Phi(\xi, \eta_j(\xi))} \) leads to convergence.

Case 2. Consider now the case of higher modulations, \(l \geq -m + \delta m \). We start from a formula similar to (1.33) and integrate by parts in \(s \). The main case is when \(d/ds \) hits one of the profiles \(u \). Using again the equation (see (1.30)), we have to estimate cubic expressions of the form
\[h_{m,l}'(\xi) := \int_{\mathbb{R}} q_m(s) \int_{\mathbb{R}^2 \times \mathbb{R}^2} \frac{\varphi(\Phi(\xi, \eta))}{\Phi(\xi, \eta)} e^{is\Phi(\xi, \eta)} u(\xi - \eta, s) \]
\[\times e^{is\Phi'(\eta, \sigma)} u(\eta - \sigma, s) \, d\eta d\sigma ds, \]
where \(\Phi'(\eta, \sigma) = \Lambda(\eta) + \Lambda(\eta - \sigma) - \Lambda(\sigma) \). Assume again that the three functions \(u \) are Schwartz functions supported at frequency \(\approx 1 \). We combine \(\Phi \) and \(\Phi' \) into a combined phase,
\[\Phi(\xi, \eta, \sigma) := \Phi(\xi, \eta) + \Phi'(\eta, \sigma) = \Lambda(\xi) - \Lambda(\xi - \eta) + \Lambda(\eta - \sigma) - \Lambda(\sigma). \]

We need to estimate \(h_{m,l}' \) according to the \(Z_1 \) norm. Integration by parts in \(\xi \) (approximate finite speed of propagation) shows that the main contribution in \(Q_{jk} h_{m,l}' \) is when \(2^j \approx 2^m \).

We have two main cases: if \(l \) is not too small, say \(l \geq -m/14 \), then we use first multilinear Hölder-type estimates, placing two of the factors \(e^{is\Lambda u} \) in \(L^\infty \) and one in \(L^2 \), together with analysis of the stationary points of \(\Phi \) in \(\eta \) and \(\sigma \). This suffices in most cases, except when all the variables are close to \(\gamma_0 \). In this case we need a key algebraic property, of the form
\[\nabla_{\eta, \sigma} \Phi(\xi, \eta, \sigma) = 0 \quad \text{and} \quad \Phi(\xi, \eta, \sigma) = 0 \quad \text{then} \quad \nabla_\xi \Phi(\xi, \eta, \sigma) = 0, \]
if \(|\xi - \eta|, |\eta - \sigma|, |\sigma| \) are all close to \(\gamma_0 \).

On the other hand, if \(l \) is very small, \(l \leq -m/14 \), then the denominator \(\Phi(\xi, \eta) \) in (1.37) is dangerous. However, we can restrict to small neighborhoods of the stationary points of \(\Phi \) in \(\eta \) and \(\sigma \), thus to space-time resonances. This is the most difficult case in the dispersive analysis. We need to rely on one more algebraic property, of the form
\[\nabla_{\eta, \sigma} \Phi(\xi, \eta, \sigma) = 0 \quad \text{and} \quad |\Phi(\xi, \eta)| + |\Phi'(\eta, \sigma)| \ll 1 \quad \text{then} \quad \nabla_\xi \Phi(\xi, \eta, \sigma) = 0. \]
See Lemma 10.6 for the precise quantitative claims for both (1.38) and (1.39).
The point of both (1.38) and (1.39) is that in the resonant region for the cubic integral we have that $\nabla_\xi \hat{\Phi}(\xi, \eta, \sigma) = 0$. We call them \textit{slow propagation of iterated resonances} properties; as a consequence the resulting function is essentially supported when $|x| \ll 2^m$, using the approximate finite speed of propagation. This gain is reflected in the factor 2^j in (1.35).

We remark that the analogous property for quadratic resonances

$$\nabla_\eta \Phi(\xi, \eta) = 0 \quad \text{and} \quad \Phi(\xi, \eta) = 0 \quad \text{then} \quad \nabla_\xi \Phi(\xi, \eta) = 0$$

fails. In fact, in our case $|\nabla_\xi \Phi(\xi, \eta)| \approx 1$ on the space-time resonant set.

In proving (1.29), there are, of course, many cases to consider. The full proof covers sections 8 and 9. The type of arguments presented above are typical in the proof: we decompose our profiles in space and frequency, localize to small sets in the frequency space, keeping track in particular of the special frequencies of size $\gamma_0, \gamma_1, \gamma_1/2, 2\gamma_0$, use integration by parts in ξ to control the location of the output, and use multilinear Hölder-type estimates to bound L^2 norms.

We remark that the dispersive analysis in the Z norm is much more involved in this paper than in the earlier papers mentioned above.

1.5.3. \textit{The special quadratic structure of the full water-wave system}. The model (1.14) is useful in understanding the full problem. There are, however, additional difficulties to keep in mind.

In this paper we use Eulerian coordinates. The local well-posedness theory, which is nontrivial because of the quasilinear nature of the equations and the hidden hyperbolic structure, then relies on the so-called “good unknown” of Alinhac [6, 5, 1, 4].

In our problem, however, this is not enough. Alinhac’s good unknown ω is suitable for the local theory, in the sense that it prevents loss of derivatives in energy estimates. However, for the global theory, we need to adjust the main complex variable U which diagonalizes the system, using a quadratic correction of the form $T_m \omega$ (see (3.4)). This way we can identify certain \textit{special quadratic structure}, somewhat similar to the structure in the nonlinearity of (1.14). This structure, which appears to be new, is ultimately responsible for the favorable multipliers of the space-time integrals (similar to (1.20)), and leads to global energy bounds.

Identifying this structure is, unfortunately, technically involved. Our main result is in Proposition 3.1, but its proof depends on paradifferential calculus using the Weyl quantization (see Appendix A) and on a suitable paralinearization of the Dirichlet–Neumann operator. We include all the details of this paralinearization in Appendix B, mostly because its exact form has to be properly adapted to our norms and suitable for global analysis. For this we need some auxiliary spaces: (1) the $O_{m,p}$ hierarchy, which measures functions, keeping track of both multiplicity (the index m) and smoothness (the index p), and (2) the $M_{l,m}^{r,m}$ hierarchy, which measures the symbols of the paradifferential operators, keeping track also of the order l.

1.5.4. \textit{Additional remarks}. We list below some other issues one needs to keep in mind in the proof of the main theorem.

(1) Another significant difficulty of the full water wave system, which is not present in (1.14), is that the “linear” part of the equation is given by a more complicated paradifferential operator T_Σ, not by the simple operator Λ. The operator T_Σ includes nonlinear cubic terms that lose $3/2$ derivatives, and an additional smoothing effect is needed.

(2) The very low frequencies $|\xi| \ll 1$ play an important role in all the global results for water wave systems. These frequencies are not captured in the model (1.14). In our case, there is a suitable \textit{null structure}: the multipliers of the quadratic terms are bounded by $|\xi| \min(|\eta|, |\xi - \eta|)^{1/2}$, see (7.11), which is an important ingredient in the dispersive part of the argument.
(3) It is important to propagate energy control of both high Sobolev norms and weighted norms using many copies of the rotation vector-field. Because of this control, we can pretend that all the profiles in the dispersive part of the argument are almost radial and located at frequencies $\lesssim 1$. The linear estimates (in Lemma 7.5) and many of the bilinear estimates are much stronger because of this almost radiality property of the profiles.

(4) At many stages it is important that the four spheres, the sphere of slow decay $\{ |\xi| = \gamma_0 \}$, the sphere of space-time resonant outputs $\{ |\xi| = \gamma_1 \}$, and the sphere of space-time resonant inputs $\{ |\xi| = \gamma_1/2 \}$, and the sphere $\{ |\xi| = 2\gamma_0 \}$ are all separated from each other. Such separation conditions played an important role also in other papers, such as [34, 37, 31].

1.6. Organization. The rest of the paper is organized as follows: in section 2 we state the main propositions and summarize the main definitions and notation in the paper.

In sections 3–6 we prove Proposition 2.2, which is the main improved energy estimate. The key components of the proof are Proposition 3.1 (derivation of the main quasilinear scalar equation, identifying the special quadratic structure), Proposition 4.1 (the first energy estimate, including the strongly semilinear structure), Proposition 4.2 (reduction to a space-time integral bound), Lemma 4.7 (the main L^2 bound on a localized Fourier integral operator), and Lemma 5.1 (the main interactions in Proposition 4.2). The proof of Proposition 2.2 uses also the material presented in the appendices, in particular the paralinearization of the Dirichlet–Neumann operator in Proposition B.1.

In sections 7–9 we prove Proposition 2.3, which is the main improved dispersive estimate. The key components of the proof are the reduction to Proposition 7.1, the precise analysis of the time derivative of the profile in Lemmas 8.1–8.2, and the analysis of the Duhamel formula, divided in several cases, in Lemmas 9.4–9.8.

In sections 10–11 we collect estimates on the dispersion relation and the phase functions. The main results are Proposition 10.2 (structure of the resonance sets), Proposition 10.4 (bounds on sublevel sets), Lemma 10.6 (slow propagation of iterated resonances), and Lemmas 11.1–11.3 (the restricted nondegeneracy property of the resonant hypersurfaces).

1.7. Acknowledgements. We would like to thank Thomas Alazard for very useful discussions and for sharing an unpublished note on paralinearization, and Javier Gómez-Serrano for discussions on numerical simulations. The third author would like to thank Vladimir Georgescu for inspiring discussions on the Weyl quantization. The last author would also like to thank Jalal Shatah for generously sharing his expertise on water waves on many occasions.

2. The main propositions

Recall the water-wave system with gravity and surface tension,

$$
\begin{align*}
\partial_t h &= G(h)\phi, \\
\partial_t \phi &= -gh + \sigma \text{div} \left[\frac{\nabla h}{(1 + |\nabla h|^2)^{1/2}} \right] - \frac{1}{2}|\nabla \phi|^2 + \frac{(G(h)\phi + \nabla h \cdot \nabla \phi)^2}{2(1 + |\nabla h|^2)},
\end{align*}
$$

where $G(h)\phi$ denotes the Dirichlet-Neumann operator associated to the water domain. Theorem 1.1 is a consequence of Propositions 2.1, 2.2, and 2.3 below.

Proposition 2.1. (Local existence and continuity) (i) Assume that $N \geq 10$. There is $\varepsilon > 0$ such that if

$$
\|h_0\|_{H^{N+1}} + \|\phi_0\|_{H^{N+1/2,1/2}} \leq \varepsilon
$$

(i) Assume that $N \geq 10$. There is $\varepsilon > 0$ such that if

$$
\|h_0\|_{H^{N+1}} + \|\phi_0\|_{H^{N+1/2,1/2}} \leq \varepsilon
$$

then there is a unique solution \((h, \phi) \in C([0, 1] : H_3^{N+1} \times \dot{H}_3^{N+1/2, 1/2})\) of the system (2.1) with \(g = 1\) and \(\sigma = 1\), with initial data \((h_0, \phi_0)\).

(ii) Assume \(T_0 \geq 1, N = N_1 + N_3\), and \((h, \phi) \in C([0, T_0] : H_3^{N+1} \times \dot{H}_3^{N+1/2, 1/2})\) is a solution of the system (2.1) with \(g = 1\) and \(\sigma = 1\). With the \(Z\) norm as in Definition 2.5 below and the profile \(V\) defined as in (1.11), assume that for some \(t_0 \in [0, T_0]\)

\[
\mathcal{V}(t_0) \in H_0^{N_0} \cap H_0^{N_1, N_3} \cap Z, \quad \|\mathcal{V}(t_0)\|_{H_0^N} \leq 2\varepsilon. \tag{2.3}
\]

Then there is \(\tau = \tau(\|\mathcal{V}(t_0)\|_{H_0^{N_0} \cap H_0^{N_1, N_3} \cap Z})\) such that the mapping \(t \to \|\mathcal{V}(t)\|_{H_0^{N_0} \cap H_0^{N_1, N_3} \cap Z}\) is continuous on \([0, T_0] \cap [t_0, t_0 + \tau]\), and

\[
\sup_{t \in [0, T_0] \cap [t_0, t_0 + \tau]} \|\mathcal{V}(t)\|_{H_0^{N_0} \cap H_0^{N_1, N_3} \cap Z} \leq 2\|\mathcal{V}(t_0)\|_{H_0^{N_0} \cap H_0^{N_1, N_3} \cap Z}. \tag{2.4}
\]

Proposition 2.1 is a local existence result for the water waves system. We will not provide the details of its proof in the paper, but only briefly discuss it. Part (i) is a standard wellposedness statement in a sufficiently regular Sobolev space, see for example [70, 1].

Part (ii) is a continuity statement for the Sobolev norm \(H_0^{N_0}\) as well as for the \(H_0^{N_1, N_3}\) and \(Z\) norms\(^4\). Continuity for the \(H_0^{N_0}\) norm is standard. A formal proof of continuity for the \(H_0^{N_1, N_3}\) and \(Z\) norms and of (2.4) requires some adjustments of the arguments given in the paper, due to the quasi-linear and non-local nature of the equations.

More precisely, we can define \(\varepsilon\)-truncations of the rotational vector-field \(\Omega\), i.e. \(\Omega_\varepsilon := (1 + \varepsilon^2 |x|^2)^{-1/2}\Omega\), and the associated spaces \(H_0^{N_1, N_3}_\varepsilon\), with the obvious adaptation of the norm in (1.8). Then we notice that

\[
\Omega_\varepsilon T_\varepsilon b = T_\Omega \varepsilon o b + T_\varepsilon \Omega_\varepsilon b + R
\]

where \(R\) is a suitable remainder bounded uniformly in \(\varepsilon\). Because of this we can adapt the arguments in Proposition 4.1 and in appendices A and B to prove energy estimates in the \(\varepsilon\)-truncated spaces \(H_0^{N_1, N_3}_\varepsilon\). For the \(Z\) norm one can proceed similarly using an \(\varepsilon\)-truncated version \(Z_\varepsilon\) (see the proof of Proposition 2.4 in [43] for a similar argument) and the formal expansion of the Dirichlet–Neumann operator in section C.2. The conclusion follows from the uniform estimates by letting \(\varepsilon \to 0\).

The following two propositions summarize our main bootstrap argument.

Proposition 2.2. (Improved energy control) Assume that \(T \geq 1\) and \((h, \phi) \in C([0, T] : H_3^{N_0+1} \times \dot{H}_3^{N_0+1/2, 1/2})\) is a solution of the system (2.1) with \(g = 1\) and \(\sigma = 1\), with initial data \((h_0, \phi_0)\).

Assume that, with \(U\) and \(V\) defined as in (1.11),

\[
\|U(0)\|_{H_3^{N_0} \cap H_3^{N_1, N_3}} + \|V(0)\|_{Z} \leq \varepsilon_0 \ll 1, \tag{2.5}
\]

and, for any \(t \in [0, T]\),

\[
(1 + t)^{-\delta^2} \|U(t)\|_{H_3^{N_0} \cap H_3^{N_1, N_3}} + \|V(t)\|_{Z} \leq \varepsilon_1 \ll 1, \tag{2.6}
\]

where the \(Z\) norm is as in Definition 2.5. Then, for any \(t \in [0, T]\),

\[
(1 + t)^{-\delta^2} \|U(t)\|_{H_3^{N_0} \cap H_3^{N_1, N_3}} \lesssim \varepsilon_0 + \varepsilon_1^{3/2}. \tag{2.7}
\]

\(^4\)Notice that we may assume uniform in time smallness of the high Sobolev norm \(H^N\) with \(N = N_1 + N_3\), thanks to the uniform control on the \(Z\) norm, see Proposition 2.2, and Definition 2.5.
Proposition 2.3. (Improved dispersive control) With the same assumptions as in Proposition 2.2 above, in particular (2.5), we have, for any \(t \in [0, T] \),
\[
\|V(t)\|_{L^\infty} \lesssim \varepsilon_0 + \varepsilon_1^2.
\] (2.8)

It is easy to see that Theorem 1.1 follows from Propositions 2.1, 2.2, and 2.3 by a standard continuity argument and (7.44) (for the \(L^\infty \) bound on \(U \) in (1.10)). The rest of the paper is concerned with the proofs of Propositions 2.2 and 2.3.

2.1. Definitions and notation. We summarize in this subsection some of the main definitions we use in the paper.

2.1.1. General notation. We start by defining several multipliers that allow us to localize in the Fourier space. We fix \(\varphi \) equal to 1 in \([-\infty, 5/4, 5/4]\) and equal to 0 in \([-8/5, 8/5]\). For simplicity of notation, we also let \(\varphi : \mathbb{R}^2 \to [0, 1] \) denote the corresponding radial function on \(\mathbb{R}^2 \). Let
\[
\varphi_k(x) := \varphi(|x|/2^k) - \varphi(|x|/2^{k-1}) \quad \text{for any } k \in \mathbb{Z},
\]
\[
\varphi_I := \sum_{m \in I \cap \mathbb{Z}} \varphi_m \quad \text{for any } I \subseteq \mathbb{R},
\]
\[
\varphi \leq B := \varphi(-\infty, B], \quad \varphi > B := \varphi(B, \infty), \quad \varphi < B := \varphi(-\infty, B), \quad \varphi > B := \varphi(B, \infty).
\]

For any \(a < b \in \mathbb{Z} \) and \(j \in [a, b] \cap \mathbb{Z} \) let
\[
\varphi_{[a, b]} := \begin{cases}
\varphi_j & \text{if } a < j < b, \\
\varphi_a & \text{if } j = a, \\
\varphi_b & \text{if } j = b.
\end{cases} \tag{2.9}
\]

For any \(x \in \mathbb{R} \) let \(x^+ = \max(x, 0) \) and \(x^- = \min(x, 0) \). Let
\[
\mathcal{J} := \{(k, j) \in \mathbb{Z} \times \mathbb{Z}_+ : k + j \geq 0\}.
\]

For any \((k, j) \in \mathcal{J}\) let
\[
\varphi_{j}^{(k)}(x) := \begin{cases}
\varphi_{\leq -k}(x) & \text{if } k + j = 0 \text{ and } k \leq 0, \\
\varphi_{\leq 0}(x) & \text{if } j = 0 \text{ and } k \geq 0, \\
\varphi_{j}(x) & \text{if } k + j \geq 1 \text{ and } j \geq 1,
\end{cases}
\]
and notice that, for any \(k \in \mathbb{Z} \) fixed, \(\sum_{j \geq \min(k, 0)} \varphi_{j}^{(k)} = 1 \).

Let \(P_k, k \in \mathbb{Z} \), denote the Littlewood–Paley projection operators defined by the Fourier multipliers \(\xi \to \varphi_k(\xi) \). Let \(P_{\leq B} \) (respectively \(P_{> B} \)) denote the operators defined by the Fourier multipliers \(\xi \to \varphi_{\leq B}(\xi) \) (respectively \(\xi \to \varphi_{> B}(\xi) \)). For \((k, j) \in \mathcal{J}\) let \(Q_{jk} \) denote the operator
\[
(Q_{jk} f)(x) := \varphi_{j}^{(k)}(x) \cdot P_k f(x). \tag{2.10}
\]

In view of the uncertainty principle the operators \(Q_{jk} \) are relevant only when \(2^j 2^k \gtrsim 1 \), which explains the definitions above.

We will use two sufficiently large constants \(D \gg D_1 \gg 1 \) (\(D_1 \) is only used in sections 10–11 to prove properties of the phase functions). For \(k, k_1, k_2 \in \mathbb{Z} \) let
\[
\mathcal{D}_{k, k_1, k_2} := \{(\xi, \eta) \in (\mathbb{R}^2)^2 : |\xi| \in [2^{k-4}, 2^{k+4}], |\eta| \in [2^{k_1-4}, 2^{k_1+4}], |\xi - \eta| \in [2^{k_2-4}, 2^{k_2+4}]\}.
\]

Let \(\lambda(r) = \sqrt{|r| + |r|^3}, \lambda(\xi) = \sqrt{|\xi| + |\xi|^3} = \lambda(|\xi|), \lambda : \mathbb{R}^2 \to [0, \infty) \). Let
\[
\mathcal{U}_+ := \mathcal{U}, \quad \mathcal{U}_- := \overline{\mathcal{U}}, \quad \mathcal{V}(t) = \mathcal{V}_+(t) := e^{it\Lambda \mathcal{U}}(t), \quad \mathcal{V}_-(t) := e^{-it\Lambda \mathcal{U}_-}(t). \tag{2.12}
\]
Let $\Lambda_+ = \Lambda$ and $\Lambda_- := -\Lambda$. For $\sigma, \mu, \nu \in \{+, -, \}$, we define the associated phase functions

$$
\Phi_{\sigma \mu \nu}(\xi, \eta) := \Lambda_\sigma(\xi) - \Lambda_\mu(\xi - \eta) - \Lambda_\nu(\eta),
$$

$$
\Phi_{\sigma \mu \nu}(\xi, \eta, \sigma) := \Lambda_\sigma(\xi) - \Lambda_\mu(\xi - \eta) - \Lambda_\nu(\eta - \sigma) - \Lambda_\beta(\sigma).
$$

(2.13)

2.1.2. **The spaces $O_{m,p}$**. We will need several spaces of functions, in order to properly measure linear, quadratic, cubic, and quartic and higher order terms. In addition, we also need to track the Sobolev smoothness and angular derivatives. Assume that $N_2 = 40 \geq N_3 + 10$ and N_0 (the maximum number of Sobolev derivatives) and N_1 (the maximum number of angular derivatives) and N_3 (additional Sobolev regularity) are as before.

Definition 2.4. Assume $T \geq 1$ and let $p \in [-N_3, 10]$. For $m \geq 1$ we define $O_{m,p}$ as the space of functions $f \in C([0,T] : L^2)$ satisfying

$$
\|f\|_{O_{m,p}} := \sup_{t \in [0,T]} \|1 + t\|^{(m-1)(5/6-2\delta^2)-\delta^2}[\|f(t)\|_{H_{m+p}^{N_0}} + \|f(t)\|_{H_{m+p}^{N_1},N_3+N_0}] + (1 + t)^{5/6-2\delta^2}\|f(t)\|_{W^{N_{1/2},N_2}_{N_0}} < \infty,
$$

(2.14)

where, with P_k denoting standard Littlewood-Paley projection operators,

$$
\|g\|_{\widehat{W}^N} := \sum_{k \in \mathbb{Z}} 2^{Nk^+} \|P_k g\|_{L^\infty}, \quad \|g\|_{\widehat{W}_{N'}^N} := \sum_{j \leq N'} \|\Omega_j^\dagger g\|_{\widehat{W}^N}.
$$

The spaces \widehat{W}^N are used in this paper as substitutes of the standard L^∞ based Sobolev spaces, which have the advantage of being closed under the action of singular integrals.

Note that the parameter p in $O_{m,p}$ corresponds to a gain at high frequencies and does not affect the low frequencies. We observe that, see Lemma A.2,

$$
O_{m,p} \subseteq O_{n,p} \text{ if } 1 \leq n \leq m, \quad O_{m,p} O_{n,p} \subseteq O_{m+n,p} \text{ if } 1 \leq m, n.
$$

(2.15)

Moreover, by our assumptions (2.6) and Lemma 7.5, the main variables satisfy

$$
\|(1 - \Delta)^{1/2} h\|_{O_{1,0}} + \|\nabla|^{1/2} \phi\|_{O_{1,0}} \lesssim \varepsilon_1.
$$

(2.16)

The spaces $O_{m,p}$ are used mostly in the energy estimates in section 3 and in the (elliptic) analysis of the Dirichlet–Neumann operator in appendix B. However, they are not precise enough for the dispersive analysis of our evolution equation. For this we need the more precise Z-norm defined below, which is better adapted to our equation.

2.1.3. **The Z norm**. Let $\gamma_0 := \sqrt{\frac{2\sqrt{3} - 3}{4}}$ denote the radius of the sphere of slow decay and $\gamma_1 := \sqrt{2}$ denote the radius of the space-time resonant sphere. For $n \in \mathbb{Z}$, $I \subseteq \mathbb{R}$, and $\gamma \in (0, \infty)$ we define

$$
\overline{A_{n,\gamma}} f(\xi) := \varphi_{-n}(2^{100}||\xi| - \gamma|) \cdot \hat{f}(\xi),
$$

$$
A_{I,\gamma} := \sum_{n \in I} A_{n,\gamma}, \quad A_{I,\gamma} := A_{(-\infty,B],\gamma}, \quad A_{B,\gamma} := A_{[B,\infty),\gamma}.
$$

(2.17)

Given an integer $j \geq 0$ we define the operators $A_{n,\gamma}^{(j)}$, $n \in \{0, \ldots, j + 1\}$, $\gamma \geq 2^{-50}$, by

$$
A_{j+1,\gamma} := \sum_{n \geq j+1} A_{n,\gamma}, \quad A_{j,\gamma} := \sum_{n \leq 0} A_{n,\gamma}, \quad A_{n,\gamma}^{(j)} := A_{n,\gamma} \text{ if } 1 \leq n \leq j.
$$

(2.18)
These operators localize to thin anuli of width 2^{-n} around the circle of radius γ. Most of the times, for us $\gamma = \gamma_0$ or $\gamma = \gamma_1$. We are now ready to define the main Z norm.

Definition 2.5. Assume that δ, N_0, N_1, N_4 are as in Theorem 1.1. We define

$$Z_1 := \{ f \in L^2(\mathbb{R}^2) : \| f \|_{Z_1} := \sup_{(k,j) \in J} \| Q_{jk} f \|_{B_j} < \infty \},$$

where

$$\| g \|_{B_j} := 2^{(1-50\delta)j} \sup_{0 \leq n \leq j+1} 2^{-(1/2-49\delta)n} \| A^{(j)}_{n+1} g \|_{L^2}.$$ (2.20)

Then we define, with $D^\alpha := \partial_1^{\alpha_1} \partial_2^{\alpha_2}$, $\alpha = (\alpha^1, \alpha^2)$,

$$Z := \{ f \in L^2(\mathbb{R}^2) : \| f \|_Z := \sup_{2m+|\alpha| \leq N_1 + N_4, m \leq N_1/2 + 20} \| D^\alpha \Omega^m f \|_{Z_1} < \infty \}. \quad (2.21)$$

We remark that the Z norm is used to estimate the linear profile of the solution, which is $\mathcal{V}(t) := e^{t\Lambda U(t)}$, not the solution itself.

2.1.4. Paradifferential calculus. We need some elements of paradifferential calculus in order to be able to describe the Dirichlet–Neumann operator $G(h)\phi$ in (2.1). Our paralinearization relies on the Weyl quantization. More precisely, given a symbol $a = a(x, \zeta)$, and a function $f \in L^2$, we define the paradifferential operator $T_a f$ according to

$$\mathcal{F}(T_a f)(\xi) = \frac{1}{4\pi^2} \int_{\mathbb{R}^2} \chi\left(\frac{\xi - \eta}{\xi + \eta}\right) \tilde{a}(\xi - \eta, (\xi + \eta)/2) \hat{f}(\eta) d\eta,$$ (2.22)

where \tilde{a} denotes the Fourier transform of a in the first coordinate and $\chi = \varphi \leq -20$. In Appendix A we prove several important lemmas related to the paradifferential calculus.

3. The “improved good variable” and strongly semilinear structures

3.1. Renormalization. In this section we assume $(h, \phi) : \mathbb{R}^2 \times [0, T] \to \mathbb{R} \times \mathbb{R}$ is a solution of (2.1) satisfying the hypothesis of Proposition 2.2; in particular, see (2.16),

$$\| \langle \nabla \rangle h \|_{O_{1,0}} + \| \langle \nabla \rangle^{1/2} \phi \|_{O_{1,0}} \lesssim \varepsilon_1. \quad (3.1)$$

Our goal in this section is to write the system (2.1) as a scalar equation for a suitably constructed complex-valued function (the “improved good variable”). The main result is the following:

Proposition 3.1. Assume that (3.1) holds and let λ_{DN} be the symbol of the Dirichlet-Neumann operator defined in (B.5), let $\Lambda := \sqrt{g |\nabla| + \sigma |\nabla|^3}$, and let

$$\ell(x, \zeta) := L_{ij}(x) \xi_i \zeta_j - \Lambda^2 h, \quad L_{ij} := \frac{\sigma}{\sqrt{1 + |\nabla h|^2}} \left(\delta_{ij} - \frac{\partial_i h \partial_j h}{1 + |\nabla h|^2} \right),$$

be the mean curvature operator coming from the surface tension. Define the symbol

$$\Sigma := \sqrt{\lambda_{DN}(g + \ell)} \quad (3.3)$$

and the complex-valued unknown

$$U := T_{\sqrt{g + \ell}} h + iT_{\Sigma} T_{1/\sqrt{g + \ell}} \omega + iT_{m'} \omega, \quad m' := \frac{i \operatorname{div} V}{2 \sqrt{g + \ell}} \in \varepsilon_1 \mathcal{M}_{N_3-2}^{-1},$$

where B, V and (the “good variable”) $\omega = \phi - T_B h$ are defined in (B.3). Then

$$U = \sqrt{g + \sigma |\nabla|^3 h} + i |\nabla|^{1/2} \omega + \varepsilon_1^2 \mathcal{O}_{2,0}, \quad (3.5)$$
and \(U \) satisfies the equation

\[
(\partial_t + iT_\Sigma + iT_{V,\zeta})U = N_U + Q_S + C_U,
\]

where

- The quadratic term \(N_U \) has the special structure

\[
N_U := T_\gamma(c_1 U + c_2 \overline{U})
\]

for some constants \(c_1, c_2 \in \mathbb{C} \), where

\[
\gamma(x, \zeta) := \frac{\zeta_i \zeta_j}{|\zeta|^2} |\nabla|^{-1/2} \partial_i \partial_j (\Im U)(x).
\]

- The quadratic terms \(Q_S \) have a gain of one derivative, i.e., they are of the form

\[
Q_S = A_{++}(U, U) + A_{+-}(U, \overline{U}) + A_{--}(\overline{U}, \overline{U}) \in \varepsilon_3^2 O_{2,1},
\]

with symbols \(a_{\epsilon_1 \epsilon_2} \) satisfying, for all \(k, k_1, k_2 \in \mathbb{Z} \), and \((\epsilon_1 \epsilon_2) \in \{(++), (++), (--)\} \),

\[
\|a_{k,k_1,k_2}^{|\epsilon_1 \epsilon_2|}\|_{\mathcal{S}^\infty} \lesssim 2^{-\max(k_1, k_2, 0)} (1 + 2^{3\min(k_1, k_2)});
\]

- \(C_U \) is a cubic term, \(C_U \in \varepsilon_3^3 O_{3,0} \).

Let us comment on the structure of the main equation (3.6). In the left-hand side we have the “quasilinear” part \((\partial_t + iT_\Sigma + iT_{V,\zeta})U \). In the right-hand side we have three types of terms:

1. a quadratic term \(N_U \) with special structure;
2. a strongly semilinear quadratic term \(Q_S \), given by symbols of order -1;
3. a semilinear cubic term \(C_U \in \varepsilon_3^3 O_{3,0} \), whose contribution is easy to estimate.

The key point is the special structure of the quadratic terms, which allows us to obtain favorable energy estimates in Proposition 4.1. This special structure is due to the definition of the variable \(U \), in particular the choice of the symbol \(m' \) in (3.4). We observe that

\[
\tilde{\gamma}(\eta, \zeta) = -\frac{\zeta_i \zeta_j}{|\zeta|^2} \frac{\eta_i \eta_j}{|\eta|^{1/2}} \Im U(\eta)
\]

and we remark that the angle \(\zeta \cdot \eta \) in this expression gives us the strongly semilinear structure we will use later (see also the factor \(\delta \) in (4.6)). For comparison, the use of the standard “good unknown” of Alinhac leads to generic quadratic terms that do not lose derivatives. This would suffice to prove local regularity of the system, but would not be suitable for global analysis.

This proposition is the starting point of our energy analysis. Its proof is technically involved, as it requires the material in appendices A and B. One can start by understanding the definition A.6 of the decorated spaces of symbols \(\mathcal{M}_{l,m}^{i,m} \), the simple properties (A.43)–(A.54), and the statement of Proposition B.1 (the proof is not needed). The spaces of symbols \(\mathcal{M}_{l,m}^{i,m} \) are analogous to the spaces of functions \(\mathcal{O}_{m,p} \); for symbols, however, the order \(l \) is important (for example a symbol of order 2 counts as two derivatives), but its exact differentiability (measured by the parameter \(r \)) is less important.

In Proposition 3.1 we keep the parameters \(g \) and \(\sigma \) due to their physical significance.

Remark 3.2. (i) The symbols defined in this proposition can be estimated in terms of the decorated norms introduced in Definition A.6. More precisely, using the hypothesis (3.1), the
basic bounds (A.43) and (A.45), and the definition (B.5), it is easy to verify that

\[(g + \ell) = \frac{(g + \sigma|\zeta|^2)}{\sqrt{1 + |\nabla h|^2}} \left(1 - \frac{\sigma(\zeta \cdot \nabla h)^2}{(g + \sigma|\zeta|^2)} - \frac{\Lambda^2 h}{(g + \sigma|\zeta|^2)} + \epsilon_1^4 M_{N_3-2}^0 + \epsilon_1^2 M_{N_3-2}^{-2},2\right),\]

\[\lambda_{DN} = |\zeta| \left(1 + \frac{|\zeta|^2 |\nabla h|^2 - (\zeta \cdot \nabla h)^2}{2|\zeta|} + \frac{|\zeta|^2 \Delta h - \zeta_j \zeta_k \partial_j \partial_k h}{2|\zeta|^3} \varphi_{\geq 0}(\zeta) + \epsilon_1^4 M_{N_3-2}^0 + \epsilon_1^3 M_{N_3-2}^{-1,3}\right),\]

uniformly for every \(t \in [0,T] \). Thus, with \(\Lambda = \sqrt{g|\nabla| + \sigma|\nabla|^2} \), we derive an expansion for \(\Sigma \),

\[\Sigma = \Lambda + \Sigma_1 + \Sigma_2,\]

\[\Sigma_1 := \frac{1}{4} \frac{\Lambda(\zeta)}{|\zeta|} \left[\Delta h - \frac{\zeta_j \zeta_k}{|\zeta|^2} \partial_{jk} h \right] \varphi_{\geq 0}(\zeta) - \frac{1}{2} \frac{|\zeta|}{\Lambda(\zeta)} \Lambda^2 h \in \epsilon_1 M_{N_3-2}^{1/2}, \quad \Sigma_2 \in \epsilon_1^2 M_{N_3-2}^{3/2}.\]

The formulas are slightly simpler if we disregard quadratic terms, i.e.

\[\lambda_{DN}^p = |\zeta| \left[p \lambda_1^0(x, \zeta) / |\zeta| + \epsilon_1^2 M_{N_3-2}^0\right],\]

\[(g + \ell)^p = (g + \sigma|\zeta|^2)^p \left(1 - p \Lambda^2 h / (g + \sigma|\zeta|^2) + \epsilon_1^2 M_{N_3-2}^{0,2}\right),\]

\[\Sigma = \Lambda(1 + \Sigma_1(x, \zeta)/\Lambda + \epsilon_1^2 M_{N_3-2}^{0,2}),\]

for \(p \in [-2, 2] \), where \(\lambda_1^0(x, \zeta) = \frac{|\zeta|^2 \Delta h - \zeta_j \zeta_k \partial_{jk} h}{2|\zeta|^4} \varphi_{\geq 0}(\zeta) \) as in Remark B.2.

In addition, the identity \(\partial_t h = G(h(x, \zeta)) - |\nabla| + \epsilon_1^2 O_{2-1/2} \) shows that

\[\partial_t \sqrt{g + \ell} = (g + \sigma|\zeta|^2)^{-1/2}(|\Delta h - \sigma \Delta h|/2) + \epsilon_1^2 M_{N_3-4}^{1,2} \in \epsilon_1 M_{N_3-4}^{-1,1} + \epsilon_1^2 M_{N_3-4}^{1,2},\]

\[\partial_t \lambda_{DN} = \frac{1}{2|\zeta|} \partial_t \lambda_1^0 + \epsilon_1^2 M_{N_3-4}^{1/2} \in \epsilon_1 M_{N_3-4}^{-1/2,1} + \epsilon_1^2 M_{N_3-4}^{1/2,2},\]

\[\partial_t \Sigma = \partial_t \Sigma_1 + \epsilon_1^2 M_{N_3-4}^{3/2} \in \epsilon_1 M_{N_3-4}^{1/2,1} + \epsilon_1^2 M_{N_3-4}^{3/2,2}.\]

(ii) It follows from Proposition B.1 that \(V \in \epsilon_1 O_{1-1/2} \). Therefore \(m' \in \epsilon_1 M_{N_3-2}^{-1,1} \) and the identity (3.5) follows using also Lemma A.7. Moreover, using Proposition B.1 again,

\[V = V_1 + V_2, \quad V_1 := |\nabla|^{-1/2} \nabla \Omega, \quad V_2 \in \epsilon_1^2 O_{2-1/2},\]

\[m' = m'_1 + \epsilon_1^2 M_{N_3-2}^{-1,2}, \quad m'_1(x, \zeta) := -\frac{i}{2} |\nabla|^{-1/2} \nabla \Omega(x) / (\sqrt{g} + \sigma|\zeta|^2).\]

3.2. Symmetrization and special quadratic structure. In this subsection we prove Proposition 3.1. We first write (2.1) as a system for \(h \) and \(\omega \), and then symmetrize it. We start by combining Proposition B.1 on the Dirichlet-Neumann operator with a paralinearization of the equation for \(\partial_t \phi \), to obtain the following:

Lemma 3.3. [Paralinearization of the system] With the notation of Proposition B.1 and Proposition 3.1, we can rewrite the system (2.1) as

\[\begin{cases}
\partial_t h = \tau_{\lambda_{DN}} h - \text{div}(TV h) + G_2 + \epsilon_1^3 O_{3,1}, \\
\partial_t \omega = -gh - T_{\epsilon h} - TV \nabla \omega + \Omega_2 + \epsilon_1^3 O_{3,1},
\end{cases}\]

where \(\ell \) is given in (3.2) and

\[\Omega_2 := \frac{1}{2} \mathcal{H}(|\nabla| \omega, |\nabla| \omega) - \frac{1}{2} \mathcal{H}(\nabla \omega, \nabla \omega) \in \epsilon_1^2 O_{2,2}.\]
Proof. First, we see directly from (2.1) and Proposition B.1 that, for any \(t \in [0, T] \),
\[
G(h)\phi, B, V, \partial_t h \in \varepsilon_1\mathcal{O}_{1,-1/2}, \quad \partial_t \phi \in \varepsilon_1\mathcal{O}_{1,-1}, \\
B = |\nabla|\omega + \varepsilon_1^2\mathcal{O}_{2,-1/2}, \quad V = \nabla\omega + \varepsilon_1^3\mathcal{O}_{2,-1/2}.
\]
(3.18)
The first equation in (3.16) comes directly from Proposition B.1. To obtain the second equation,
we use Lemma A.4 (ii) with \(F \) is an acceptable cubic remainder term:
\[
F_l(\nabla h) = T_{\partial_h F_l(\nabla h) \partial_k h + \varepsilon_1^3\mathcal{O}_{3,3}}, \quad \text{hence } \sigma \div \frac{\nabla h}{\sqrt{1 + |\nabla h|^2}} = -T_{L_j k \zeta_j \zeta_k h + \varepsilon_1^3\mathcal{O}_{3,3}}.
\]

Next we paralinearize the other nonlinear terms in the second equation in (2.1). Recall the definition of \(V, B \) in (B.3). We first write
\[
-\frac{1}{2}|\nabla \phi|^2 + \frac{(G(h)\phi + \nabla h \cdot \nabla \phi)^2}{2(1 + |\nabla h|^2)} = \frac{|V + B \nabla h|^2}{2} + \frac{(1 + |\nabla h|^2)B^2}{2} = B^2 - 2BV \cdot \nabla h - |V|^2.
\]
Using (2.1), we calculate \(\partial_t \omega = G(h)\phi = B - V \cdot \nabla h \), and
\[
\partial_t \omega = \partial_t \phi - T_{\partial_t h} - T_B \partial_t h \\
= -gh - T_{L_j k \zeta_j \zeta_k h + \varepsilon_1^3\mathcal{O}_{3,3}} + \frac{1}{2}(B^2 - 2BV \cdot \nabla h - |V|^2) - T_{\partial_t B} - T_B(V \cdot \nabla h) + \varepsilon_1^3\mathcal{O}_{3,1}.
\]
Then, since \(V = \nabla \phi - B \nabla h \), we have
\[
T_V \nabla \omega = T_V \nabla \phi + T_V(\nabla T_B h) = T_V V + T_V(B \nabla h) + T_V(\nabla T_B h),
\]
and we can write
\[
\partial_t \omega = -gh - T_{L_j k \zeta_j \zeta_k} + \partial_t B - T_V \nabla h + I + II, \\
I := \frac{1}{2}B^2 - T_B B - \frac{1}{2}|V|^2 + T_V V = \frac{1}{2}H(B, B) - \frac{1}{2}H(V, V) = \Omega_2 + \varepsilon_1^3\mathcal{O}_{3,1}, \\
II := -BV \cdot \nabla h + T_B(V \cdot \nabla h) + T_V(B \nabla h) + T_V(\nabla T_B h) + \varepsilon_1^3\mathcal{O}_{3,1}.
\]
Using (3.18), (B.3), (2.1), and Corollary C.1 (ii) we easily see that
\[
L_j k \zeta_j \zeta_k + \partial_t B = L_j k \zeta_j \zeta_k + |\nabla|\partial_t \phi + \varepsilon_1^3\mathcal{O}_{2,-2} = \ell + \varepsilon_1^2\mathcal{O}_{2,-2}.
\]
Moreover we can verify that \(II \) is an acceptable cubic remainder term:
\[
II = -T_V \nabla h + H(B, V \cdot \nabla h) + T_V(B \nabla h) = -T_V T_B h - T_V T_V h + \varepsilon_1^3\mathcal{O}_{3,1} \\
= -T_V \nabla h + T_V T_B h + T_V H(B, \nabla h) + T_V T_V h + \varepsilon_1^3\mathcal{O}_{3,1} \\
= \varepsilon_1^3\mathcal{O}_{3,1},
\]
and the desired conclusion follows. \(\square \)

Since our purpose will be to identify quadratic terms as in (3.9)-(3.10), we need a more precise notion of strongly semilinear quadratic errors.

Definition 3.4. Given \(t \in [0, T] \) we define \(\varepsilon_1^2\mathcal{O}_{2,1}^* \) to be the set of finite linear combinations of terms of the form \(S[T_1, T_2] \) where \(T_1, T_2 \in \{U(t), \tilde{U}(t)\} \), and \(S \) satisfies
\[
\mathcal{F}(S[f, g])(\xi) := \frac{1}{4\pi^2} \int_{\mathbb{R}^2} s(\xi, \eta) \hat{f}(\xi - \eta) \hat{g}(\eta) d\eta, \\
\|s^{k_1, k_2}\|_{S_{\Omega}^0} \lesssim 2^{-\max(k_1, k_2, 0)}(1 + 2^3 \min(k_1, k_2)).
\]

These correspond precisely to the acceptable quadratic error terms according to (3.10).
We remark that if S is defined by a symbol as in (3.19) and $p \in [-5, 5]$ then
\[S[O_{m,p}, O_{n,p}] \subseteq O_{m+n+p+1}. \] (3.20)

This follows by an argument similar to the argument used in Lemma A.2. As a consequence, given the assumptions (3.1) and with U defined as in (3.4), we have that $O_{2,1}^* \subseteq O_{2,1}$.

Proof of Proposition 3.1.

Step 1. To diagonalize the principal part of the system (3.16) we define the symmetrizing variables (H, Ψ) by
\[H := T_{\sqrt{g+\ell}} h, \quad \Psi := T_{\Sigma} T_{1/\sqrt{g+\ell}} \omega + T_{m'} \omega, \] (3.21)
where m' is as in (3.4). Using (3.13) and Lemma A.7, we see that
\[H = \Re(U) + \varepsilon_2^2 O_{2,0}, \quad \sqrt{g + \sigma |\nabla|^2} h = \Re(U) + \varepsilon_1^2 O_{2,0}, \]
\[\Psi = \Im(U) + \varepsilon_1^2 O_{2,0}, \quad |\nabla|^{1/2} \omega = \Im(U) + \varepsilon_2^2 O_{2,0}. \] (3.22)

As a consequence, if $T_1, T_2 \in \{U, \bar{U}, H, \Psi, (g - \sigma \Delta)^{1/2} h, |\nabla|^{1/2} \omega\}$, and S is as in (3.19), then
\[S[T_1, T_2] \subseteq \varepsilon_1^2 O_{2,1} + \varepsilon_1^3 O_{3,0}. \] (3.23)

We will show that
\[
\begin{cases}
\partial_t H - T_{\Sigma} \Psi + iT_{\nabla, \xi} H = -T_{\gamma} h - \frac{1}{2} T_{\sqrt{g+\ell} \operatorname{div} V} h - T_{m'} \Sigma \omega + \varepsilon_1^2 O_{2,1} + \varepsilon_1^3 O_{3,0}, \\
\partial_t \Psi + T_{\Sigma} H + iT_{\nabla, \xi} \Psi = -\frac{1}{2} T_{\gamma} \Psi - T_{m'} (g + \ell) h + \frac{1}{2} T_{\sqrt{\lambda_{DN}} \operatorname{div} V} \omega + \varepsilon_1^2 O_{2,1} + \varepsilon_1^3 O_{3,0}.
\end{cases}
\] (3.24)

Step 2. We examine now the first equation in (3.24). The first equation in (3.16) and the identity $\operatorname{div} T_{\nabla} h = (1/2) T_{\div V} h + iT_{\nabla, \xi} h$ show that
\[
\begin{align*}
\partial_t H - T_{\Sigma} \Psi + iT_{\nabla, \xi} H &+ T_{\gamma} H + \frac{1}{2} T_{\sqrt{g+\ell} \operatorname{div} V} h + T_{m'} \Sigma \omega \\
&= (T_{\sqrt{g+\ell}} T_{\lambda_{DN}} - T_{\Sigma} T_{\Sigma} T_{1/\sqrt{g+\ell}}) \omega - (T_{\Sigma} T_{m'} - T_{m'} \Sigma) \omega \\
&+ i(T_{\nabla, \xi} H - T_{\sqrt{g+\ell}} T_{\nabla, \xi} h - iT_{\gamma} T_{\sqrt{g+\ell}} h) \\
&+ T_{\partial_{\sqrt{g+\ell}}} h - \frac{1}{2} (T_{\sqrt{g+\ell}} T_{\div V} - T_{\sqrt{g+\ell} \operatorname{div} V}) h + T_{\sqrt{g+\ell}} \lambda_{DN} G_2 + \varepsilon_1^3 T_{\sqrt{g+\ell}} O_{3,1}.
\end{align*}
\] (3.25)

We will treat each line separately. For the first line, we notice that the contribution of low frequencies $P_{\leq -9} \omega$ is acceptable. For the high frequencies we use Proposition A.5 to write
\[
(T_{\sqrt{g+\ell}} T_{\lambda_{DN}} - T_{\Sigma} T_{\Sigma} T_{1/\sqrt{g+\ell}}) P_{\geq -8} \omega \\
= \left(T_{\lambda_{DN} \sqrt{g+\ell}} + \frac{i}{2} T_{\{1/\sqrt{g+\ell}, \lambda_{DN}\}} - (T_{\Sigma^2/\sqrt{g+\ell}} + \frac{i}{2} T_{\{1/\sqrt{g+\ell}, \lambda_{DN}\}} \right) P_{\geq -8} \omega \] (3.26)
\[+ [E(\sqrt{g+\ell}, \lambda_{DN}) - E(\Sigma, \Sigma) T_{1/\sqrt{g+\ell}} - E(\Sigma^2, 1/\sqrt{g+\ell})] P_{\geq -8} \omega. \] (3.27)

Since
\[\lambda_{DN} \sqrt{g+\ell} = \Sigma^2/\sqrt{g+\ell}, \quad \{\sqrt{g+\ell}, \lambda_{DN}\} = \{\Sigma^2, 1/\sqrt{g+\ell}\} \]
we observe that the expression in (3.26) vanishes. Using (3.13) and Lemma A.8, we see that, up to acceptable cubic terms, we can rewrite the second line of (3.25) as

\[
\left[E(\sqrt{g + \sigma|\zeta|^2}, \lambda_1^{(0)}) + E\left(-\frac{\Lambda^2h}{2\sqrt{g + \sigma|\zeta|^2}}, |\zeta|\right) - (E(\Lambda, \Sigma_1) + E(\Sigma_1, \Lambda))(g - \sigma \Delta)^{-1/2} \right. \\
\left. - E(\Lambda^2, \frac{\Lambda^2h}{2(g + \sigma|\zeta|^2)^{3/2}}) - 2E(\Lambda \Sigma_1, \frac{1}{\sqrt{g + \sigma|\zeta|^2}}) - \frac{i}{2} T_{\Lambda, m_1} - E(\Lambda, m_1) \right] P_{\geq -8\omega + \epsilon_1^3 O_{3,0}}.
\]

Using (A.39) these terms are easily seen to be acceptable \(\epsilon_1^3 O_{2,1}\) quadratic terms.

To control the terms in the second line of the right-hand side of (3.25), we observe that

\[
T_{\gamma, \zeta} T_{\sqrt{g + \ell} h} - T_{\gamma_0, \ell} T_{\gamma, \zeta} h - iT_{y, \gamma} T_{\sqrt{g + \ell} h} = i(T_{\gamma_0, \ell} T_{\gamma, \zeta}) h \\
+ E(V \cdot \zeta, \sqrt{g + \ell}) h - E(\sqrt{g + \ell}, V \cdot \zeta) h + \frac{1}{2} T_{\gamma_0, \ell} T_{\gamma, \zeta} h - iE(\gamma, \sqrt{g + \ell}) h.
\]

(3.28)

Using (3.13) and (3.15), we notice that

\[
\{ V \cdot \zeta, \sqrt{g + \ell} \} = \zeta_0 \partial_k V_j(x) \cdot \sigma \zeta_k \sqrt{g + \sigma|\zeta|^2} + \epsilon_1^2 M_{N_3-2}^1 = \frac{\sigma \zeta_0 \partial_k V_j(x) \cdot \partial_j \partial_k |\nabla|^{-1/2} \Im(U)(x)}{\sqrt{g + \sigma|\zeta|^2}} + \epsilon_1^2 M_{N_3-2}^1.
\]

Using the definition (3.8) it follows that \(T_{\gamma_0, \ell} T_{\gamma, \zeta} h \in \epsilon_1^2 O_{2,1} + \epsilon_1^3 O_{3,0}\) as desired. The terms in the second line of (3.28) are also acceptable contributions, as one can see easily by extracting the quadratic parts and using (A.39).

Finally, for the third line, using (3.14), (3.15), and Lemmas A.7 and A.8, we observe that

\[
T_{\epsilon, \sqrt{g + \ell} h} = T_{\frac{1}{\sqrt{g + \ell} \zeta}} - 2 \epsilon_1^3 O_{3,0},
\]

\[
(T_{\sqrt{g + \ell} h} T_{\text{div } V} - T_{\text{div } V, \sqrt{g + \ell} h}) = (iT_{\sqrt{g + \ell} \zeta}) + E(\sqrt{g + \sigma|\zeta|^2}, \text{div } V) \in \epsilon_1^3 O_{3,0},
\]

\[
(T_{\sqrt{g + \ell} h} G_2 + \epsilon_1^3 T_{\sqrt{g + \ell} h} O_{3,1} = T_{\sqrt{g + \ell} h} G_2 + \epsilon_1^3 O_{3,0}.
\]

Using (A.39), the bounds for \(G_2\) in (B.6)-(B.7), and collecting all the estimates above, we obtain the identity in the first line in (3.24).

Step 3. To prove the second identity in (3.24) we first use (3.21) and (3.16) to compute

\[
\partial_t \Psi + T_{\Sigma} H + iT_{\gamma, \zeta} \Psi + \frac{1}{2} T_{\gamma} \Psi + T_{m'(g + \ell)} h - \frac{1}{2} T_{\sqrt{\lambda_D N} \text{div } V} \omega \\
= (T_{\Sigma} T_{\sqrt{g + \ell}} - T_{\Sigma} T_{1/\sqrt{g + \ell} T_{g + \ell}}) h + (T_{m'(g + \ell)} - T_{m'} T_{g + \ell}) h \\
+ i(T_{\gamma, \zeta} \Psi - \frac{i}{2} T_{\gamma} \Psi - (T_{\Sigma} T_{1/\sqrt{g + \ell}} + T_{m'}) T_{\gamma, \zeta} \omega) \\
+ \frac{1}{2} (T_{\Sigma} T_{1/\sqrt{g + \ell} T_{\text{div } V} - T_{\sqrt{\lambda_D N} \text{div } V}}) \omega + \frac{1}{2} T_{m'} T_{\text{div } V} \omega \\
+ [\partial_t, T_{\Sigma} T_{1/\sqrt{g + \ell} + T_{m'}}] \epsilon + (T_{\Sigma} T_{1/\sqrt{g + \ell} + T_{m'}}) (\Omega_2 + \epsilon_1^3 O_{3,1}).
\]

(3.29)

Again, we verify that all lines after the equality sign give acceptable remainders.

For the terms in the first line, using Proposition A.5, (3.13), and Lemma A.8,

\[
(T_{\Sigma} T_{\sqrt{g + \ell} h} - T_{\Sigma} T_{1/\sqrt{g + \ell} T_{g + \ell}}) h = -T_{\Sigma} E(1/\sqrt{g + \ell}, g + \ell) h \\
= \Lambda \left[E(\frac{\Lambda^2 h}{2(g + \sigma|\zeta|^2)^{3/2}}, g + \sigma|\zeta|^2) - E(1/\sqrt{g + \sigma|\zeta|^2}, \Lambda^2 h) \right] h + \epsilon_1^3 O_{3,0}.
\]
Using also (A.39), this gives acceptable contributions. In addition,
\[
(T_m' T_{g+\ell} - T_{m'(g+\ell)})h = \frac{i}{2} T_{m'(g+\ell)}h + E(m', g + \ell)h = i\sigma T_\zeta \nabla_x m' h + E(m', \sigma|\zeta|^2)h + \varepsilon_1^2 O_{3,0}.
\]
This gives acceptable contributions, in view of (3.21) and (A.39).

For the terms in the second line of the right-hand side of (3.29) we observe that
\[
\begin{align*}
T_{V, \zeta} \Psi - \frac{i}{2} T_\gamma \Psi - (T_\Sigma T_1/\sqrt{g+\ell} + T_{m'}) T_{V, \zeta} \omega &= [T_{V, \zeta} T_2 T_1/\sqrt{g+\ell} - T_\Sigma T_1/\sqrt{g+\ell} T_{V, \zeta}] \omega - \frac{i}{2} T_\gamma T_2 T_1/\sqrt{g+\ell} \omega + \varepsilon_1^3 O_{3,0} \\
&= [T_{V, \zeta} T_{|\zeta|^{1/2}} - T_{|\zeta|^{1/2}} T_{V, \zeta}] \omega - \frac{i}{2} T_\gamma T_{|\zeta|^{1/2}} \omega + \varepsilon_1^3 O_{3,0}.
\end{align*}
\]
Using the definitions (3.15) and (3.8), we notice that for \(p \in [0, 2] \)
\[
\{V_1 \cdot \zeta, |\zeta|^p\} = \gamma \cdot p |\zeta|^p \quad \text{on} \quad \mathbb{R}^2 \times \mathbb{R}^2.
\]
Thus the terms in the second line of the right-hand side of (3.29) are acceptable \(\varepsilon_1^2 O_{2,1} + \varepsilon_1^3 O_{3,0} \) contributions.

It is easy to see, using Lemma A.8 and the definitions, that the terms the third line in the right-hand side of (3.29) are acceptable. Finally, for the last line in (3.29), we observe that
\[
[\partial_t T_\Sigma T_1/\sqrt{g+\ell} + T_{m'}] \omega = T_\partial \Sigma T_1/\sqrt{g+\ell} \omega + T_\Sigma T_{\partial_1(1/\sqrt{g+\ell})} \omega + T_{\partial m'} \omega
\]
\[
= T_\partial \Sigma T_{(g + \sigma|\zeta|^2)^{-1/2}} \omega - \alpha T_{\frac{\Delta (g + \sigma|\zeta|^2)}{2(g + \sigma|\zeta|^2)^{3/2}}} \omega + \frac{i}{2} T_{\partial (\text{div} V)} (g + \sigma|\zeta|^2)^{-1/2} \omega + \varepsilon_1^3 O_{3,0},
\]
where we used (3.13) and (3.14). Since \(\partial_\ell h = |\nabla| \omega + \varepsilon_1^2 O_{2,-1/2} \) and \(\partial_\ell V = -\nabla (g + \sigma|\nabla|^2)h + \varepsilon_1^2 O_{2,-2} \) (see Lemma 3.3 and Proposition B.1), it follows that the terms in the formula above are acceptable. Finally, using the relations in Lemma 3.3,
\[
(T_\Sigma T_1/\sqrt{g+\ell} + T_{m'})(\Omega_2) = \varepsilon_1^3 O_{3,0} + \varepsilon_1^2 O_{2,1}, \quad (T_\Sigma T_1/\sqrt{g+\ell} + T_{m'})(\varepsilon_1^3 O_{3,1}) = \varepsilon_1^3 O_{3,0}.
\]
Therefore, all the terms in the right-hand side of (3.29) are acceptable, which completes the proof of (3.24).

Step 4. Starting from the system (3.24) we now want to write a scalar equation for the complex unknown \(U = H + i\Psi \) defined in (3.4). Using (3.24), we readily see that
\[
\partial_t U + i T_\Sigma U + i T_{V, \zeta} U = Q_U + N_U + \varepsilon_1^2 O_{2,1} + \varepsilon_1^3 O_{3,0},
\]
\[
Q_U := (-\frac{1}{2} T_\sqrt{g+\ell} \text{ div} V - i T_{m'(g+\ell)})h + (\partial_m' \Sigma + \frac{i}{2} T_{\sqrt{A_D N} \text{ div} V}) \omega = 0,
\]
\[
N_U := -T_\gamma H - \frac{i}{2} T_\gamma \Psi = -\frac{1}{4} T_\gamma (3U + \overline{U}) + \varepsilon_1^3 O_{3,0},
\]
where \(Q_U \) vanishes in view of our choice of \(m' \), and \(N_U \) has the special structure as claimed. \(\square \)

3.3. High order derivatives.

To derive higher order Sobolev and weighted estimates for \(U \), and hence for \(h \) and \(|\nabla|^1\omega \), we need to apply (a suitable notion of) derivatives to the equation (3.6). We will then consider quantities of the form
\[
W_n := (T_\Omega)^n U, \quad n \in [0, 2N_0/3], \quad Y_{m,p} := \Omega^p (T_\Omega)^m U, \quad p \in [0, N_1], m \in [0, 2N_3/3],
\]
for \(U \) as in (3.4) and \(\Sigma \) as in (3.3). We have the following consequence of Proposition 3.1:
Proposition 3.5. With the notation above and \(\gamma \) as in (3.8), we have
\[
\partial_t W_n + iT_\Sigma W_n + iT_{V, \zeta} W_n = T_\gamma (c_n W_n + d_n W_n) + B W_n + C W_n,
\]
where
\[
\partial_t Y_{m, p} + iT_\Sigma Y_{m, p} + iT_{V, \zeta} Y_{m, p} = T_\gamma (c_m Y_{m, p} + d_m Y_{m, p}) + B_{m, p} + C_{m, p},
\]
for some complex numbers \(c_n, d_n \). The cubic terms \(C_{W_n} \) and \(C_{Y_{m, p}} \) satisfy the bounds
\[
\|C_{W_n}\|_{L^2} + \|C_{Y_{m, p}}\|_{L^2} \lesssim \varepsilon_3^2 (1 + t)^{-3/2}.
\]
The quadratic strongly semilinear terms \(B W_n \) have the form
\[
B W_n = \sum_{\iota_1 \iota_2 \in \{+, -\}} F_{\iota_1 \iota_2}^n [U_{\iota_1}, U_{\iota_2}],
\]
where \(U_+ := U, \ U_- = \overline{U} \), and the symbols \(f = f_{\iota_1 \iota_2}^n \) of the bilinear operators \(F_{\iota_1 \iota_2}^n \) satisfy
\[
\|f_{k_1 k_2}^{k, k_1, k_2}\|_{S^0} \lesssim 2^{(3n/2 - 1) \max(k_1, k_2, 0)} (1 + 2^{3 \min(k_1, k_2)}),
\]
The quadratic strongly semilinear terms \(B_{Y_{m, p}} \) have the form
\[
B_{Y_{m, p}} = \sum_{\iota_1 \iota_2 \in \{+, -\}} \{G_{\iota_1 \iota_2}^{m, p} [U_{\iota_1}, \Omega U_{\iota_2}] + H_{\iota_1 \iota_2}^{m, p, p_1, p_2} [\Omega U_{\iota_1}, \Omega U_{\iota_2}]\},
\]
where the symbols \(g = g_{\iota_1 \iota_2}^{m, p} \) and \(h = h_{\iota_1 \iota_2}^{m, p, p_1, p_2} \) of the operators \(G_{\iota_1 \iota_2}^{m, p} \) and \(H_{\iota_1 \iota_2}^{m, p, p_1, p_2} \) satisfy
\[
\|g_{k_1 k_2}^{k, k_1, k_2}\|_{S^0} \lesssim 2^{(3m/2 - 1) \max(k_1, k_2, 0)} (1 + 2^{3 \min(k_1, k_2)}),
\]
\[
\|h_{k_1 k_2}^{k, k_1, k_2}\|_{S^0} \lesssim 2^{(3m/2 + 1) \max(k_1, k_2, 0)} (1 + 2^{2 \min(k_1, k_2)}).
\]

We remark that we have slightly worse information on the quadratic terms \(B_{Y_{m, p}} \) than on the quadratic terms \(B W_n \). This is due mainly to the commutator of the operators \(\Omega U \) and \(T_{V, \zeta} \), which leads to the additional terms in (3.37). These terms can still be regarded as strongly semilinear because they do not contain the maximum number of \(\Omega \) derivatives (they do contain, however, 2 extra Sobolev derivatives, but this is acceptable due to our choice of \(N_0 \) and \(N_1 \)).

Proof of Proposition 3.5. In this proof we need to expand the definition of our main spaces \(\mathcal{O}_{m, p} \) to exponents \(p < -N_3 \). More precisely, we define, for any \(t \in [0, T] \),
\[
\|f\|_{\mathcal{O}_{m, p}'} := \|f\|_{\mathcal{O}_{m, p}} \quad \text{if} \quad p \geq -N_3,
\]
\[
\|f\|_{\mathcal{O}_{m, p}'} := \langle t \rangle^{(m-1)(5/6 - 2 \delta) - \delta^2} \|f\|_{H_{N_0+p}} + \langle t \rangle^{5/6 - 2 \delta} \|f\|_{W_{N_2+p}} \quad \text{if} \quad p < -N_3,
\]
compare with (A.7). As in Lemmas A.7 and A.8, we have the basic imbeddings
\[
T_a \mathcal{O}_{m, p} \subseteq \mathcal{O}_{m+m_1, p-l_1}, \quad (T_a T_b - T_{ab}) \mathcal{O}_{m, p} \subseteq \mathcal{O}_{m+m_1+m_2, p-l_1-l_2+1},
\]
if \(a \in \mathcal{M}_{20}^{l_1, m_1} \) and \(b \in \mathcal{M}_{20}^{l_2, m_2} \). In particular, recalling that, see (3.12),
\[
\Sigma - \Lambda \in \varepsilon_1 \mathcal{M}_{N_3-2}^{3/2, 1}, \quad \Sigma - \Lambda - \Sigma_1 \in \varepsilon_1^2 \mathcal{M}_{N_3-2}^{3/2, 2},
\]
it follows from (3.40) that, for any \(n \in [0, 2N_0/3] \),
\[
T_{\Sigma}^n U \in \varepsilon_1 \mathcal{O}_{1, -3n/2}, \quad T_{\Sigma}^n U - \Lambda^n U = \sum_{l=0}^{n-1} \Lambda^{n-1-l} (T_{\Sigma - \Lambda})^l T_{\Sigma} U \in \varepsilon_1^2 \mathcal{O}_{2, -3n/2}.
\]
Step 1. For \(n \in [0, 2N_0/3] \), we prove first that the function \(W_n = (T_\Sigma)^n U \) satisfies
\[
(\partial_t + iT_\Sigma + iT_{V\cdot\zeta})W_n = T_\gamma(c_n W_n + d_n \overline{W}_n) + N_{S,n} + \varepsilon_1^3 O_{3,-3n/2},
\]
and, using also (3.30),
\[
(\partial_t + iT_\Sigma + iT_{V\cdot\zeta})W_n = T_\gamma(c_n W_n + d_n \overline{W}_n) + N_{S,n} + \varepsilon_1^2 O_{3,-3n/2+1},
\]
(3.43)
Indeed, the case \(n = 0 \) follows from Proposition 3.1. Assuming that this is true for some \(n < 2N_0/3 \) and applying \(T_\Sigma \), we find that
\[
(\partial_t + iT_\Sigma + iT_{V\cdot\zeta})W_{n+1} = T_\gamma(c_n W_{n+1} + d_n \overline{W}_{n+1}) + i[T_{V\cdot\zeta}, T_\gamma]W_n + [\partial_t, T_\Sigma]W_n + N_{S,n} + \varepsilon_1^3 O_{3,-3n/2}.
\]
Using (3.40)–(3.42) and (3.14) it follows that
\[
[\partial_t, T_\Sigma]W_n = T_\partial \Lambda U + \varepsilon_1^2 O_{3,-3(n+1)/2}, \quad T_\Sigma N_{S,n} = \Lambda N_{S,n} + \varepsilon_1^2 O_{3,-3(n+1)/2},
\]
and, using also (3.30),
\[
[T_\Sigma, T_\gamma](c_n W_n + d_n \overline{W}_n) = [T_\Lambda, T_\gamma](c_n \Lambda U + d_n \Lambda \overline{U}) + \varepsilon_1^2 O_{3,-3(n+1)/2},
\]
(3.46)
\[
[T_{V\cdot\zeta}, T_\gamma]W_n = [T_{V_1\cdot\zeta}, T_\Lambda]W_n + \varepsilon_1^2 O_{3,-3(n+1)/2} = \frac{3i}{2} T_\gamma W_{n+1} + N'(3U, \Lambda U) + \varepsilon_1^2 O_{3,-3(n+1)/2},
\]
where \(N'(3U, \Lambda U) \) is an acceptable strongly semilinear quadratic term as in (3.43). Since \(\partial_t h = (\nu)|\omega + \varepsilon_1^2 O_{2,-1/2} \), and recalling the formulas (3.12) and (3.22), it is easy to see that all the remaining quadratic terms are of the strongly semilinear type described in (3.43). This completes the induction step.

Step 2. We can now prove the proposition. The claims for \(W_n \) follow directly from (3.43). It remains to prove the claims for the functions \(Y_{m,p} \). Assume \(m \in [0, 2N_3/3] \) is fixed. We start from the identity (3.43) with \(n = m \), and apply the rotation vector field \(\Omega \). Clearly
\[
(\partial_t + iT_\Sigma + iT_{V\cdot\zeta})Y_{m,p} = T_\gamma(c_m Y_{m,p} + d_m \overline{Y}_{m,p}) + \Omega^p N_{S,m} + \varepsilon_1^3 O_{3,-3m/2} + i[\Omega^p, T_\Sigma]W_m - i[\Omega^p, T_{V\cdot\zeta}]W_m + i[T_{\Omega^p}, T_\gamma](c_m W_m + d_m \overline{W}_m).
\]
The terms in the first line of the right-hand side are clearly acceptable. It remains to show that the commutators in the second line can also be written as strongly semilinear quadratic terms and cubic terms. Indeed, for \(\sigma \in \{\Sigma, V\cdot\zeta, \gamma\} \) and \(W \in \{W_m, \overline{W}_m\} \),
\[
[\Omega^p, T_\sigma]W = \sum_{p' = 0}^{p-1} c_{p,p'} T_{\sigma,\zeta,\zeta}^{p,p'} \Omega^p W,
\]
(3.44)
as a consequence of (A.25). In view of (3.42),
\[
\|\Omega^p W_m\|_{L^2} + \|\langle\nabla\rangle N_{0-N_3} W_m\|_{L^2} \lesssim \varepsilon_1^3 \langle t \rangle^2,
\]
(3.45)
\[
\|\Omega^p W_m - \Lambda^m U\|_{L^2} + \|\langle\nabla\rangle N_{0-N_3} (W_m - \Lambda^m U)\|_{L^2} \lesssim \varepsilon_1^3 \langle t \rangle^{21\delta^2-5/6}.
\]
and, for \(q \in [0, N_1/2] \)
\[
\|\Omega^q W_m\|_{H^{q/3}} \lesssim \varepsilon_1^3 \langle t \rangle^{3\delta^2-5/6}, \quad \|\Omega^q (W_m - \Lambda^m U)\|_{H^{q/3}} \lesssim \varepsilon_1^3 \langle t \rangle^{23\delta^2-5/3}.\]
(3.46)
By interpolation, and using the fact that \(N_0 - N_3 \geq 3N_1/2 \), it follows from (3.45) that
\[
\|\Omega^q \langle\nabla\rangle^{3/2} W_m\|_{L^2} \lesssim \varepsilon_1 \langle t \rangle^2, \quad \|\Omega^q \langle\nabla\rangle^{3/2} (W_m - \Lambda^m U)\|_{L^2} \lesssim \varepsilon_1^3 \langle t \rangle^{21\delta^2-5/6}.
\]
(3.47)
for $q \in [0, N_1 - 1]$. Moreover, for $\sigma \in \{\Sigma, \nabla V \cdot \zeta, \gamma\}$ and $q \in [1, N_1]$, we have
\[
\|\langle \zeta \rangle^{-3/2} \Omega_{x,\xi}^q \sigma \|_{M_{2,q,2}} \lesssim \varepsilon_1(t)^{22/5}, \quad \|\langle \zeta \rangle^{-3/2} \Omega_{x,\xi}^q (\sigma - \sigma_1) \|_{M_{2,0,2}} \lesssim \varepsilon_1^2(t)^{22/5 - 5/6},
\]
while for $q \in [1, N_1/2]$ we also have
\[
\|\langle \zeta \rangle^{-3/2} \Omega_{x,\xi}^q \sigma \|_{M_{1,q,0}} \lesssim \varepsilon_1(t)^{42/5 - 5/6}, \quad \|\langle \zeta \rangle^{-3/2} \Omega_{x,\xi}^q (\sigma - \sigma_1) \|_{M_{1,0,0}} \lesssim \varepsilon_1^2(t)^{42/5 - 5/3}.
\]
See (A.20) for the definition of the norms $M_{q,0}$. In these estimates σ_1 denotes the linear part of σ, i.e. $\sigma_1 \in \{\Sigma, V_1 \cdot \zeta, \gamma\}$. Therefore, using Lemma A.7 and (3.46)--(3.49),
\[
T_{\Omega,\zeta}^{p-p'} \Omega^\xi W = T_{\Omega,\zeta}^{p-p'} \Omega^\xi \nabla^m U_{\pm} + \varepsilon_1^3(t)^{-8/5} L^2 = T_{\Omega,\zeta}^{p-p'} \sigma_1 \Omega^\xi \nabla^m U_{\pm} + \varepsilon_1^3(t)^{-8/5} L^2,
\]
for $p' \in [0, p - 1]$ and $W \in \{W_m, \tilde{W}_m\}$. Notice that $T_{\Omega,\zeta}^{p-p'} \sigma_1 \Omega^\xi \nabla^m U_{\pm}$ can be written as $H_{12}^{p-p',p2} \Omega^\xi U_{11}, \Omega^\xi U_{12}$, with symbols as in (3.38), up to acceptable cubic terms (the loss of 1 high derivative comes from the case $\sigma_1 = V_1 \cdot \zeta$). The conclusion of the proposition follows. \hfill \Box

4. Energy estimates, I: setup and the main L^2 lemma

In this section we set up the proof of Proposition 2.2 and collect some of the main ingredients needed in the proof. From now on we set $g = 1$ and $\sigma = 1$. With W_ξ and $Y_{m,p}$ as in (3.31), we define our main energy functional
\[
E_{\text{tot}} := \frac{1}{2} \sum_{0 \leq n \leq 2N_3/3} \|W_\xi\|_2^2 + \frac{1}{2} \sum_{0 \leq m \leq 2N_3} \sum_{0 \leq p \leq N_3} \|Y_{m,p}\|_2^2.
\]
(4.1)

We start with a proposition:

Proposition 4.1. Assume that (3.1) holds. Then
\[
\|U(t)\|_{H_{N_0}^{N_0,N_3}}^2 \lesssim E_{\text{tot}}(t) + \varepsilon_1^3, \quad E_{\text{tot}}(t) \lesssim \|U(t)\|_{H_{N_0}^{N_0,N_3}}^2 + \varepsilon_1^3,
\]
(4.2)

where $U(t) = (\nabla) h(t) + i|\nabla|^{1/2} \phi(t)$ as in Proposition 2.2. Moreover
\[
\frac{d}{dt} E_{\text{tot}} = B_0 + B_1 + B_E, \quad B_E(t) \lesssim \varepsilon_1^3 (1 + t)^{-4/3}.
\]
(4.3)

The (bulk) terms B_0 and B_1 are finite sums of the form
\[
B_1 := \sum_{G \in \mathcal{G}, \Omega \in \mathcal{W}_0} \int_{\mathbb{R}^2} \mu_0(\xi, \eta) \hat{G}(\xi - \eta) \hat{W}(\eta) \hat{W}'(-\xi) \, d\xi d\eta,
\]
(4.4)

where U and Σ are defined as in Proposition 3.1, $U_+ := U$, $U_- := \overline{U}$, and
\[
\mathcal{G} := \{ \Omega^a \nabla^b U_{\pm} : a \leq N_1/2 \text{ and } b \leq N_3 + 2 \},
\]
\[
\mathcal{W}_0 := \{ \Omega^a T^m U_{\pm} : \text{ either } (a = 0 \text{ and } m \leq 2N_3/3) \text{ or } (a \leq N_1 \text{ and } m \leq 2N_3/3) \},
\]
(4.5)

\[
W_1 := \mathcal{W}_0 \cup \{(1 - \Delta) \Omega^a T^m U_{\pm} : a \leq N_1 - 1 \text{ and } m \leq 2N_3/3 \}.
\]

The symbols $\mu_l = \mu_l(G, \omega, \omega')$, $l \in \{0, 1\}$, satisfy
\[
\mu_0(\xi, \eta) = c|\xi - \eta|^{3/2} \sigma(\xi, \eta), \quad \sigma(\xi, \eta) := \chi \left(\frac{\xi - \eta}{|\xi + \eta|} \right) \left(\frac{\xi - \eta}{|\xi + \eta|} \cdot \frac{\xi + \eta}{|\xi + \eta|} \right)^2, c \in \mathbb{C},
\]
(4.6)

for any $k, k_1, k_2 \in \mathbb{Z}$, see definitions (A.5)--(A.6).
Notice that the a priori energy estimates we prove here are stronger than standard energy estimates. The terms B_0, B_1 are strongly semilinear terms, in the sense that they either gain one derivative or contain the depletion factor δ (which effectively gains one derivative when the modulation is small, compare with (1.28)).

Proof of Proposition 4.1. The bound (4.2) follows from (3.5) and (3.42),

$$
\| \langle \nabla \rangle h(t) \|_{H^{N_0} \cap H^{N_1} + N_3}^2 + \| \nabla \|_{H^{N_0} \cap H^{N_1} + N_3}^2 \lesssim \| U(t) \|_{H^{N_0} \cap H^{N_1} + N_3}^2 + \varepsilon_1^3 \lesssim \mathcal{E}_{tot}(t) + \varepsilon_1^3.
$$

To prove the remaining claims we start from (3.32) and (3.33). For the terms W_n we have

$$
\frac{d}{dt} \| W_n \|_{L^2}^2 = \Re \langle T_\gamma (c_n W_n + d_n W_n), W_n \rangle + \Re \langle B_{W_n}, W_n \rangle + \Re \langle C_{W_n}, W_n \rangle,
$$

(4.7)

since, as a consequence of Lemma A.3 (ii),

$$
\Re \langle i T_{\Sigma} W_n + iT_{\nu} \zeta W_n, W_n \rangle = 0.
$$

Clearly, $\| \langle C_{W_n}, W_n \rangle \| \lesssim \varepsilon_1^3 (t)^{-3/2+2\delta}$, so the last term can be placed in $B_{E}(t)$. Moreover, using (3.8) and the definitions, $(T_\gamma (c_n W_n + d_n W_n), W_n)$ can be written in the Fourier space as part of the term $B_{0}(t)$ in (4.4).

Finally, (B_{W_n}, W_n) can be written in the Fourier space as part of the term $B_{1}(t)$ in (4.4) plus acceptable errors. Indeed, given a symbol f as in (3.36), one can write

$$
f(\xi, \eta) = \mu_1(\xi, \eta) \cdot [(1 + \Lambda (\xi - \eta)^\alpha) + (1 + \Lambda (\eta)^\alpha)], \quad \mu_1(\xi, \eta) := \frac{f(\xi, \eta)}{2 + \Lambda (\xi - \eta)^\alpha + \Lambda (\eta)^\alpha}.
$$

The symbol μ_1 satisfies the required estimate in (4.6). The factors $1 + \Lambda (\xi - \eta)^\alpha$ and $1 + \Lambda (\eta)^\alpha$ can be combined with the functions $\hat{U}_{11}(\xi - \eta)$ and $\hat{U}_{12}(\eta)$ respectively. Recalling that $\Lambda^\alpha U - W_n \in \varepsilon_1^3 \mathcal{O}(-3n/2)$, see (3.42), the desired representation (4.4) follows, up to acceptable errors.

The analysis of the terms $Y_{m,p}$ is similar, using (3.37)-(3.38). This completes the proof.

In view of (4.2), to prove Proposition 2.2 it suffices to prove that $|\mathcal{E}_{tot}(t) - \mathcal{E}_{tot}(0)| \lesssim \varepsilon_1^3 (t)^{2\delta}$ for any $t \in [0, T]$. In view of (4.3) it suffices to prove that, for $l \in \{0, 1\}$,

$$
\left| \int_0^t B_l(s) \, ds \right| \lesssim \varepsilon_1^3 (1 + t)^{2\delta},
$$

for any $t \in [0, T]$. Given $t \in [0, T]$, we fix a suitable decomposition of the function $\mathbf{1}_{[0,t]}$, i.e. we fix functions $q_0, \ldots, q_{L+1} : \mathbb{R} \to [0, 1]$, $|L - \log_2 (2 + t)| \leq 2$, with the properties

$$
\text{supp } q_0 \subseteq [0, 2], \quad \text{supp } q_{L+1} \subseteq [t - 2, t], \quad \text{supp } q_m \subseteq [2^{m-1}, 2^{m+1}] \text{ for } m \in \{1, \ldots, L\},
$$

$$
\sum_{m=0}^{L+1} q_m(s) = \mathbf{1}_{[0,t]}(s), \quad q_m \in C^1(\mathbb{R}) \text{ and } \int_0^t |q_m(s)| \, ds \lesssim 1 \text{ for } m \in \{1, \ldots, L\}.
$$

(4.8)

It remains to prove that for $l \in \{0, 1\}$ and $m \in \{0, \ldots, L + 1\}$,

$$
\left| \int_{\mathbb{R}} B_l(s) q_m(s) \, ds \right| \lesssim \varepsilon_1^{3} 2^{2\delta m}.
$$

(4.9)

In order to be able to use the hypothesis $\| V(s) \|_Z \leq \varepsilon_1$ (see (2.6)) we need to modify slightly the functions G that appear in the terms B_l. More precisely, we define

$$
G' := \{ \Omega^a (\nabla)^b U_{t} : t \in \{+, -\}, a \leq N_1/2 \text{ and } b \leq N_3 + 2 \},
$$

(4.10)
where $\mathcal{U} = (\nabla)h + i|\nabla|^{1/2}\phi$, $\mathcal{U}_+ = \mathcal{U}$ and $\mathcal{U}_- = \overline{\mathcal{U}}$. Then we define the modified bilinear terms

$$B'_t(t) := \sum_{\mathcal{G} \in \mathcal{G}'} \iint_{\mathbb{R}^2 \times \mathbb{R}^2} \mu_t(\xi, \eta) \hat{G}(\xi - \eta, t) \hat{W}(\eta, t) \hat{W}'(-\xi, t) \, d\xi d\eta,$$

(4.11)

where the sets $\mathcal{W}_0, \mathcal{W}_1$ are as in (4.5), and the symbols μ_0 and μ_1 are as in (4.6). In view of (3.5), $U(t) - \mathcal{U}(t) \in \varepsilon^2\mathcal{O}_{2,0}$. Therefore, simple estimates as in the proof of Lemma A.2 show that

$$|B_t(s)| \lesssim \varepsilon^3(1 + s)^{-4/5}, \quad |B'_t(s) - B'_t(s)| \lesssim \varepsilon^3(1 + s)^{-8/5}.$$

As a result of these reductions, for Proposition 2.2 it suffices to prove the following:

Proposition 4.2. Assume that (h, ϕ) is a solution of the system (2.1) with $g = 1$, $\sigma = 1$ on $[0, T]$, and let $\mathcal{U} = (\nabla)h + i|\nabla|^{1/2}\phi$, $\mathcal{V}(t) = e^{it\Lambda}\mathcal{U}(t)$. Assume that

$$\langle t \rangle^{-\gamma_2} \|\mathcal{U}(t)\|_{H^{N_0} \cap H_1^{N_1, N_3}} + \|\mathcal{V}(t)\|_Z \leq \varepsilon_1,$$

(4.12)

for any $t \in [0, T)$, see (2.6). Then, for any $m \in [D^2, L]$ and $l \in \{0, 1\}$,

$$\left| \int_{\mathbb{R}^2} \int_{\mathbb{R}^2 \times \mathbb{R}^2} q_m(s) \mu_l(\xi, \eta) \hat{G}(\xi - \eta, s) \hat{W}(\eta, s) \hat{W}'(-\xi, s) \, d\xi d\eta ds \right| \lesssim \varepsilon^3 2^{d^2m},$$

(4.13)

where $G \in \mathcal{G}'$ (see (4.10)), and $W, W' \in \mathcal{W}' := \mathcal{W}_1$ (see (4.5)), and q_m are as in (4.8). The symbols μ_0, μ_1 satisfy the bounds (compare with (4.6))

$$\mu_0(\xi, \eta) = |\xi - \eta|^{3/2} \delta(\xi, \eta), \quad \delta(\xi, \eta) := \chi(\frac{|\xi - \eta|}{|\xi + \eta|}) \left(\frac{\xi - \eta}{|\xi - \eta|} \cdot \frac{\xi + \eta}{|\xi + \eta|}\right)^2,$$

(4.14)

$$\|\mu^k_{1, k_1, k_2}\|_{S^2} \lesssim 2^{-\max(k_1, k_2, 0)} 2^{3k_1^+}.$$

The proof of this proposition will be done in several steps. We remark that both the symbols μ_0 and μ_1 introduce certain strongly semilinear structures. The symbols μ_0 contain the depletion factor δ, which counts essentially as a gain of one high derivative in resonant situations. The symbols μ_1 clearly contain a gain of one high derivative.

We will need to further subdivide the expression in (4.13) into the contributions of “good frequencies” with optimal decay and the “bad frequencies” with slower decay. Let

$$\chi_{ba}(x) := \varphi(2^D(|x| - \gamma_0)) + \varphi(2^D(|x| - \gamma_1)), \quad \chi_{go}(x) := 1 - \chi_{ba}(x),$$

(4.15)

where $\gamma_0 = \sqrt{\frac{2\sqrt{3} - 3}{3}}$ is the radius of the sphere of degenerate frequencies, and $\gamma_1 = \sqrt{2}$ is the radius of the sphere of space-time resonances. We then define for $l \in \{0, 1\}$ and $Y \in \{go, ba\}$,

$$\mathcal{A}_Y^l[F; H_1, H_2] := \iint_{\mathbb{R}^2 \times \mathbb{R}^2} \mu_l(\xi, \eta) \chi_Y(\xi - \eta) \hat{F}(\xi - \eta) \hat{H}_1(\eta) \hat{H}_2(-\xi) \, d\xi d\eta.$$

(4.16)

In the proof of (4.13) we will need to distinguish between functions G and W that originate from $U = U_+$ and functions that originate from $\overline{U} = U_-$. For this we define, for $l \in \{+, -\}$,

$$\mathcal{G}'_l := \{\Omega^a(\nabla)^b\mathcal{U}_i : a \leq N_1/2 \text{ and } b \leq N_3 + 2\},$$

(4.17)

and

$$\mathcal{W}'_l := \{(\nabla)^c\Omega^a T^m_{\mathbb{C}} \mathcal{U}_i : \text{ either } a = c = 0 \text{ and } m \leq 2N_0/3 \text{ or } (c \in \{0, 2\}, c/2 + a \leq N_1, \text{ and } m \leq 2N_3/3)\}.$$

(4.18)
4.1. Some lemmas. In this subsection we collect some lemmas that are used often in the proofs in the next section. We will often use the Schur’s test:

Lemma 4.3 (Schur’s lemma). Consider the operator T given by

\[Tf(\xi) = \int_{\mathbb{R}^2} K(\xi, \eta) f(\eta) d\eta. \]

Assume that

\[\sup_{\xi} \int_{\mathbb{R}^2} |K(\xi, \eta)| d\eta \leq K_1, \quad \sup_{\eta} \int_{\mathbb{R}^2} |K(\xi, \eta)| d\xi \leq K_2. \]

Then

\[\|Tf\|_{L^2} \lesssim \sqrt{K_1 K_2} \|f\|_{L^2}. \]

We will also use a lemma about functions in $G'_+ \cap W'_+$.

Lemma 4.4. (i) Assume $G \in G'_+$, see (4.17). Then

\[\sup_{|\alpha| + 2\alpha \leq 30} \|D^\alpha \Omega^\varepsilon[f^{it \Lambda} G(t)]\|_{L^2} \lesssim \varepsilon_1, \quad \|G(t)\|_{H^{N_1 - 2} \cap H^{2 - 1, 0}} \lesssim \varepsilon_1(t)^{\delta_2}, \]

(4.19)

for any $t \in [0, T]$. Moreover, G satisfies the equation

\[(\partial_t + i \Lambda) G = N_G, \quad \|N_G(t)\|_{H^{N_1 - 4} \cap H^{2 - 2, 0}} \lesssim \varepsilon_1(t)^{-5/6 + \delta}. \]

(4.20)

(ii) Assume $W \in W'_+$, see (4.18). Then

\[\|W(t)\|_{L^2} \lesssim \varepsilon_1(t)^{\delta_2}, \]

(4.21)

for any $t \in [0, T]$. Moreover, W satisfies the equation

\[(\partial_t + i \Lambda) W = Q_W + \mathcal{E}_W, \]

(4.22)

where, with $\Sigma_{\geq 2} := \Sigma - \Lambda - \Sigma_1 \in \varepsilon_1^2 M^{3/2, 2}_{N_3 - 2}$ as in (3.12),

\[Q_W = -i T\Sigma_{\geq 2} W - i T V^{\gamma} W, \quad \|\langle \nabla \rangle^{-1/2} \mathcal{E}_W\|_{L^2} \lesssim \varepsilon_1(t)^{-5/6 + \delta}. \]

(4.23)

Using Lemma A.3 we see that for all $k \in \mathbb{Z}$ and $t \in [0, T]$

\[\|(P_k T V^{\gamma} W)(t)\|_{L^2} \lesssim \varepsilon_2^2 \langle t \rangle^{-5/6 + \delta} \|P_{[k - 2, k + 2]} W(t)\|_{L^2}, \]

(4.24)

\[\|(P_k T \Sigma_{\geq 2} W)(t)\|_{L^2} \lesssim \varepsilon_2^2 \langle t \rangle^{-5/3 + \delta} \|P_{[k - 2, k + 2]} W(t)\|_{L^2}. \]

(4.25)

Proof. The claims in (4.19) follow from Definition 2.5, the assumptions (4.12), and interpolation (recall that $N_0 - N_3 = 2N_1$). The identities (4.20) follow from (3.4)–(3.6), since $(\partial_t + i \Lambda) \mathcal{U} \in \varepsilon_1^3 \mathcal{O}_{2, -2}$. The inequalities (4.21) follow from (3.42). The identities (4.22)–(4.23) follow from Proposition 3.5, since all quadratic terms that lose up to 1/2 derivatives can be placed into \mathcal{E}_W. Finally, the bounds (4.24) follow from (A.22) and (A.48).

Next we summarize some properties of the linear profiles of the functions in G'_+.

Lemma 4.5. Assume $G \in G'_+$ as before and let $f = e^{it \Lambda} G$. Recall the operators Q_{jk} and $A_{n, \gamma}, A_{\gamma}^{(j)}$ defined in (2.10)–(2.18). For $(k, j) \in J$ and $n \in \{0, \ldots, j + 1\}$ let

\[f_{j, k} := P_{[k - 2, k + 2]} Q_{jk} f, \quad f_{j, k, n} := A_{\gamma}^{(j)} f_{j, k}. \]
Then, if \(m \geq 0 \), for all \(t \in [2^m - 1, 2^{m+1}] \) we have
\[
\sup_{|\alpha| + 2\alpha \leq 30} \| D^\alpha \Omega^0 f(t) \|_{Z_1} \lesssim \varepsilon_1, \quad \| f(t) \|_{H^{N_1 - 2 \gamma} H^{N_1/2 - 1.0}} \lesssim \varepsilon_1 2^{d^2 m}, \quad (4.25)
\]
\[
\| P_k \partial_t f(t) \|_{L^2} \lesssim \varepsilon_1 2^{-8k^+} 2^{-5m/6 + \delta m}, \quad \| P_k e^{-itA} \partial_t f(t) \|_{L^\infty} \lesssim \varepsilon_1 2^{-5m/3 + \delta m}.
\]
Also, the following \(L^\infty \) bounds hold, for any \(k \in \mathbb{Z} \) and \(s \in \mathbb{R} \) with \(|s - t| \leq 2^{m-\delta m} \),
\[
\| e^{-isA} A_{\leq 2D, \gamma_0} P_k f(t) \|_{L^\infty} \lesssim \varepsilon_1 \min(2^k, 2^{-4k}) 2^{-m} 2^{52\delta m}, \quad (4.26)
\]

Moreover, we have
\[
\| e^{-isA} A_{\leq 2D, \gamma_1} P_k f(t) \|_{L^\infty} \lesssim \varepsilon_1 2^{-5m/6 + 3\delta^2 m}.
\]

Away from the bad frequencies, we have the stronger bound
\[
\| e^{-isA} A_{\leq 2D, \gamma_0} A_{\leq 2D, \gamma_1} f_{j,k}(t) \|_{L^\infty} \lesssim \varepsilon_1 2^{-m} \min(2^k, 2^{-4k}) 2^{-j/4}, \quad (4.28)
\]
provided that \(j \leq (1 - \delta^2) m + |k|/2 \) and \(|k| + D \leq m/2\).

Finally, for all \(n \in \{0, 1, \ldots, j\} \) we have
\[
\| \hat{f}_{j,k,n} \|_{L^\infty} \lesssim \varepsilon_1 2^{3^d m} 2^{-4k^+} 2^{\delta n} \cdot 2^{-3/2 (1/2 - 5\delta)(j-n)}, \quad (4.29)
\]

Proof. The estimates in the first line of (4.25) follow from (4.19). The estimates (4.26), (4.27), and (4.29) then follow from Lemma 7.5, while the estimate (4.28) follows from (7.53). Finally, the estimate on \(\partial_t f \) in (4.25) follows from the bound \((8.7) \).

We prove now a lemma that is useful when estimating multilinear expression containing a localization in the modulation \(\Phi \).

Lemma 4.6. Assume that \(k, k_1, k_2 \in \mathbb{Z}, \ m \geq \mathcal{D}, \ k := \max(k, k_1, k_2), \ |k| \leq m/2, \ p \geq -m \). Assume that \(\mu_0 \) and \(\mu_1 \) are symbols supported in the set \(\mathcal{D}_{k_2, k_1} \) and satisfying
\[
\mu_0(\xi, \eta) = \mu_0(\xi, \eta) n(\xi, \eta), \quad \mu_1(\xi, \eta) = \mu_1(\xi, \eta) n(\xi, \eta), \quad \| n \|_{S^\infty} \lesssim 1, \quad (4.30)
\]

compare with (4.14). For \(l \in \{0, 1\} \) and \(\Phi = \Phi_{\sigma, \mu, \nu} \) as in (10.1) let
\[
\mathcal{T}^l_p[F; H_1, H_2] = \int \int_{(\mathbb{R}^2)^2} \mu_1(\xi, \eta) \psi_p(\Phi(\xi, \eta)) \hat{P}_k F(\xi - \eta) \hat{P}_{k_1} H_1(\eta) \hat{P}_{k_2} H_2(-\xi) d\xi d\eta,
\]
where \(\psi \in C_0^\infty(-1, 1) \) and \(\psi_p(x) := \psi(2^{-p} x) \). Then
\[
\| \mathcal{T}^0_p[F; H_1, H_2] \| \lesssim 2^{3k/2} \min(1, 2^{-\mathcal{D}^+} 2^{\max(2p, 3k^+)} 2^{-2k}) N(P_k F) \cdot \| P_{k_1} H_1 \|_{L^2} \| P_{k_2} H_2 \|_{L^2}, \quad (4.31)
\]

\[
\| \mathcal{T}^1_p[F; H_1, H_2] \| \lesssim 2^{3k^+ - \mathcal{D}^+} N(P_k F) \cdot \| P_{k_1} H_1 \|_{L^2} \| P_{k_2} H_2 \|_{L^2}, \quad (4.32)
\]

where
\[
N(P_k F) := \sup_{|\rho| \leq 2^{-p} 2^{im}} \| e^{i\rho A} P_k F \|_{L^\infty} + 2^{-10m} \| P_k F \|_{L^2}.
\]
Moreover, using (4.36) we can insert a factor of \(\phi \).

Indeed, if (4.35) holds then

\[
\sum_{\xi,\eta} \mu_{1}(\xi, \eta) \hat{P}_{k}F(\xi - \eta) \hat{P}_{k}H_{1}(\eta) \hat{P}_{k}H_{2}(\xi + \eta) d\xi d\eta.
\]

The proof when \(l = 1 \) is easy. We start from the formula

\[
\psi_{p}(\Phi(\xi, \eta)) = C \int_{R} \hat{\psi}(s)e^{is\Phi(\xi, \eta)} ds.
\]

Therefore

\[
|I_{p}[F; H_{1}, H_{2}]| = C \int_{R} \hat{\psi}(s) \int \left(e^{is\Phi(\xi, \eta)} \mu_{1}(\xi, \eta) \hat{P}_{k}F(\xi - \eta) \hat{P}_{k}H_{1}(\eta) \hat{P}_{k}H_{2}(\xi + \eta) \right) d\xi d\eta.
\]

Using Lemma A.1 (i) and (4.30), it follows that

\[
|I_{p}[F; H_{1}, H_{2}]| \lesssim \int_{R} |\hat{\psi}(s)| 2^{3k^{+} + \xi} \| e^{-is\Phi(\xi, \eta)} \hat{P}_{k}F \|_{L^{\infty}} \| P_{k}H_{1} \|_{L^{2}} \| P_{k}H_{2} \|_{L^{2}} ds.
\]

The bound for \(l = 1 \) in (4.33) follows.

In the case \(l = 0 \), the desired bound follows in the same way unless

\[
\bar{k}^{+} + 2k \geq \max(2p, 3k^{+}) + D.
\]

On the other hand, if (4.35) holds then we need to take advantage of the depletion factor \(\delta \).

The main point is that if (4.35) holds and

\[
\text{if } |\Phi(\xi, \eta)| \leq 2^{p} \text{ then } \delta(\xi, \eta) \lesssim \frac{2^{X}(2^{2p} + 2^{3k^{+}})}{2^{k}}.
\]

Indeed, if (4.35) holds then \(\bar{k} \geq D \) and \(p \leq \frac{3k^{+}}{2} - D/4 \), and we estimate

\[
\delta(\xi, \eta) \lesssim \left(\frac{X}{|\xi - \eta|} \right)^{2} \lesssim \left(\frac{2^{X/2} \lambda(|\xi| - \lambda(|\eta|))}{2^{k}} \right)^{2} \lesssim \frac{2^{X}(|\Phi(\xi, \eta)| + \lambda(|\xi - \eta|))}{2^{k}}
\]

in the support of the function \(\delta \), which gives (4.36).

To continue the proof, we fix a function \(\theta \in C_{0}^{\infty}(\mathbb{R}^{2}) \) supported in the ball of radius \(2^{k^{+} + 1} \) with the property that \(\sum_{v \in (2^{k+1})^{2}} \theta(x - v) = 1 \) for any \(x \in \mathbb{R}^{2} \). For any \(v \in (2^{k+1})^{2} \), consider the operator \(Q_{v} \) defined by

\[
\hat{Q}_{v}f(\xi) = \theta(\xi - v)\hat{f}(\xi).
\]

In view of the localization in \((\xi - \eta) \), we have

\[
I_{p}[F; H_{1}, H_{2}] = \sum_{|v_{1} + v_{2}| \leq 2^{k^{+}}} I_{p,v_{1},v_{2}}^{0} \quad I_{p,v_{1},v_{2}}^{0} := I_{p}[F; Q_{v_{1}}H_{1}, Q_{v_{2}}H_{2}].
\]

Moreover, using (4.36) we can insert a factor of \(\varphi_{\leq D}(2^{-X}(\xi - \eta) \cdot v_{1}) \) in the integral defining \(I_{p}[F; Q_{v_{1}}H_{1}, Q_{v_{2}}H_{2}] \) without changing the integral, where \(2^{X} \approx (2^{p} + 2^{3k^{+}/2})2^{ar{k}/2} \). Let

\[
m_{v_{1}}(\xi, \eta) := \mu_{0}(\xi, \eta) \cdot \varphi_{\leq D}(2^{-X}(\xi - \eta) \cdot v_{1}) \varphi_{k-2,k+2}(\xi) \varphi_{k-2,k+2}(\xi - \eta) \varphi_{\leq D}(2^{-X}(\xi - \eta) \cdot v_{1}).
\]

We will show below that for any \(v_{1} \in \mathbb{R}^{2} \) with \(|v_{1}| \approx 2^{\bar{k}} \)

\[
\| F^{-1}(m_{v_{1}}) \|_{L^{1}(\mathbb{R}^{2} \times \mathbb{R}^{2})} \lesssim 2^{\bar{k}/2} \cdot 2^{2X} 2^{-2k} 2^{-2\bar{k}}.
\]
Assuming this, the desired bound follows as in the case $l=1$ treated earlier. To prove (4.38) we recall that $\|F^{-1}(ab)\|_{L^1} \lesssim \|F^{-1}(a)\|_{L^1} \|F^{-1}(b)\|_{L^1}$. Then we write

$$(\xi - \eta) \cdot (\xi + \eta) = 2(\xi - \eta) \cdot v_1 + |\xi - \eta|^2 + 2(\xi - \eta) \cdot (\eta - v_1).$$

The bound (4.38) follows by analyzing the contributions of the 3 terms in this formula. \qed

Our next lemma concerns a linear L^2 estimate on certain localized Fourier integral operators.

Lemma 4.7. Assume that $k \geq -100$, $m \geq D^2$,

$$-(1 - \delta)m \leq p - k/2 \leq -\delta m, \quad 2^{m-2} \leq |s| \leq 2^{m+2}.$$ (4.39)

Given $\chi \in C^\infty_0(\mathbb{R})$ supported in $[-1,1]$, introduce the operator $L_{p,k}$ defined by

$$L_{p,k}f(\xi) := \varphi_{\geq -100}(\xi) \int_{\mathbb{R}^2} e^{is\Phi(\xi,\eta)} \chi(2^{-p}\Phi(\xi,\eta)) \varphi_k(\eta) a(\xi,\eta) f(\eta) d\eta,$$ (4.40)

where, for some $\mu,\nu \in \{+,-\}$,

$$\Phi(\xi,\eta) = \Lambda(\xi) - \Lambda_\mu(\xi - \eta) - \Lambda_\nu(\eta), \quad a(\xi,\eta) = A(\xi,\eta) \chi_\nu(\xi - \eta) \hat{g}(\xi - \eta),$$

$$\|D^\alpha A\|_{L^1_{\xi,\eta}} \lesssim |\alpha| 2^{|\alpha|m/3}, \quad \|f\|_{Z_1} \lesssim 1.$$ (4.41)

Then

$$\|L_{p,k}f\|_{L^2} \lesssim 2^{30m} (2^{(3/2)(p-k/2) + 2^{p-k/2-m/3})} \|f\|_{L^2}.$$ (4.42)

Remark 4.8. (i) Lemma 4.7, which is proved in section 6 below, plays a central role in the proof of Proposition 4.2. A key role in its proof is played by the “curvature” component

$$\mathcal{Y}(\xi,\eta) := (\nabla^2_{\xi,\eta} \Phi)(\xi,\eta) \left[(\nabla^1_{\xi} \Phi)(\xi,\eta), (\nabla^1_{\eta} \Phi)(\xi,\eta) \right],$$ (4.43)

and in particular by its non-degeneracy close to the bad frequencies γ_0 and γ_1, and to the resonant hypersurface $\Phi(\xi,\eta) = 0$. The properties of \mathcal{Y} that we are going to use are described in section 11, and in particular in Lemmas 11.1, 11.2, and 11.3.

(ii) We can insert S^∞ symbols and bounded factors that depend only on ξ or only on η in the integral in (4.40), without changing the conclusion. We will often use this lemma in the form

$$\left| \int \int_{\mathbb{R}^2} e^{is\Lambda(\xi-\eta)} \chi(2^{-p}\Phi(\xi,\eta)) \mu(\xi,\eta) a(\xi,\eta) \overline{F_1(\eta)} F_2(-\xi) d\xi d\eta \right| \lesssim 2^{30m} (2^{(3/2)(p-k/2) + 2^{p-k/2-m/3})} \|\mu\|_{L^1} \|F_1\|_{L^1} \|F_2\|_{L^1},$$ (4.44)

provided that $k,k_1 \geq -80$, (4.39) and (4.41) hold, and $\|\mu\|_{S^\infty} \lesssim 1$. This follows by writing

$$\mu(\xi,\eta) = \int \int_{\mathbb{R}^2} P(x,y) e^{-i\xi x} e^{-i\eta y} d\xi d\eta,$$

with $\|P\|_{L^1(\mathbb{R}^2,\mathbb{R}^2)} \lesssim 1$, and then combining the oscillatory factors with the functions F_1, F_2.

5. Energy estimates, II: proof of Proposition 4.2

In this section we prove Proposition 4.2, thus completing the proof of Proposition 2.2. Recall the definitions (4.15)-(4.18). For $G \in \mathcal{G}'$ and $W_1, W_2 \in \mathcal{W}'$ let

$$A^m_{Y,m}[G,W_1,W_2] := \int \int_{\mathbb{R}^2} \int \int_{\mathbb{R}^2} \mu(\xi,\eta) \chi_Y(\xi - \eta) \hat{G}(\xi - \eta, s) \hat{W}_1(\eta, s) \hat{W}_2(-\xi, s) d\xi d\eta ds,$$ (5.1)
where \(l \in \{0, 1\}, m \in [D^2, L], Y \in \{go, ba\}, \) and the symbols \(\mu_l \) are as in (4.14). The conclusion of Proposition 4.2 is equivalent to the uniform bound

\[
|A_{l,m}^1[G, W_1, W_2]| \lesssim \varepsilon_1^2 2^{2k}.
\] (5.2)

In proving this bound we further decompose the functions \(W_1 \) and \(W_2 \) dyadically and consider several cases. We remark that the most difficult case (which is treated in Lemma 5.1) is when the “bad” frequencies of \(G \) interact with the high frequencies of the functions \(W_1 \) and \(W_2 \).

5.1. The main interactions. We prove the following lemma.

Lemma 5.1. For \(l \in \{0, 1\}, m \in [D^2, L], G \in G', \) and \(W_1, W_2 \in \mathcal{W} \) we have

\[
\sum_{\min(k_1, k_2) \geq -40} |A_{ba,m}^l[G, P_{k_1} W_1, P_{k_2} W_2]| \lesssim \varepsilon_1^3.
\] (5.3)

The rest of the subsection is concerned with the proof of this lemma. We need to further decompose our operators based on the size of the modulation. Assuming that \(W_2 \in \mathcal{W}', W_1 \in \mathcal{W}_\nu, G \in G'_\mu, \sigma, \nu, \mu \in \{+, -\}, \) see (4.17)–(4.18), we define the associated phase

\[
\Phi(\xi, \eta) = \Phi_{\sigma \mu}(\xi, \eta) = \Lambda_\sigma(\xi) - \Lambda_\mu(\xi - \eta) - \Lambda_\nu(\eta).
\] (5.4)

Notice that in proving (5.3) we may assume that \(\sigma = + \) (otherwise take complex conjugates) and that the sum is over \(|k_1 - k_2| \leq 50 \) (due to localization in \(\xi - \eta \)).

Some care is needed to properly sum the dyadic pieces in \(k_1 \) and \(k_2 \). For this we use frequency envelopes. More precisely, for \(k \geq -30 \) let

\[
\rho_k(s) := \sum_{i \in \{1, 2\}} \|P_{[k - 40, k + 40]} W_i(s)\|_{L^2} + 2^{5m/6 - \delta m - 2k/2} \sum_{i \in \{1, 2\}} \|P_{[k - 40, k + 40]} \varepsilon W_i(s)\|_{L^2},
\]

\[
\rho_{k,m}^2 := \int_{\mathbb{R}} \rho_k(s)^2 [2^{-m} q_m(s) + q_m^*(s)] ds,
\] (5.5)

where \(\varepsilon_{W_1,2} \) are the “semilinear” nonlinearities defined in (4.22). In view of (4.21) and (4.23),

\[
\sum_{k \geq -30} \rho_{k,m}^2 \lesssim \varepsilon_1^2 2^{2k}.
\] (5.6)

Given \(k \geq -30, \) let \(p = [k/2 - 7m/9] \) (the largest integer \(\leq k/2 - 7m/9 \)). We define

\[
A_{ba}^{l,p}[F, H_1, H_2] := \int \int_{\mathbb{R}^2 \times \mathbb{R}^2} \mu_l(\xi, \eta) \varphi_{\hat{F}, \rho}^{\varphi_{\rho}}(\Phi(\xi, \eta)) \chi_{ba}(\xi - \eta) \hat{F}(\xi - \eta) \hat{H}_1(\eta) \hat{H}_2(-\xi) d\xi d\eta,
\] (5.7)

where \(p \in [p, \infty] \) (here \(\varphi_{\hat{F}, \rho}^{\varphi_{\rho}} = \varphi_p \) if \(p \geq p + 1 \) and \(\varphi_{\hat{F}, \rho}^{\varphi_{\rho}} = \varphi_{\rho} \) if \(p = p \)). Assuming that \(|k_1 - k| \leq 30, \) \(|k_2 - k| \leq 30, \) let

\[
A_{ba,m}^{l,p}[G, P_{k_1} W_1, P_{k_2} W_2] := \int q_m(s) \rho_{ba,m}^{l,p}[G(s), P_{k_1} W_1(s), P_{k_2} W_2(s)] ds.
\] (5.8)

This gives a decomposition \(A_{ba,m}^l = \sum_{p \geq p} A_{ba,m}^{l,p} \) as a sum of operators localized in modulation. Notice that the sum is either over \(p \in [p, k/2 + D] \) (if \(\nu = + \) or if \(\nu = - \) and \(k \leq D/2 \)) or over \(|p - 3k/2| \leq D \) (if \(\nu = - \) and \(k \geq D/2 \)). For (5.3) it remains to prove that

\[
|A_{ba,m}^{l,p}[G, P_{k_1} W_1, P_{k_2} W_2]| \lesssim \varepsilon_2 2^{-\delta m} \rho_{k,m}^2,
\] (5.9)

for any \(k \geq -30, \) \(p \geq p, \) and \(k_1, k_2 \in \mathbb{Z} \) satisfying \(|k_1 - k| \leq 30, |k_2 - k| \leq 30. \)
Using Lemma 4.6 (see (4.33)), we have

$$|A_{ba}^{k p}(G(s), P_{k_1} W_1(s), P_{k_2} W_2(s))| \lesssim \varepsilon_1 2^{p+2} - k 2^{-5m/6 + \delta_m} \|P_{k_1} W_1(s)\|_{L^2} \|P_{k_2} W_2(s)\|_{L^2},$$

for any $p \geq p$, due to the L^∞ bound in (4.26). The desired bound (5.9) follows if $2p+2 - k \leq -m/5 + D$. Also, using Lemma 4.7, we have

$$|A_{ba}^{k p}(G, P_{k_1} W_1, P_{k_2} W_2)| \lesssim \varepsilon_1 2^{m - \delta_m} \|P_{k_1} W_1(s)\|_{L^2} \|P_{k_2} W_2(s)\|_{L^2},$$

using (4.43), since $2^{p-k/2} \lesssim 2^{-7m/9}$ and $\|e^{is\Lambda_{p}} G(s)\|_{L^2_{t \cap H^N_{1.5}}(\Omega)} \lesssim \varepsilon_1 2^{\delta_m}$ (see (4.19)). Therefore (5.9) follows if $p = p$. It remains to prove (5.9) when

$$p \geq p + 1 \quad \text{and} \quad k \in [-30, 2p + m/5], |k_1 - k| \leq 30, |k_2 - k| \leq 30. \quad (5.10)$$

In the remaining range in (5.10) we integrate by parts in s. We define

$$\tilde{A}_{ba}^{k}(F, H_1, H_2) := \iint_{\mathbb{R}^2 \times \mathbb{R}^2} \mu_l(\xi, \eta) \varphi_p(\Phi(\xi, \eta)) \chi_{ba}(\xi - \eta) \hat{F}(\xi - \eta) \hat{H}_1(\eta) \hat{H}_2(-\xi) \, d\xi d\eta, \quad (5.11)$$

where $\varphi_p(x) := 2^p x^{-1} \varphi_p(x)$. This is similar to the definition in (5.7), but with φ_p replaced by φ_p. Then we let $W_{k_1} := P_{k_1} W_1$, $W_{k_2} := P_{k_2} W_2$ and write

$$0 = \int_{\mathbb{R}} \frac{d}{ds} \left\{ q_m(s) \tilde{A}_{ba}^{k p}(G(s), W_{k_1}(s), W_{k_2}(s)) \right\} \, ds$$

$$= \int_{\mathbb{R}} q_m'(s) \tilde{A}_{ba}^{k p}(G(s), W_{k_1}(s), W_{k_2}(s)) \, ds + J_{ba,0}^{k p}(k_1, k_2) + J_{ba,1}^{k p}(k_1, k_2) + J_{ba,2}^{k p}(k_1, k_2) \quad (5.12)$$

$$+ i2^p \int_{\mathbb{R}} q_m(s) A_{ba}^{k p}(G(s), W_{k_1}(s), W_{k_2}(s)) \, ds,$$

where

$$J_{ba,0}^{k p}(k_1, k_2) := \int_{\mathbb{R}} q_m(s) \tilde{A}_{ba}^{k p}((\partial_s + i\Lambda) G(s), W_{k_1}(s), W_{k_2}(s)) \, ds,$$

$$J_{ba,1}^{k p}(k_1, k_2) := \int_{\mathbb{R}} q_m(s) \tilde{A}_{ba}^{k p}((\partial_s + i\Lambda) W_{k_1}(s), W_{k_2}(s)) \, ds,$$

$$J_{ba,2}^{k p}(k_1, k_2) := \int_{\mathbb{R}} q_m(s) \tilde{A}_{ba}^{k p}(G(s), W_{k_1}(s), (\partial_s + i\Lambda_{-\sigma}) W_{k_2}(s)) \, ds. \quad (5.13)$$

The integral in the last line of (5.12) is the one we have to estimate. Notice that

$$2^{-p} |A_{ba}^{k p}(G(s), W_{k_1}(s), W_{k_2}(s))| \lesssim 2^{-p} 2^{-5m/6 + \delta_m} \|W_{k_1}(s)\|_{L^2} \|W_{k_2}(s)\|_{L^2}$$

as a consequence of Lemma 4.6 and (4.26). It remains to prove that if (5.10) holds then

$$2^{-p} |J_{ba,0}^{k p}(k_1, k_2) + J_{ba,1}^{k p}(k_1, k_2) + J_{ba,2}^{k p}(k_1, k_2)| \lesssim \varepsilon_1 2^{-\delta_m} \rho_{k,m}^2. \quad (5.14)$$

This bound will be proved in several steps, in Lemmas 5.2, 5.3, and 5.4 below.

5.1.1. Quasilinear terms. We consider first the quasilinear terms appearing in (5.14), which are those where $(\partial_t + i\Lambda)$ hits the high frequency inputs W_{k_1} and W_{k_2}. We start with the case when the frequencies k_1, k_2 are not too large relative to p.

Lemma 5.2. Assume that (5.10) holds and, in addition, $k \leq 2p^+ / 3 + m/4$. Then

$$2^{-p} \left| [J_{ba,0}^{k p}(k_1, k_2)] + [J_{ba,2}^{k p}(k_1, k_2)] \right| \lesssim \varepsilon_1 2^{-\delta_m} \rho_{k,m}^2. \quad (5.15)$$
Proof. It suffices to bound the contributions of \(|\mathcal{J}_{ba,1}^{l,p}(k_1, k_2)|\) in (5.15), since the contributions of \(|\mathcal{J}_{ba,2}^{l,p}(k_1, k_2)|\) are similar. We estimate, for \(s \in [2^{m-1}, 2^{m+1}]\),
\[
\|((\partial_s + i\Lambda_\nu)W_{k_1}(s))\|_{L^2} \lesssim \varepsilon_1 2^{-5m/6 + \delta m}(2^{k_1} + 2^{3k_1/2} 2^{-5m/6})p_k(s),
\]
(5.16)
using (4.22)–(4.24). As before, we use Lemma 4.6 and the pointwise bound (4.26) to estimate
\[
|\tilde{A}_{ba}^{l,p}[G(s), (\partial_s + i\Lambda_\nu)W_{k_1}(s), W_{k_2}(s)]| \\
\lesssim \min(1, 2^{2p+1-k})\varepsilon_1 2^{-5m/6 + \delta m}\|((\partial_s + i\Lambda_\nu)W_{k_1}(s))\|_{L^2}\|W_{k_2}(s)\|_{L^2}.
\]
(5.17)
The bounds (5.16)–(5.17) suffice to prove (5.15) when \(p \geq 0\) or when \(-m/2 + k/2 \leq p \leq 0\).

It remains to prove (5.15) when
\[
p + 1 \leq p \leq -m/2 + k/2, \quad k \leq m/5.
\]
(5.18)
For this we would like to apply Lemma 4.7. We claim that, for \(s \in [2^{m-1}, 2^{m+1}]\),
\[
|\tilde{A}_{ba}^{l,p}[G(s), (\partial_s + i\Lambda_\nu)W_{k_1}(s), W_{k_2}(s)]| \\
\lesssim 2^{-k}\varepsilon_1 2^{3\delta m}(2^{(3/2)(p-k/2)} + 2^{p-k/2-m/3})\|((\partial_s + i\Lambda_\nu)W_{k_1}(s))\|_{L^2}\|W_{k_2}(s)\|_{L^2}.
\]
(5.19)
Assuming this and using also (5.16), it follows that
\[
2^{-p}|\mathcal{J}_{ba,1}^{l,p}(k_1, k_2)| \lesssim 2^{-p}2^{2m}\varepsilon_1 \rho_{k,m}^2 2^{-5m/6 + 40\delta m}(2^{(3/2)(p-k/2)} + 2^{p-k/2-m/3})
\]
\[
\lesssim \varepsilon_1 \rho_{k,m}^2 2^{m/6 + 40\delta m}(2^{p/2 - 3k/4} + 2^{-k/2-m/3}),
\]
and the desired conclusion follows using also (5.18).

On the other hand, to prove the bound (5.19), we use (4.43). Clearly, with \(g = e^{is\Lambda_\nu}G\), we have \(\|g\|_{H_\Omega^{s/2,0}} \lesssim \varepsilon_1 2^{\delta m}, \) see (4.25). The factor \(2^{-k}\) in the right-hand side of (5.19) is due to the symbols \(\mu_0\) and \(\mu_1\). This is clear for the symbols \(\mu_1\), which already contain a factor of \(2^{-k}\) (see (4.14)). For the symbols \(\mu_0\), we notice that we can take
\[
A(\xi, \eta) := 2^{k}d(\xi, \eta)\varphi_{\leq 4}(\Phi(\xi, \eta))\varphi_{k-2, k+2}(\xi)\varphi_{[-10,10]}(\xi - \eta).
\]
This satisfies the bounds required in (4.41), since \(k \leq m/5\). This completes the proof. \(\square\)

We now look at the remaining cases for the quasilinear terms and prove the following:

Lemma 5.3. Assume that (5.10) holds and, in addition,
\[
p \geq 0, \quad k \in [2p/3 + m/4, 2p + m/5].
\]
(5.20)

Then
\[
2^{-p}|\mathcal{J}_{ba,1}^{l,p}(k_1, k_2) + \mathcal{J}_{ba,2}^{l,p}(k_1, k_2)| \lesssim \varepsilon_1 2^{-\delta m}\rho_{k,m}^2.
\]
(5.21)

Proof. The main issue here is to deal with the case of large frequencies, relative to the time variable, and avoid the loss of derivatives coming from the terms \((\partial_t \pm i\Lambda)W_{1,2}\). For this we use ideas related to the local existence theory, such as symmetrization. Notice that in Lemma 5.3 we estimate the absolute value of the sum \(\mathcal{J}_{ba,1}^{l,p} + \mathcal{J}_{ba,2}^{l,p}\), and not each term separately.

Notice first that we may assume that \(\nu = + = \sigma\), since otherwise \(\mathcal{J}_{ba,n}^{l,p}(k_1, k_2) = 0, n \in \{1, 2\}\), when \(k \geq 2p/3 + m/4\). In particular \(2^p \lesssim 2^{k/2}\). We deal first with the semilinear part of the
nonlinearity, which is \mathcal{E}_{W_1} in equation (4.22). Using Lemma 4.6 and the definition (5.5),
\[
|\tilde{\mathcal{A}}_{ba}^{l,p}[G(s), P_k, \mathcal{E}_{W_1}(s), W_{k_2}(s)]| \leq \varepsilon_1 \|P_k, \mathcal{E}_{W_1}(s)\|_{L^2} \|W_{k_2}(s)\|_{L^2} \\
\leq \varepsilon_1 2^{-5m/6+\delta m/2} \rho_k^2(s).
\]

Therefore
\[
2^{-p} \int_{\mathbb{R}} q_m(s) |\tilde{\mathcal{A}}_{ba}^{l,p}[G(s), P_k, \mathcal{E}_{W_1}(s), W_{k_2}(s)]| \, ds \lesssim \varepsilon_1 2^{-m/4} \rho_{k,m}^2.
\]

It remains to bound the contributions of Q_{W_1} and Q_{W_2}. Using again Lemma 4.6, we can easily prove the estimate when $k \leq 6m/5$ or when $l = 1$. It remains to show that
\[
2^{-p} \int_{\mathbb{R}} q_m(s) |\tilde{\mathcal{A}}_{ba}^{0,p}[G(s), P_k, \mathcal{E}_{W_1}(s), W_{k_2}(s)] + \tilde{\mathcal{A}}_{ba}^{0,p}[G(s), W_{k_2}(s), P_k Q_{W_2}(s)]| \, ds \lesssim \varepsilon_1 2^{-\delta m} \rho_{k,m}^2,
\]

provided that
\[
\nu = \sigma = +, \quad k \in [2p - D, 2p + m/5], \quad k \geq 6m/5.
\]

In this case we consider the full expression and apply a symmetrization procedure to recover the loss of derivatives. Since $W_1 \in W'_+ \text{ and } W_2 \in W'_-$, recall from (4.23) that
\[
Q_{W_1} = -iT_{\Sigma_{\geq 2}} W_1 + iT_{V,\zeta} W_1, \quad Q_{W_2} = iT_{\Sigma_{\geq 2}} W_2 + iT_{V,\zeta} W_2.
\]

Therefore, using the definition (5.11),
\[
\tilde{\mathcal{A}}_{ba}^{0,p}[G, P_k, Q_{W_1}, W_{k_2}] = \sum_{\sigma \in \{\Sigma_{\geq 2}, V, \zeta\}} \int_{\mathbb{R}^2 \times \mathbb{R}^2} \mu_0(\xi, \eta) \\
\times \varphi_p(\Phi(\xi, \eta)) \chi_{ba}(\xi - \eta) G(\xi - \eta) \cdot \varphi_{k_1}(\eta)(-iT_{\sigma} W_1(\eta) \cdot \varphi_{k_2}(\xi) W_2(-\xi) \, d\xi d\eta,
\]

and
\[
\tilde{\mathcal{A}}_{ba}^{0,p}[G, W_{k_1}, P_k Q_{W_2}] = \sum_{\sigma \in \{\Sigma_{\geq 2}, V, \zeta\}} \int_{\mathbb{R}^2 \times \mathbb{R}^2} \mu_0(\xi, \eta) \\
\times \varphi_p(\Phi(\xi, \eta)) \chi_{ba}(\xi - \eta) \hat{G}(\xi - \eta) \cdot \varphi_{k_1}(\eta) \hat{W}_1(\eta) \cdot \varphi_{k_2}(\xi) iT_{\sigma} \hat{W}_2(-\xi) \, d\xi d\eta.
\]

We use the definition (2.22) and make suitable changes of variables to write
\[
\tilde{\mathcal{A}}_{ba}^{0,p}[G, P_k, Q_{W_1}, W_{k_2}] + \tilde{\mathcal{A}}_{ba}^{0,p}[G, W_{k_1}, P_k Q_{W_2}] = \\
= \sum_{\sigma \in \{\Sigma_{\geq 2}, V, \zeta\}} \frac{-i}{4\pi^2} \int_{\mathbb{R}^2 \times \mathbb{R}^2} \hat{W}_1(\eta) \hat{W}_2(-\xi) \hat{G}_{ba}(\xi - \eta - \alpha)(\delta M)(\xi, \eta, \alpha) \, d\xi d\eta d\alpha,
\]

where $\hat{G}_{ba} := \chi_{ba} \cdot \hat{G}$ and
\[
(\delta M)(\xi, \eta, \alpha) = \mu_0(\xi, \eta + \alpha) \varphi_p(\Phi(\xi, \eta + \alpha)) \bar{\sigma}(\alpha, \frac{2\eta + \alpha}{2}) \chi(\frac{|\alpha|}{|2\eta + \alpha|}) \varphi_{k_1}(\eta + \alpha) \varphi_{k_2}(\xi)
\]
\[
- \mu_0(\xi - \alpha, \eta) \varphi_p(\Phi(\xi - \alpha, \eta)) \sigma(\alpha, \frac{2\xi - \alpha}{2}) \chi(\frac{|\alpha|}{|2\xi - \alpha|}) \varphi_{k_1}(\eta) \varphi_{k_2}(\xi - \alpha).
\]
For (5.22) it suffices to prove that for any \(s \in [2^{m-1}, 2^{m+1}] \) and \(\sigma \in \{ \Sigma_{\geq 2}, V \cdot \zeta \} \)

\[
2^{-p} \left| \int_{\mathbb{R}^3} \hat{W}_1(\eta, s) \hat{W}_2(-\xi, s) \hat{G}_{ba}(\xi - \eta - \alpha, s) (\delta M)(\xi, \eta, \alpha, s) \, d \xi d \eta d \alpha \right| \lesssim \varepsilon_1 \rho_k(s)^2 2^{-m-\delta m}.
\] (5.24)

Let

\[
M(\xi, \eta, \alpha; \theta_1, \theta_2) := \mu_0(\xi - \theta_1, \eta + \alpha - \theta_1) \tilde{\varphi}_p(\Phi(\xi - \theta_1, \eta + \alpha - \theta_1))
\]

\[\times \varphi_{k_2}(\xi - \theta_1) \varphi_{k_1}(\eta + \alpha - \theta_1) \tilde{\sigma}(\eta, \eta + \alpha 2^\theta_2) \chi \left(\frac{|\alpha|}{2|\eta + \alpha + 2\theta_2|} \right),
\] (5.25)

therefore

\[
(\delta M)(\xi, \eta, \alpha) = M(\xi, \eta, \alpha; 0, 0) - M(\xi, \eta, \alpha; \alpha, \xi - \eta - \alpha)
\]

\[= \varphi_{\leq k-D}(\alpha) \left[\alpha \cdot \nabla_{\theta_1} M(\xi, \eta, \alpha; 0, 0) + (\xi - \eta - \alpha) \cdot \nabla_{\theta_2} M(\xi, \eta, \alpha; 0, 0) \right] + (eM)(\xi, \eta, \alpha).
\]

Using the formula for \(\mu_0 \) in (4.14) and recalling that \(\sigma \in \varepsilon_1 \mathcal{M}_{N_3-2}^{3/2,1} \) (see Definition A.6), it follows that, in the support of the integral,

\[
| (eM)(\xi, \eta, \alpha) | \lesssim (1 + |\alpha|^2) P(\alpha) 2^{-2k} 2^{3k/2}, \quad \|(1 + |\alpha|)^8 P \|_{L^2} \lesssim 2^{4m}.
\]

The contribution of \((eM) \) in (5.24) can then be estimated by \(2^{-p} 2^{4m} 2^{-k/2} \varepsilon_1 \rho_k(s)^2 \) which suffices due to the assumptions (5.23).

We are thus left with estimating the integrals

\[
I := \int_{\mathbb{R}^3} \hat{G}_{ba}(\xi - \eta - \alpha) \varphi_{\leq k-D}(\alpha) \left[(\xi - \eta - \alpha) \cdot \nabla_{\theta_1} M(\xi, \eta, \alpha; 0, 0) \right] \hat{W}_1(\eta) \hat{W}_2(-\xi) \, d \eta d \xi,
\]

\[
II := \int_{\mathbb{R}^3} \hat{G}_{ba}(\xi - \eta - \alpha) \varphi_{\leq k-D}(\alpha) \left[\alpha \cdot \nabla_{\theta_1} M(\xi, \eta, \alpha; 0, 0) \right] \hat{W}_1(\eta) \hat{W}_2(-\xi) \, d \eta d \xi.
\]

If \(|\alpha| \ll 2^k \) we have

\[
(\xi - \eta - \alpha) \cdot \nabla_{\theta_2} M(\xi, \eta, \alpha; 0, 0) = \mu_0(\xi, \eta + \alpha) \tilde{\varphi}_p(\Phi(\xi, \eta + \alpha)) \varphi_{k_2}(\xi) \varphi_{k_1}(\eta + \alpha)
\]

\[\times (\xi - \eta - \alpha) \cdot (\nabla \tilde{\sigma})(\eta, \eta + \alpha 2^\theta_2).
\]

We make the change of variable \(\alpha = \beta - \eta \) to rewrite

\[
I = c \int_{\mathbb{R}^3} \hat{G}_{ba}(\xi - \beta) \mu_0(\xi, \beta) \tilde{\varphi}_p(\Phi(\xi, \beta)) (\xi - \beta) \cdot F \{ P_{k_1} T_{P_{\leq k-D} \nabla_{\zeta} \sigma} W_1 \} (\beta) \hat{P}_{k_2} \hat{W}_2(-\xi) \, d \beta d \xi.
\]

Then we use Lemma 4.6, (4.26), and (A.22) (recall \(\sigma \in \varepsilon_1 \mathcal{M}_{N_3-2}^{3/2,1} \)) to estimate

\[
2^{-p} | I(s) | \lesssim 2^{-p} 2^{-k} \varepsilon_1 2^{-5m/6+\delta m} \| P_{k_1} T_{P_{\leq k-D} \nabla_{\zeta} \sigma} W_1(s) \|_{L^2} \| P_{k_2} W_2(s) \|_{L^2}
\]

\[\lesssim \varepsilon_1 2^{-3m/2} 2^{-k/2} \rho_k(s)^2.
\]

This is better than the desired bound (5.24). One can estimate \(2^{-p} | I(s) | \) in a similar way, using the flexibility in Lemma 4.6 due to the fact that the symbol \(\mu_0^\prime \) is allowed to contain additional \(S^\infty \) symbols. This completes the proof of the bound (5.24) and the lemma. \(\square \)
5.1.2. **Semilinear terms.** The only term in (5.12) that remains to be estimated is \(J_{0}^{l,p}(k_1, k_2) \). This is a semilinear term, since the \(\partial_t \) derivative hits the low-frequency component, for which we will show the following:

Lemma 5.4. Assume that (5.10) holds. Then

\[
2^{-p}|J_{0}^{l,p}(k_1, k_2)| \lesssim \epsilon_1 2^{-\delta_m} \rho_{k,m}^2.
\]

Proof. Assume first that \(p \geq -m/4 \). Using integration by parts we can see that, for \(\rho \in \mathbb{R} \),

\[
\| \mathcal{F}^{-1}\{ e^{i \rho A(\xi)} \varphi_{[-20,20]}(\xi) \} \|_{L^1_{\rho}} \lesssim 1 + |\rho|.
\]

Combining this and the bounds in the second line of (4.25) we get

\[
\sup_{|\rho| \leq 2^{-p-\delta_m}} \| e^{i \rho A(\partial_s + i A_\mu) P_{[-10,10]}(s)} \|_{L^\infty} \lesssim (2^{-p} + 1)2^{-5m/3+2\delta_m}.
\]

Using this in combination with Lemma 4.6 we get

\[
\left| \tilde{A}_{ba}^{l,p}(\partial_s + i A_\mu) G(s), W_{k_1}(s), W_{k_2}(s) \right| \lesssim (2^{-p} + 1)2^{-5m/3+2\delta_m} \rho_{k}(s)^2,
\]

which leads to an acceptable contribution.

Assume now that

\[
p + 1 \leq p \leq -m/4
\]

Even though there is no loss of derivatives here, the information that we have so far is not sufficient to obtain the bound in this range. The main reason is that some components of \((\partial_s + i A_\mu) G(s) \) undergo oscillations which are not linear. To deal with this term we are going to use the following decomposition of \((\partial_s + i A_\mu) G \), which follows from Lemma 8.3,

\[
\chi_{ba}(\xi) \cdot \mathcal{F}\{(\partial_s + i A_\mu) G(s)\}(\xi) = g_d(\xi) + g_\infty(\xi) + g_2(\xi)
\]

for any \(s \in [2^{m-1}, 2^{m+1}] \), where \(\chi_{ba}(x) = \varphi_{\leq 4}(2^D(|x| - \gamma_0)) + \varphi_{\leq 4}(2^D(|x| - \gamma_1)) \) and

\[
\|g_2\|_{L^2} \lesssim \epsilon_2 2^{-3m/2+2\delta_m}, \quad \|g_\infty\|_{L^\infty} \lesssim \epsilon_2 2^{-m-4\delta_m}, \quad \sup_{|\rho| \leq 2^{-m/9+4\delta_m}} \| \mathcal{F}^{-1}\{ e^{i \rho A} g_d \} \|_{L^\infty} \lesssim \epsilon_2 2^{-16m/9+4\delta_m}.
\]

Clearly, the contribution of \(g_d \) can be estimated as in (5.28), using Lemma 4.6. On the other hand, we estimate the contributions of \(g_2 \) and \(g_\infty \) in the Fourier space, using Schur’s lemma. For this we need to use the volume bound in Proposition 10.4 (i). We have

\[
\sup_{\xi} \| \tilde{\varphi}_{\rho}(\Phi(\xi, \eta)\chi_{ba}(\xi - \eta)g_\infty(\xi - \eta)) \|_{L^1_{\rho}} \lesssim 2^{(1-\delta)p} \| g_\infty \|_{L^\infty} \lesssim 2^{(1-\delta)p} 2^{-(1+4\delta)m} \epsilon_1^2,
\]

and also a similar bound for the \(\xi \) integral (keeping \(\eta \) fixed). Therefore, using Schur’s lemma

\[
\left| \tilde{A}_{ba}^{l,p}(\mathcal{F}^{-1} g_\infty(s), W_{k_1}(s), W_{k_2}(s)) \right| \lesssim 2^{(1-\delta)p} 2^{-(1+4\delta)m} \epsilon_1^2 \rho_{k}(s)^2,
\]

and the corresponding contribution is bounded as claimed in (5.26). The contribution of \(g_2 \) can be bounded in a similar way, using Schur’s lemma and the Cauchy–Schwarz inequality. This completes the proof of the lemma.

5.2. **The other interactions.** In this subsection we show how to bound all the remaining contributions to the energy increment in (5.1). We remark that we do not use the main \(L^2 \) lemma in the estimates in this subsection.
5.2.1. **Small frequencies.** We consider now the small frequencies and prove the following:

Lemma 5.5. For \(l \in \{0,1\}, \ m \in [D^2, L], \ G \in \mathcal{G}', \) and \(W_1, W_2 \in \mathcal{W}' \) we have

\[
\sum_{\min(k_1,k_2) \leq -40} |A_{ba,m}^l(G, P_{k_1} W_1, P_{k_2} W_2)| \lesssim \varepsilon_1^3.
\] (5.31)

Proof. Let \(k := \min\{k_1,k_2\} \). Notice that we may assume that \(k \leq -40, \max(k_1,k_2) \in [-10,10], \) and \(l = 1 \). We can easily estimate

\[
|A_{ba,m}^1(G, P_{k_1} W_1, P_{k_2} W_2)| \lesssim \sup_{s \in [2^{m-1}, 2^m+1]} 2^m 2^k \|G(s)\|_{L^2} \|P_{k_1} W_1(s)\|_{L^2} \|P_{k_2} W_2(s)\|_{L^2}.
\]

In view of (4.19) and (4.21), this suffices to estimate the sum corresponding to \(k \leq -m - 3\delta m \). Therefore, it suffices to show that if \(-(1 + 3\delta) m \leq k \leq -40\) then

\[
|A_{ba,m}^1(G, P_{k_1} W_1, P_{k_2} W_2)| \lesssim \varepsilon_1^3 2^{-\delta m}.
\] (5.32)

As in the proof of Lemma 5.1, assume that \(W_2 \in \mathcal{W}'_{-\sigma}, \ W_1 \in \mathcal{W}'_{\nu}, \ G \in \mathcal{G}'_{\mu}, \sigma, \nu, \mu \in \{+, -, 0\}, \) and define the associated phase \(\Phi = \Phi_{\sigma\mu\nu} \) as in (5.4). The important observation is that

\[
|\Phi(\xi, \eta)| \approx 2^{k/2}
\] (5.33)

in the support of the integral. We define \(A_{ba}^{1,p} \) and \(A_{ba,m}^{1,p} \) as in (5.7)–(5.8), by introducing the the cutoff function \(\varphi_p(\Phi(\xi, \eta)) \). In view of (5.33) we may assume that \(|p - k/2| \lesssim 1 \). Then we integrate by parts as in (5.12) and similarly obtain

\[
|A_{ba,m}^{1,p}(G, P_{k_1} W_1, P_{k_2} W_2)| \lesssim 2^{-p} \left| \int_{R} \varphi'_m(s) A_{ba}^{1,p}[G(s), W_{k_1}(s), W_{k_2}(s)] \, ds \right| + 2^{-p} |\mathcal{J}_{ba,1}^{1,p}(k_1, k_2)| + 2^{-p} |\mathcal{J}_{ba,2}^{1,p}(k_1, k_2)|,
\] (5.34)

see (5.11) and (5.13) for definitions.

We apply Lemma 4.6 (see (4.33)) to control the terms in the right-hand side of (5.34). Using (4.21) and (4.26) (recall that \(2^{-p} \leq 2^{-k/2 + \delta m} \leq 2^{m/2 + 3\delta m} \)), the first term is dominated by

\[
C \varepsilon_1^3 2^{-p \delta m} 2^{-5m/6 + \delta m} \lesssim \varepsilon_1^3 2^{-m/4}.
\]

Similarly,

\[
2^{-p} |\mathcal{J}_{ba,1}^{1,p}(k_1, k_2)| + 2^{-p} |\mathcal{J}_{ba,2}^{1,p}(k_1, k_2)| \lesssim \varepsilon_1^3 2^{m/2} 2^{-p 2^{-5m/6 + \delta m}} 2^{-5m/6 + 2\delta m} \lesssim \varepsilon_1^3 2^{-m/10}.
\]

For \(|\mathcal{J}_{ba,0}^{1,p}(k_1, k_2)| \) we estimate first, using also (5.27) and (4.25)

\[
2^{-p} |\mathcal{J}_{ba,0}^{1,p}(k_1, k_2)| \lesssim \varepsilon_1^3 2^{m/2} 2^{-p 2^{-5m/3 + 3\delta m}} 2^{\delta m} \lesssim \varepsilon_1^3 2^{-2m/3 + 2\delta m}.
\]

We can also estimate directly in the Fourier space (placing the factor at low frequency in \(L^1 \) and the other two factors in \(L^2 \)),

\[
2^{-p} |\mathcal{J}_{ba,0}^{1,p}(k_1, k_2)| \lesssim \varepsilon_1^3 2^{m/2} 2^{k_2 2^{-5m/6 + 3\delta m}} \lesssim \varepsilon_1^3 2^{2m/6 + 3\delta m}.
\]

These last two bounds show that \(2^{-p} |\mathcal{J}_{ba,0}^{1,p}(k_1, k_2)| \lesssim \varepsilon_1^3 2^{-m/10} \). The desired conclusion (5.32) follows using (5.34). \(\square \)
5.2.2. The “good” frequencies. We estimate now the contribution of the terms in (5.1), corresponding to the cutoff χ_{go}. One should keep in mind that these terms are similar, but easier than the ones we have already estimated. We often use the sharp decay in (4.28) to bound the contribution of small modulations.

We may assume that $W_2 \in W'_p$, $W_1 \in W'_p$, and $G \in C'_+$. For (5.2) it suffices to prove that

$$\sum_{k, k_1, k_2 \in \mathbb{Z}} |A_{g_{0,m}}^t[P_k G, P_{k_1} W_1, P_{k_2} W_2]| \lesssim \varepsilon_1^{2} 2^{2\delta m}. \tag{5.35}$$

Recalling the assumptions (4.14) on the symbols μ_t, we have the simple bound

$$|A_{g_{0,m}}^t[P_k G, P_{k_1} W_1, P_{k_2} W_2]| \lesssim 2^{m} 2^{\min(k, k_1, k_2) + 2} \sup_{s \in I_m} \|P_k G(s)\|_{L^2} \|P_{k_1} W_1(s)\|_{L^2} \|P_{k_2} W_2(s)\|_{L^2}. \tag{5.36}$$

Using now (4.19) and (4.21), it follows that the sum over $k \geq 2\delta m$ or $k \leq -m - \delta m$ in (5.35) is dominated as claimed. Using also the L^∞ bounds (4.27) and Lemma A.1, we have

$$|A_{g_{0,m}}^t[P_k G, P_{k_1} W_1, P_{k_2} W_2]| \lesssim 2^{m} 2^{2k} \sup_{s \in I_m} \|P_k G(s)\|_{L^\infty} \|P_{k_1} W_1(s)\|_{L^2} \|P_{k_2} W_2(s)\|_{L^2}$$

if $|k| \geq 10$. This suffices to control the part of the sum over $k \leq -52\delta m$. Moreover

$$\sum_{\min(k, k_1, k_2) \leq -|k|} |A_{g_{0,m}}^t[P_k G, P_{k_1} W_1, P_{k_2} W_2]| \lesssim \varepsilon_1^{3} 2^{-\delta m}$$

if $k \in [-52\delta m, 2\delta m]$. This follows as in the proof of Lemma 5.5, once we notice that $\Phi(\xi, \eta) \approx 2^{\min(k, k_1, k_2)/2}$ in the support of the integral, so we can integrate by parts in s. After these reductions, for (5.35) it suffices to prove that, for any $k \in [-52\delta m, 2\delta m],

$$\sum_{k, k_1, k_2 \in [-|k|, \infty]} |A_{g_{0,m}}^t[P_k G, P_{k_1} W_1, P_{k_2} W_2]| \lesssim \varepsilon_1^{3} 2^{2\delta m} 2^{-|k|}. \tag{5.36}$$

To prove (5.36) we further decompose in modulation. Let $\overline{k} := \max(k, k_1, k_2)$ and $p := \frac{|\overline{k}|}{2} - 110\delta m$. We define, as in (5.7)–(5.8),

$$A_{g_{0,p}}^t[F, H_1, H_2] := \int_{\mathbb{R}^2 \times \mathbb{R}^2} \mu_t(\xi, \eta) q_p(\Phi(\xi, \eta)) \chi_{go}(\xi - \eta) \widehat{F}(\xi - \eta) \widehat{H}_1(\eta) \widehat{H}_2(\xi) d\xi d\eta, \tag{5.37}$$

and

$$A_{g_{0,m}}^t[P_k G, P_{k_1} W_1, P_{k_2} W_2] := \int_{\mathbb{R}} q_m(s) A_{g_{0,p}}^t[P_k G(s), P_{k_1} W_1(s), P_{k_2} W_2(s)] ds. \tag{5.38}$$

For $p \geq p + 1$ we integrate by parts in s. As in (5.11) and (5.13) let

$$\tilde{A}_{g_{0}}^t[F, H_1, H_2] := \int_{\mathbb{R}^2 \times \mathbb{R}^2} \mu_t(\xi, \eta) \tilde{q}_p(\Phi(\xi, \eta)) \chi_{go}(\xi - \eta) \widehat{F}(\xi - \eta) \widehat{H}_1(\eta) \widehat{H}_2(\xi) d\xi d\eta, \tag{5.39}$$
where \(\tilde{\varphi}_p(x) := 2^p x^{-1} \varphi_p(x) \). Let \(W_{k_1} = P_{k_1} W_1, W_{k_2} = P_{k_2} W_2 \), and

\[
\mathcal{J}^{l,p}_{g_0,0}(k_1, k_2) := \int q_m(s) \tilde{A}^{l,p}_{g_0}[P_k(\partial_s + i\Lambda_{\mu})G(s), W_{k_1}(s), W_{k_2}(s)] \, ds, \\
\mathcal{J}^{l,p}_{g_0,1}(k_1, k_2) := \int q_m(s) \tilde{A}^{l,p}_{g_0}[P_k G(s), (\partial_s + i\Lambda_{\mu})W_{k_1}(s), W_{k_2}(s)] \, ds, \\
\mathcal{J}^{l,p}_{g_0,2}(k_1, k_2) := \int q_m(s) \tilde{A}^{l,p}_{g_0}[P_k G(s), W_{k_1}(s), (\partial_s + i\Lambda_{\mu})W_{k_2}(s)] \, ds.
\]

As in (5.12), we have

\[
|A^{l,p}_{g_0,m}[P_k G, P_{k_1} W_1, P_{k_2} W_2]| \lesssim 2^{-p} \left| \int q_m'(s) \tilde{A}^{l,p}_{g_0}[P_k G(s), W_{k_1}(s), W_{k_2}(s)] \, ds \right| + 2^{-p} |\mathcal{J}^{l,p}_{g_0,0}(k_1, k_2) + \mathcal{J}^{l,p}_{g_0,1}(k_1, k_2) + \mathcal{J}^{l,p}_{g_0,2}(k_1, k_2)|.
\]

Using Lemma 4.6, (4.26), and (5.16), it follows that

\[
\sum_{k_1, k_2 \in [-D-|k|, \infty]} \sum_{p \geq p + 1} 2^{-p} \left| \int q_m'(s) \tilde{A}^{l,p}_{g_0}[P_k G(s), W_{k_1}(s), W_{k_2}(s)] \, ds \right| \lesssim \epsilon_1^3 2^{-\delta m}.
\]

Using also (5.27) and (4.25), as in the first part of the proof of Lemma 5.4, we have

\[
\sum_{k_1, k_2 \in [-D-|k|, \infty]} \sum_{p \geq p + 1} 2^{-p} |\mathcal{J}^{l,p}_{g_0,0}(k_1, k_2)| \lesssim \epsilon_1^3 2^{-\delta m}.
\]

Using Lemma 4.6, (4.26), and (5.16), it follows that

\[
\sum_{k_1, k_2 \in [-D-|k|, \infty]} \sum_{p \geq p + 1} 2^{-p} \left[|\mathcal{J}^{l,p}_{g_0,1}(k_1, k_2)| + |\mathcal{J}^{l,p}_{g_0,2}(k_1, k_2)| \right] \lesssim \epsilon_1^3 2^{-\delta m}.
\]

Finally, a symmetrization argument as in the proof of Lemma 5.3 shows that

\[
\sum_{k_1, k_2 \in [-D-|k|, \infty]} \sum_{p \geq p + 1} 2^{-p} |\mathcal{J}^{l,p}_{g_0,1}(k_1, k_2) + \mathcal{J}^{l,p}_{g_0,2}(k_1, k_2)| \lesssim \epsilon_1^3 2^{-\delta m}.
\]

In view of (5.40)–(5.44), to complete the proof of (5.36) it remains to bound the contribution of small modulations. In the case of “bad” frequencies, this is done using the main \(L^2 \) lemma. Here we need a different argument.

Lemma 5.6. Assume that \(k \in [-52 \delta m, 2 \delta m] \) and \(p = \lfloor \frac{k}{2} \rfloor - 110 \delta m \). Then

\[
\sum_{\min(k_1, k_2) \geq -D-|k|} |A^{l,p}_{g_0,m}[P_k G, P_{k_1} W_1, P_{k_2} W_2]| \lesssim \epsilon_1^3 2^{2m - 2\delta|k|}.
\]

Proof. We need to further decompose the function \(G \). Recall that \(G \in G_+ \) and let, for \((k, j) \in J \)

\[
f(s) = e^{is\Lambda} G(s), \quad f_{j, k} = P_{k-2, k} Q_{j, k} f, \quad g_{j, k} := A_{\leq 2 \delta, \gamma_0} A_{\leq 2 \delta, \gamma_1} f_{j, k}.
\]

Compare with Lemma 7.5. The functions \(g_{j, k} \) are supported away from the bad frequencies \(\gamma_0 \) and \(\gamma_1 \) and \(\sum_j g_{j, k}(s) = e^{is\Lambda} G(s) \) away from these frequencies. This induces a decomposition

\[
A^{l,p}_{g_0,m}[P_k G, P_{k_1} W_1, P_{k_2} W_2] = \sum_{j \geq \max(-k, 0)} A^{l,p}_{g_0,m}[e^{-is\Lambda} g_{j, k}, P_{k_1} W_1, P_{k_2} W_2].
\]
Notice that for $j \leq m - \delta m$ we have the stronger estimate (4.28) on $\| e^{-is\lambda} g_{j,k} \|_{L^\infty}$. Therefore, using Lemma 4.6, if $j \leq m - \delta m$ then
\[
|A_{g_{j,k},m}[e^{-is\lambda} g_{j,k}, P_{k_1} W_1, P_{k_2} W_2]| \lesssim \varepsilon_1 2^{k_2 - 2k_1 + 2j/m^4} \sup_{s \in I_m} \| P_{k_1} W_1(s) \|_{L^2} \| P_{k_2} W_2(s) \|_{L^2}.
\]
Therefore\(^5\)
\[
\sum_{j \leq m - \delta m} \sum_{\min(k_1,k_2) \geq -D - |k|} |A_{g_{j,k},m}[e^{-is\lambda} g_{j,k}, P_{k_1} W_1, P_{k_2} W_2]| \lesssim \varepsilon_1^3 2^{2\delta m} 2^{-\delta |k|}.
\]
Similarly, if $j \geq m + 60\delta m$ then we also have a stronger bound on $\| e^{-is\lambda} g_{j,k} \|_{L^\infty}$ in the first line of (4.27), and the corresponding contributions are controlled in the same way.

It remains to show, for any $j \in [m - \delta m, m + 60\delta m]$,
\[
\sum_{\min(k_1,k_2) \geq -D - |k|} |A_{g_{j,k},m}[e^{-is\lambda} g_{j,k}, P_{k_1} W_1, P_{k_2} W_2]| \lesssim \varepsilon_1^3 2^{-\delta m}.
\]
(5.47)

For this we use Schur’s test. Since $\min(k_1,k_2) \geq -53\delta m$ it follows from Proposition 10.4 (i) and the bound $\| \widehat{g_{j,k}} \|_{L^2} \lesssim \varepsilon_1 2^{-8k_2 + 2j} + 50\delta j$ that
\[
\int_{\mathbb{R}^2} |\mu_l(\xi,\eta)| |\varphi \leq 2(\Phi(\xi,\eta))| \widehat{g_{j,k}}(\xi - \eta) |\varphi[k_1 - 2,k_1 + 2](\eta) d\eta \lesssim \varepsilon_1 2^{(p-k/2)/2 + \delta m} 2^{-j} + 50\delta j
\]
for any $\xi \in \mathbb{R}^2$ fixed with $|\xi| \in [2^{k_2 - 4}, 2^{k_2 + 4}]$. The integral in ξ (for η fixed) can be estimated in the same way. Given the choice of p, the desired bound (5.47) follows using Schur’s lemma. \(\square\)

6. Energy estimates, III: proof of the main L^2 lemma

In this section we prove Lemma 4.7. We divide the proof into several cases. Let
\[
\chi_{\gamma_l}(x) := \varphi(2^\xi (|x| - \gamma_l)), \quad l \in \{0, 1\}.
\]
We start the most difficult case when $|\xi - \eta|$ is close to γ_0 and $2^k \gg 1$. In this case $\hat{\Phi}$ can vanish up to order 1 (so we can have $2^q \ll 1$ in the notation of the Lemma 6.1 below).

Lemma 6.1. The conclusion of Lemma 4.7 holds if $k \geq 3D_1/2$ and \hat{g} is supported in the set $\{||\xi| - \gamma_0| \leq 2^{-100}\}$.

Proof. We will often use the results in Lemma 11.1 below. We may assume that $\sigma = \nu = +$ in the definition of Φ, since otherwise the operator is trivial. We may also assume that $\mu = +$, in view of the formula (11.23).

In view of Lemma 11.1 (ii) we may assume that either $(\xi - \eta) \cdot \xi_\perp \approx 2^k$ or $-(\xi - \eta) \cdot \xi_\perp \approx 2^k$ in the support of the integral, due to the factor $\chi(2^{-p}\Phi(\xi,\eta))$. Thus we may define
\[
a^\pm(\xi,\eta) = a(\xi,\eta) 1_\pm((\xi - \eta) \cdot \xi_\perp),
\]
and decompose the operator $L_{p,k} = L_{p,k}^+ + L_{p,k}^-$ accordingly. The two operators can be treated in similar ways, so we will concentrate on the operator $L_{p,k}^+$.

\(^5\)This is the only place in the proof of the bound (5.2) where one needs the $2^{2\delta m}$ factor in the right-hand side.
To apply the main TT* argument we need to first decompose the operators $L_{p,k}$. For $\kappa := 2^{-D/2}$ (a small parameter) and $\psi \in C_0^\infty(-2,2)$ satisfying $\sum_{v \in \mathbb{Z}} \psi(. + v) \equiv 1$, we write

$$L_{p,k}^+ = \sum_{q,r \in \mathbb{Z}, j \geq 0} L_{p,k,q,r}^{r,j}.$$

$$L_{p,k,q}^{r,j} f(x) := \int_{\mathbb{R}^2} e^{i \xi \cdot \phi(x,y)} \chi(2^{-p} \Phi(x,y)) \varphi_q(\hat{\Psi}(x,y)) \psi(\kappa^{-1}2^{-q} \hat{\Psi}(x,y) - r) \varphi_k(y) a_j^+(x,y) f(y) dy,$$

$$a_j^+(x,y) := A(x,y) \chi_{\gamma_0}(x - y) \mathbf{1}_+((x - y) \cdot x) \hat{g}_j(x,y), \quad g_j := A_{\geq 0,\gamma_0}[\varphi_j^{[0,\infty]} \cdot g] . \quad (6.2)$$

In other words, we insert the decompositions

$$g = \sum_{j \geq 0} g_j, \quad 1 = \sum_{q,r \in \mathbb{Z}} \varphi_q(\hat{\Psi}(x,y)) \psi(\kappa^{-1}2^{-q} \hat{\Psi}(x,y) - r)$$

in the formula (4.40) defining the operators $L_{p,k}$. The parameters j and r play a somewhat minor role in the proof (one can focus on the main case $j = 0$) but the parameter q is important. Notice that $q \leq -D/2$, in view of (11.8). The hypothesis $\|g\|_{Z_1 \cap H_{3/0}^{N_1/3,2} \lesssim 1}$ and Lemma 7.5 (i) show that

$$\|\hat{g}_j\|_{L^\infty} \lesssim 2^{-j(1/2 - 55\delta)}, \quad \| \sup_{\theta \in \mathbb{R}^1} |\hat{g}_j(r\theta)| \|_{L^2(rdr)} \lesssim 2^{-j(1 - 55\delta)} . \quad (6.3)$$

Note that, for fixed x (respectively y) the support of integration is included in $S_{p,q,r}^1(x)$ (respectively $S_{p,q,r}^2(y)$), see (11.11)–(11.12). We can use this to estimate the Schur norm of the kernel. It follows from (11.14) and the first bound in (6.3) that

$$\sup_x \int_{\mathbb{R}^2} |\chi(2^{-p} \Phi(x,y)) \varphi_q(\hat{\Psi}(x,y)) \psi(\kappa^{-1}2^{-q} \hat{\Psi}(x,y) - r) \varphi_k(y) a_j^+(x,y)| dy \lesssim \|a_j^+\|_{L^\infty} \|S_{p,q,r}^1(x)\| \lesssim 2^{q+p-k/2-j/3} . \quad (6.4)$$

A similar estimate holds for the x integral (keeping y fixed). Moreover, using (11.13) and the second bound in (6.3) to estimate the left-hand side of (6.4) by $C2^{-j+55\delta}2^{-p-k/2}$. In view of Schur’s lemma, we have

$$\|L_{p,k,q,r}^{r,j}\|_{L^2 \to L^2} \lesssim \min(2^{q+p-k/2-j/3}, 2^{-j+55\delta}2^{-p-k/2}) .$$

These bounds suffice to control the contribution of the operators $L_{p,k,q,r}^{r,j}$, unless

$$q \geq D + \max \left\{ \frac{1}{2}(p - \frac{k}{2}), -\frac{m}{3} \right\} \quad \text{and} \quad 0 \leq j \leq \min \left\{ \frac{4m}{9}, -\frac{2}{3}(p - \frac{k}{2}) \right\} . \quad (6.5)$$

Therefore, in the rest of the proof we may assume that (6.5) holds, so $\kappa 2^q \gg 2^{p-\frac{k}{2}}$. We use the TT* argument and Schur’s test. It suffices to show that

$$\sup_x \int_{\mathbb{R}^2} |K(x,\xi)| d\xi + \sup_x \int_{\mathbb{R}^2} |K(x,\xi)| dx \lesssim 2^{6\delta^2 m(2^{3(p-\frac{k}{2})} + 2^{2(p-\frac{k}{2})}2^{-\frac{2}{3}m})} . \quad (6.6)$$

for p, k, q, r, j fixed (satisfying (4.39) and (6.5)), where

$$K(x,\xi) := \int_{\mathbb{R}^2} e^{i \xi \cdot \phi(x,y)} \chi(2^{-p} \Phi(x,y)) \chi(2^{-p} \Phi(\xi,y)) \psi(\kappa^{-1}2^{-q} \hat{\Psi}(x,y) - r) \varphi_k(y) dy,$$

$$\Theta(x,\xi, y) := \Phi(x,y) - \Phi(\xi,y) = \Lambda(x) - \Lambda(\xi) - \Lambda(x - y) + \Lambda(\xi - y), \quad (6.7)$$

$$\psi_{q,r}(x,\xi, y) := \varphi_q(\hat{\Psi}(x,y)) \varphi_q(\hat{\Psi}(\xi,y)) \psi(\kappa^{-1}2^{-q} \hat{\Psi}(x,y) - r) \varphi_k(y)^2 .$$
Since \(K(x, \xi) = K(\xi, x) \), it suffices to prove the bound on the first term in the left-hand side of (6.6). The main idea of the proof is to show that \(K \) is essentially supported in the set where \(\omega := x - \xi \) is small. Note first that, in view of (11.13), we may assume that
\[
|\omega| = |x - \xi| \lesssim \kappa 2^q \ll 1. \tag{6.8}
\]

Step 1: We will show in **Step 2** below that if
\[
|\omega| \geq L := 2^{2k+2} \left[2^{p-k/2} - 2^q - 2^{k/2} - 2^{-m/3} - \delta \right] \quad \text{then} \quad |K(x, \xi)| \lesssim 2^{-4m}. \tag{6.9}
\]

Assuming this, we show now how prove the bound on the first term in (6.6). Notice that \(L \ll 1 \), in view of (4.39) and (6.5). We decompose, for fixed \(x \),
\[
\int_{\mathbb{R}^2} |K(x, \xi)| \, d\xi \lesssim \int_{|\omega| \leq L} |K(x, x - \omega)| \, d\omega + \int_{|\omega| > L} |K(x, x - \omega)| \, d\omega.
\]
Combining (6.8) and (6.9), we obtain a suitable bound for the second integral. We now turn to the first integral, which we bound using Fubini and the formula (6.7) by
\[
C\|a_j^+\|_{L^\infty} \int_{\mathbb{R}^2} |a_j^+(x, y)| \left| \chi(2^{-p} \Phi(x, y)) \varphi_q(\check{\Theta}(x, y)) \varphi_k(y) \right| \left(\int_{|\omega| \leq L} |\chi(2^{-p} \Phi(x - \omega, y))| \, d\omega \right) \, dy. \tag{6.10}
\]
We observe that, for fixed \(x, y \) satisfying \(|x - y| - \gamma_0 \ll 1 \), \(|x| \approx 2^k \gg 1 \), we have
\[
\int_{|\omega| \leq L} |\chi(2^{-p} \Phi(x - \omega, y))| \, d\omega \lesssim 2^{-k/2} L. \tag{6.11}
\]
Indeed, it follows from (11.9) that if \(z = (x - y - \omega) = (\rho \cos \theta, \rho \sin \theta) \), \(|\omega| \leq L \), and \(|\Phi(y + z, y)| \leq 2^p \), then \(|\rho - |x - y|| \lesssim L \) and \(\theta \) belongs to a union of two intervals of length \(\lesssim 2^{p-k/2} \). The desired bound (6.11) follows.

Using also (6.4) and \(\|a_j\|_{L^\infty} \lesssim 2^{-j/3} \), it follows that the expression in (6.10) is bounded by \(C2^{2(p-k/2)}2^{-3j/3}2^dL \). The desired bound (6.6) follows, using also the restrictions (6.5).

Step 2: We prove now (6.9). We define orthonormal frames \((e_1, e_2)\) and \((V_1, V_2)\),
\[
e_1 := \frac{\nabla_x \Phi(x, y)}{\|
abla_x \Phi(x, y)\|}, \quad e_2 = e_1^\perp, \quad V_1 := \frac{\nabla_y \Phi(x, y)}{\|
abla_y \Phi(x, y)\|}, \quad V_2 = V_1^\perp, \tag{6.12}
\]
\[\omega = x - \xi = \omega_1 e_1 + \omega_2 e_2.\]
Note that \(\omega_1, \omega_2 \) are functions of \((x, y, \xi)\). We first make a useful observation: if \(|\Theta(x, \xi, y)| \lesssim 2^p \), and \(|\omega| \ll 1 \) then
\[
|\omega_1| \lesssim 2^{-k/2} \left(2^p + |\omega|^2 \right). \tag{6.13}
\]
This follows from a simple Taylor expansion, since
\[
|\Phi(x, y) - \Phi(\xi, y) - \omega \cdot \nabla_x \Phi(x, y)| \lesssim |\omega|^2.
\]
We turn now to the proof of (6.9). Assuming that \(x, \xi \) are fixed with \(|x - \xi| \geq L \) and using (6.13), we see that, on the support of integration, \(|\omega_2| \approx |\omega| \) and
\[
V_2 \cdot \nabla_y \Theta(x, \xi, y) = V_2 \cdot \nabla_y \left\{ -\Lambda(x - y) + \Lambda(\xi - y) \right\} = V_2 \cdot \nabla_{x,y}^2 \Phi(x, y) \cdot (x - \xi) + O(|\omega|^2) = \omega_2 \check{\Phi}(x, y) + O(|\omega_1| + |\omega|^2). \tag{6.14}
\]
Using (6.5), (6.9), (6.13) and (6.8) (this is where we need \(\kappa \ll 1 \)), we obtain that
\[
|V_2 \cdot \nabla_y \Theta(x, \xi, y)| \approx 2^q |\omega_2| \approx 2^q |\omega|.
\]
in the support of the integral. Using that
\[e^{i s \Theta} = \frac{-i}{s V_2 \cdot \nabla_y e^{i s \Theta}}, \quad |D_y^\alpha \Theta| \lesssim |\omega|, \]
and letting \(\Theta_1 := V_2 \cdot \nabla_y \Theta \), after integration by parts we have
\[K(x, \xi) = i \int_{\mathbb{R}^2} e^{i s \Theta_1} \partial_i \left\{ \frac{V_{1i}}{s \Theta_1} \chi(2^{-p} \Phi(x, y)) \chi(2^{-p} \Phi(\xi, y)) \psi_{q,r}(x, \xi, y) a_j^+(x, y) a_j^+(\xi, y) \right\} dy. \]
We observe that
\[V_{1i} \partial_i [\chi(2^{-p} \Phi(x, y)) \chi(2^{-p} \Phi(\xi, y))] = -2^{-p} \Theta_1 \cdot [\chi(2^{-p} \Phi(x, y)) \chi'(2^{-p} \Phi(\xi, y))]. \]
This identity is the main reason for choosing \(V_2 \) as in (6.12), and this justifies the definition of the function \(\Upsilon \) (intuitively, we can only integrate by parts in the support of the integral defining \(K \)).

Using (11.8), we see that on the support of integration we have
\[\| D_y^\alpha \psi_{q,r}(x, \xi, y) \| \lesssim 2^{-q|\alpha|}, \quad |D_y^\alpha a_j^+(v, y)| \lesssim 2^{3|\alpha|} + 2^{|\alpha|m/3}, \quad v \in \{x, \xi\}, \]
in the support of the integral defining \(K(x, \xi) \). We integrate by parts many times in \(y \) as above.

At every step we gain a factor of \(2^m 2^q |\omega| \) and lose a factor of \(2^{-p} 2^q |\omega| + 2^{-q} + 2^j + 2^{m/3} \). The desired bound in (6.9) follows. This completes the proof. \(\square \)

We consider now the (easier) case when \(|\xi - \eta| \) is close to \(\gamma_1 \) and \(k \) is large.

Lemma 6.2. The conclusion of Lemma 4.7 holds if \(k \geq 3D_1/2 \) and \(\hat{g} \) is supported in the set \(\{|\xi - \eta| \leq 2^{-100}\} \).

Proof. Using (11.8), we see that on the support of integration we have \(|\hat{\Upsilon}(\xi, \eta)| \approx 1 \). The proof is similar to the proof of Lemma 6.1 in the case \(2^j \approx 1 \). The new difficulties come from the less favorable decay in \(j \) close to \(\gamma_1 \) and from the fact that the conclusions in Lemma 11.1 (iii) do not apply. We define \(a_j^\pm \) as in (6.2) (with \(\gamma_1 \) replacing \(\gamma_0 \) and \(g_j := A_{\gamma_1} \langle \varphi_j, g \rangle \)), and
\[L_{p,k}^{x_j} f(x) := \varphi_{\leq D}(x - x_0) \int_{\mathbb{R}^2} e^{i s \Phi(x,y)} \chi(2^{-p} \Phi(x, y)) \varphi_k(y) a_j^+(x, y) f(y) dy, \quad (6.15) \]
for any \(x_0 \in \mathbb{R}^2 \). We have
\[\| \hat{g} \|_{L^\infty} \lesssim 2^{6\delta j}, \quad \sup_{\theta \in \mathbb{S}^1} | \hat{A}_{n, \gamma_1} \hat{g}_j(r \theta) |_{L^2(r dr)} \lesssim 2^{\delta/2 - 4\delta m - \gamma(1 - 5\delta)}, \quad (6.16) \]
for \(n \geq 1 \), as a consequence of Lemma 7.5 (i). Notice that these bounds are slightly weaker than the bounds in (6.3). However, we can still estimate (compare with (6.4))
\[\sup_x \int_{\mathbb{R}^2} |\chi(2^{-p} \Phi(x, y)) \varphi_k(y) a_j^+(x, y) dy \| \lesssim 2^{n - k/2} \cdot 2^{-(1-5\delta j)}. \quad (6.17) \]
Indeed, we use only the second bound in (6.16), decompose the integral as a sum of integrals over the dyadic sets \(|x - y| - \gamma_1| \approx 2^{-n}, \quad n \geq 1 \), and use (11.9) and the Cauchy–Schwarz in each dyadic set. As a consequence of (6.17), it remains to consider the sum over \(j \leq 4m/9 \).

We can then proceed as in the proof of Lemma 6.1. Using the TT* argument for the operators \(L_{p,k}^{x_j} \) and Schur’s lemma, it suffices to prove bounds similar to those in (6.6). Let \(\omega = x - \xi \), and notice that \(|\omega| \leq 2^{-D + 10} \). This replaces the diameter bound (6.8) and is the main reason for adding the localization factors \(\varphi_{\leq D}(x - x_0) \) in (6.15). The main claim is that
\[\text{if} \quad |\omega| \geq L := 2^{5\delta m} (2^{p-k/2} + 2^j + 2^{-2m/3}) \quad \text{then} \quad |K(x, \xi)| \lesssim 2^{-4m}. \quad (6.18) \]
The same argument as in Step 1 in the proof of Lemma 6.1 shows that this claim suffices. Moreover, this claim can be proved using integration by parts, as in Step 2 in the proof of Lemma 6.1. The conclusion of the lemma follows.

Finally, we now consider the case of low frequencies.

Lemma 6.3. The conclusion of Lemma 4.7 holds if \(k \in [-100, 7D_1/4] \).

Proof. For small frequencies, the harder case is when \(|\xi - \eta|\) is close to \(\gamma_1 \), since the conclusions of Lemma 11.3 are weaker than the conclusions of Lemma 11.2, and the decay in \(j \) is less favorable. So we will concentrate on this case.

We need to first decompose our operator. For \(j \geq 0 \) and \(l \in \mathbb{Z} \) we define

\[
a_{j,l}^\pm(x, y) := A(x, y)\chi_{\gamma_1}(x-y)\varphi_\pm^\perp((x-y) \cdot x^\perp)g_j(x-y), \quad g_j := A_{2, \gamma_1}[\varphi_j^{[0, \infty)}, P_{[-8, 8]}],
\]

where \(\varphi_\pm^\perp(v) := 1_\pm(v)\varphi_\perp(v) \). This is similar to (6.2), but with the additional dyadic decomposition in terms of the angle \(|(x-y) \cdot x^\perp| \approx 2^l \). Then we decompose, as in (6.2),

\[
L_{p,k} = \sum_{q, r \in \mathbb{Z}} \sum_{j \geq 0} \sum_{l \in \mathbb{Z}} \sum_{\ell \in \pm} L_{r,j,l,\ell}^{q, k, q},
\]

where, with \(\kappa = 2^{-D_{3/2}} \) and \(\psi \in C_0^\infty(-2, 2) \) satisfying \(\sum_{v \in \mathbb{Z}} \psi(. - v) = 1 \) as before,

\[
L_{p,k}^{r,j,l,\ell}f(x) := \varphi_{\geq -100}(x) \int_{\mathbb{R}^2} e^{is\Phi(x,y)} \chi(2^{-p}\Phi(x,y)) \times \varphi_q(\Upsilon(x,y)) \psi(\kappa^{1-2^{-q}}\Upsilon(x,y) - r)\varphi_k(y)a_{j,l}^\perp(x,y)f(y)dy.
\]

We consider two main cases, depending on the size of \(q \).

Case 1. \(q \leq -D_1 \). As a consequence of (11.25), the operators \(L_{p,k}^{r,j,l,\ell} \) are nontrivial only if \(2^k \approx 1 \) and \(2^l \approx 1 \). Using also (11.24) it follows that

\[
|\nabla_x \Phi| \approx 1, \quad |\nabla_x \Upsilon \cdot \nabla_x^\perp \Phi| \approx 1,
\]

\[
|\nabla_y \Phi| \approx 1, \quad |\nabla_y \Upsilon \cdot \nabla_y^\perp \Phi| \approx 1,
\]

in the support of the integrals defining the operators \(L_{p,k}^{r,j,l,\ell} \).

Step 1. The proof proceeds as in Lemma 6.1. For simplicity, we assume that \(\iota = + \). Let

\[
S_{p,q,r,l}^1(x) := \{z : ||z| - \gamma_1| \leq 2^{-D+1}, |\Phi(x, x-z)| \leq 2^p, |\Upsilon(x, x-z)| \leq 2^q 2^l, |\Upsilon(x, x-z) - r\kappa 2^q| \leq 10\kappa 2^q, z \cdot x^\perp \in [2^{l-2}, 2^{l+2}]\}.
\]

Recall that, if \(z = (\rho \cos \theta, \rho \sin \theta) \) and \(x = (|x| \cos \alpha, |x| \sin \alpha) \) then

\[
\Phi(x, x-z) = \lambda(|x|) - \mu \lambda(\rho) - \nu \lambda(\sqrt{|x|^2 + \rho^2 - 2\rho |x| \cos(\theta - \alpha)}).
\]

It follows from (6.22) and the change of variables argument in the proof of Lemma 11.1 (iii) that

\[
|S_{p,q,r,l}^1(x)| \lesssim 2^{p+q}, \quad \text{diam}(S_{p,q,r,l}^1(x)) \lesssim 2^p + \kappa 2^q
\]

if \(|x| \approx 1 \) and \(2^l \approx 1 \). Moreover, using (6.24), for any \(x \) and \(\rho \),

\[
|\{\theta : z = (\rho \cos \theta, \rho \sin \theta) \in S_{p,q,r,l}^1(x)\}| \lesssim 2^p.
\]

Therefore, using (6.16) and these last two bounds, if \(|x| \approx 1 \) then

\[
\int_{\mathbb{R}^2} |\chi(2^{-p}\Phi(x,y))\varphi_q(\Upsilon(x,y))\varphi_k(y)a_{j,l}^\perp(x,y)|dy \lesssim \min(2^{p+q}2^{6\delta_j}, 2^{p+2-j+55\delta_j}).
\]
One can prove a similar bound for the \(x \) integral, keeping \(y \) fixed. In view of Schur’s lemma, it remains the bound the contribution of the terms for which

\[
q \geq D + \max \left\{ \frac{p}{2}, -\frac{m}{3} \right\} \quad \text{and} \quad 0 \leq j \leq \min \left\{ \frac{4m}{9}, -\frac{2p}{3} \right\}. \tag{6.28}
\]

Step 2. Assuming (6.28), we use the \(TT^* \) argument and Schur’s test. It suffices to show that

\[
\sup_x \int_{\mathbb{R}^2} |K(x, \xi)| \, d\xi + \sup_x \int_{\mathbb{R}^2} |K(x, \xi)| \, dx \leq 2^{6m} (2^{3p} + 2^{2p-2m/3}) \tag{6.29}
\]

for \(p, k, q, r, j, l \) fixed satisfying (6.28), where

\[
K(x, \xi) := \varphi \varphi(100(x) \varphi \varphi(100(\xi)) \int_{\mathbb{R}^2} e^{i\theta(x, \xi)}
\]

\[
\times \chi(2^{-p} \Phi(x, y)) \chi(2^{-p} \Phi(\xi, y)) \psi(x, \xi, y) a_j^+(x, y) a_j^+(\xi, y) dy,
\]

and, as in (6.7),

\[
\Theta(x, \xi, y) := \Phi(x, y) - \Phi(\xi, y) = L(x) - L(\xi) - L(x - y) + L(\xi - y),
\]

\[
\psi(x, \xi, y) := \varphi \varphi(\Upsilon(x, y) \psi(\Upsilon(x, y)) \psi(\Upsilon(\xi, y) - r) \psi(\Upsilon(\xi, y) - r) \psi(\xi, y))^2.
\]

Let \(\omega := \omega - \xi \). As in the proof of Lemma 6.1 the main claim is that

\[
\text{if } |\omega| \geq L := 2^{2k^2} (2^p - q + 2^{q-m} + 2^{q-2m/3}) \quad \text{then} \quad |K(x, \xi)| \lesssim 2^{-4m}. \tag{6.31}
\]

The same argument as in **Step 1** in the proof of Lemma 6.1, using (6.27), shows that this claim suffices. Moreover, this claim can be proved using integration by parts, as in **Step 2** in the proof of Lemma 6.1. The desired bound (6.29) follows.

Case 2. \(q \geq -D_1 \). There is one new issue in this case, namely when the angular parameter \(2^l \) is very small and bounds like (6.26) fail. As in the proof of Lemma 6.2, we also need to modify the main decomposition (6.20). Let

\[
L_{p, k, q}^{x_0, y, l} f(x) := \varphi(100(x) \varphi(100(\xi)) \int_{\mathbb{R}^2} e^{i\theta(x, y)} \chi(2^{-p} \Phi(x, y)) \varphi(\Upsilon(x, y)) \varphi(\xi, y) a_j^+(x, y) f(y) dy. \tag{6.32}
\]

Here \(x_0 \in \mathbb{R}^2, |x_0| \geq 2^{-110} \), and the localization factor on \(x - x_0 \) leads to a good upper bound on \(|x - \xi| \) in the \(TT^* \) argument below. It remains to prove that if \(q \geq -D_1 \) then

\[
\|L_{p, k, q}^{x_0, y, l}\|_{L^2 \to L^2} \lesssim 2^{4l^2} 2^{-2l^2} 2^{30m} (2^{3/2})^p + 2^{p-m/3}. \tag{6.33}
\]

Step 1. We start with a Schur bound. For \(x \in \mathbb{R}^2 \) with \(|x| \in [2^{-120}, 2D_1+10] \) let

\[
S_{p, q, l}^1(x) := \{ z : |z - \gamma_1| \leq 2^{-D_1+1}, |\Phi(x, x - z)| \leq 2^{p+1}, |\Upsilon(x, x - z)| \in [2^{q-2}, 2^{q+2}], z \cdot x^\perp \in [2^{l-2}, 2^{l+2}] \}. \tag{6.34}
\]

The condition \(|\Upsilon(x, x - z)| \geq 2^{-D_1-4} \) shows that \(|\nabla_z \Phi(x, x - z)| \in [2^{-4D_1}, 2D_1] \) for \(z \in S_{p, q, l}^1(x) \). The formula (6.24) shows that

\[
|\{ \theta : z = (\rho \cos \theta, \rho \sin \theta) \in S_{p, q, l}^1(x) \}| \lesssim 2^{p-l}. \tag{6.35}
\]

Moreover, we claim that for any \(x \),

\[
|S_{p, q, l}^1(x)| \lesssim 2^{p+l}. \tag{6.36}
\]
Indeed, this follows from (6.35) if \(l \geq -D \). On the other hand, if \(l \leq -D \) then \(\partial_y[\Phi(x, x - z)] \leq 2^{-D/2} \) (due to (6.24)), so \(\partial_y[\Phi(x, x - z)] \geq 2^{-5D_1} \) (due to the inequality \(|\nabla_x| \Phi(x, x - z)| \) \(\in [2^{-4D_1}, 2D_1]) \). Recalling also (6.16), it follows from these last two bounds that

\[
\int_{\mathbb{R}^2} |\chi(2^{-p}\Phi(x, y))\varphi_q(\Upsilon(x, y))\varphi_k(y)a_{j,l}^+(x, y)|\,dy \lesssim \min(2^{6\delta_j}2^{p+l}, 2^{-j+55\delta_j}2^{p-l}),
\]

(6.37)

if \(|x| \in [2^{-12D}, 2^{D_1}+10] \). In particular, the integral is also bounded by \(C2^p2^{-j/2+31\delta_j} \). The integral in \(x \), keeping \(y \) fixed, can be estimated in a similar way. The desired bound (6.33) follows unless

\[
j \leq \min(2m/3, -p - D), \quad l \geq \max(p/2, -m/3) + D.
\]

(6.38)

Step 2. Assuming (6.38), we use the \(TT^* \) argument and Schur’s test. It suffices to show that

\[
\sup_x \int_{\mathbb{R}^2} |K(x, \xi)|\,d\xi \lesssim 2^{55\delta m}(2^{3p} + 2^{2p-2m/3})
\]

(6.39)

for \(p, q, x_0, j, l \) fixed, where \(\Theta(x, \xi, y) = \Phi(x, y) - \Phi(\xi, y) \) and

\[
K(x, \xi) := \varphi_{-p}(x - x_0)\varphi_{-p}(\xi - x_0) \int_{\mathbb{R}^2} e^{i\xi\Theta(x, \xi, y)}(2^{-\rho\Phi}(x, y))\chi(2^{-\rho\Phi}(\xi, y))
\]

\[
\times \varphi_q(\Upsilon(x, y))\varphi_q(\Upsilon(\xi, y))\varphi_k(y)^2 a_{j,l}^+(x, y)a_{j,l}^+(\xi, y)\,dy.
\]

(6.40)

Let \(\omega = x - \xi \). As before, the main claim is that

\[
\text{if } |\omega| \geq L := 2^{6\delta m}(2^p + 2^{-m} + 2^{-2m/3}) \quad \text{then } |K(x, \xi)| \lesssim 2^{-4m}.
\]

(6.41)

To see that this claim suffices, we use an argument similar to the one in Step 1 in the proof of Lemma 6.1. Indeed, up to acceptable errors, the left-hand side of (6.39) is bounded by

\[
C[a_{j,l}^+]_{L^\infty} \sup_{|x-x_0| \leq 2^{-D}+1} \int_{\mathbb{R}^2} |a_{j,l}^+(x, y)|\chi(2^{-\rho\Phi}(x, y))\varphi_q(\Upsilon(x, y))
\]

\[
\times \left(\int_{\{\omega \leq L\}} |\chi(2^{-\rho\Phi}(x, \omega, y))|\,d\omega \right)\,dy.
\]

(6.42)

Notice that if \(|\Upsilon(x, y)| \geq 2^{-D+2}\) then \(|(\nabla_x \Phi)(x, y)| \geq 2^{-4D_1}\), thus \(|(\nabla_w \Phi)(x-w, y)| \geq 2^{-4D_1-1}\) if \(|\omega| \leq L \leq 2^{-D}\). Therefore, the integral in \(\omega \) in the expression above is bounded by \(C2^pL \).

Using also (6.37), the expression in (6.42) is bounded by

\[
C2^{6\delta j}2^pL \cdot 2^p2^{-j/2+31\delta_j} \lesssim 2^{6\delta m}2^{3p} + 2^{40\delta m}2^{2p-j/2-m} + 2^{6\delta m}2^{2p-2m/3}
\]

The desired bound (6.39) follows using also that \(j \leq 2m/3 \), see (6.38).

The claim (6.41) follows by the same integration by parts argument as in Step 2 in the proof of Lemma 6.1, once we recall that \(|(\nabla_x \Phi)(x, y)| \geq 2^{-4D_1}\) and \(|(\nabla_y \Phi)(x, y)| \geq 2^{-4D_1}\) in the support of the integral, while \(|\omega| \leq 2^{-D+4}\). This completes the proof of the lemma. \(\square\)

7. Dispersive analysis, I: setup and the main proposition

7.1. The Duhamel formula and the main proposition. In this section we start the proof of Proposition 2.3. With \(\mathcal{U} = (\nabla)^2 h + 2i|\nabla|^{1/2} \phi \), assume that \(\mathcal{U} \) is a solution of the equation

\[
(\partial_t + i\Lambda)\mathcal{U} = \mathcal{N}_2 + \mathcal{N}_3 + \mathcal{N}_4,
\]

(7.1)

on some time interval \([0, T] \), \(T \geq 1 \), where \(\mathcal{N}_2 \) is a quadratic nonlinearity in \(\mathcal{U},\overline{\mathcal{U}}, \mathcal{N}_3 \) is a cubic nonlinearity, and \(\mathcal{N}_4 \) is a higher order nonlinearity. Such an equation will be verified
where \(U_+ = U \) and \(U_- = \overline{U} \). The cubic nonlinearity is of the form

\[
\mathcal{N}_3 = \sum_{\mu, \nu, \beta \in \{+,-\}} \mathcal{N}_{\mu \nu \beta}(U_\mu, U_\nu, U_\beta),
\]

\[
(F \mathcal{N}_{\mu \nu \beta}(f, g, h))(\xi) = \int_{\mathbb{R}^2} m_{\mu \nu}(\xi, \eta) \hat{f}(\xi - \eta) \hat{g}(\eta) \, d\eta,
\]

where, with the definitions in (2.13),

\[
\mathcal{N}_2 = \sum_{\mu, \nu \in \{+,-\}} N_{\mu \nu}(U_\mu, U_\nu), \quad (F N_{\mu \nu}(f, g))(\xi) = \int_{\mathbb{R}^2} m_{\mu \nu}(\xi, \eta) \hat{f}(\xi - \eta) \hat{g}(\eta) \, d\eta, \quad (7.2)
\]

The multipliers \(m_{\mu \nu} \) and \(n_{\mu \nu \beta} \) satisfy suitable symbol-type estimates. We define the profiles \(\mathcal{N}_\sigma(t) = e^{it \mathcal{A}_\sigma} U_\sigma(t), \sigma \in \{+,-\}, \) as in (1.11). The Duhamel formula is

\[
(\partial_t \hat{\mathcal{N}})(\xi, s) = e^{i \mathcal{A}(\xi)} \hat{\mathcal{N}}_2(\xi, s) + e^{i \mathcal{A}(\xi)} \hat{\mathcal{N}}_3(\xi, s) + e^{i \mathcal{A}(\xi)} \hat{\mathcal{N}}_4(\xi, s), \quad (7.4)
\]

or, in integral form,

\[
\hat{\mathcal{N}}(\xi, t) = \hat{\mathcal{N}}(\xi, 0) + \hat{W}_2(\xi, t) + \hat{W}_3(\xi, t) + \int_0^t e^{i \mathcal{A}(\xi)} \hat{\mathcal{N}}_4(\xi, s) \, ds, \quad (7.5)
\]

where, with the definitions in (2.13),

\[
\hat{W}_2(\xi, t) := \sum_{\mu, \nu \in \{+,-\}} \int_0^t \int_{\mathbb{R}^2} e^{i \Phi_{\mu \nu}(\xi, \eta)} m_{\mu \nu}(\xi, \eta) \hat{\mathcal{N}}_\mu(\xi - \eta, s) \hat{\mathcal{N}}_\nu(\eta, s) \, d\eta \, ds, \quad (7.6)
\]

\[
\hat{W}_3(\xi, t) := \sum_{\mu, \nu, \beta \in \{+,-\}} \int_0^t \int_{\mathbb{R}^2} e^{i \Phi_{\mu \nu \beta}(\xi, \eta, \sigma)} n_{\mu \nu \beta}(\xi, \eta, \sigma) \hat{\mathcal{N}}_\mu(\xi - \eta, s) \hat{\mathcal{N}}_\nu(\eta - \sigma, s) \hat{\mathcal{N}}_\beta(\sigma, s) \, d\eta \, ds, \quad (7.7)
\]

The vector-field \(\Omega \) acts on the quadratic part of the nonlinearity according to the identity

\[
\mathcal{N}_2(\xi, s) = \sum_{\mu, \nu \in \{+,-\}} \int \left(\Omega_\xi + \Omega_\eta \right) [m_{\mu \nu}(\xi, \eta) \hat{\mathcal{N}}_\mu(\xi - \eta, s) \hat{\mathcal{N}}_\nu(\eta, s)] \, d\eta. \quad (7.8)
\]

A similar formula holds for \(\mathcal{N}_3(\xi, s) \). Therefore, for \(1 \leq a \leq N_1 \), letting \(\mathbf{m}^b_{\mu \nu} := (\Omega_\xi + \Omega_\eta)^b m_{\mu \nu} \) and \(\mathbf{n}^b_{\mu \nu \beta} := (\Omega_\xi + \Omega_\eta + \Omega_\sigma)^b n_{\mu \nu \beta} \) we have

\[
\mathcal{N}_2(\xi, s) = \sum_{\mu, \nu \in \{+,-\}} \sum_{a_1 + a_2 + b = a} \int e^{i \Phi_{\mu \nu}(\xi, \eta)} m_{\mu \nu}^b(\xi, \eta) \times (\Omega_{a_1} \hat{\mathcal{N}}_\mu)(\xi - \eta, s) (\Omega_{a_2} \hat{\mathcal{N}}_\nu)(\eta, s) \, d\eta, \quad (7.9)
\]

and

\[
\mathcal{N}_3(\xi, s) = \sum_{\mu, \nu, \beta \in \{+,-\}} \sum_{a_1 + a_2 + a_3 + b = a} \int e^{i \Phi_{\mu \nu \beta}(\xi, \eta, \sigma)} n_{\mu \nu \beta}^b(\xi, \eta, \sigma) \times (\Omega_{a_1} \hat{\mathcal{N}}_\mu)(\xi - \eta, s) (\Omega_{a_2} \hat{\mathcal{N}}_\nu)(\eta - \sigma, s) (\Omega_{a_3} \hat{\mathcal{N}}_\beta)(\sigma, s) \, d\eta. \quad (7.10)
\]
To state our main proposition we need to make suitable assumptions on the nonlinearities \(\mathcal{N}_2, \mathcal{N}_3,\) and \(\mathcal{N}_{\geq 4}.\) Recall the class of symbols \(S^\infty\) defined in (A.5).

- Concerning the multipliers defining \(\mathcal{N}_2,\) we assume that \((\Omega_\xi + \Omega_\eta)m(\xi, \eta) \equiv 0\) and
 \[
 \|m^{k,k_1,k_2}\|_{S^\infty} \lesssim 2k^{2\min(k_1,k_2)/2},
 \]
 \[
 \|D_\eta^\alpha m^{k,k_1,k_2}\|_{L^\infty} \lesssim_{|\alpha|} 2(|\alpha|+3/2)\max(|k_1|,|k_2|),
 \]
 \[
 \|D_\xi^\alpha m^{k,k_1,k_2}\|_{L^\infty} \lesssim_{|\alpha|} 2(|\alpha|+3/2)\max(|k_1|,|k_2|),
 \]
 \[(7.11)\]
 for any \(k, k_1, k_2 \in \mathbb{Z}\) and \(m \in \{m_{\mu \nu} : \mu, \nu \in \{+, -\}\},\) where
 \[m^{k,k_1,k_2}(\xi, \eta) := m(\xi, \eta) \cdot \varphi_k(\xi)\varphi_{k_1}(\xi - \eta)\varphi_{k_2}(\eta).\]

- Concerning the multipliers defining \(\mathcal{N}_3,\) we assume that \((\Omega_\xi + \Omega_\eta + \Omega_\sigma)n(\xi, \eta, \sigma) \equiv 0\) and
 \[
 \|\eta^{k,k_1,k_2,k_3}\|_{S^\infty} \lesssim 2^{\min(k_1,k_2,k_3)/2} \max(k,k_1,k_2,k_3,0),
 \]
 \[
 \|D_\eta^\alpha n^{k,k_1,k_2,k_3}\|_{L^\infty} \lesssim_{|\alpha|} 2(|\alpha|\max(|k_1|,|k_2|,|k_3|,|l|)2^{(7/2)}\max(|k_1|,|k_2|,|k_3|),
 \]
 \[
 \|D_\xi^\alpha n^{k,k_1,k_2,k_3}\|_{L^\infty} \lesssim_{|\alpha|} 2(|\alpha|+7/2)\max(|k_1|,|k_2|,|k_3|),
 \]
 \[(7.12)\]
 for any \(k, k_1, k_2, k_3, l \in \mathbb{Z}\) and \(n \in \{n_{\mu \nu \beta} : \mu, \nu, \beta \in \{+, -\}\},\) where
 \[n^{k,k_1,k_2,k_3}(\xi, \eta, \sigma) := n(\xi, \eta, \sigma) \cdot \varphi_k(\xi)\varphi_{k_1}(\xi - \eta)\varphi_{k_2}(\eta - \sigma)\varphi_{k_3}(\sigma),\]
 \[n^{k,k_1,k_2,k_3}(\xi, \eta, \sigma) := n(\xi, \eta, \sigma) \cdot \varphi_k(\xi)\varphi_{k_1}(\xi - \eta)\varphi_{k_2}(\eta - \sigma)\varphi_{k_3}(\sigma)\varphi_{l}(\eta).\]

Our main result is the following:

Proposition 7.1. Assume that \(\mathcal{U}\) is a solution of the equation
\[
(\partial_t + i\Lambda)\mathcal{U} = \mathcal{N}_2 + \mathcal{N}_3 + \mathcal{N}_{\geq 4},
\]
(7.13)
on some time interval \([0, T], T \geq 1,\) with initial data \(\mathcal{U}_0.\) Define, as before, \(\mathcal{V}(t) = e^{it\Lambda}\mathcal{U}(t)\) and \(\mathcal{V}_0 = \mathcal{U}_0.\) With \(\delta\) as in Definition 2.5, assume that
\[
\|\mathcal{U}_0\|_{H^{\mathcal{N}_0 \cap H^\infty_{\Omega_1}}} + \|\mathcal{V}_0\| \lesssim \varepsilon_0 \ll 1
\]
(7.14)
and
\[
(1 + t)^{-\delta^2}

\|\mathcal{U}(t)\|_{H^{\mathcal{N}_0 \cap H^\infty_{\Omega_1}}} + \|\mathcal{V}(t)\| \lesssim \varepsilon_1 \ll 1,
\]
(7.15)
\[
(1 + t)^2\|\mathcal{N}_{\geq 4}(t)\|_{H^{\mathcal{N}_0 \cap \mathcal{N}_3 \cap H^0_{\Omega_1}}} + (1 + t)^{1+\delta^2}\|e^{it\Lambda}\mathcal{N}_{\geq 4}(t)\| \lesssim \varepsilon^2_1,
\]
for all \(t \in [0, T].\) Moreover, assume that the nonlinearities \(\mathcal{N}_2\) and \(\mathcal{N}_3\) satisfy (7.2)–(7.3) and (7.11)–(7.12). Then, for any \(t \in [0, T]\)
\[
\|\mathcal{V}(t)\| \lesssim \varepsilon_0 + \varepsilon^2_1.
\]
(7.16)

We will show in appendix C.2 below how to use this proposition and a suitable expansion of the Dirichlet–Neumann operator to complete the proof of the main Proposition 2.3.

7.2. Some lemmas. In this subsection we collect several important lemmas which are used often in the proofs in the next two sections. Let \(\Phi = \Phi_{\sigma \mu \nu}\) as in (2.13).
7.2.1. Integration by parts. In this subsection we state two lemmas that are used in the paper in integration by parts arguments. We start with an oscillatory integral estimate. See [43, Lemma 5.4] for the proof of (i), and the proof of (ii) is similar.

Lemma 7.2. (i) Assume that $0 < \epsilon \leq 1/\epsilon \leq K$, $N \geq 1$ is an integer, and $f, g \in C^N(\mathbb{R}^2)$. Then

$$\left| \int_{\mathbb{R}^2} e^{iKf} g \, dx \right| \lesssim_N (K\epsilon)^{-N} \left[\sum_{|\alpha| \leq N} e^{i|\alpha|} \|D_\alpha f\|_{L^1} \right],$$ \hspace{1cm} (7.17)

provided that f is real-valued,

$$|\nabla_x f| \geq 1_{\text{supp } g}, \quad \text{and} \quad \|D_\alpha f \cdot 1_{\text{supp } g}\|_{L^\infty} \lesssim_N \epsilon^{1-|\alpha|}, \quad 2 \leq |\alpha| \leq N + 1.$$ \hspace{1cm} (7.18)

(ii) Similarly, if $0 < \rho \leq 1/\rho \leq K$ then

$$\left| \int_{\mathbb{R}^2} e^{iKf} g \, dx \right| \lesssim_N (K\rho)^{-N} \left[\sum_{m \leq N} \rho^m \|\Omega^m g\|_{L^1} \right],$$ \hspace{1cm} (7.19)

provided that f is real-valued,

$$|\Omega f| \geq 1_{\text{supp } g}, \quad \text{and} \quad \|\Omega^m f \cdot 1_{\text{supp } g}\|_{L^\infty} \lesssim_N \rho^{1-m}, \quad 2 \leq m \leq N + 1.$$ \hspace{1cm} (7.20)

We will need another result about integration by parts using the vector-field Ω. This lemma is more subtle. It is needed many times in the next two sections to localize and then estimate bilinear expressions. The point is to be able to take advantage of the fact that our profiles are “almost radial” (due to the bootstrap assumption involving many copies of Ω), and prove that for such functions one has better localization properties than for general functions.

Lemma 7.3. Assume that $N \geq 100$, $m \geq 0$, $p, k, k_1, k_2 \in \mathbb{Z}$, and

$$2^{-k_1} \leq 2^{2m/5}, \quad 2^{max(k,k_1,k_2)} \leq U \leq U^2 \leq 2^{m/10}, \quad U^2 + 2^{3|k_1|}/2 \leq 2^{p+m/2}.$$ \hspace{1cm} (7.21)

For some $A \geq \max(1, 2^{-k_1})$ assume that

$$\sup_{0 \leq a \leq 100} \left[\|\Omega^a g\|_{L^2} + \|\Omega^a f\|_{L^2} \right] + \sup_{|\alpha| \leq N} A^{-|\alpha|} \|D_\alpha f\|_{L^2} \leq 1,$$

$$\sup_{\xi, \eta} \sup_{|\alpha| \leq N} (2^{-m/2}|\eta|)^{|\alpha|} \|D_\eta^a m(\xi, \eta)\| \leq 1.$$ \hspace{1cm} (7.22)

Fix $\xi \in \mathbb{R}^2$ and let, for $t \in [2^m - 1, 2^{m+1}]$,

$$I_p(f, g) := \int_{\mathbb{R}^2} e^{it\Phi(\xi, \eta)} m(\xi, \eta) \varphi_p(\Omega(\xi, \eta)) \varphi_k(\xi) \varphi_{k_1}(\xi - \eta) \varphi_{k_2}(\eta) f(\xi - \eta) g(\eta) \, d\eta.$$ \hspace{1cm} (7.23)

If $2^p \leq U^{2|k_1|}/2^{100}$ and $A \leq 2^m U^2$ then

$$|I_p(f, g)| \lesssim_N (2^{p+m})^{-N} U^{2N} \left[2^{m/2} + A 2^p \right]^N + 2^{-10m}.$$ \hspace{1cm} (7.23)

In addition, assuming that $(1 + \delta/4) \nu \geq -m$, the same bound holds when I_p is replaced by

$$\tilde{I}_p(f, g) := \int_{\mathbb{R}^2} e^{it\Phi(\xi, \eta)} \varphi_{\nu}(\Phi(\xi, \eta)) m(\xi, \eta) \varphi_p(\Omega(\xi, \eta)) \varphi_k(\xi) \varphi_{k_1}(\xi - \eta) \varphi_{k_2}(\eta) f(\xi - \eta) g(\eta) \, d\eta.$$ \hspace{1cm} (7.23)

A slightly simpler version of this integration by parts lemma was used recently in [31]. The main interest of this lemma is that we have essentially no assumption on g and very mild assumptions on f.

Proof of Lemma 7.3. We decompose first $f = \mathcal{R}_{\leq m/10} f + [I - \mathcal{R}_{\leq m/10}] f$, $g = \mathcal{R}_{\leq m/10} g + [I - \mathcal{R}_{\leq m/10}] g$, where the operators $\mathcal{R}_{\leq L}$ are defined in polar coordinates by

$$(\mathcal{R}_{\leq L} h)(r \cos \theta, r \sin \theta) := \sum_{n \in \mathbb{Z}} \varphi_{\leq L}(n) h_n(r)e^{in\theta} \quad \text{if} \quad h(r \cos \theta, r \sin \theta) := \sum_{n \in \mathbb{Z}} h_n(r)e^{in\theta}. \quad (7.24)$$

Since Ω corresponds to $d/d\theta$ in polar coordinates, using (7.22) we have,

$$\| [I - \mathcal{R}_{\leq m/10}] f \|_{L^2} + \| [I - \mathcal{R}_{\leq m/10}] g \|_{L^2} \lesssim 2^{-10m}.$$

Therefore, using the H"older inequality,

$$|I_p([I - \mathcal{R}_{\leq m/10}] f, g)| + |I_p(\mathcal{R}_{\leq m/10} f, [I - \mathcal{R}_{\leq m/10}] g)| \lesssim 2^{-10m}.$$

It remains to prove a similar inequality for $I_p := I_p(f_1, g_1)$, where $f_1 := \varphi_{[k_1-2,k_1+2]} \cdot \mathcal{R}_{\leq m/10} f$, $g_1 := \varphi_{[k_2-2,k_2+2]} \cdot \mathcal{R}_{\leq m/10} g$. It follows from (7.22) and the definitions that

$$\|\Omega^2 g_1\|_{L^2} \lesssim 2^{am/10}, \quad \|\Omega^2 D^\alpha f_1\|_{L^2} \lesssim 2^{am/10} A^{[\alpha]}, \quad (7.25)$$

for any $a \geq 0$ and $|\alpha| \leq N$. Integration by parts gives

$$I_p = c_p \varphi_k(\xi) \int_{\mathbb{R}^2} e^{it\Phi(\xi,\eta)} \Omega_\eta \left\{ \frac{m(\xi, \eta) \varphi_{k_1}(\xi - \eta) \varphi_{k_2}(\eta)}{t\Omega_\Phi(\xi, \eta)} \varphi_p(\Omega_\eta \Phi(\xi, \eta)) f_1(\xi - \eta) g_1(\eta) \right\} d\eta.$$

Iterating N times, we obtain an integrand made of a linear combination of terms like

$$e^{it\Phi(\xi,\eta)} \varphi_k(\xi) \left(\frac{1}{t\Omega_\Phi(\xi, \eta)} \right)^N \times \Omega_\eta \left\{ m(\xi, \eta) \varphi_{k_1}(\xi - \eta) \varphi_{k_2}(\eta) \right\}$$

$$\times \Omega_\eta^{a_2} f_1(\xi - \eta) \cdot \Omega_\eta^{a_3} g_1(\eta) \cdot \Omega_\eta^{a_4} \varphi_p(\Omega_\eta \Phi(\xi, \eta)) \cdot \frac{\Omega_\eta^{a_5+1} \Phi}{\Omega_\Phi} \cdot \frac{\Omega_\eta^{a_6+1} \Phi}{\Omega_\Phi} \cdot \ldots \frac{\Omega_\eta^{a_{N+1}} \Phi}{\Omega_\Phi},$$

where $\sum a_i = N$. The desired bound follows from the pointwise bounds

$$\| m(\xi, \eta) \varphi_{k_1}(\xi - \eta) \varphi_{k_2}(\eta) \|_{L^2} \lesssim 2^{am/2},$$

$$\| \varphi_p(\Omega_\eta \Phi(\xi, \eta)) \|_{L^2} \lesssim U^{2a} 2^{am/2}, \quad (7.26)$$

which hold in the support of the integral, and the L^2 bounds

$$\| \Omega_\eta g_1(\eta) \|_{L^2} \lesssim 2^{am/4},$$

$$\| \Omega_\eta f_1(\xi - \eta) \varphi_{k}(\xi) \varphi_{[k_2-2,k_2+2]}(\eta) \varphi_{\leq p+2}(\Omega_\eta \Phi(\xi, \eta)) \|_{L^2} \lesssim U^{2a} 2^{am/2} A^{[\alpha]}. \quad (7.27)$$

The first bound in (7.26) is direct (see (7.21)). For the second bound we notice that

$$\| \Omega_\eta \Phi(\xi, \eta) \| \lesssim \lambda(|\xi - \eta|) |\xi - \eta|^{-2a} |\xi - \eta|^a + |\xi - \eta|^{-a} U^a. \quad (7.28)$$

Since $\lambda(|\xi - \eta|) \approx 2^{k_1/2}$, in the support of the integral, we have $|\xi - \eta|^{-2} |\xi - \eta|^a \approx 2^{p-2k_1-k_1/2}$. The second bound in (7.26) follows once we recall the assumptions in (7.21).

We turn now to the proof of (7.27). The first bound follows from the construction of g_1. For the second bound, if $2^p \gtrsim 2^{k_1/2+\min(k,k_2)}$ then we have the simple bound

$$\| \Omega_\eta f_1(\xi - \eta) \varphi_{k}(\xi) \varphi_{[k_2-2,k_2+2]}(\eta) \|_{L^2} \lesssim [A^{2\min(k,k_2)} + 2^{am/10}]^a.$$
which suffices. On the other hand, if \(2^p \ll 2^{k_1/2 + m\min(k, k_2)}\) then we may assume that \(\xi = (s, 0)\), \(s \approx 2^k\). The identities (7.28) show that \(\varphi_{\leq p}(\Omega_\eta \Phi(\xi, \eta)) \neq 0\) only if \(|\xi \cdot \eta|^2 \leq 2^{p + 20\sqrt{k_1 - |k_1|/2}\sqrt{k_2} - k}\), which gives \(|\eta_2| \leq 2^{p + 30\sqrt{k_1 - |k_1|/2} - k}|\). Therefore \(|\eta_2| \ll 2^k\), so we may assume that \(|\eta_1 - s| \approx 2^k\).

We write now
\[
-\Omega_\eta f_1(\xi - \eta) = (\eta_1 \partial_2 f_1 - \eta_2 \partial_1 f_1)(\xi - \eta) = \frac{\eta_1}{s - \eta_1}(\Omega f_1)(\xi - \eta) - \frac{s \eta_2}{s - \eta_1}(\partial_1 f_1)(\xi - \eta).
\]

By iterating this identity we see that \(\Omega_{\eta_1}^n f_1(\xi - \eta)\) can be written as a sum of terms of the form
\[
P(s, \eta) \cdot \left(\frac{1}{s - \eta_1}\right)^{c + d + \epsilon} \left(\frac{s \eta_2}{s - \eta_1}\right)^{|b| - d} (D^b \Omega^c f_1)(\xi - \eta),
\]
where \(|b| + c + d + \epsilon \leq a\), \(|b|, c, d, e \in \mathbb{Z}_+\), \(|b| \geq d\), and \(P(s, \eta)\) is a polynomial of degree at most \(a\) in \(s\) and at most \(a\) in \((\eta_1, \eta_2)\). The second bound in (7.27) follows using the bounds on \(f_1\) in (7.25) and the bounds proved earlier, \(|s \eta_2| \approx 2^{p \sqrt{k_1 - |k_1|/2}}\), \(|\eta_1 - s| \approx 2^k\).

The last claim follows using the formula (7.30), as in Lemma 7.4 below. \(\square\)

7.2.2. Localization in modulation. Our lemma in this subsection shows that localization with respect to the phase is often a bounded operation:

Lemma 7.4. Let \(s \in \mathbb{Z}^{2m + 1}, m \geq 0\), and \(-p \leq m \leq 2^{\delta^2} m\). Let \(\Phi = \Phi_{s \mu \nu}\) as in (2.13) and assume that \(1/2 = 1/q + 1/r\) and \(\chi\) is a Schwartz function. Then, if \(\|m\|_{S^\infty} \leq 1\),
\[
\left\|\varphi_{\leq 10m}(\xi) \int e^{is\Phi(\xi, \eta)} m(\xi, \eta)\chi(2^{-p} \Phi(\xi, \eta)) \hat{f}(\xi - \eta) \hat{g}(\eta) d\eta \right\|_{L^2_\xi} \lesssim \sup_{|\rho| \leq 2^{-p + \delta^2} m} \|e^{-i(s+\rho) \Lambda_\mu} f\|_{L^q} \|e^{-i(s+\rho) \Lambda_\nu} g\|_{L^r} + 2^{-10m} \|f\|_{L^2} \|g\|_{L^2},
\]
where the constant in the inequality only depends on the function \(\chi\).

Proof. We may assume that \(m \geq 10\) and use the Fourier transform to write
\[
\chi(2^{-p} \Phi(\xi, \eta)) = c \int e^{i\rho 2^{-p} \Phi(\xi, \eta)} \chi(\rho) d\rho.
\]
The left-hand side of (7.29) is dominated by
\[
C \int \left\|\varphi_{\leq 10m}(\xi) \int e^{i(s+\rho) \Phi(\xi, \eta)} m(\xi, \eta) \hat{f}(\xi - \eta) \hat{g}(\eta) d\eta \right\|_{L^2_\xi} d\rho.
\]
Using (A.2), the contribution of the integral over \(|\rho| \leq 2^{\delta^2} m\) is dominated by the first term in the right-hand side of (7.29). The contribution of the integral over \(|\rho| \geq 2^{\delta^2} m\) is arbitrarily small and is dominated by the second term in the right-hand side of (7.29). \(\square\)

7.2.3. Linear estimates. We note first the straightforward estimates,
\[
\|P_k f\|_{L^2} \lesssim \min\{2^{1-50\delta k}, 2^{-Nk}\} \|f\|_{Z_1 \cap H^N},
\]
for \(N \geq 0\). We prove now several linear estimates for functions in \(Z_1 \cap H^N\). As in Lemma 7.3, it is important to take advantage of the fact that our functions are “almost radial”. The bounds we prove here are much stronger than the bounds one would normally expect for general functions with the same localization properties, and this is important in the next two sections.
Lemma 7.5. Assume that \(N \geq 10 \) and
\[
\| f \|_{L^1} + \sup_{k \in \mathbb{Z}, \alpha \leq N} \| \Omega^\alpha P_k f \|_{L^2} \leq 1. \tag{7.32}
\]
Let \(\delta' := 50\delta + 1/(2N) \). For any \((k, j) \in \mathcal{J}\) and \(n \in \{0, \ldots, j + 1\}\) let (recall the notation (2.9))
\[
f_{j,k} := P_{[2k-2,2k+2]}Q_{jk}f, \quad \tilde{f}_{j,k,n}(\xi) := \varphi_{n}^{-1}(110(1/2\xi - y_1))\tilde{f}_{j,k}(\xi). \tag{7.33}
\]
For any \(\xi_0 \in \mathbb{R}^2 \setminus \{0\} \) and \(\kappa, \rho \in [0, \infty) \) let \(\mathcal{R}(\xi_0; \kappa, \rho) \) denote the rectangle
\[
\mathcal{R}(\xi_0; \kappa, \rho) := \{ \xi \in \mathbb{R}^2 : |(\xi - \xi_0) \cdot \xi_0/|\xi_0| \leq \rho, |(\xi - \xi_0) \cdot \xi_0^\perp/|\xi_0| \leq \kappa \}. \tag{7.34}
\]
i) Then, for any \((k, j) \in \mathcal{J}, n \in \{0, j + 1\}\), and \(\kappa, \rho \in (0, \infty) \) satisfying \(\kappa + \rho \leq 2^{-10} \)
\[
\| \sup_{\theta \in S^1} |\tilde{f}_{j,k,n}(r\theta)| \|_{L^2(rdr)} \lesssim 2(1/2 - 49\delta)n - (1 - \delta')j, \tag{7.35}
\]
\[
\int_{\mathbb{R}^2} |\tilde{f}_{j,k,n}(\xi)| 1_{\mathcal{R}(\xi_0; \kappa, \rho)}(\xi) d\xi \lesssim \kappa 2^{-j+\delta'j} 2^{-49\delta n} \min(1, 2^\rho 2^{-k})^{1/2}, \tag{7.36}
\]
\[
\| \tilde{f}_{j,k,n} \|_{L^\infty} \lesssim \begin{cases} 2(\delta + (1/2\delta)n)2^{-1/2 - \delta'(j-n)} & \text{if } |k| \leq 10, \\ 2^{-\delta'k} 2^{-1/2 - \delta'(j+k)} & \text{if } |k| \geq 10, \end{cases} \tag{7.37}
\]
and
\[
\| D^\beta \tilde{f}_{j,k,n} \|_{L^\infty} \lesssim |\beta| \begin{cases} 2|\beta|j 2^{(\delta + (1/2\delta)n)2^{-1/2 - \delta'(j-n)}} & \text{if } |k| \leq 10, \\ 2|\beta|j 2^{-\delta'k} 2^{-1/2 - \delta'(j+k)} & \text{if } |k| \geq 10. \end{cases} \tag{7.38}
\]
(ii) (Dispersive bounds) If \(m \geq 0 \) and \(|t| \in [2^m - 1, 2^m + 1] \) then
\[
\| e^{-it\Lambda} f_{j,k,n} \|_{L^\infty} \lesssim \| \tilde{f}_{j,k,n} \|_{L^1} \lesssim 2^{k/2 - 50\delta m} 2^{-49\delta n}, \tag{7.39}
\]
\[
\| e^{-it\Lambda} f_{j,k,0} \|_{L^\infty} \lesssim 2^{3k/2} 2^{-m - 50\delta j}, \quad \text{if } |k| \geq 10. \tag{7.40}
\]
Recall the operators \(A_{n, \gamma_0} \) defined in (2.17). If \(j \leq (1 - \delta^2)m + |k|/2 \) and \(|k| + \mathcal{D} \leq m/2 \) then we have the more precise bounds
\[
\| e^{-it\Lambda} A_{0, \gamma_0} f_{j,k,n} \|_{L^\infty} \lesssim \begin{cases} 2^{-m + 2^\delta m 2^{-j(1/2 - \delta')}(1/2 - \delta')(2^{\delta + (1/2\delta)n})} & \text{if } n \geq 1, \\ 2^{-m + 2^\delta m 2^{2^{-j(1/2 - \delta')}j}} & \text{if } n = 0. \end{cases} \tag{7.41}
\]
Moreover, for \(l \geq 1 \),
\[
\| e^{-it\Lambda} A_{l, \gamma_0} f_{j,k,0} \|_{L^\infty} \lesssim \begin{cases} 2^{-m + 2^\delta m 2^{\delta j 2^{2^{-j-l/2 - \max(j,l)/2}}} 2^{-m + 2^{\delta m 2^{2^{-j}(1/2 - \delta')}}} & \text{if } 2l + \max(j,l) \geq m, \\ 2^{-m + 2^\delta m 2^{\delta j 2^{(1/2 - \delta')(2^{\delta + (1/2\delta)n})}}} & \text{if } 2l + \max(j,l) \leq m. \end{cases} \tag{7.42}
\]
In particular, if \(j \leq (1 - \delta^2)m + |k|/2 \) and \(|k| + \mathcal{D} \leq m/2 \) then
\[
\| e^{-it\Lambda} A_{l, \gamma_0} f_{j,k} \|_{L^\infty} \lesssim 2^{-m + 2^\delta m 2^{\delta j 2^{m/2}(m - 3j)/6}}, \text{ and } \sum_{l \geq 1} \| e^{-it\Lambda} A_{l, \gamma_0} f_{j,k} \|_{L^\infty} \lesssim 2^{-m + 2^\delta m 2^{\delta j 2^{2(m - 3j)/6}}}. \tag{7.43}
\]
For all \(k \in \mathbb{Z} \) we have the bound
\[
\| e^{-it\Lambda} A_{0, \gamma_0} P_k f \|_{L^\infty} \lesssim (2^{k/2} + 2^{2k}) 2^{-m} \left[2^{51\delta m} + 2^m (2^{\delta + (1/2\delta)n}) \right], \tag{7.44}
\]
\[
\| e^{-it\Lambda} A_{k, \gamma_0} P_k f \|_{L^\infty} \lesssim 2^{-5m/6 + 2^\delta m}. \tag{7.45}
\]
Proof. (i) The hypothesis gives
\[\|f_{j,k,n}\|_{L^2} \lesssim 2^{(1/2-4\delta)n-(1-5\delta)j}, \quad \|\Omega^N f_{j,k,n}\|_{L^2} \lesssim \|\Omega^N P_k\|_{L^2} \lesssim 1. \] (7.45)
The bounds (7.35) follow using the general interpolation inequality
\[\sup_{\theta \in \mathbb{S}^1} \|h(r\theta)\|_{L^2(\mathbb{R}^2)} \lesssim L^{1/2}\|h\|_{L^2} + L^{1/2-N}\|\Omega^N h\|_{L^2}, \] (7.46)
for any \(h \in L^2(\mathbb{R}^2) \) and \(L \geq 1 \), which follows easily using the operators \(\mathcal{R}_{L} \) defined in (7.24).
Inequality (7.36) follows from (7.35). Indeed, the left-hand side is dominated by
\[C(\kappa 2^{-k}) \sup_{\theta \in \mathbb{S}^1} \int_{\mathbb{R}} \hat{f}_{j,k,n}(r\theta) |1_{\mathcal{R}_{\delta}^{\kappa}(\xi,\rho)}(r\theta) r dr \lesssim \sup_{\theta \in \mathbb{S}^1} \|\hat{f}_{j,k,n}(r\theta)\|_{L^2(\mathbb{R}^2)} (\kappa 2^{-k}) [2^k \min(\rho, 2^{k-n})]^{1/2}, \]
which gives the desired result.

We now consider (7.37). For any \(\theta \in \mathbb{S}^1 \) fixed we have
\[\|\hat{f}_{j,k,n}(r\theta)\|_{L^\infty} \lesssim 2^{j/2}\|\hat{f}_{j,k,n}(r\theta)\|_{L^2(\mathbb{R}^2)} + 2^{-j/2}\|\partial_r \hat{f}_{j,k,n}(r\theta)\|_{L^2(\mathbb{R}^2)} \]
\[\lesssim 2^{j/2}2^{-k/2}\|\hat{f}_{j,k,n}(r\theta)\|_{L^2(\mathbb{R}^2)}, \]
using the support property of \(Q_{j,k} f \) in the physical space. The desired bound follows using (7.35) and the observation that \(\hat{f}_{j,k,n} = 0 \) unless \(n = 0 \) or \(k \in [-10,10] \). The bound (7.38) follows also since differentiation in the Fourier space corresponds essentially to multiplication by factors of \(2^j \), due to space localization.

(ii) The bound (7.39) follows directly from Hausdorff-Young and (7.45). To prove (7.40), if \(|k| \geq 10 \) then the standard dispersion estimate
\[\left| \int_{\mathbb{R}^2} e^{-it\lambda(\xi)} \varphi_k(\xi) e^{ix \xi} d\xi \right| \lesssim 2^{2k}(1 + |t|2^{k+|k|/2})^{-1} \] (7.47)
gives
\[\|e^{-it\Lambda} f_{j,k,n}\|_{L^\infty} \lesssim \frac{2^{2k}}{1 + |t|2^{k/2}} \|f_{j,k,n}\|_{L^1} \lesssim \frac{2^{2k}}{1 + |t|2^{k/2}} 2^{50\delta j}. \] (7.48)
The bound (7.40) follows (in the case \(m \leq 10 \) and \(k \geq 0 \) one can use (7.39)).

We prove now (7.41). The operator \(A_{\leq \gamma_0} \) is important here, because the function \(\lambda \) has an inflection point at \(\gamma_0 \), see (10.3). Using Lemma 7.2 (i) and the observation that \(|(\nabla \Lambda)(\xi)| \approx 2^{k/2} \) if \(|\xi| \approx 2^k \) it is easy to see that
\[\left| \left(e^{-it\Lambda} A_{\leq \gamma_0} f_{j,k,n} \right)(x) \right| \lesssim 2^{-10m} \quad \text{unless } |x| \approx 2^{m+|k|/2}. \]
Also, letting \(f'_{j,k,n} := R_{\leq m/5} f_{j,k,n} \), see (7.24), we have \(\|f_{j,k,n} - f'_{j,k,n}\|_{L^2} \lesssim 2^{-m(N/5)} \) therefore
\[\|e^{-it\Lambda} A_{\leq \gamma_0} (f_{j,k,n} - f'_{j,k,n})\|_{L^\infty} \lesssim \|f_{j,k,n} - f'_{j,k,n}\|_{L^1} \lesssim 2^{-2m} 2^k. \] (7.49)
On the other hand, if \(|x| \approx 2^{m+|k|/2} \) then, using again Lemma 7.2 and (7.38),
\[(e^{-it\Lambda} A_{\leq \gamma_0} f'_{j,k,n})(x) = C \int_{\mathbb{R}^2} e^{\Psi(\xi)} \varphi(\kappa_{r}^{-1} \nabla \xi \Psi) \varphi(\kappa_{\theta}^{-1} \Omega \xi \Psi) \]
\[\times f'_{j,k,n}(\xi) \varphi_{\geq -100}(|\xi| - \gamma_0) d\xi + O(2^{-10m}), \] (7.50)
where
\[\Psi := -t\Lambda(\xi) + x \cdot \xi, \quad \kappa_{r} := 2^{2m}(2^{(m+|k|/2-k)/2} + 2^j), \quad \kappa_{\theta} := 2^{2m} 2^{(m+k+|k|)/2}. \] (7.51)
We notice that the support of the integral in (7.50) is contained in a $\kappa \times \rho$ rectangle in the direction of the vector x, where $\rho \lesssim \frac{\kappa}{2^{m/2}\rho'^2}$ and $\kappa \lesssim \frac{\kappa_0}{2^{m/2}\rho'^2}$. This is because the function λ'' does not vanish in the support of the integral, so $\lambda''(|\xi|) \approx 2^{|k|/2-k}$. Therefore we can estimate the contribution of the integral in (7.50) using either (7.36) or (7.37). More precisely, if $j \leq (m + |k|/2 - 1)/2$ then we use (7.37) while if $j \geq (m + |k|/2 - 1)/2$ then we use (7.36) (and estimate $\min(1, 2^n \rho 2^{-k}) \leq 2^n \rho 2^{-k}$); in both cases the desired estimate follows.

We prove now (7.42). We may assume that $|k| \leq 10$ and $m \geq \mathcal{D}$. As before, we may assume that $|x| \approx 2^m$ and replace $f_{j,k,0}$ with $f_{j,k,0}'$. As in (7.50), we have

\begin{equation}
(e^{-it\Lambda}A_{t,\gamma_0}f_{j,k,0})(x) = C \int_{\mathbb{R}^2} e^{i\Psi(\xi)} \varphi(2^{-m/2} \delta^2 \Omega_{\xi} \Psi) \times f_{j,k,0}'(\xi) \varphi_{l-100(|\xi| - \gamma_0)} d\xi + O(2^{-2m}),
\end{equation}

where Ψ is as in (7.51). The support of the integral above is contained in a $\kappa \times \rho$ rectangle in the direction of the vector x, where $\rho \lesssim 2^{-l}$ and $\kappa \lesssim 2^{-m/2+\delta^2m}$. Since $|f_{j,k,0}'(\xi)| \lesssim 2^{-j/2+\delta'j}$ in this rectangle (see (7.37)), the bound in the first line of (7.42) follows if $l \geq j$. On the other hand, if $l \leq j$ then we use (7.36) to show that the absolute value of the integral in (7.52) is dominated by $C2^{-j+\delta'j} \kappa \rho^{l/2}$, which gives again the bound in the first line of (7.42).

It remains to prove the stronger bound in the second line of (7.42) in the case $2l + \max(j, l) \leq m$. We notice that $\lambda''(|\xi|) \approx 2^{-l}$ in the support of the integral. Assume that $x = (x_1, 0)$, $x_1 \approx 2^m$, and notice that we can insert an additional cutoff function of the form

$$
\varphi[\kappa^{-1}_r (x_1 - t\lambda'(|\xi_1|) \text{sgn}(\xi_1))] \quad \text{where} \quad \kappa_r := 2^{\delta^2} m (2^{(m-l)/2} + 2^l \delta'),
$$

in the integral in (7.52), at the expense of an acceptable error. This can be verified using Lemma 7.2 (i). The support of the integral is then contained in a $\kappa \times \rho$ rectangle in the direction of the vector x, where $\rho \lesssim \kappa_r 2^{-m}\rho'^l$ and $\kappa \lesssim 2^{-m/2+\delta^2m}$. The desired estimate then follows as before, using the L^∞ bound (7.37) if $2j \leq m - l$ and the integral bound (7.36) if $2j \geq m - l$.

The bounds in (7.43) follow from (7.41) and (7.42) by summation over n and l respectively. Finally, the bounds in (7.44) follow by summation (use (7.39) if $j \geq (1 - \delta^2) m$ or $m \leq 4\mathcal{D}$, use (7.40) if $j \leq (1 - \delta^2) m$ and $|k| \geq 10$, and use (7.43) if $j \leq (1 - \delta^2) m$ and $|k| \leq 10$). □

Remark 7.6. We notice that we also have the bound (with no loss of $2^{2\delta^2}m$)

\begin{equation}
\|e^{-it\Lambda}A_{t,0,\gamma_0}f_{j,k,0}\|_{L^\infty} \lesssim 2^{-m} 2^k 2^{(1/2-\delta')j},
\end{equation}

provided that $j \leq (1 - \delta^2) m + |k|/2$ and $|k| + \mathcal{D} \leq m/2$. Indeed, this follows from (7.41) if $j \geq m/10$. On the other hand, if $j \leq m/10$ then we can decompose (compare with (7.50)),

\begin{equation}
(e^{-it\Lambda}A_{t,0,\gamma_0}f_{j,k,0})(x) = \sum_{p \geq 0} C \int_{\mathbb{R}^2} e^{i\Psi(\xi)} \varphi_p^{1,0,\infty}(\kappa^{-1} \nabla_{\xi} \Psi) \hat{f}_{j,k,0}(\xi) \varphi_{\geq -100(|\xi| - \gamma_0)} d\xi,
\end{equation}

where $\kappa := 2^{m+|k|/2-k}/2$. The contribution of $p = 0$ is estimated as before, using (7.37), while for $p \geq 1$ we can first integrate by parts at most three times and then estimate the integral in the same way.
8. Dispersive Analysis, II: the Function \(\partial_t \mathcal{V} \)

In this section we prove several lemmas describing the function \(\partial_t \mathcal{V} \). These lemmas rely on the Duhamel formula (7.8),

\[
\Omega_\xi^a(\partial_t \mathcal{V})(\xi, s) = e^{i s \Lambda(\xi)} \Omega_\xi^a \mathcal{V}_2(\xi, s) + e^{i s \Lambda(\xi)} \Omega_\xi^a \mathcal{V}_3(\xi, s) + e^{i s \Lambda(\xi)} \Omega_\xi^a \mathcal{V}_{\geq 4}(\xi, s),
\]

where

\[
e^{i s \Lambda(\xi)} \Omega_\xi^a \mathcal{V}_2(\xi, s) = \sum_{\mu, \nu} \sum_{a_1 + a_2 = a} \int_{\mathbb{R}^2} e^{i s \Phi_{+\mu}(\xi, \eta)} m_{\mu\nu}(\xi, \eta)(\Omega^{a_1} \mathcal{V}_{\mu})(\xi - \eta, s)(\Omega^{a_2} \mathcal{V}_{\nu})(\eta, s) \, d\eta
\]

and

\[
e^{i s \Lambda(\xi)} \Omega_\xi^a \mathcal{V}_3(\xi, s) = \sum_{\mu, \nu} \sum_{a_1 + a_2 + a_3 = a} \int_{\mathbb{R}^2 \times \mathbb{R}^2} e^{i s \Phi_{+\mu\nu}(\xi, \eta, \sigma)} n_{\mu\nu\beta}(\xi, \eta, \sigma) \times (\Omega^{a_1} \mathcal{V}_{\mu})(\xi - \eta, s)(\Omega^{a_2} \mathcal{V}_{\nu})(\eta - \sigma, s)(\Omega^{a_3} \mathcal{V}_{\beta})(\sigma, s) \, d\eta d\sigma.
\]

Recall also the assumptions on the nonlinearity \(\mathcal{N}_{\geq 4} \) and the profile \(\mathcal{V} \) (see (7.15)),

\[
\|\mathcal{V}(t)\|_{H^{N_0, N_1}} \lesssim \varepsilon_1(1 + t)^2, \quad \|\mathcal{V}(t)\|_{Z} \lesssim \varepsilon_1,
\]

\[
\|\mathcal{N}_{\geq 4}(t)\|_{H^{N_0 - N_3}} \lesssim \varepsilon_1^2(1 + t)^{-2},
\]

and the symbol-type bounds (7.11) on the multipliers \(m_{\mu\nu} \). Given \(\Phi = \Phi_{\sigma \mu\nu} \) as in (2.13) let

\[
\Xi = \Xi_{\mu\nu}(\xi, \eta) := (\nabla \eta \Phi_{\sigma \mu\nu})(\xi, \eta) = (\nabla \Lambda_\mu)(\xi - \eta) - (\nabla \Lambda_\nu)(\eta), \quad \Xi : \mathbb{R}^2 \times \mathbb{R}^2 \rightarrow \mathbb{R},
\]

\[
\Theta = \Theta_{\mu}(\xi, \eta) := (\Omega_\eta \Phi_{\sigma \mu\nu})(\xi, \eta) = \frac{\lambda_{\mu}(\xi - \eta)}{|\xi - \eta|}(\xi \cdot \eta), \quad \Theta : \mathbb{R}^2 \times \mathbb{R}^2 \rightarrow \mathbb{R}.
\]

In this section we prove three lemmas describing the function \(\partial_t \mathcal{V} \).

Lemma 8.1. (i) Assume (8.1)–(8.4), \(m \geq 0, s \in [2^m - 1, 2^{m+1}], k \in \mathbb{Z}, \sigma \in \{+, -\} \). Then

\[
\|((\partial_t \mathcal{V})_\sigma)(s)\|_{H^{N_0 - N_3} \cap H^{N_1}} \lesssim \varepsilon_1^2 2^{-5m/6 + 6\delta^2 m},
\]

\[
\sup_{a \leq N_1/2 + 20, 2a + |\alpha| \leq N_1 + N_4} \|e^{-i s \Lambda} P_k D^\alpha \Omega^a(\partial_t \mathcal{V}_\sigma)(s)\|_{L^\infty} \lesssim \varepsilon_1^2 2^{-5m/3 + 6\delta^2 m}. \tag{8.7}
\]

(ii) In addition, if \(a \leq N_1/2 + 20 \) and \(2a + |\alpha| \leq N_1 + N_4 \), then we may decompose

\[
P_k D^\alpha \Omega^a(\partial_t \mathcal{V}_\sigma) = \varepsilon_1^2 \sum_{a_1 + a_2 = a, \alpha_1 + \alpha_2 = \alpha, \mu, \nu \in \{+, -\}} \sum_{[(k_1, j_1), (k_2, j_2)] \in X_{m,k}} A^a_{k_1, k_2, j_1, j_2} + \varepsilon_1^2 P_k E_{\sigma,}^a, \tag{8.8}
\]

where

\[
\|P_k E_{\sigma,}^a(s)\|_{L^2} \lesssim 2^{-3m/2 + 5\delta m}. \tag{8.9}
\]

Moreover, with \(m_{+, \mu\nu}(\xi, \eta) := m_{\mu\nu}(\xi, \eta), m_{-, \mu\nu}(\xi, \eta) := m_{-}(\mu)(-\nu)(-\xi, -\eta) \), we have

\[
\mathcal{F}\{A^a_{k_1, k_2, j_1, j_2}(\xi, s)\} = \int_{\mathbb{R}^2} e^{i s \Phi(\xi, \eta)} m_{\sigma \mu\nu}(\xi, \eta) \varphi_k(\xi) f_{j_1, k_1}^\mu(\xi - \eta, s) f_{j_2, k_2}^\nu(\eta, s) \, d\eta, \tag{8.10}
\]

where

\[
f_{j_1, k_1}^\mu = \varepsilon_1^{-1} P_{[k_1 - 2, k_1 + 2]} Q_{j_1, k_1} D^\alpha \Omega^a \mathcal{V}_\mu, \quad f_{j_2, k_2}^\nu = \varepsilon_1^{-1} P_{[k_2 - 2, k_2 + 2]} Q_{j_2, k_2} D^\alpha \Omega^a \mathcal{V}_\nu.
\]
Let $N_0 = N_1 - N_4 = 1/\delta$. The sets $X_{m,k}$ and the functions $A_{k_1,j_1,k_2,j_2}^{\alpha_1,\alpha_2,\alpha_3}$ have the following properties:

1. $X_{m,k} = \emptyset$ unless $m \geq D^2$, $k \in [-3m/4, m/N_0']$ and

 $X_{m,k} \subseteq \{((k_1, j_1), (k_2, j_2)) \in \mathcal{J} \times \mathcal{J} : k_1, k_2 \in [-3m/4, m/N_0'], \max(j_1, j_2) \leq 2m \}$. (8.11)

2. If $((k_1, j_1), (k_2, j_2)) \in X_{m,k}$ and $\min(k_1, k_2) \leq -2m/N_0'$, then

 $\max(j_1, j_2) \leq (1 - \delta^2)m - |k|$, $\max(|k_1 - k|, |k_2 - k|) \leq 100$, $\mu = \nu$, (8.12)

and

$$\|A_{k_1,j_1,k_2,j_2}^{\alpha_1,\alpha_2,\alpha_3}(s)\|_{L^2} \lesssim 2^{k_1}2^{-m+6\delta^2m}.$$ (8.13)

3. If $((k_1, j_1), (k_2, j_2)) \in X_{m,k}$, $\min(k_1, k_2) \geq -5m/N_0'$, and $k \leq \min(k_1, k_2) - 200$, then

 $\max(j_1, j_2) \leq (1 - \delta^2)m - |k|$, $\max(|k_1|, |k_2|) \leq 10$, $\mu = -\nu$, (8.14)

and

$$\|A_{k_1,j_1,k_2,j_2}^{\alpha_1,\alpha_2,\alpha_3}(s)\|_{L^2} \lesssim 2^{k_1}2^{-m+4\delta^2m}.$$ (8.15)

4. If $((k_1, j_1), (k_2, j_2)) \in X_{m,k}$ and $\min(k, k_1, k_2) \geq -6m/N_0'$ then

 either $j_1 \leq 5m/6$ or $|k| \leq 10$, (8.16)

 either $j_2 \leq 5m/6$ or $|k_2| \leq 10$, (8.17)

and

$$\min(j_1, j_2) \leq (1 - \delta^2)m.$$ (8.18)

Moreover,

$$\|A_{k_1,j_1,k_2,j_2}^{\alpha_1,\alpha_2,\alpha_3}(s)\|_{L^2} \lesssim 2^{k_1}2^{-m+4\delta^2m},$$ (8.19)

and

if $\max(j_1, j_2) \geq (1 - \delta^2)m - |k|$ then

$$\|A_{k_1,j_1,k_2,j_2}^{\alpha_1,\alpha_2,\alpha_3}(s)\|_{L^2} \lesssim 2^{-4m/3+4\delta^2m}.$$ (8.20)

(iii) As a consequence of (8.9), (8.13), (8.15), (8.19), if $a \leq N_1/2 + 20$, and $2a + |\alpha| \leq N_1 + N_4$ then we have the L^2 bound

$$\|P_k D^\alpha \Omega^a(\partial_\nu \Psi_\sigma)\|_{L^2} \lesssim \varepsilon^{2}2^{k_1/2}2^{-m+5\delta^2m} + 2^{-3m/2+5\delta^2m}.$$ (8.21)

Proof. (i) We consider first the quadratic part of the nonlinearity. Let $I^{\sigma\mu\nu}$ denote the bilinear operator defined by

$$\mathcal{F} \{I^{\sigma\mu\nu}[f, g]\}(\xi) := \int_{\mathbb{R}^2} e^{i\xi \Phi_{\sigma\mu\nu}(\xi, \eta)} m(\xi, \eta) \tilde{f}(\xi - \eta) \tilde{g}(\eta) d\eta,$$

(8.22)

$$\|m_{k_1,k_2}\|_{S^\infty} \lesssim 2^{k_1/2}2^{\min(|k_1|, |k_2|)/2},$$

$$\|D^\alpha m_{k_1,k_2}\|_{L^\infty} \lesssim 2^{(|\alpha|+3)/2} \max(|k_1|, |k_2|),$$

where, for simplicity of notation, $m = m_{\sigma\mu\nu}$. For simplicity, we often write Φ, Ξ, and Θ instead of $\Phi_{\sigma\mu\nu}$, $\Xi_{\mu\nu}$, and Θ_{μ} in the rest of this proof.

We define the operators P_k^+ for $k \in \mathbb{Z}_+$ by $P_k^+ := P_k$ for $k \geq 1$ and $P_0^+ := P_0$. In view of Lemma A.1 (ii), (8.4), and (7.44), for any $k \geq 0$ we have

$$\|P_k^+ I^{\sigma\mu\nu}[\nu_\mu, \nu_\nu](s)\|_{H^{N_0-N_3}} \lesssim 2^{(N_0-N_3)k} \sum_{0 \leq k_1 \leq k_2, k_2 \geq k-10} 2^{k_1/2} \|P_{k_2}^{\pm} \nu_\nu(s)\|_{L^2} \|e^{-i\Lambda} P_{k_1}^+ \nu_\nu(s)\|_{L^\infty}$$

$$\lesssim \varepsilon_1^2 2^{-k_2-5m/6+6\delta^2m},$$ (8.23)
which is consistent with (8.6). Similarly,
\[\| P^+_k I^{\sigma \mu \nu} [\Omega^a \mathcal{V}_\mu, \Omega^a \mathcal{V}_\nu] (s) \|_{L^2} \lesssim 2^{-k/2} 2^{-5m/6 + 5\delta^2 m}, \quad a_2 + a_3 \leq N_1 \]
by placing the factor with less than \(N_1/2 \) \(\Omega \)-derivatives in \(L^\infty \), and the other factor in \(L^2 \). Finally, using \(L^\infty \) estimates on both factors,
\[\| e^{-i s \Lambda} P^+_k I^{\sigma \mu \nu} [D^a \Omega^a \mathcal{V}_\mu, D^a \Omega^a \mathcal{V}_\nu] (s) \|_{L^\infty} \lesssim \begin{cases} 2^{-5m/3 + 6\delta^2 m} & \text{if } k \leq 20, \\ 2^{-4k/2 - 11m/6 + 5\delta m} & \text{if } k \geq 20, \end{cases} \]
provided that \(a_2 + a_3 = a \) and \(\alpha_2 + \alpha_3 = \alpha \) (see also (8.26) below). The conclusions in part (i) follow for the quadratic components.

The conclusions for the cubic components follow by the same argument, using the assumption (7.12) instead of (7.11), and the formula (8.3). The contributions of the higher order nonlinearity \(\mathcal{N}_4 \) are estimated using directly the bootstrap hypothesis (8.4).

(ii) We assume that \(s \) is fixed and, for simplicity, drop it from the notation. In view of (8.4) and using interpolation, the functions \(f^\mu := \varepsilon_1^{-1} D^{\alpha} \Omega^a \mathcal{V}_\mu \) and \(f^\nu := \varepsilon_1^{-1} D^{\alpha} \Omega^a \mathcal{V}_\nu \) satisfy
\[\| f^\mu \|_{H^{N_0 \wedge 1} \cap H_0} \lesssim 2^{5^2 m}. \]
where, compare with the notation in Theorem 1.1,
\[N'_i := (N_1 - N_4)/2 = 1/(2\delta), \quad N''_i := (N_0 - N_3)/2 - N_4 = 1/\delta. \]
In particular, the dispersive bounds (7.39)–(7.44) hold with \(N = N'_i = 1/(2\delta) \).

The contributions of the higher order nonlinearities \(\mathcal{N}_3 \) and \(\mathcal{N}_4 \) can all be estimated as part of the error term \(P_k E_\sigma^{a, \gamma} \), so we focus on the quadratic nonlinearity \(\mathcal{N}_2 \). Notice that
\[A_{k, k_1, j_1, k_2, j_2} = P_k I^{\gamma \nu} \left(f^\mu_{j_1, k_1}, f^\nu_{j_2, k_2} \right). \]

Proof of property (1). In view of Lemma A.1 and (7.43), we have the general bound
\[\| A_{k, k_1, j_1, k_2, j_2} \|_{L^2} \lesssim 2^{k + \min(k_1, k_2)/2} 2^{-5m/6 + 5\delta^2 m} \min \left[2^{-(1/2 - \delta) \max(j_1, j_2)}, 2^{-N''_i \max(k_1, k_2)} \right]. \]
This bound suffices to prove the claims in (1). Indeed, if \(k \geq m/N''_0 \) or if \(k \leq -3m/4 + D^2 \) then the sum of all the terms can be bounded as in (8.9). Similarly, if \(k \in [-3m/4 + D^2, m/N''_0] \) then the sums of the \(L^2 \) norms can be bounded using (max \(k_1, k_2 \)) \(\geq m/N''_0 \), or \(\max(j_1, j_2) \geq 2m \), or \(\min(k_1, k_2) \leq -3m/4 + D^2 \) are all bounded by \(2^{-3m/2} \) as desired.

Proof of property (2). Assume now that \(\min(k_1, k_2) \leq -2m/N''_0 \) and \(j_2 = \max(j_1, j_2) \geq (1 - 3^2)m - |k| \). Then, using the \(L^2 \times L^\infty \) estimate as before
\[\| P_k I^{\gamma \nu} \left(f^\mu_{j_1, k_1}, A_{k, k_1, j_1, k_2, j_2} \right) \|_{L^2} \lesssim 2^{k + \min(k_1, k_2)/2} 2^{-5m/6 + 5\delta^2 m} 2^{-j_2(1 - 5\delta^2)} \lesssim 2^{-3m/2}. \]
Moreover, we notice that if \(A_{k, k_1, j_1, k_2, j_2} \) is nontrivial then \(|k_2| \leq 10 \) and \(k_1 \leq -2m/N''_0 \), therefore
\[\| P_k I^{\gamma \nu} \left(f^\mu_{j_1, k_1}, A_{k, k_1, j_1, k_2, j_2} \right) \|_{L^2} \lesssim 2^{k + k_1/2} 2^{-m + 5\delta^2 m} 2^{-j_2(1/2 - \delta)} \lesssim 2^{-3m/2 + 3\delta^2 m}, \]
if \(j_1 \leq (1 - 3^2)m \), using (7.41) if \(k_1 \geq -m/2 \) and (7.40) if \(k_1 \leq -m/2 \). On the other hand, if \(j_1 \geq (1 - 3^2)m \) then we use again the \(L^2 \times L^\infty \) estimate (placing \(f^\mu_{j_1, k_1} \) in \(L^2 \)) to conclude that
\[\| P_k I^{\gamma \nu} \left(f^\mu_{j_1, k_1}, A_{k, k_1, j_1, j_2} \right) \|_{L^2} \lesssim 2^{j_1/2} 2^{-m + 5\delta^2 m} 2^{-j_2(1/2 - \delta)} \lesssim 2^{-3m/2}. \]
The last three bounds show that
\[\| A_{k, k_1, j_1, j_2, j_2} \|_{L^2} \lesssim 2^{-3m/2 + 3\delta^2 m} \quad \text{if} \quad \max(j_1, j_2) \geq (1 - 3^2)m - |k|, \quad (8.28) \]
Assume now that
\[k_1 = \min(k_1, k_2) \leq -2m/N_0 \quad \text{and} \quad \max(j_1, j_2) \leq (1 - \delta^2)m - |k|. \]
If \(k_2 \geq k_1 + 20 \) then \(|\nabla_\eta \Phi(\xi, \eta)| \gtrsim 2^{k_1}/2 \), so \(\|A^\mu_{k; k_1, j_1; j_2, k_2}\|_{L^2} \lesssim 2^{-3m} \) in view of Lemma 7.2 (i). On the other hand, if \(k_2 \leq k_1 + 30 \) then, using again the \(L^2 \times L^\infty \) argument as before,
\[
\|P_k I^\mu_{j_1, j_2, k, k_1, j_2, k_2}\|_{L^2} \lesssim 2^{k_1 + k_2 - m + 5\delta^2 m}. \tag{8.29}
\]
The \(L^2 \) bound in (8.9) follows if \(k + k_1 \leq -m/2 \). On the other hand, if \(k + k_1 \geq -m/2 \) and
\[
\max(|k_1 - k|, |k_2 - k|) \geq 100 \quad \text{or} \quad \mu = -\nu
\]
then \(|\nabla_\eta \Phi(\xi, \eta)| \gtrsim 2^{k-\max(k_1, k_2)} \) in the support of the integral, in view of (10.18). Therefore \(\|A^\mu_{k; k_1, j_1; j_2, k_2}\|_{L^2} \lesssim 2^{-3m} \) in view of Lemma 7.2 (i). The inequalities in (8.12) follow. The bound (8.13) then follows from (8.29).

Proof of property (3). Assume first that
\[
\min(k_1, k_2) \geq -5m/N_0, \quad k \leq \min(k_1, k_2) - 200, \quad \max(j_1, j_2) \geq (1 - \delta^2)m - |k| - |k_2|. \tag{8.30}
\]
We may assume that \(j_2 \geq j_1 \geq 1 \). Using the \(L^2 \times L^\infty \) estimate and Lemma 7.5 (ii) as before
\[
\|P_k I^\mu_{j_1, j_2, k_1, k_2}\|_{L^2} \lesssim 2^{k_1 + k_2 - 5m/6 + 5\delta^2 m - j_2(1 - 5\delta)} \lesssim 2^{-3m/2}
\]
if \(n_2 \leq D \). On the other hand, if \(n_2 \in [D, j_2] \) then
\[
P_k I^\mu_{j_1, j_2, k_1, k_2} = P_k I^\mu_{j_1, j_2, k_1, k_2} = P_k I^\mu_{j_1, j_2, k_1, k_2}. \tag{8.31}
\]
Finally, if \(j_2 \geq j_1 \geq 1 \) then we use Schur’s lemma in the Fourier space and estimate
\[
\|P_k I^\mu_{j, k_1, j_2, k_2}\|_{L^2} \lesssim 2^{k_1 + \max(n_1, n_2)/2} \|f_{j, k_1, j_2, k_2}\|_{L^2} \|A^\mu_{j, j_2, n_1, n_2}j_1, k_1, k_2\|_{L^2} \lesssim 2^{k_2 + 2\delta^2 m} \max(n_1, n_2)/2 - j_1(1 - 5\delta)2 (1/2 - 49\delta)n_1 - j_2(1 - 5\delta)2 (1/2 - 49\delta)n_2 \lesssim 2^{2\delta^2 m} \max(n_1, n_2)/2 - j_1(1 - 5\delta)2 - 49\delta(n_1 + n_2) - j_2(1 - 5\delta)2 \lesssim 2^{2\delta^2 m} - (2 - 2\delta)(1 - 5\delta)2 - 98\delta m \tag{8.32}
\]
for any \(n_1 \in [1, j_1 + 1], n_2 \in [1, j_2 + 1] \). Therefore, if (8.30) holds then
\[
\|A^\mu_{j, j_1, j_2, k_2}\|_{L^2} \lesssim 2^{-3m/2 + 4\delta m}. \tag{8.33}
\]
Assume now that
\[
\min(k_1, k_2) \geq -5m/N_0, \quad k \leq \min(k_1, k_2) - 200, \quad \max(j_1, j_2) \leq (1 - \delta^2)m - |k| - |k_2|. \tag{8.34}
\]
If, in addition, \(\max(|k_1|, |k_2|) \geq 11 \) or \(\mu = \nu \) then \(|\nabla_\eta \Phi| \gtrsim 2^{k - k_2} \) in the support of the integral. Indeed, this is a consequence of (10.18) if \(k \leq -100 \) and it follows easily from the formula (10.22) if \(k \geq -100 \). Therefore, \(\|A^\mu_{j, j_1, j_2, k_2}\|_{L^2} \lesssim 2^{-3m} \), using Lemma 7.2 (i). As a consequence, the functions \(A^\mu_{j, j_1, j_2, k_2} \) can be absorbed into the error term \(P_k E_{\sigma, k} \) unless all the inequalities in (8.14) hold.

Assume now that (8.14) holds and we are looking to prove (8.15). It suffices to prove that
\[
\|P_k I^\mu_{j_1, j_2, k_1, k_2}\|_{L^2} \lesssim 2^{k_1 + k_2 - m + 4\delta m}. \tag{8.35}
\]
after using (7.41) and the $L^2 \times L^\infty$ argument. We may assume that $\max(j_1, j_2) \leq m/3$; otherwise (8.34) follows from the $L^2 \times L^\infty$ estimate. Using (7.37) and the more precise bound (7.42),
\[
\|A_p,\gamma_h\|_{L^2} \lesssim \delta^2 m 2^{-p/2}, \quad \|e^{-itA_p,\gamma_h}\|_{L^\infty} \lesssim 2^{-m+3\delta^2 m} \min\left(2^{p/2}, 2^{m/2-p}\right),
\]
where $h \in \{f_{j_1,k_1}, g_{j_2,k_2}\}$, $p \geq 1$. Therefore, using Lemma A.1,
\[
\|P_k I^{\mu\nu}[A_{p_1,\gamma_0}^{\mu j_1,k_1}, A_{p_2,\gamma_0}^{\nu j_2,k_2}]\|_{L^2} \lesssim 2^{k} 2^{-m+3\delta^2 m} 2^{-(p_1+p_2)/2}.\]

The desired bound (8.34) follows, using also the simple estimate
\[
\|P_k I^{\mu\nu}[A_{p_1,\gamma_0}^{\mu j_1,k_1}, A_{p_2,\gamma_0}^{\nu j_2,k_2}]\|_{L^2} \lesssim 2^{k} 2^{-m+3\delta^2 m} 2^{-(p_1+p_2)/2}.\]

This completes the proof of (8.15).

Proof of property (4). The same argument as in the proof of (8.32), using just $L^2 \times L^\infty$ estimates shows that $\|A^{a_1,a_2,a_3}_{k,k_1,j_1;k_2,j_2}\|_{L^2} \lesssim 2^{-3m/2+4\delta m}$ if either (8.16) or (8.18) do not hold. The bounds (8.20) follow in the same way. The same argument as in the proof of (8.34), together with $L^2 \times L^\infty$ estimates using (7.43) and (7.39), gives (8.19).

In our second lemma we give a more precise description of the basic functions $A^{a_1,a_2,a_3}_{j_1,j_2}(s)$ in the case $\min(k,k_1,k_2) \geq -6m/N_0'$.

Lemma 8.2. Assume $[[k_1,j_1),(k_2,j_2)] \in X_{m,k}$ and $k_1,k_2 \in [-6m/N_0', m/N_0']$ (as in Lemma 8.1 (ii) (4)), and recall the functions $A^{a_1,a_2,a_3}_{j_1,j_2}(s)$ defined in (8.10).

(i) We can decompose
\[
A^{a_1,a_2,a_3}_{k,k_1,j_1;k_2,j_2} = \sum_{i=1}^{3} A^{a_1,a_2,a_3}_{k,k_1,j_1;k_2,j_2}[i] = \sum_{i=1}^{3} G[i],
\]
where $\chi[i]$ are defined as
\[
\chi^{[1]}(\xi,\eta) = \varphi(2^{10m} \Phi(\xi,\eta)) \varphi(2^{30m} \nabla_\eta \Phi(\xi,\eta)) 1_{[0,5m/6]}(\max(j_1,j_2)),
\]
\[
\chi^{[2]}(\xi,\eta) = \varphi(2^{10m} \Phi(\xi,\eta)) \varphi(2^{20m} \Omega_\eta \Phi(\xi,\eta)),
\]
\[
\chi^{[3]} = 1 - \chi^{[1]} - \chi^{[2]}.
\]
The functions $A^{a_1,a_2,a_3}_{k,k_1,j_1;k_2,j_2}[1]$ are nontrivial only when $\max(\max(k,j_1,j_2), j_1, j_2) \leq 10$. Moreover
\[
\|G^{[1]}(s)\|_{L^2} \lesssim 2^{-m+4\delta m} 2^{-1-5\delta m} \max(j_1,j_2),
\]
\[
\|G^{[2]}(s)\|_{L^2} \lesssim 2^{k} 2^{-m+4\delta m}, \quad \|G^{[3]}(s)\|_{L^2} \lesssim 2^{-3m/2+4\delta m}.
\]

(ii) We have
\[
\|\mathcal{F}\{A_{\leq D,\gamma_0} A^{a_1,a_2,a_3}_{k,k_1,j_1;k_2,j_2}\}(s)\|_{L^\infty} \lesssim (2^{-k} + 2^{3k}) 2^{-m+14\delta m}.
\]

As a consequence, if $k \geq -6m/N_0' + D$ then we can decompose
\[
A_{\leq D-10,\gamma_0} \partial f^{\gamma}_{j,k} = h_2 + h_\infty,
\]
\[
\|h_2(s)\|_{L^2} \lesssim 2^{-3m/2+5\delta m}, \quad \|h_\infty(s)\|_{L^\infty} \lesssim (2^{-k} + 2^{3k}) 2^{-m+15\delta m}.
\]
(iii) If \(j_1, j_2 \leq m/2 + \delta m \) then we can write
\[
\hat{G}^{[1]}(\xi, s) = e^{is[\sigma_3 s - 2\pi f/2]} g^{[1]}(\xi, s) \varphi(2^{3\delta m}(|\xi| - \gamma_1)) + h^{[1]}(\xi, s),
\]
\[
\|D^{\alpha}_\xi g^{[1]}(s)\|_{L^\infty} \lesssim 2^{-m+4\delta m} \alpha(m/2+4\delta m), \quad \|\partial_s g^{[1]}(s)\|_{L^\infty} \lesssim 2^{-2m+18\delta m}, \tag{8.41}
\]
\[
\|h^{[1]}(s)\|_{L^\infty} \lesssim 2^{-4m}.
\]

Proof. (i) To prove the bounds (8.37)–(8.38) we decompose
\[
A_{\hat{A}^{a_1,a_2,a_3}}^{a_1,a_1} = \sum_{i=1}^5 A_i, \quad A_i := P_k I_i[f_{\mu,k_1,j_1,k_2,j_2}],
\]
\[
\mathcal{F}\{I_i[f, g]\}(\xi) := \int_{\mathbb{R}^2} e^{i\tau(\xi, \eta)} m(\xi, \eta) \chi_i(\xi, \eta) \hat{f}(\xi - \eta) \hat{g}(\eta) d\eta.
\]

where \(m = m^{[1]}_{\mu,\nu} \) and \(\chi_i \) are defined as
\[
\begin{align*}
\chi_1(\xi, \eta) &:= \varphi(2^{20\delta m} \Theta(\xi, \eta)), \\
\chi_2(\xi, \eta) &:= \varphi(2^{10\delta m} \Phi(\xi, \eta)) \varphi(2^{20\delta m} \Theta(\xi, \eta)), \\
\chi_3(\xi, \eta) &:= \varphi(2^{10\delta m} \Phi(\xi, \eta)) \varphi(2^{20\delta m} \Theta(\xi, \eta)) \mathbf{1}_{[0,5m/6]}(\max(j_1,j_2)), \\
\chi_4(\xi, \eta) &:= \varphi(2^{10\delta m} \Phi(\xi, \eta)) \varphi(2^{20\delta m} \Theta(\xi, \eta)) \varphi(2^{30\delta m} \Xi(\xi, \eta)) \mathbf{1}_{[0,5m/6]}(\max(j_1,j_2)), \\
\chi_5(\xi, \eta) &:= \varphi(2^{10\delta m} \Phi(\xi, \eta)) \varphi(2^{20\delta m} \Theta(\xi, \eta)) \varphi(2^{30\delta m} \Xi(\xi, \eta)) \mathbf{1}_{[0,5m/6]}(\max(j_1,j_2)).
\end{align*}
\]

Notice that \(A_2 = G^{[2]} \), \(A_5 = G^{[1]} \), and \(A_1 + A_2 + A_4 = G^{[3]} \). We will show first that
\[
\|A_1\|_{L^2} + \|A_3\|_{L^2} + \|A_4\|_{L^2} \lesssim 2^{-3m/2+4\delta m}. \tag{8.45}
\]

It follows from Lemma 7.3 and (8.16)–(8.18) that \(\|A_1\|_{L^2} \lesssim 2^{-2m} \), as desired. Also, \(\|A_4\|_{L^2} \lesssim 2^{-4m} \), as a consequence of Lemma 7.2 (i). It remains to prove that
\[
\|A_3\|_{L^2} \lesssim 2^{-3m/2+4\delta m}. \tag{8.46}
\]

Assume that \(j_2 > 5m/6 \) (the proof of (8.46) when \(j_1 > 5m/6 \) is similar). We may assume that \(|k_2| \leq 10 \) (see (8.17)), and then \(|k|, |k_1| \in [0, 100] \) (due to the restrictions \(|\Phi(\xi, \eta)| \lesssim 2^{-10\delta m} \) and \(|\Theta(\xi, \eta)| \lesssim 2^{-20\delta m} \), see also (10.6)). We show first that
\[
\|P_k I_3[f_{\mu,k_1,j_1}, A_{\leq 0}^\gamma f_{\nu,j_2,k_2}^\nu]\|_{L^2} \lesssim 2^{-3m/2+4\delta m}. \tag{8.47}
\]

Indeed, we notice that, as a consequence of the \(L^2 \times L^\infty \) argument,
\[
\|P_k I^{\gamma \mu \nu}[f_{\mu,k_1,j_1}, A_{\leq 0}^\gamma f_{\nu,j_2,k_2}^\nu]\|_{L^2} \lesssim 2^{-3m/2},
\]
where \(I^{\gamma \mu \nu} \) is defined as in (8.22). Let \(I^{[1]} \) be defined by
\[
\mathcal{F}\{I^{[1]}[f, g]\}(\xi) := \int_{\mathbb{R}^2} e^{i\tau(\xi, \eta)} m(\xi, \eta) \varphi(2^{20\delta m} \Theta(\xi, \eta)) \hat{f}(\xi - \eta) \hat{g}(\eta) d\eta.
\]

Using Lemma 7.3 and (8.18), it follows that
\[
\|P_k I^{[1]}[f_{\mu,k_1,j_1}, A_{\leq 0}^\gamma f_{\nu,j_2,k_2}^\nu]\|_{L^2} \lesssim 2^{-3m/2}.
\]

The same averaging argument as in the proof of Lemma 7.4 gives (8.47).

We show now that
\[
\|P_k I_3[f_{\mu,k_1,j_1}, A_{\geq 1}^\gamma f_{\nu,j_2,k_2}^\nu]\|_{L^2} \lesssim 2^{-3m/2+4\delta m}. \tag{8.49}
\]
Recall that $|k_2| \leq 10$ and $|k_1|, |k_1|_j \in [0, 100]$. It follows that $|\nabla y \Phi(\xi, \eta)| \geq 2^{-D}$ in the support of the integral (otherwise $|\eta|$ would be close to $\gamma_1/2$, as a consequence of Proposition 10.2 (iii), which is not the case). The bound (8.49) (in fact rapid decay) follows using Lemma 7.2 (i) unless

$$j_2 \geq (1 - \delta^2)m. \quad (8.50)$$

Finally, assume that (8.50) holds. Notice that $P_2 I_3 [A_{A \geq 1} j_{f_{j_{1}, k_{1}}, 1}, A_{A \geq 1} j_{f_{j_{2}, k_{2}}} \xi] \equiv 0$. This is due to the fact that $|\lambda(\gamma_1) \pm \lambda(\gamma_0) \pm \lambda(\gamma_1 \pm \gamma_0)| \gtrsim 1$, see Lemma 10.1 (iv). Moreover,

$$\left\| P_2 I_{j_2} [A_{A \geq 1} j_{f_{j_{1}, k_{1}}, 1}, A_{A \geq 1} j_{f_{j_{2}, k_{2}}} \xi] \right\|_{L^2} \lesssim 2^{-3m/2 + 3\delta m + 6\delta^2 m}$$

as a consequence of the $L^2 \times L^\infty$ argument and the bound (7.43). Therefore, using Lemma 7.3,

$$\left\| P_2 I_{j_2} [A_{A \geq 1} j_{f_{j_{1}, k_{1}}, 1}, A_{A \geq 1} j_{f_{j_{2}, k_{2}}} \xi] \right\|_{L^2} \lesssim 2^{-3m/2 + 3\delta m + 6\delta^2 m}.$$

The same averaging argument as in the proof of Lemma 7.4 shows that

$$\left\| P_2 I_{j_2} [A_{A \geq 1} j_{f_{j_{1}, k_{1}}, 1}, A_{A \geq 1} j_{f_{j_{2}, k_{2}}} \xi] \right\|_{L^2} \lesssim 2^{-3m/2 + 3\delta m + 6\delta^2 m},$$

and the desired bound (8.49) follows in this case as well. This completes the proof of (8.46).

We prove now the bounds (8.37). We notice that $|\eta|$ and $|\xi - \eta|$ are close to $\gamma_1/2$ in the support of the integral, due to Proposition 10.2 (iii), so

$$\hat{G}^{[1]}(\xi) = \int_{\mathbb{R}^2} e^{i \Phi(\xi, \eta)} m(\xi, \eta) \varphi(\xi) \chi^{(1)}(\xi, \eta) \left\| A_{A \geq 1} j_{f_{j_{1}, k_{1}}, 1} \right\|_{L^\infty} \left\| \xi - \eta \right\| \left\| A_{A \geq 1} j_{f_{j_{2}, k_{2}}} \right\|_{L^\infty} d\eta.$$

Then we notice that the factor $\varphi(2^{3\delta m} \nabla \Phi(\xi, \eta))$ can be removed at the expense of negligible errors (due to Lemma 7.2 (i)). The bound follows using the $L^2 \times L^\infty$ argument and Lemma 7.4.

The bound on $G^{[2]}(\xi)$ in (8.38) follows using (8.19), (8.37), and (8.45).

(ii) The plan is to localize suitably, in the Fourier space both in the radial and the angular directions, and use (7.36) or (7.37). More precisely, let

$$B_{k_0, k_1}(\xi) := \int_{\mathbb{R}^2} e^{i \Phi(\xi, \eta)} m(\xi, \eta) \varphi(\xi) \psi(\xi, \rho) \xi(\xi, \eta) \Theta(\xi, \eta) \left\| f_{j_{1}, k_{1}} \right\|_{L^\infty} \left\| f_{j_{2}, k_{2}} \right\|_{L^\infty} (\xi - \eta) d\eta. \quad (8.51)$$

where k_0 and k_1 are to be fixed.

Let $j := \max(j_1, j_2)$. If

$$\min(k_1, k_2) \geq -2m/N_0', \quad \bar{j} \leq m/2$$

then we set $\kappa_\rho = 2^{3\delta m - m/2}$ (we do not localize in the angular variable in this case). Notice that

$$\left\| \left\{ A_{A \geq 1} j_{f_{j_{1}, k_{1}}, 1} \right\} - B_{k_0, k_1}(\xi) \right\| \lesssim 2^{-4m}$$

in view of Lemma 7.2 (i). If $|\xi| - 2\gamma_0 \geq 2^{-2D}$ then we use Proposition 10.2 (ii) and conclude that the integration in η is over a ball of radius $\lesssim 2^k |\kappa_\rho|$. Therefore

$$\left| B_{k_0, k_1}(\xi) \right| \lesssim 2^{k + \min(k_1, k_2)/2} (2^{k |\kappa_\rho|})^2 \left\| f_{j_{1}, k_{1}} \right\|_{L^\infty} \left\| f_{j_{2}, k_{2}} \right\|_{L^\infty} \lesssim (2^{-k} + 2^{3k}) 2^{-m + 10\delta m}. \quad (8.52)$$

If

$$\min(k_1, k_2) \geq -2m/N_0', \quad \bar{j} \in [m/2, m - 10\delta m]$$

then we set $\kappa_\rho = 2^{3\delta m - \bar{j} - m}$, $\kappa_\rho = 2^{3\delta m - m/2}$. Notice that

$$\left\| \left\{ A_{A \geq 1} j_{f_{j_{1}, k_{1}}, 1} \right\} - B_{k_0, k_1}(\xi) \right\| \lesssim 2^{-2m}$$

in view of Lemma 7.2 (i) and Lemma 7.3. If $|\xi| - 2\gamma_0 \geq 2^{-2D}$ then we use Proposition 10.2 (ii) (notice that the hypothesis (10.16) holds in our case) to conclude that the integration in η in the integral defining $B_{k_0, k_1}(\xi)$ is over a $O(\kappa \times \rho)$ rectangle in the direction of the vector ξ, where
\(\kappa := 2^{[k]} 2^{\delta m} \kappa_\theta, \rho := 2^{[k]} \kappa_r \). Then we use (7.36) for the function corresponding to the larger \(j \) and (7.37) to the other function to estimate

\[
|B_{\kappa_\theta, \kappa_r}(\xi)| \lesssim 2^k \kappa 2^{-7 + 5\tilde{m}/2} \rho 10^{\tilde{m}/2} 2^\delta 2^{6\delta m} \lesssim (2^{-k} + 2^{3k}) 2^{-m + 10\delta m}. \tag{8.53}
\]

If

\[\min(k_1, k_2) \geq -2m/N_0', \quad \gamma \geq m - 10\delta m \]

then we have two subcases: if \(\min(j_1, j_2) \leq m - 10\delta m \) then we still localize in the angular direction (with \(\kappa_\theta = 2^{3\delta m - m/2} \) as before) and do not localize in the radial direction. The same argument as above, with \(\rho \lesssim 2^{\delta m} \), gives the same pointwise bound (8.53). On the other hand, if \(\min(j_1, j_2) \geq m - 10\delta m \) then the desired conclusion follows by Hölder’s inequality. The bound (8.39) follows if \(\min(k_1, k_2) \geq -2m/N_0' \).

On the other hand, if \(\min(k_1, k_2) \leq -2m/N_0' \) then \(2^k \approx 2^{k_1} \approx 2^{k_2} \) (due to (8.12)) and the bound (8.39) can be proved in a similar way. The decomposition (8.40) is a consequence of (8.39) and the \(L^2 \) bounds (8.9).

(iii) We prove now the decomposition (8.41). With \(\kappa := 2^{-m/2 + \delta m + \delta^2 m} \) we define

\[
ge^{[1]}(\xi, s) := \int_{\mathbb{R}^2} e^{i\Phi(\xi, \eta)} m(\xi, \eta) \varphi(\xi) \varphi_k(\xi)^{[1]}(\xi, \eta) f_{j_1, k_1}^{[1]}(\xi - \eta, s) f_{j_2, k_2}^{[1]}(\eta, s) \varphi(\kappa^{-1} \xi, \eta) d\eta,
\]

\[
h^{[1]}(\xi, s) := \int_{\mathbb{R}^2} e^{i\Phi(\xi, \eta)} m(\xi, \eta) \varphi(\xi) \varphi_k(\xi)^{[1]}(\xi, \eta) f_{j_1, k_1}^{[1]}(\xi - \eta, s) f_{j_2, k_2}^{[1]}(\eta, s) \varphi \geq 1(\kappa^{-1} \xi, \eta) d\eta,
\]

where \(\Phi(\xi, \eta) = \Phi_{\eta, \nu}(\xi, \eta) - \Lambda_\sigma(\xi) + 2\Lambda_\sigma(\xi/2) \). In view of Proposition 10.2 (iii) and the definition of \(\chi^{[1]} \), the function \(G^{[1]} \) is nontrivial only when \(\mu = \nu = \sigma \), and it is supported in the set \(\{||\xi| - 1|| \lesssim 2^{-10\delta m}\} \). The conclusion \(||h^{[1]}(s)||_{L^\infty} \lesssim 2^{-4m} \) in (8.41) follows from Lemma 7.2 (i) and the assumption \(j_1, j_2 \leq m/2 + \delta m \).

To prove the bounds on \(g^{[1]} \) we notice that \(\Phi'(\xi, \eta) = 2\Lambda_\sigma(\xi/2) - \Lambda_\sigma(\xi - \eta) - \Lambda_\sigma(\eta) \) and \(|\eta - \xi/2| \lesssim \kappa \) (due to (10.21)). Therefore \(||\Phi'(\xi, \eta)|| \lesssim \kappa^2 \), \(||(\nabla_\xi \Phi')(\xi, \eta)|| \lesssim \kappa \), and \(||D^s_\xi \Phi'(\xi, \eta)|| \lesssim |\alpha| \) 1 in the support of the integral. The bounds on \(||D^s_\xi g^{[1]}(s)||_{L^\infty} \) in (8.41) follow using \(L^\infty \) bounds on \(f_{j_1, k_1}(s) \) and \(f_{j_2, k_2}(s) \). The bounds on \(||\partial_s g^{[1]}(s)||_{L^\infty} \) follow in the same way, using also the decomposition (8.40) when the \(s \)-derivative hits either \(f_{j_1, k_1}(s) \) or \(f_{j_2, k_2}(s) \) (the contribution of the \(L^2 \) component is estimated using Hölder’s inequality). This completes the proof.

Our last lemma concerning \(\partial_s \mathcal{V} \) is a refinement of Lemma 8.2 (ii). It is only used in the proof of the decomposition (5.29)–(5.30) in Lemma 5.4.

Lemma 8.3. For \(s \in [2^m - 1, 2^{m+1}] \) and \(k \in [-10, 10] \) we can decompose

\[
\mathcal{F}\{P_k A_{\leq 2^{2m/3} \partial_s \mathcal{V}_a}(s)\}(\xi) = g_d(\xi) + g_\infty(\xi) + g_2(\xi) \tag{8.55}
\]

provided that \(a \leq N_1/2 + 20 \) and \(2a + |\alpha| \leq N_1 + N_4 \), where

\[
||g_2||_{L^2} \lesssim \varepsilon_1^2 2^{-3m/2 + 20\delta m}, \quad ||g_\infty||_{L^\infty} \lesssim \varepsilon_1^2 2^{-m - 4\delta m}, \quad \sup_{|\rho| \leq 2^m/9 + 4\delta m} ||\mathcal{F}^{-1} \{e^{-i(s+\rho)\Lambda_\sigma} g_d\}||_{L^\infty} \lesssim \varepsilon_1^2 2^{-16m/9 + 4\delta m}. \tag{8.56}
\]

Proof. Starting from Lemma 8.1 (ii), we notice that the error term \(E_0^{a, \alpha} \) can be placed in the \(L^2 \) component \(g_2 \) (due to (8.9)). It remains to decompose the functions \(A^{[1]}_{k_1, j_1, j_2, k_2} \). We may assume that we are in case (4), \(k_1, k_2 \in [-2m/N_0', m/N_0'] \). We define the functions \(B_{k_\theta, k_r} \) as in
We notice that the argument in Lemma 8.2 (ii) already gives the desired conclusion if $\tilde{j} = \max(j_1, j_2) \geq m/2 + 20\delta m$ (without having to use the function g_d).

It remains to decompose the functions $A_{\leq D,2\gamma_0}^a \xi_{k_1,j_1,k_2,j_2}^\alpha(s)$ when

$$\tilde{j} = \max(j_1, j_2) \leq m/2 + 20\delta m.$$ \hfill (8.57)

As in (8.51) let

$$B_{\kappa,}(\xi) := \int_{\mathbb{R}^2} e^{is\Phi(\xi,\eta)m(\xi,\eta)}\varphi_k(\xi)\varphi(\kappa_{\tau}^{-1}\Xi_2(\xi,\eta))\overline{f_{j_{1},k_{1}}}(\xi-\eta)\overline{f_{j_{2},k_{2}}}(\eta)d\eta,$$ \hfill (8.58)

where $\kappa_{\tau} := 2^{30\delta m-m/2}$ (we do not need angular localization here). In view of Lemma 7.2 (i), $|\mathcal{F}^\alpha_{k_1,j_1,k_2,j_2}(\xi) - B_{\kappa,}(\xi)| \lesssim 2^{-4m}$. It remains to prove that

$$\|\mathcal{F}^{-1}\{e^{-i(s+\nu)\Lambda_\nu(\xi)}\varphi_{\geq -D}(2^{100}\|\xi| - 2\gamma_0)\}B_{\kappa,}(\xi)\|_{L^\infty} \lesssim 2^{-16m/9-5\delta m}$$ \hfill (8.59)

for any $k, j_1, k_1, j_2, k_2, \nu$ fixed, $|\nu| \leq 2^{7m/9+4\delta m}$.

In proving (8.59), we may assume that $m \geq D^2$. The condition $|\Xi_2(\xi,\eta)| \leq 2\kappa_{\tau}$ shows that the variable η is localized to a small ball. More precisely, using Lemma 10.2, we have

$$|\eta - p(\xi)| \lesssim \kappa_{\tau}, \quad \text{for some} \quad p(\xi) \in P_{\mu}(\xi),$$ \hfill (8.60)

provided that $|\xi| - 2\gamma_0 \gtrsim 1$. The sets $P_{\mu}(\xi)$ are defined in (10.15) and contain two or three points. We parametrize these points by $p_\ell(\xi) = q_\ell(|\xi|/|\xi|)$, where $q_1(r) = r/2, q_2(r) = p_{2+2}(r), q_3(r) = r - p_{2+2}(r)$ if $\mu = \nu$, or $q_1(r) = p_{2+1}(r), q_2(r) = r - p_{2+1}(r)$ if $\mu = -\nu$. Then we rewrite

$$B_{\kappa,}(\xi) = \sum_{\ell} e^{is\Lambda_\mu(\xi)}e^{-i[s(\Lambda_\mu(\xi) - p_\ell(\xi)))]}H_\ell(\xi)$$ \hfill (8.61)

where

$$H_\ell(\xi) := \int_{\mathbb{R}^2} e^{i(s\Phi(\xi,\eta) - \Phi(\xi,p_\ell(\xi)))m(\xi,\eta)}\varphi_k(\xi)\varphi(\kappa_{\tau}^{-1}\Xi_2(\xi,\eta))$$

$$\overline{f_{j_{1},k_{1}}}(\xi-\eta)\overline{f_{j_{2},k_{2}}}(\eta)d\eta.$$ \hfill (8.62)

Clearly, $|\Phi(\xi,\eta) - \Phi(\xi,p_\ell(\xi))| \lesssim |\eta - p_\ell(\xi)|^2, |\nabla_\xi[\Phi(\xi,\eta) - \Phi(\xi,p_\ell(\xi))]| \lesssim |\eta - p_\ell(\xi)|$. Therefore

$$|D^\beta H_\ell(\xi)| \lesssim 2^{-m/2-31\delta m} |\eta - p_\ell(\xi)|$$ \hfill (8.63)

for $|\ell| - 2\gamma_0 \gtrsim 1$.

We can now prove (8.59). Notice that the factor $e^{is\Lambda_\mu(\xi)}$ simplifies and that the remaining phase $\xi \to \Lambda_\mu(\xi) - p_\ell(\xi) + \Lambda_\nu(p_\ell(\xi))$ is radial. Let $\Gamma_\ell = \Gamma_{\ell,\mu,\nu}$ be defined such that $\Gamma_\ell(\xi) = \Lambda_\mu(\xi) - p_\ell(\xi) + \Lambda_\nu(p_\ell(\xi))$. Standard stationary phase estimates, using also (8.63), show that (8.59) holds provided that

$$|\Gamma'_\ell(\eta)| \approx 1 \quad \text{and} \quad |\Gamma''_\ell(\eta)| \approx 1 \quad \text{if} \quad r \in [2^{-20}, 2^{20}], |r - 2\gamma_0| \geq 2^{-3D/2}.$$ \hfill (8.64)

To prove (8.64), assume first that $\mu = \nu$. If $\ell = 1$ then $p_\ell(\xi) = \xi/2$ and the desired conclusion is clear. If $\ell \in \{2, 3\}$ then $\pm\Gamma_\ell(\eta) = \lambda(r - p_{2+2}(\eta)) + \lambda(p_{2+2}(\eta))$. In view of Proposition 10.2 (i), $r - 2\gamma_0 \geq 2^{-2D}, p_{2+2}(\eta) \in (0, \gamma_0 - 2^{-2D}]$, and $\lambda(r - p_{2+2}(\eta)) = \lambda(p_{2+2}(\eta))$. Therefore

$$\Gamma'_\ell(\eta) = \lambda(r - p_{2+2}(\eta)), \quad |\Gamma''_\ell(\eta)| = |\lambda''(r - p_{2+2}(\eta))(1 - \Gamma'_\ell(\eta))|.$$

The desired conclusions in (8.64) follow since $|1 - \Gamma''_{\ell,2}(\eta)| \approx 1$ in the domain of r (due to the identity $\lambda''(r - p_{2+2}(\eta))(1 - \Gamma''_{\ell,2}(\eta)) = \lambda''(p_{2+2}(\eta))\lambda''_{\ell,2}(\eta)$).

The proof of (8.64) in the case $\mu = -\nu$ is similar. This completes the proof of the lemma. \hfill \Box
9. Dispersive analysis, III: proof of Proposition 7.1

9.1. Quadratic interactions. In this section we prove Proposition 7.1. We start with the quadratic component in the Duhamel formula (7.5) and show how to control its Z norm.

Proposition 9.1. With the hypothesis in Proposition 7.1, for any Z quadratic component in the Duhamel formula (7.5) and show how to control its Z norm.

Proposition 9.2. Assume that a and b, a, α, μ, ν are fixed and let, for simplicity of notation, $f^{\mu} := \varepsilon^{-1} D^{\alpha_1} \Omega^{\alpha_1} \nu_{\mu}$, $f^{\nu} := \varepsilon^{-1} D^{\alpha_2} \Omega^{\alpha_2} \nu_{\nu}$, $\Phi := \Phi_{+\mu\nu}$, $m_0 := m_{\mu\nu}$, $T_m := T_{m\mu\nu}$.

The bootstrap assumption (7.15) gives, for any $s \in [0, \xi]$, $\|f^{\mu}(s)\|_{H^{N_0}_0 \cap Z_1 \cap H^{N_1}_1}^{N' \cap Z_1 \cap H^{N'}_1} \lesssim (1 + s)^{3/2}$.

We recall also the symbol-type bounds, which hold for any $k, k_1, k_2 \in \mathbb{Z}$, $|\alpha| \geq 0$,

\[
\|m_0^{k, k_1, k_2}\|_{\mathcal{S}} \lesssim 2^{k_2 \min(k_1, k_2)/2}, \\
\|D^{\alpha}_2 m_0^{k, k_1, k_2}\|_{L^\infty} \lesssim |\alpha| 2^{(|\alpha|+3/2) \max(|k_1|, |k_2|)}, \\
\|D^{\alpha}_2 m_0^{k, k_1, k_2}\|_{L^\infty} \lesssim |\alpha| 2^{(|\alpha|+3/2) \max(|k_1|, |k_2|)},
\]

where $m_0^{k, k_1, k_2}(\xi, \eta) = m_0(\xi, \eta) \cdot \varphi_{k_1}(\xi) \varphi_{k_2}(\eta) \varphi_k(\eta)$.

We consider first a few simple cases before moving to the main analysis in the next subsections. Recall (see (7.44)) that, for any $k \in \mathbb{Z}$, $m \in \{0, \ldots, L+1\}$, and $s \in I_m := \text{supp} \, q_m$,

\[
\|P_k f^{\mu}(s)\|_{L^2} + \|P_k f^{\nu}(s)\|_{L^2} \lesssim 2^{k_2 m} \min \{2^{(1-5\delta)k}, 2^{N_0' k}\}, \\
\|P_k e^{-is\Lambda_\nu} f^{\mu}(s)\|_{L^\infty} + \|P_k e^{-is\Lambda_\nu} f^{\nu}(s)\|_{L^\infty} \lesssim 2^{2\delta m} \min \{2^{(2-5\delta)k}, 2^{-5m/6}\}.
\]
Lemma 9.3. Assume that \(f^\mu, f^\nu \) are as in (9.5) and let \((k,j) \in \mathcal{J} \). Then
\[
\sum_{\max\{k_j, k_2\} \geq 1.01(j+m)/N_0 - \mathcal{D}^2} \left\| Q_{jk} T_m [P_{k_1} f^\mu, P_{k_2} f^\nu] \right\|_{B_j} \lesssim 2^{-\delta^2 m}, \tag{9.9}
\]
\[
\sum_{\min\{k_j, k_2\} \leq - (j+m)/2 + \mathcal{D}^2} \left\| Q_{jk} T_m [P_{k_1} f^\mu, P_{k_2} f^\nu] \right\|_{B_j} \lesssim 2^{-\delta^2 m}, \tag{9.10}
\]
if \(2k \leq -j - m + 49 \delta j - \delta m \) then
\[
\sum_{k_1, k_2 \in \mathbb{Z}} \left\| Q_{jk} T_m [P_{k_1} f^\mu, P_{k_2} f^\nu] \right\|_{B_j} \lesssim 2^{-\delta^2 m}, \tag{9.11}
\]
if \(j \geq 2.1m \) then
\[
\sum_{-j \leq k_1, k_2 \leq 2j/N_0} \left\| Q_{jk} T_m [P_{k_1} f^\mu, P_{k_2} f^\nu] \right\|_{B_j} \lesssim 2^{-\delta^2 m}. \tag{9.12}
\]

Proof. Using (9.8), the left-hand side of (9.9) is dominated by
\[
C \sum_{\max\{k_j, k_2\} \geq 1.01(j+m)/N_0 - \mathcal{D}^2} 2^j m^{2k+2 \min\{k_j, k_2\}/2} \sup_{s \in I_m} \left\| P_{k_1} f^\mu (s) \right\|_{L^2} \left\| P_{k_2} f^\nu (s) \right\|_{L^2} \lesssim 2^{-\delta^2 m},
\]
which is acceptable. Similarly, if \(k_1 \leq k_2 \) and \(k_1 \geq \mathcal{D}^2 \) then
\[
2^j \left\| P_{k_1} f^\mu (s) \right\|_{L^2} \lesssim 2^j m^{2k+2 \min\{k_j, k_2\}/2} \sup_{s \in I_m} \left\| P_{k_1} f^\mu (s) \right\|_{L^2} \left\| P_{k_2} f^\nu (s) \right\|_{L^2} \lesssim 2^j m^{2(3/2-50\delta)k_1} 2^{-(N_0-1) \max\{k_2,0\}},
\]
and the bound (9.10) follows by summation over \(\min\{k_j, k_2\} \leq - (j+m)/2 + 2\mathcal{D}^2 \).

To prove (9.11) we may assume that
\[
2k \leq -j - m + 49 \delta j - \delta m, \quad -(j+m)/2 \leq k_1, k_2 \leq 1.01(j+m)/N_0. \tag{9.13}
\]
Then
\[
\left\| Q_{jk} T_m [P_{k_1} f^\mu, P_{k_2} f^\nu] \right\|_{B_j} \lesssim 2^j (1-50\delta) \left\| P_{k_1} f^\mu (s) \right\|_{L^2} \left\| P_{k_2} f^\nu (s) \right\|_{L^2} \lesssim 2^j (1-50\delta) 2^{j (1-50\delta) 2^{k+\min\{k_j, k_2\}/2} 2^k} \sup_{s \in I_m} \left\| P_{k_1} f^\mu (s) \right\|_{L^2} \left\| P_{k_2} f^\nu (s) \right\|_{L^2} \lesssim 2^{-\delta(j+m)/3}.
\]

Summing in \(k_1, k_2 \) as in (9.13), we obtain an acceptable contribution.

Finally, to prove (9.12) we may assume that
\[
j \geq 2.1m, \quad j+k \geq j/10 + \mathcal{D}, \quad -j \leq k_1, k_2 \leq 2j/N_0,
\]
and define
\[
f^\mu_{j_1, k_1} := P_{[k_1 - 2, k_1 + 2]} Q_{j_1, k_1} f^\mu, \quad f^\nu_{j_2, k_2} := P_{[k_2 - 2, k_2 + 2]} Q_{j_2, k_2} f^\nu. \tag{9.14}
\]
If \(\min\{j_1, j_2\} \geq 99j/100 - \mathcal{D} \) then, using also (7.36),
\[
\left\| P_{k_1} T_m [f^\mu_{j_1, k_1}, f^\nu_{j_2, k_2}] \right\|_{L^2} \lesssim 2^m 2^{k+\min\{k_1, k_2\}/2} \sup_{s \in I_m} \left\| f^\mu_{j_1, k_1} (s) \right\|_{L^2} \left\| f^\nu_{j_2, k_2} (s) \right\|_{L^2} \lesssim 2^m 2^{(3k_1/2)-1}\delta j_1 - (1/2-\delta) j_2 2^{4\mathcal{D}^2 m},
\]
and therefore
\[
\sum_{-j \leq k_1, k_2 \leq 2j/N_0} \sum_{\min\{j_1, j_2\} \geq 99j/100 - \mathcal{D}} \left\| Q_{jk} T_m [f^\mu_{j_1, k_1}, f^\nu_{j_2, k_2}] \right\|_{B_j} \lesssim 2^{-\delta m}.
\]
On the other hand, if \(j_1 \leq 99j/100 - D \) then we rewrite
\[
Q_{jk}T_m[f_{j_1,k_1}, f_{j_2,k_2}^\nu](x) = C_{\varphi_j}^{(k)}(x)
\]
\[
\times \int_{\mathbb{R}} q_m(s) \int_{\mathbb{R}^2} e^{i[s\Phi(\xi)+ x \cdot \xi]} \varphi_k(\xi)m_0(\xi, \eta) \tilde{f}_{j_1,k_1}(\xi - \eta, s)d\xi \tilde{f}_{j_2,k_2}(\eta, s)d\eta ds.
\]
In the support of integration, we have the lower bound \(|\nabla \xi [s\Phi(\xi)+ x \cdot \xi]| \approx |x| \approx 2^j \). Integration by parts in \(\xi \) using Lemma 7.2 gives
\[
|Q_{jk}T_m[f_{j_1,k_1}, f_{j_2,k_2}^\nu](x)| \lesssim 2^{-10j}
\]
which gives an acceptable contribution. This finishes the proof. \(\square \)

9.2. The main decomposition. We may assume that
\[
k_1, k_2 \in \left[-\frac{j + m}{2}, \frac{1.01(j + m)}{N_0}\right], \quad k \geq \frac{-j - m + 49\delta j - \delta m}{2}, \quad j \leq 2.1m, \quad m \geq D^2/8.
\]
Recall the definition (2.9). We fix \(l_- := \lfloor -(1 - \delta/2)m \rfloor \), and decompose
\[
T_m[f, g] = \sum_{l \leq l_-} T_{m,l}[f, g],
\]
\[
T_{m,l}[f, g](\xi) := \int_{\mathbb{R}} q_m(s) \int_{\mathbb{R}^2} e^{is\Phi(\xi, \eta)} \varphi_i^{[l-\nu]}(\Phi(\xi, \eta))m_0(\xi, \eta) \tilde{f}(\xi - \eta, s)\tilde{g}(\eta, s)d\eta ds.
\]
Assuming (9.17), we notice that \(T_{m,l}[P_{k_1}f^\mu, P_{k_2}f^\nu] = 0 \) if \(l \geq 10m/N_0 \). When \(l > l_- \), we may integrate by parts in time to rewrite \(T_{m,l}[P_{k_1}f^\mu, P_{k_2}f^\nu] \)
\[
T_{m,l}[P_{k_1}f^\mu, P_{k_2}f^\nu] = iA_{m,l}[P_{k_1}f^\mu, P_{k_2}f^\nu] + iB_{m,l}[P_{k_1}\partial_s f^\mu, P_{k_2}f^\nu] + iB_{m,l}[P_{k_1}f^\mu, P_{k_2}\partial_s f^\nu],
\]
\[
A_{m,l}[f, g](\xi) := \int_{\mathbb{R}} q'_m(s) \int_{\mathbb{R}^2} e^{is\Phi(\xi, \eta)} 2^{-l}\varphi_l(\Phi(\xi, \eta))m_0(\xi, \eta) \tilde{f}(\xi - \eta, s)\tilde{g}(\eta, s)d\eta ds,
\]
\[
B_{m,l}[f, g](\xi) := \int_{\mathbb{R}} q_m(s) \int_{\mathbb{R}^2} e^{is\Phi(\xi, \eta)} 2^{-l}\varphi_l(\Phi(\xi, \eta))m_0(\xi, \eta) \tilde{f}(\xi - \eta, s)\tilde{g}(\eta, s)d\eta ds,
\]
where \(\varphi_l(x) := 2^lx^{-1}\varphi_l(x) \). For \(s \) fixed let \(\mathcal{I}_l \) denote the bilinear operator defined by
\[
\mathcal{I}_l[f, g](\xi) := \int_{\mathbb{R}^2} e^{i\Phi(\xi, \eta)} 2^{-l}\varphi_l(\Phi(\xi, \eta))m_0(\xi, \eta) \tilde{f}(\xi - \eta, \eta)\tilde{g}(\eta, \eta)d\eta.
\]
It is easy to see that Proposition 9.2 follows from Lemma 9.3 and Lemmas 9.4–9.8 below.

Lemma 9.4. Assume that (9.17) holds and, in addition,
\[
j \geq m + 2D + \max(|k|, |k_1|, |k_2|)/2.
\]
Then, for \(l_- \leq l \leq 10m/N_0 \),
\[
2^{(1-50\delta)j}\|Q_{jk}T_{m,l}[P_{k_1}f^\mu, P_{k_2}f^\nu]\|_{L^2} \lesssim 2^{-2\delta^2m}.
\]
Notice that the assumptions (9.17) and \(j \leq m + 2D + \max(|k|, |k_1|, |k_2|)/2 \) show that
\[
k, k_1, k_2 \in [-4m/3 - 2D, 3.2m/N_0], \quad m \geq D^2/8.
\]
Lemma 9.5. Assume that (9.22) holds and, in addition,
\[j \leq m + 2D + \max(|k|, |k_1|, |k_2|)/2, \quad \min(k, k_1, k_2) \leq -3.5m/N_0. \] (9.23)
Then, for \(l_- \leq l \leq 10m/N_0 \),
\[2^{(1-5\delta)j} \|Q_{jk}T_{m,l}[P_{k_1}f^\mu, P_{k_2}f^\nu]\|_{L^2} \lesssim 2^{-2\delta^2m}. \]

Lemma 9.6. Assume that (9.22) holds and, in addition,
\[j \leq m + 2D + \max(|k|, |k_1|, |k_2|)/2, \quad \min(k, k_1, k_2) \geq -3.5m/N_0. \] (9.24)
Then, for \(l_- < l \leq 10m/N_0 \)
\[\|Q_{jk}A_{m,l}[P_{k_1}f^\mu, P_{k_2}f^\nu]\|_{B_j} + \|Q_{jk}A_{m,l}[P_{k_1}f^\mu, P_{k_2}f^\nu]\|_{B_j} \lesssim 2^{-2\delta^2m}. \]

Lemma 9.7. Assume that (9.22) holds and, in addition,
\[j \leq m + 2D + \max(|k|, |k_1|, |k_2|)/2, \quad \min(k, k_1, k_2) \geq -3.5m/N_0, \quad l \geq -m/14. \] (9.25)
Then
\[2^{(1-5\delta)j} \|Q_{jk}B_{m,l}[P_{k_1}f^\mu, P_{k_2}\partial_x f^\nu]\|_{L^2} \lesssim 2^{-2\delta^2m}. \]

Lemma 9.8. Assume that (9.22) holds and, in addition,
\[j \leq m + 2D + \max(|k|, |k_1|, |k_2|)/2, \quad \min(k, k_1, k_2) \geq -3.5m/N_0, \quad l_- < l \leq -m/14. \] (9.26)
Then
\[\|Q_{jk}T_{m,l}[P_{k_1}f^\mu, P_{k_2}f^\nu]\|_{B_j} \lesssim 2^{-2\delta^2m}. \]

We prove these lemmas in the following five subsections. Lemma 9.4 takes advantage of the approximate finite of propagation. Lemma 9.5 uses the null structure at low frequencies. Lemma 9.6 controls interactions that lead to the creation of a space-time resonance. Lemmas 9.7 and 9.8 correspond to interactions that are particularly difficult to control in dimension 2 and contain the main novelty of our analysis (see also [31]). They rely on all the estimates in Lemmas 8.1 and 8.2, and on the “slow propagation of iterated resonances” properties in Lemma 10.6.

We will use repeatedly the symbol bounds (9.7) and the main assumption (9.6).

9.3. Approximate finite speed of propagation. In this subsection we prove Lemma 9.4. We define the functions \(f^\mu_{j_1,k_1} \) and \(f^\nu_{j_2,k_2} \) as before, see (9.14), and further decompose
\[f^\mu_{j_1,k_1} = \sum_{n_1=0}^{j_1+1} f^\mu_{j_1,k_1,n_1}, \quad f^\nu_{j_2,k_2} = \sum_{n_2=0}^{j_2+1} f^\nu_{j_2,k_2,n_2} \] (9.27)
as in (7.33). If \(\min\{j_1, j_2\} \leq j - \delta m \) then the same argument as in the proof of (9.12) leads to rapid decay, as in (9.16). To bound the sum over \(\min\{j_1, j_2\} \geq j - \delta m \) we consider several cases.

Case 1. Assume first that
\[\min(k, k_1, k_2) \leq -m/2. \] (9.28)
Then we notice that
\[\left\| \mathcal{F}\{P_k T_{m,l}[f^\mu_{j_1,k_1}, f^\nu_{j_2,k_2}]\} \right\|_{L^\infty} \lesssim 2^{m} 2^{k+\min(k_1,k_2)/2} \sup_{s \in \mathcal{I}_m} \left[\left\| \hat{f}^\mu_{j_1,k_1}(s) \right\|_{L^2} \left\| \hat{f}^\nu_{j_2,k_2}(s) \right\|_{L^2} \right] \lesssim 2^{m} 2^\delta m 2^k 2^{-12/5} (j_1+j_2). \]
Therefore, the sum over \(j_1, j_2 \) with \(\min(j_1, j_2) \geq j - \delta m \) is controlled as claimed provided that \(k \leq -m/2 \). On the other hand, if \(k_1 = \min(k_1, k_2) \leq -m/2 \) then we estimate

\[
\| P_k T_{m,l} [f_{j_1,k_1}^\mu, f_{j_2,k_2}^\nu] \|_{L^2} \lesssim 2^{m} 2^{k+k_1/2} \sup_{s \in I_m} \left[\| f_{j_1,k_1}^\mu(s) \|_{L^1} \| f_{j_2,k_2}^\nu(s) \|_{L^2} \right] \\
\lesssim 2^{m} 2^{2\delta^2} 2^{k+k_1/2} 2^{1-(1-5\delta)j_1} 2^{-(1/2-\delta)j_2} 2^{-4\max(k_2,0)}. \tag{9.29}
\]

The sum over \(j_1, j_2 \) with \(\min(j_1, j_2) \geq j - \delta m \) is controlled as claimed in this case as well.

Case 2. Assume now that

\[
\min(k, k_1, k_2) \geq -m/2, \quad l \leq \min(k, k_1, k_2, 0)/2 - m/5. \tag{9.30}
\]

We use Lemma 10.5: we may assume that \(\min(k, k_1, k_2) + \max(k, k_1, k_2) \geq -100 \) and estimate

\[
\| P_k T_{m,l} [f_{j_1,k_1,n_1}^\mu, f_{j_2,k_2,n_2}^\nu] \|_{L^2} \lesssim 2^{m} 2^{k+k_1/2} \max(k_1, k_2, 0/2} 2^{55} 2^{1/2-n_1/2-n_2/2}
\sup_{s \in I_m} \left[\| f_{j_1,k_1,n_1}^\mu(r, \theta, s) \|_{L^2(rdr)} \| f_{j_2,k_2,n_2}^\nu(r, \theta, s) \|_{L^2(rdr)} \right].
\]

Using (7.35), (9.6), and summing over \(n_1, n_2 \), we have

\[
2^{1(1-5\delta)j} \| P_k T_{m,l} [f_{j_1,k_1}, f_{j_2,k_2}] \|_{L^2} \lesssim 2^{2\max(k_1, k_2, 0)} 2^{m} 2^{2\delta^2} 2^{1-(1-5\delta)j} 2^{(1-\delta')(j_1+j_2)}.
\]

The sum over \(j_1, j_2 \) with \(\min(j_1, j_2) \geq j - \delta m \) is controlled as claimed.

Case 3. Finally, assume that

\[
\min(k, k_1, k_2) \geq -m/2, \quad l \geq \min(k, k_1, k_2, 0)/2 - m/5. \tag{9.31}
\]

We use the formula (9.19). The contribution of \(A_{m,l} \) can be estimated as in (9.29), with \(2^m \) replaced by \(2^{-l} \), and we focus on the contribution of \(B_{m,l} [P_k f_{k_1}^\mu, P_k \partial_s f_{k_2}^\nu] \). We decompose \(\partial_s f^\nu(s) \), according to (8.8). The contribution of \(P_k E_{k_2}^{\alpha_2, \alpha_2} \) can be estimated easily,

\[
\| P_k B_{m,l} [f_{j_1,k_1}^\mu, P_k E_{\nu}^{\alpha_2, \alpha_2}] \|_{L^2} \lesssim 2^{m} 2^{l/2} \max(k_1, k_2) \| P_k E_{\nu}^{\alpha_2, \alpha_2}(s) \|_{L^2} \\
\lesssim 2^{m} 2^{2\delta^2} 2^{55} 2^{1/2} \max(k_1, k_2, 0/2} 2^{1/2-n_1/2-n_2/2} 2^{1-(1-5\delta)} 2^{1/2-n_1/2-n_2/2}
\sup_{s \in I_m} \left[\| f_{j_1,k_1,n_1}^\mu(r, \theta, s) \|_{L^2(rdr)} \| f_{j_2,k_2,n_2}^\nu(r, \theta, s) \|_{L^2(rdr)} \right].
\]

Using (7.35), (9.6), and summing over \(n_1, n_2 \), we have

\[
2^{1(1-5\delta)j} \| P_k B_{m,l} [f_{j_1,k_1}, f_{j_2,k_2}] \|_{L^2} \lesssim 2^{2\max(k_1, k_2, 0)} 2^{m} 2^{2\delta^2} 2^{1-(1-5\delta)j} 2^{1/2-n_1/2-n_2/2} 2^{1-(1-5\delta)j_1} 2^{1/2-n_1/2-n_2/2} 2^{1-(1-5\delta)j_2} 2^{-m/5}.
\]

The sum over \(j_1, j_2 \) with \(\min(j_1, j_2) \geq j - \delta m \) is suitably bounded.

We consider now the terms \(A_{k_2,j_3,j_4} 2^{\alpha_2} \) in (8.8), \([k_3,j_3], (k_4, j_4) \in X_{m,k_2} \) with \(\alpha_3 + \alpha_4 = \alpha_2 \), \(a_3 + a_4 \leq a_2 \). In view of (8.12), (8.14), and (8.20), \(A_{k_2,j_3,j_4}(s) \|_{L^2} \lesssim 2^{-4m/3+4\delta m} \]

and the sum over \(j_1 \geq j - \delta m \) of \(2^{1(1-5\delta)j} A_{k_2,j_3,j_4} 2^{\alpha_2} \|_{L^2} \) is suitably bounded.

We consider now the terms \(A_{k_2,j_3,j_4} 2^{\alpha_2} \) in (8.8), \([k_3,j_3], (k_4, j_4) \in X_{m,k_2} \) with \(\alpha_3 + \alpha_4 = \alpha_2 \), \(a_3 + a_4 \leq a_2 \). In view of (8.12), (8.14), and (8.20), \(A_{k_2,j_3,j_4} 2^{\alpha_2} \|_{L^2} \lesssim 2^{-4m/3+4\delta m} \]

and the sum over \(j_1 \geq j - \delta m \) of \(2^{1(1-5\delta)j} A_{k_2,j_3,j_4} 2^{\alpha_2} \|_{L^2} \) is suitably bounded.

The contributions of these terms can be estimated as in (9.32). On the other hand, to control the contribution of \(Q_{k} B_{m,l} [f_{j_1,k_1}, A_{k_2,j_3,j_4} 2^{\alpha_2}] \) when \(\max(j_3, j_4) \leq (1-\delta^2)m - |k_2| \) and \(|k_2| + D/2 \geq |k_3| \), we simply rewrite this in the form

\[
\sum_{x \in \mathbb{R}} q_m(s) \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} e^{i[x, \xi] + s\tilde{\varphi}(\xi, \eta, \sigma)]_2 L C_{\varphi_{j_1,k_1}}(\xi, \eta) e^{i[x, \xi] + s\tilde{\varphi}(\xi, \eta, \sigma)]_2 L C_{\varphi_{j_1,k_1}}(\xi, \eta) \}
\]

\[
\times \varphi_{k}(\xi - \eta) \varphi_{k_2}(\xi - \eta) m_{\mu\nu}(\xi - \eta) m_{\nu\beta}(\xi - \eta, \sigma) \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} e^{i[x, \xi] + s\tilde{\varphi}(\xi, \eta, \sigma)]_2 L C_{\varphi_{j_1,k_1}}(\xi, \eta) e^{i[x, \xi] + s\tilde{\varphi}(\xi, \eta, \sigma)]_2 L C_{\varphi_{j_1,k_1}}(\xi, \eta) \}
\]

\[
\int_{\mathbb{R}} d\xi d\eta.
\tag{9.33}
\]
where $\Phi'(\xi, \eta, \sigma) := \Lambda(\xi) - \Lambda_\mu(\eta) - \Lambda_\beta(\xi - \eta - \sigma) - \Lambda_{\gamma}(\sigma)$. Notice that
\[|\nabla_\xi [x \cdot \xi + s\Lambda(\xi) - s\Lambda_\mu(\eta) - s\Lambda_\beta(\xi - \eta - \sigma) - s\Lambda_{\gamma}(\sigma)]| \approx |x| \approx 2^l. \tag{9.34} \]

We can integrate by parts in ξ using Lemma 7.2 (i) to conclude that these are negligible contributions, pointwise bounded by $C2^{-3m}$. This completes the proof of the lemma.

9.4. The case of small frequencies

In this subsection we prove Lemma 9.5. The main point is that if $k := \min(k, k_1, k_2) \leq -3.5m/N'_0$ then $|\Phi(\xi, \eta)| \gtrsim 2^{k/2}$ for any $(\xi, \eta) \in D_{k, k_1, k_2}$, as a consequence of (10.6) and (9.22). Therefore the operators $T_{m, l}$ are nontrivial only if
\[l \geq k/2 - D. \tag{9.35} \]

Step 1. We consider first the operators $A_{m, l}$. Since $l \geq -2m/3 - 2D$, it suffices to prove that
\[2^{(1-50\delta)(m-k/2)} \||P_k T_{I}[f_{j_1, k_1}(s), f_{j_2, k_2}(s)]||_{L^2} \lesssim 2^{-3\delta^2 m}, \tag{9.36} \]
for any $s \in I_m$ and j_1, j_2, where T_{I} are the operators defined in (9.20), and f_{j_1, k_1} and f_{j_2, k_2} are as in (9.14). We may assume $k_1 \leq k_2$ and consider two cases.

Case 1. If $k = k_1$ then we estimate the left-hand side of (9.36) by
\[C2^{(1-50\delta)(m-k/2)} \cdot 2^{k+k/2-1} \left[\sup_{s, t \geq 2^m} \|e^{-it\Lambda_\nu} f_{j_1, k_1}(s)\|_{L^\infty} \|f_{j_2, k_2}(s)\|_{L^2} + 2^{-8m} \right] \lesssim 2^{(1-50\delta)(m-k/2)} \cdot 2^{k+2\delta^2 m} [2^{k-k_1 -m +50\delta j_1 2^{-4k^++} + 2^{-8m}], \]
using Lemma 7.4 and (7.40). This suffices to prove (9.36) if $j_1 \geq 9m/10$. On the other hand, if $j_1 \geq 9m/10$ then we estimate the left-hand side of (9.36) by
\[C2^{(1-50\delta)(m-k/2)} \cdot 2^{k+k/2-1} \left[\sup_{s, t \geq 2^m} \|f_{j_1, k_1}(s)\|_{L^2} \|e^{-it\Lambda_\nu} f_{j_2, k_2}(s)\|_{L^\infty} + 2^{-8m} \right] \lesssim 2^{(1-50\delta)(m-k/2)} \cdot 2^{k+2\delta^2 m} [2^{-(1-50\delta)j_1 2^{-5m/6} 2^{-2k^++} + 2^{-8m}], \]
using Lemma 7.4 and (7.44). This suffices to prove the desired bound (9.36).

Case 2. If $k = k_1$ then (9.36) follows using the $L^2 \times L^\infty$ estimate, as in Case 1, unless
\[\max(|k_1|, |k_2|) \leq 20, \quad \max(j_1, j_2) \leq m/3. \tag{9.37} \]
On the other hand, if (9.37) holds then it suffices to prove that, for $|\nu| \leq 2^{m-D}$,
\[2^{(1-50\delta)(m-k/2)} 2^{-k/2} ||P_k I_0[f_{j_1, k_1}(s), f_{j_2, k_2}(s)]||_{L^2} \lesssim 2^{-3\delta^2 m}, \tag{9.38} \]
\[I_0[f, g](\xi) := \int_{\mathbb{R}^2} e^{i(s+\nu)\Phi(\xi, \eta)} m_\nu(\xi, \eta) \hat{f}(\xi - \eta) \hat{g}(\eta) d\eta. \]
Indeed, (9.36) would follow from (9.38) and the inequality $l \geq k/2 - D \geq -2m/3 - 2D$ (see (9.22)–(9.35)), using the superposition argument in Lemma 7.4. On the other hand, the proof of (9.38) is similar to the proof of (8.15) in Lemma 8.1.

Step 2. We consider now the operators $B_{m, l}$. In some cases we prove the stronger bound
\[2^{(1-50\delta)(m-k/2)} 2^m ||P_k T_{I}[f_{j_1, k_1}(s), P_k \partial_s f_{j_1}(s)]||_{L^2} \lesssim 2^{-3\delta^2 m}, \tag{9.39} \]
for any $s \in I_m$ and j_1. We consider three cases.

Case 1. If $k = k_1$ then we use the bounds
\[||P_k \partial_s f_{j_1}(s)||_{L^2} \lesssim 2^{-m+5\delta m} (2^{k_2} + 2^{-m/2}), \]
\[||e^{-is\Lambda_\nu} P_k \partial_s f_{j_1}(s)||_{L^\infty} \lesssim 2^{-5m/3+6\delta^2 m}, \tag{9.40} \]
see (8.21) and (8.7). We also record the bound, which can be verified easily using integration by parts and Plancherel for any \(\rho \in \mathbb{R} \) and \(k' \in \mathbb{Z} \),

\[
\| e^{-i\rho \Lambda} P_{k'} \|_{L^\infty \to L^\infty} \lesssim \| \mathcal{F}^{-1} \{ e^{-i \rho \Lambda (\xi)} \varphi_{k'} (\xi) \} \|_{L^1} \lesssim 1 + 2^{k'/2} |\rho|.
\] (9.41)

If

\[
k_1 \geq -m/4, \quad j_1 \leq (1 - \delta^2)m
\] (9.42)

then we use (7.43), (9.40), and Lemma 7.4 to estimate the left-hand side of (9.39) by

\[
C^2 k^+ k_1 + 2(1 - 50\delta)(m - k/2) 2^m \left[2 - l \sup_{|\rho| \leq 2^{m/2}} \| e^{-i(s + \rho) \Lambda_{\mu}} f^\mu_{j_1, k_1}(s) \|_{L^\infty} \right] \| P_{k_2} \partial_s f^\nu(s) \|_{L^2} + 2^{-8m}
\]

\[
\lesssim 2^{k^+ k_1 + 2 - 40\delta m}.
\]

This suffices to prove (9.39) when (9.42) holds (recall the choice of \(\delta, N_0, N_1 \) in Definition 2.5). On the other hand, if

\[
k_1 \geq -m/4, \quad j_1 \geq (1 - \delta^2)m
\] (9.43)

then we use (9.41), (7.39), (9.40), and Lemma 7.4 to estimate the left-hand side of (9.39) by

\[
C^2 k^+ k_1 + 2(1 - 50\delta)(m - k/2) 2^m \left[2 - l \sup_{|\rho| \leq 2^{m/2}} \| e^{-i(s + \rho) \Lambda_{\mu}} P_{k_2} \partial_s f^\nu(s) \|_{L^\infty} \right] \| P_{k_2} \partial_s f^\nu(s) \|_{L^2} + 2^{-8m}
\]

\[
\lesssim 2^{10k^+ + 2 - 2m/3 + 10\delta m} 2^{-2l}.
\]

This suffices to prove (9.39), provided that (9.43) holds.

Finally, if \(k_1 \leq -m/4 \) then we use the bound

\[
\sup_{|\rho| \leq 2^{m - D}} \| e^{-i(s + \rho) \Lambda_{\mu}} f^\mu_{j_1, k_1}(s) \|_{L^\infty} \lesssim 2^{(3/2 - 25\delta) k_1 - m + 50\delta m} 2^D m,
\]

which follows from (7.39)–(7.40). Then we estimate the left-hand side of (9.39) by

\[
C^2 k^+ k_1 + 2(1 - 50\delta)(m - k/2) 2^m \cdot 2 - l \| e^{-i(s + \rho) \Lambda_{\mu}} P_{k_2} \partial_s f^\nu(s) \|_{L^\infty} + 2^{-8m}
\]

\[
\lesssim 2^{k^+ + 2 - 10\delta m} 2^{k_1}.
\]

The desired bound (9.39) follows, provided that \(k_1 \leq -m/4 \).

Case 2. If \(k = k_1 \) then (9.39) follows using \(L^2 \times L^\infty \) estimates, as in Case 1, unless

\[
\max(|k_1|, |k_2|) \leq 20.
\] (9.44)

Assuming (9.44), we notice that

\[
\sup_{|\rho| \leq 2^{m - D}} \| e^{-i(s + \rho) \Lambda_{\mu}} A_{\leq 0, y_0} f^\mu_{j_1, k_1}(s) \|_{L^\infty} \lesssim 2^{-m + 3\delta m} \quad \text{if} \quad j_1 \leq (1 - \delta^2)m,
\] (9.45)

\[
\sup_{|\rho| \leq 2^{m - D}} \| e^{-i(s + \rho) \Lambda_{\mu}} A_{\geq 1, y_0} f^\mu_{j_1, k_1}(s) \|_{L^\infty} \lesssim 2^{-m} \quad \text{if} \quad m/2 \leq j_1 \leq (1 - \delta^2)m,
\]

as a consequence of (7.43). Therefore, using the \(L^2 \times L^\infty \) estimate and (9.40), as before,

\[
2^{(1 - 50\delta)(m - k/2)} 2^m \left\| P_k I [A_{\leq 0, y_0} f^\mu_{j_1, k_1}(s), P_{k_2} \partial_s f^\nu(s)] \right\|_{L^2} \lesssim 2^{-3\delta^2 m},
\] (9.46)

if \(j_1 \leq (1 - \delta^2)m \), and

\[
2^{(1 - 50\delta)(m - k/2)} 2^m \left\| P_k I [A_{\geq 1, y_0} f^\mu_{j_1, k_1}(s), P_{k_2} \partial_s f^\nu(s)] \right\|_{L^2} \lesssim 2^{-3\delta^2 m},
\] (9.47)

if \(m/2 \leq j_1 \leq (1 - \delta^2)m \).

On the other hand, if \(j_1 \geq (1 - \delta^2)m \) then we can use the \(L^\infty \) bound \(\| e^{-i \Lambda_{\mu}} P_{k_2} \partial_s f^\nu(s) \|_{L^\infty} \lesssim 2^{-5m/3 + 6\delta^2 m} \) in (9.40), together with the general bound (9.41). As in (9.27) we decompose
\[f_{j_1,k_1} = \sum_{n_1=0}^{j_1} f_{j_1,k_1,n_1}, \] and record the bound \(\| f_{j_1,k_1,n_1}(s) \|_{L^2} \lesssim 2^{-j_1 + 50\delta j_1/2 - 2\delta m} \). Let \(X := 2^{(1-50\delta)(m-k/2)2^m} \| P_k I_l(f_{j_1,k_1,n_1}(s), P_{k_2} \partial_s f^{\nu}(s)) \|_{L^2} \). Using Lemma 7.4 it follows that

\[X \lesssim 2^{(1-50\delta)(m-k/2)2^m} \left[2^{k_2 - 1} \| f_{j_1,k_1,n_1}(s) \|_{L^2} \sup_{|\mu| \leq 2^{-l+2^2m}} \| e^{-i(s+\rho)\Lambda_k P_k \partial_s f^{\nu}(s))} \|_{L^\infty} + 2^{-8m} \right] \]

\[\lesssim 2^{-k/2 - 2m/3} 2^{n_1/2 - 4\delta m} 2^{4m}. \]

Using only \(L^2 \) bounds, see (9.40), and Cauchy–Schwarz we also have

\[X \lesssim 2^{(1-50\delta)(m-k/2)2^m} \cdot 2^{k_2 - 1} \| f_{j_1,k_1,n_1}(s) \|_{L^2} \| P_k \partial_s f^{\nu}(s) \|_{L^2} \lesssim 2^{k_2 n_1/2 - 4\delta m} 2^{4m}. \]

Finally, using (7.36), we have

\[X \lesssim 2^{(1-50\delta)(m-k/2)2^m} \cdot 2^{k_2 - 1} \| f_{j_1,k_1,n_1}(s) \|_{L^2} \| P_k \partial_s f^{\nu}(s) \|_{L^2} \lesssim 2^{-3\delta^2 m}. \] (9.48)

To prove (9.49) we decompose \(P_k \partial_s f^{\nu}(s) \) as in (8.8). The terms that are bounded in \(L^2 \) by \(2^{-4m/3 + 4m} \) lead to acceptable contributions, using the \(L^2 \times L^\infty \) argument with Lemma 7.4 and (7.44). It remains to consider the terms \(A_{k_2,k_3,j_3,k_4,j_4}(s) \) when \((j_3,j_4) \leq (1 - \delta^2)m \) and \(k_3,k_4 \in [-2m/N', 300] \). For these terms, it suffices to prove that

\[\| P_k I_l[A_{j_1,k_1} f_{j_1,k_1}(s), P_k \partial_s f^{\nu}(s)] \|_{L^2} \lesssim 2^{-3\delta^2 m}. \] (9.49)

To prove (9.49) we decompose \(P_k \partial_s f^{\nu}(s) \) as in (8.8). The terms that are bounded in \(L^2 \) by \(2^{-4m/3 + 4m} \) lead to acceptable contributions, using the \(L^2 \times L^\infty \) argument with Lemma 7.4 and (7.44). It remains to consider the terms \(A_{k_2,k_3,j_3,k_4,j_4}(s) \) when \((j_3,j_4) \leq (1 - \delta^2)m \) and \(k_3,k_4 \in [-2m/N', 300] \). For these terms, it suffices to prove that

\[\| P_k I_l[A_{j_1,k_1} f_{j_1,k_1}(s), A_{k_2,k_3,j_3,k_4,j_4}(s)] \|_{L^2} \lesssim 2^{-4m}. \] (9.50)

Notice that \(A_{k_2,k_3,j_3,k_4,j_4}(s) \) is given by an expression similar to (8.10). Therefore

\[F\{ P_k I_l[A_{j_1,k_1} f_{j_1,k_1}(s), A_{k_2,k_3,j_3,k_4,j_4}(s)] \}(\xi) = \int_{\mathbb{R}^2 \times \mathbb{R}^2} e^{i\tilde{\Phi}(\xi,\eta,\sigma)} f_{j_1,k_1}(\xi - \eta, s) \]

\[\times \varphi_{\leq -101}(\| \xi - \eta \| - \gamma_0) 2^{-l} \varphi_l(\Phi_{+\mu}(\xi, \eta)) \varphi_k(\xi) \varphi_{k_2}(\eta) \]

\[\times m_{\mu \nu}(\xi, \eta) m_{\nu \beta}(\eta, \sigma) \tilde{f}_{j_3,k_3}(\eta, -\sigma, s) f_{j_4,k_4}(\sigma, s) d\sigma d\eta, \] (9.51)

where \(\tilde{\Phi}(\xi, \eta, \sigma) = \Lambda(\xi) - \Lambda_\mu(\xi - \eta) - \Lambda_\beta(\eta - \sigma) - \Lambda_\gamma(\sigma) \). The main observation is that either

\[|\nabla_\eta \tilde{\Phi}(\xi, \eta, \sigma)| = |\nabla \Lambda_\mu(\xi - \eta) - \nabla \Lambda_\beta(\eta - \sigma)| \gtrsim 1, \] (9.52)

or

\[\big| \nabla_{\tilde{\eta}} \tilde{\Phi}(\xi, \eta, \sigma) \big| = \big| \nabla \Lambda_\beta(\eta - \sigma) - \nabla \Lambda_\gamma(\sigma) \big| \gtrsim 1, \] (9.53)

in the support of the integral. Indeed, \(\| \eta \| - \gamma_0 \| \leq 2^{-95} \) in view of the cutoffs on the variables \(\xi \) and \(\xi - \eta \). If \(\| \nabla_\eta \tilde{\Phi}(\xi, \eta, \sigma) \| \leq 2^{-D} \) then max\((|k_3|, |k_4|) \leq 300 \) and, using Proposition 10.2 (ii) (in particular (10.17)), it follows that \(|\eta - \sigma| \) is close to either \(\gamma_0/2 \), or \(p_{+1}(\gamma_0) \geq 1.1 \gamma_0 \), or \(p_{+1}(\gamma_0) - \gamma_0 \leq 0.9 \gamma_0 \). In these cases the lower bound (9.52) follows. The desired bound (9.50) then follows using Lemma 7.2 (i).

Case 3. If \(k = k_2 \) then we do not prove the stronger estimate (9.39). In this case the desired bound follows from Lemma 9.9 below.
Lemma 9.9. Assume that (9.22) holds and, in addition,
\[j \leq m + 2D + \max(|k|, |k_1|, |k_2|)/2, \quad k_2 \leq -2D, \quad 2^{-l} \leq 2^{10\delta m} + 2^{-k_2/2 + D}. \]
Then, for any \(j_1 \),
\[2^{(1-5\delta j} j ||Q_{j1} B_{m,l}[f_{j1,k_1}, P_{k_2} \partial_s f^\nu]||_{L^2} \lesssim 2^{-3\delta^2 m}. \]

Proof. We record the bounds
\[||P_{k_2} \partial_s f^\nu(s)||_{L^2} \lesssim 2^{-m+5\delta m (2k_2 + 2^{-m/2})}, \]
\[\sup_{|\rho| \leq 2\delta m} ||e^{-i(s+\rho)\Lambda_{\nu}} P_{k_2} \partial_s f^\nu(s)||_{L^\infty} \lesssim 2^{-5m/3+10\delta^2 m (2k_2/2+10\delta^2 + 1)}, \]
see (8.7), (8.21), and (9.41). We will prove that for any \(s \in I_m \)
\[2^{(1-5\delta j} j ||Q_{j1} I_l[f_{j1,k_1}, P_{k_2} \partial_s f^\nu(s)]||_{L^2} \lesssim 2^{-3\delta^2 m}. \]

Step 1. We notice the identity
\[Q_{j1} I_l[f_{j1,k_1}^\mu(s), P_{k_2} \partial_s f^\nu] = C \tilde{\varphi}_j^{(k)}(x) \int_{\mathbb{R}^2 \times \mathbb{R}^2} e^{i[s\Phi(\xi,\eta)+x \xi]} 2^{-l} \tilde{\varphi}_l \Phi(\xi,\eta)) \times \varphi_k(m_0(\xi,\eta)) f_{j1,k_1}^\mu(\xi-\eta,s) P_{k_2} \partial_s f^\nu(\eta,s) d\xi d\eta. \]
Therefore \[||Q_{j1} I_l[f_{j1,k_1}^\mu(s), P_{k_2} \partial_s f^\nu(s)]||_{L^2} \lesssim 2^{-4m}, \]
using integration by parts in \(\xi \) and Lemma 7.2 (i), unless
\[2^{-l} \leq \max \{2^{j_1+\delta m}, 2^{m+\max(|k|, |k_1|)/2 + D} \}. \]
On the other hand, assuming (9.58), \(L^2 \times L^\infty \) bounds using Lemma 7.4, the bounds (9.56), and Lemma 7.5 show that (9.57) holds in the following cases:
- either \(k_1 \leq -10 \) and \(j_1 \leq m - \delta m \),
- or \(k_1 \leq -10 \) and \(j_1 \geq m - \delta m \),
- or \(k_1 \geq 10 \) and \(j_1 \leq 2m/3 \),
- or \(k_1 \geq 10 \) and \(j_1 \geq 2m/3 \).

See the similar estimates in the proof of Lemma 9.5 above, in particular those in (Step 2, Case 1) and (Step 2, Case 2). In each case we estimate \(e^{-i(s+\rho)\Lambda_{\nu}} f_{j1,k_1}^\mu(s) \) in \(L^\infty \) and \(e^{-i(s+\rho)\Lambda_{\nu}} P_{k_2} \partial_s f^\nu(s) \) in \(L^2 \) when \(j_1 \) is small, and we estimate \(e^{-i(s+\rho)\Lambda_{\nu}} f_{j1,k_1}^\mu(s) \) in \(L^2 \) and \(e^{-i(s+\rho)\Lambda_{\nu}} P_{k_2} \partial_s f^\nu(s) \) in \(L^\infty \) when \(j_1 \) is large. We estimate the contribution of the symbol \(m_0 \) by \(2^{(k+k_1+k_2)/2} \) in all cases.

It remains to prove the desired bound (9.57) when \(k, k_1 \in [-20, 20] \). We can still prove this when \(f_{j1,k_1}^\mu(s) \) is replaced by \(A_{x_0 \gamma_0} f_{j1,k_1}^\mu(s) \), or when \(j_1 \geq m/3 - \delta m \), or when \(k_2 \leq -m/3 + \delta m \), using \(L^2 \times L^\infty \) estimates as before.

Step 2. To deal with the remaining cases we use the decomposition (8.8). The contribution of the error component \(P_{k_2} E_{m,0}^{\mu,0,02} \) can also be estimated in the same way when \(j_1 \leq m/3 - \delta m \). After these reductions, we may assume that
\[k, k_1 \in [-20, 20], \quad j_1 \leq m/3 - \delta m, \quad j \leq m + 2D, \quad k_2 \leq -m/3 + \delta m, -2D, \]
\[2^{-l} \lesssim 2^{10\delta m} + 2^{-k_2/2}. \]

It remains to prove that for any \([(k_3, j_3), (k_4, j_4)] \in X_{m,k_2} \)
\[2^{(1-5\delta j} j ||Q_{j1} I_l[A_{\gamma_0 \delta_0} f_{j1,k_1}^\mu, A_{k_2,k_3,j_3,j_4}^{\alpha_3,\alpha_4}]||_{L^2} \lesssim 2^{-4\delta^2 m}. \]
The $L^2 \times L^\infty$ argument still works to prove (9.61) if
\begin{equation}
\|A^{\alpha_3,\alpha_4;\alpha_4,\alpha_4}_{k_2,k_3,j_3,j_4}(s)\|_{L^2} \lesssim 2^{-7m/6+25\delta m}.
\end{equation}
We notice that this bound holds if $\max(j_3, j_4) \geq m/3 - \delta m$. Indeed, since $k_2 \leq -2D$, we have
\[P_{k_2}^\mu\beta_\gamma [A_{1,1,\{j_3,k_3\}}(s), A_{1,1,\{j_4,k_4\}}(s)] = 0,\]
and the bound (9.62) follows by $L^2 \times L^\infty$ arguments as in the proof of Lemma 8.1.

Therefore we may assume that $j_3, j_4 \leq m/3 - \delta m$. We examine the explicit formula (9.51). We claim that $|\mathcal{I}\{P_{k_2}^\mu\beta_\gamma [A_{1,1,\{j_3,k_3\}}(s), A_{1,1,\{j_4,k_4\}}(s)]\}\{\xi\}| \lesssim 2^{-10m}$ if $|k_3| \geq D/10$. Indeed, in this case the derivative of the phase $\tilde{\Phi}$ is $\gtrsim |k_3|/2$ in the support of the integral (recall that $|k_1| \leq 20$). Integration by parts in η, using Lemma 7.2 (i), shows that the resulting integral is negligible, as desired.

In view of Lemma 8.1 (ii) (3), it remains to prove (9.61) when, in addition to (9.60),
\begin{equation}
k_3, k_4 \in [-10, 10], \quad j_3, j_4 \leq m/3 - \delta m, \quad \beta = -\gamma.
\end{equation}
We examine again the formula (9.51) and notice that the (η, σ) derivative of the phase $\tilde{\Phi}$ is $\gtrsim 1$ unless $|\eta - \sigma| - |\gamma_0| \leq 2^{-98}$ and $|\sigma| - |\gamma_0| \leq 2^{-98}$. Therefore we may replace f_{η,k_3}^{β} with $A_{\leq -5,\gamma_0} f_{\eta,k_3}^{\beta}$ and f_{η,k_4}^{γ} with $A_{\leq -5,\gamma_0} f_{\eta,k_4}^{\gamma}$ at the expense of negligible errors. Finally, we may assume that $l \geq -D$ if $\mu = -$, and we may assume that $j \leq m + k_2 + D$ if $\mu = +$ (otherwise the approximate finite speed of propagation argument used in the proof of (9.12) and Lemma 9.4, which relies on integration by parts in ξ, gives rapid decay). Therefore, in proving (9.61) we may assume that
\begin{equation}
2^{-l - 2(1 - 50\delta)j} \lesssim 2^{m - 50\delta m} (1 + 2^{k_2/2 + 10\delta m}).
\end{equation}
Let $\kappa_r := 2^{50 m_2 k_2/2 - m/2}$. We observe now that if $|\eta - \sigma| - |\gamma_0| + |\sigma| - |\gamma_0| \leq 2^{-90}$ and $|\Xi_{\beta\gamma}(\eta, \sigma)| = |(\nabla_{\sigma} \Phi_{r\beta\gamma})(\eta, \sigma)| \leq 2\kappa_r$ then
\begin{equation}
|\sigma| - |\gamma_0| \geq 2^{k_2-10}, \quad |\eta - \sigma| - |\gamma_0| \geq 2^{k_2-10}.
\end{equation}
Indeed, we may assume that $\sigma = (\sigma_1, 0)$, $\eta = (\eta_1, \eta_2)$, $|\sigma_1 - |\gamma_0| \leq 2^{-90}$, $|\sigma_1 - |\gamma_0| \in [2^{k_2-2}, 2^{k_2+2}]$. Recalling that $\beta = -\gamma$ and using the formula (10.22), the condition $|\Xi_{\beta\gamma}(\eta, \sigma)| \leq 2\kappa_r$ gives
\[
\lambda'(\sigma_1) - \frac{\sigma_1 - \eta_1}{|\sigma_1 - \eta_1|} \lambda'(\sigma_1 - |\eta_1|) \leq 2\kappa_r, \quad \frac{|\eta_2|}{|\sigma - \eta|} \lambda'(\sigma - |\eta_1|) \leq 2\kappa_r.
\]
Since $k_2 \in [-m/3 + \delta m, -2D]$ and $\kappa_r = 2^{50 m_2 + k_2/2 - m/2}$ it follows that $|\eta_2| \leq \kappa_r 2^D \leq 2^{k_2 - D}$, $|\eta_1| \in [2^{k_2-3}, 2^{k_2+3}]$, and $|\lambda'(\sigma_1) - \lambda'(\sigma_1 - |\eta_1|)| \leq 4\kappa_r$. On the other hand, if $|\sigma_1 - |\gamma_0| \leq 2^{k_2-10}$ and $|\eta_1| \in [2^{k_2-3}, 2^{k_2+3}]$ then $|\lambda'(\sigma_1) - \lambda'(\sigma_1 - |\eta_1|)| \gtrsim 2^{k_2}$ (since $\lambda''(\gamma_0) = 0$ and $\lambda''(\gamma_0) \approx 1$), which gives a contradiction. The claims in (9.65) follow.

We examine now the formula (9.51) and recall (9.63) and (9.65). Using Lemma 7.2 (i) and integration by parts in σ, we notice that we may insert the factor $\varphi(\kappa_r^{-1}\Xi_{\beta\gamma}(\eta, \sigma))$, at the expense of a negligible error. It remains to prove that
\begin{equation}
2^{(1 - 50\delta)j} 2^m \|H\|_{L^2} \lesssim 2^{-4\delta^2 m},
\end{equation}
where, with $g_1 := A_{1,0,0}^{\beta}_{j_1,k_1}(s)$, $g_3 := A_{2,0,0,0}^{\beta}_{j_3,k_3}(s)$, $g_4 := A_{2,0,0,0}^{\beta}_{j_4,k_4}(s)$,
\[
\hat{H}(\xi) := \varphi_k(\xi) \int_{\mathbb{R}^2} e^{i s(\Lambda_0(\xi)-\Lambda_\mu(\eta))} g_1(\xi-\eta) 2^{-l} \varphi_\ell(\Phi+\mu\eta)(\xi,\eta) m_{\mu\nu}(\xi,\eta) \hat{G}_2(\eta) \, d\eta,
\]
\[
\hat{G}_2(\eta) := \varphi_{k_2}(\eta) \int_{\mathbb{R}^2} e^{i s(\Lambda_\mu(\xi)-\Lambda_\beta(\eta)-\Lambda_\gamma(\sigma))} m_{\mu\beta}(\eta,\sigma) \varphi(\kappa^\gamma R_\theta(\eta,\sigma)) \hat{g}_3(\eta-\sigma) \hat{g}_4(\sigma) \, d\sigma.
\]
We use now the more precise bound (7.42) to see that
\[
\|e^{-i s\Lambda_0} g_3\|_{L^\infty} + \|e^{-i s\Lambda_\mu} g_4\|_{L^\infty} \lesssim 2^{-m+\delta^2 m_2-k_2/2}.
\]
This bound is the main reason for proving (9.65). After removing the factor $\varphi(\kappa^\gamma R_\theta(\eta,\sigma))$ at the expense of a small error, and using also (A.2) and (9.41), it follows that
\[
\|e^{-i (s+\rho)\Lambda_\mu} G_2\|_{L^\infty} \lesssim (1 + |\rho|^2 k_2^2) 2^{k_2} \cdot 2^{-2m+8\delta^2 m_2-k_2} \lesssim (1 + |\rho|^2 k_2^2) 2^{-2m+8\delta^2 m},
\]
for any $\rho \in \mathbb{R}$. We use now the $L^2 \times L^\infty$ argument, together with Lemma 7.4, to estimate
\[
\|H\|_{L^2} \lesssim 2^{k_2/2-1} \cdot (1 + 2^{-1} 2^{k_2/2} 2^{-2m+12\delta^2 m} \lesssim 2^{-2m+12\delta^2 m_2} 2^{k_2/2-1}(1 + 10^8 m_2+8k_2/2)
\]
The desired bound (9.66) follows using also (9.64). \hfill \Box

9.5. The case of strongly resonant interactions, I. In this subsection we prove Lemma 9.6. This is where we need the localization operators $A_{\kappa_1,\gamma_1}^{(j)}$ to control the output. It is an instantaneous estimate, in the sense that the time evolution will play no role. Hence, it suffices to show the following: let $\chi \in C^\infty_0(\mathbb{R}^2)$ be supported in $[-1,1]$ and assume that j, l, s, m satisfy
\[
-m + \delta m/2 \leq l \leq 10m/N_0 \quad 2m^4 \leq s \leq 2m^{4+1}
\]
Assume that
\[
\|f\|_{H_{\kappa_0}^{\mu_{\kappa_1}^{j_{\mathbb{N}^1}}} \cap Z_1} + \|g\|_{H_{\kappa_0}^{\mu_{\kappa_1}^{j_{\mathbb{N}^1}}} \cap Z_1} \leq 1,
\]
and define, with $\chi_l(x) = \chi(2^{-l} x)$,
\[
\mathcal{I}[f,g](\xi) := \int_{\mathbb{R}^2} e^{i s(\Phi,\eta)} \chi_l(\Phi(\xi,\eta)) m_0(\xi,\eta) f(\xi-\eta) g(\eta) \, d\eta.
\]
Assume also that k, k_1, k_2, j, m satisfy (9.22) and (9.24). Then
\[
2^{\delta m/2} 2^{-l} \|Q_{jk} I [P_{k_1} f, P_{k_2} g]\|_{B_j} \lesssim 2^{-5\delta^2 m}.
\]
To prove (9.69) we define $f_{j_1,k_1}, g_{j_2,k_2}, f_{j_1,k_1,n_1}, g_{j_2,k_2,n_2}$ as in (7.33), $(k_1, j_1), (k_2, j_2) \in J$, $n_1 \in [0, j_1 + 1], n_2 \in [0, j_2 + 1]$. We will analyze several cases depending on the relative sizes of the main parameters $m, l, k, j_1, k_1, j_2, k_2$. In many cases we will prove the stronger bound
\[
2^{\delta m/2} 2^{-l} (1+5\delta)^j \|Q_{jk} I [f_{j_1,k_1}, g_{j_2,k_2}]\|_{L^2} \lesssim 2^{-6\delta^2 m}.
\]
These bounds clearly suffice to prove (9.69).

Case 1: We prove first the bound (9.71) under the assumption
\[
\max(j_1, j_2) \leq 9m/10, \quad 2l \leq \min(k, k_1, k_2, 0) - D.
\]
We may assume $j_1 \leq j_2$. With
\[
\kappa_0 := 2^{-m+2+\delta^2 m}, \quad \kappa_\gamma := 2\delta^2 m \left(2^{-m+3} \max(|k,|k_1,|k_2|)/4 + 2j_2-m\right)
\]
we decompose
\[\mathcal{F}I[f_{j_1, k_1}, g_{j_2, k_2}] = \mathcal{R}_1 + \mathcal{R}_2 + \mathcal{NR}, \]
where
\[\mathcal{R}_1(\xi) := \int_{\mathbb{R}^2} e^{i\Phi(\xi, \eta)} \chi(\Phi(\xi, \eta)) m_0(\xi, \eta) \varphi(\kappa_{\theta}^{-1} \Xi(\xi, \eta)) \varphi(\kappa_{\theta}^{-1} \Theta(\xi, \eta)) \hat{f}_{j_1, k_1}(\xi - \eta) \hat{g}_{j_2, k_2}(\eta) d\eta, \]
\[\mathcal{R}_2(\xi) := \int_{\mathbb{R}^2} e^{i\Phi(\xi, \eta)} \chi(\Phi(\xi, \eta)) m_0(\xi, \eta) \varphi(\kappa_{\theta}^{-1} \Xi(\xi, \eta)) \varphi(\kappa_{\theta}^{-1} \Theta(\xi, \eta)) \hat{f}_{j_1, k_1}(\xi - \eta) \hat{g}_{j_2, k_2}(\eta) d\eta, \]
\[\mathcal{NR}(\xi) := \int_{\mathbb{R}^2} e^{i\Phi(\xi, \eta)} \chi(\Phi(\xi, \eta)) m_0(\xi, \eta) \varphi(\kappa_{\theta}^{-1} \Xi(\xi, \eta)) \hat{f}_{j_1, k_1}(\xi - \eta) \hat{g}_{j_2, k_2}(\eta) d\eta. \]

With \(\psi_1 := \varphi_{(1-\delta/4)m} \) and \(\psi_2 := \varphi_{(1-\delta/4)m} \), we rewrite
\[\mathcal{NR}(\xi) = C2^{l}[\mathcal{NR}_1(\xi) + \mathcal{NR}_2(\xi)], \]
\[\mathcal{NR}_0(\xi) := \int_{\mathbb{R}^2} e^{is(\lambda)\Phi(\xi, \eta)} \xi(\hat{f}(\lambda) \psi_1(\lambda)) m_0(\xi, \eta) \varphi(\kappa_{\theta}^{-1} \Xi(\xi, \eta)) \hat{f}_{j_1, k_1}(\xi - \eta) \hat{g}_{j_2, k_2}(\eta) d\eta d\lambda. \]

Since \(\hat{\chi} \) is rapidly decreasing we have \(\|\varphi_k \cdot \mathcal{NR}_2\|_{L^\infty} \lesssim 2^{-4m} \), which gives an acceptable contribution. On the other hand, in the support of the integral defining \(\mathcal{NR}_1 \), we have that \(|s + \lambda| \approx 2^m \) and integration by parts in \(\eta \) (using Lemma 7.2 (i)) gives \(\|\varphi_k \cdot \mathcal{NR}_1\|_{L^\infty} \lesssim 2^{-4m}. \)

The contribution of \(\mathcal{R} = \mathcal{R}_1 + \mathcal{R}_2 \) is only present if we have a space-time resonance. In particular, in view of Proposition 10.2 (iii) (notice that the assumption (10.20) is satisfied due to (9.72)) we may assume that
\[-10 \leq k, k_1, k_2 \leq 10, \quad \pm(\sigma, \mu, \nu) = (+, +, +), \quad ||\xi| - \gamma_1| + |\eta - \xi|/2| \leq 2^{-D}. \quad (9.73) \]

Notice that, if \(\mathcal{R}(\xi) \neq 0 \) then
\[||\xi| - \gamma_1| \lesssim |\Phi(\xi, \xi/2)| \lesssim |\Phi(\xi, \eta)| + |\Phi(\xi, \eta) - \Phi(\xi, \xi/2)| \lesssim 2^l + \kappa_2^2. \quad (9.74) \]

Integration by parts using Lemma 7.3 shows that \(\|\varphi_k \cdot \mathcal{R}_2\|_{L^\infty} \lesssim 2^{-5m/2} \), which gives an acceptable contribution. To bound the contribution of \(\mathcal{R}_1 \) we will show that
\[2^{6m/2}2^{-l} \sup_{|\xi| \leq 1} \left| (1 + 2^m ||\xi| - \gamma_1|) \mathcal{R}_1(\xi) \right| \lesssim 2^{9m/10}, \quad (9.75) \]
which is stronger than the bound we need in (9.71). Indeed for \(j \) fixed we estimate
\[\sup_{0 \leq n \leq j} 2^{(1-50\delta)j}2^{-n/2+49\delta n} \| A_{n, \gamma_1} Q_{j, k} \mathcal{F}^{-1} \mathcal{R}_1 \|_{L^2} \leq \sup_{0 \leq n \leq j} 2^{(1-50\delta)j}2^{-n/2+49\delta n} \| \varphi_{-n}^{[-j,0]} (2^{100} ||\xi| - \gamma_1|) \mathcal{R}_1(\xi) \|_{L^2} \]
\[\lesssim \sum_{n \geq 0} 2^{(1-50\delta)j}2^{-n/2-(1/2-49\delta) \min(n,j)} \| \varphi_{-n}^{(-\infty,0)} (2^{100} ||\xi| - \gamma_1|) \mathcal{R}_1(\xi) \|_{L^2}, \quad (9.76) \]
and notice that (9.71) would follow from (9.75) and the assumption \(j \leq m + 3D \).

Recall from Lemma 7.5 and (9.73) (we may assume \(f_{j_1, k_1} = f_{j_1, k_1, 0}, g_{j_2, k_2} = g_{j_2, k_2, 0} \)) that
\[2^{(1/2-\delta')j_1} \| \hat{f}_{j_1, k_1} \|_{L^\infty} + 2^{(1-\delta')j_1} \sup_{\theta \in \mathbb{S}^1} \| \hat{f}_{j_1, k_1}(r\theta) \|_{L^2(rdr)} \lesssim 1, \]
\[2^{(1/2-\delta')j_2} \| \hat{g}_{j_2, k_2} \|_{L^\infty} + 2^{(1-\delta')j_2} \sup_{\theta \in \mathbb{S}^1} \| \hat{g}_{j_2, k_2}(r\theta) \|_{L^2(rdr)} \lesssim 1. \quad (9.77) \]
We ignore first the factor \(\chi_t(\Phi(\xi, \eta)) \). In view of Proposition 10.2 (ii) the \(\eta \) integration in the definition of \(R_1(\xi) \) takes place essentially over a \(\kappa_\theta \times \kappa_\rho \) box in the neighborhood of \(\xi/2 \). Using (9.74) and (9.77), and estimating \(\| f_{j_1,k_1} \|_{L^\infty} \lesssim 1 \), we have, if \(j_2 \geq m/2 \),

\[
|(1 + 2^m||\xi| - \gamma_1)||R_1(\xi)| \lesssim 2^m (2^l + \kappa_r^2)^{-2^{-l/2}} 2^{j_2 + j_2^2 + j_2} \phi_{j_2} \kappa_\theta \kappa_\rho \lesssim (2^l + \kappa_r^2) 2^{-j_2 (1/2 - \delta')} 2^{2\delta m}.
\]

On the other hand, if \(j_2 \leq m/2 \) we estimate \(\| f_{j_1,k_1} \|_{L^\infty} + \| f_{j_2,k_2} \|_{L^\infty} \lesssim 1 \) and conclude that

\[
|(1 + 2^m||\xi| - \gamma_1||R_1(\xi)| \lesssim 2^{m+1} \kappa_\theta \kappa_\rho \lesssim 2^l 2^{\delta^2} m.
\]

The desired bound (9.75) follows if \(\kappa_\theta^{2l-1} \leq 2\delta/4 \).

Assume now that \(\kappa_\theta^2 \geq 2^l 2^{j_2/4} \) (in particular \(j_2 \geq 11m/20 \)). In this case the restriction \(\Phi(\xi, \eta) \leq 2^l \) is stronger and we have to use it. We decompose, with \(p_- := \lfloor \log_2(2^{l/2} \kappa_\theta^{-1}) + D \rfloor \),

\[
R_1(\xi) = \sum_{p \in [p_-]} R_p^p(\xi),
\]

\[
R_p^p(\xi) := \int_{\mathbb{R}^2} e^{i \Phi(\xi, \eta)} \chi_t(\Phi(\xi, \eta)) m_0(\xi, \eta) \phi_{j_2}^{p-1}(\kappa_\theta^{-1} \Theta(\xi, \eta)) \phi_{j_2}^{p-1}(\kappa_\theta^{-1} \Theta(\xi, \eta)) f_{j_1,k_1}(\xi - \eta) g_{j_2,k_2}(\eta) d\eta.
\]

As in (9.74), notice that if \(R_p^p(\xi) \neq 0 \) then \(||\xi| - \gamma_1|| \lesssim 2^{p} \kappa_\theta^2 \). The term \(R_p^p(\xi) \) can be bounded as before. Moreover, using the formula (10.46), it is easy to see that if \(\xi = (s, 0) \) is fixed then the set of points \(\eta \) that satisfy the three restrictions \(\Phi(\xi, \eta) \approx 2^l \), \(|\nabla_\eta \Phi(\xi, \eta)| \approx 2^p \kappa_\rho \), \(|\xi \cdot \eta| \approx \kappa_\theta \) is essentially contained in a union of two \(\kappa_\theta \times 2^l \kappa_\rho^{-1} \) boxes. Using (9.77), and estimating \(\| f_{j_1,k_1} \|_{L^\infty} \lesssim 1 \), we have

\[
|(1 + 2^m||\xi| - \gamma_1||R_p^p(\xi)| \lesssim 2^{m+2p} \kappa_\theta^{-2} 2^{-j_2 + \delta + j_2} \kappa_\rho (2^l 2^{-p} \kappa_\theta^{-1})^{1/2} \lesssim 2^{3p/2} 2^{-m + \delta^2 \rho\gamma_2/2 j_2 + \delta^2 j_2}.
\]

This suffices to prove (9.75) since \(2^p \leq 1 \), \(2^{-l/2} \leq 2^m/2 \), and \(2^{j_2} \leq 2^{9m/10} \), see (9.72).

Case 2. We assume now that

\[
2l \geq \min(k, k_1, k_2, 0) - D.
\]

In this case we prove the stronger bound (9.70). We can still use the standard \(L^2 \times L^\infty \) argument, with Lemma 7.4 and Lemma 7.5, to bound the contributions away from \(\gamma_0 \). For (9.70) it remains to prove that

\[
2^{-l/2}(1 - 5\delta)(m + |k|)/2 \| P_k [A_{\geq 1, \gamma_0} f_{j_1,k_1}, A_{\geq 1, \gamma_0} g_{j_2,k_2}] \|_{L^2} \lesssim 2^{-\delta^2 m}. \tag{9.79}
\]

The bound (9.79) follows if \(\max(j_1, j_2) \geq m/3 \), using the same \(L^2 \times L^\infty \) argument. On the other hand, if \(j_1, j_2 \leq m/3 \) then we use (7.37) and the more precise bound (7.42) to see that

\[
\| A_{p, \gamma_0} h \|_{L^2} \lesssim 2^{-p/2}, \quad \| e^{-it \Lambda} A_{p, \gamma_0} h \|_{L^\infty} \lesssim 2^{-m + 2\delta^2 m} \min \left(2^{p/2}, 2^{m/2 - \gamma_0} \right),
\]

where \(h \in \{ f_{j_1,k_1}, g_{j_2,k_2} \} \), \(p \geq 1 \), and \(t \approx 2^m \). Therefore, using Lemma 7.4,

\[
\| P_k I [A_{p_1, \gamma_0} f_{j_1,k_1}, A_{p_2, \gamma_0} g_{j_2,k_2}] \|_{L^2} \lesssim 2^k 2^{-\max(p_1, p_2)/2} \cdot 2^{-m + 2\delta^2 m} \min(p_1, p_2)/2.
\]

The desired bound (9.79) follows, using also the simple estimate

\[
\| P_k I [A_{p_1, \gamma_0} f_{j_1,k_1}, A_{p_2, \gamma_0} g_{j_2,k_2}] \|_{L^2} \lesssim 2^k 2^{-\max(p_1, p_2)/2}.
\]

Case 3. Assume now that

\[
\max(j_1, j_2) \geq 9m/10, \quad j \leq \min(j_1, j_2) + m/4, \quad 2l \leq \min(k, k_1, k_2, 0) - D.
\]
Using Lemma 10.5 and (7.35) we estimate
\[
\|P_k I[f_{j_1,k_1,n_1}, g_{j_2,k_2,n_2}]\|_{L^2} \lesssim 2^{k/2} 2^{30m} 2^{l/2-\eta_1-2n_2/2} \| \sup_{\theta \in \mathbb{S}^1} |f_{j_1,k_1,n_1}(\theta r)|\|_{L^2(\theta r d\theta)} \| \sup_{\theta \in \mathbb{S}^1} |g_{j_2,k_2,n_2}(\theta r)|\|_{L^2(\theta r d\theta)} \tag{9.80}
\]
and the desired bound (9.70) follows.

Case 4. Finally, assume that
\[
j_2 \geq 9m/10, \quad j \geq j_1 + m/4, \quad 2l \leq \min(k,k_1,k_2,0) - \mathcal{D}. \tag{9.81}
\]
In particular, \(j_1 \leq 7m/8\). We decompose, with \(\kappa_\theta = 2^{-2m/5}\),
\[
I[f_{j_1,k_1}, g_{j_2,k_2}] = I_\| [f_{j_1,k_1}, g_{j_2,k_2}] + I_\perp [f_{j_1,k_1}, g_{j_2,k_2}],
\]
\[
I_\| [f,g](\xi) = \int_{\mathbb{R}^2} e^{i\Phi(\xi,\eta)} \chi_I(\Phi(\xi,\eta)) \varphi(\kappa_\theta^{-1} \Omega_\eta \Phi(\xi,\eta)) \hat{f}(\xi - \eta) \hat{g}(\eta) d\eta,
\]
\[
I_\perp [f,g](\xi) = \int_{\mathbb{R}^2} e^{i\Phi(\xi,\eta)} \chi_I(\Phi(\xi,\eta))(1 - \varphi(\kappa_\theta^{-1} \Omega_\eta \Phi(\xi,\eta))) \hat{f}(\xi - \eta) \hat{g}(\eta) d\eta. \tag{9.82}
\]
Integration by parts using Lemma 7.3 shows that \(\| \mathcal{F} P_k I_\perp [f_{j_1,k_1}, g_{j_2,k_2}] \|_{L^\infty} \lesssim 2^{-5m/2}\). In addition, using Schur’s test and Proposition 10.4 (i), (iii),
\[
\|P_k I_\| [f_{j_1,k_1}, g_{j_2,k_2,n_2}]\|_{L^2} \lesssim 2^{30m} 2^{l/2} \| \int_{\mathbb{R}^2} \| \hat{g}(\eta) d\eta \|_{L^2(\eta d\eta)} \lesssim 2^{9m} 2^{l/2-5/2} 2^{(-1-5/2)j_2 2m/2},
\]
which gives an acceptable contribution if \(n_2 \geq \mathcal{D}\).

It remains to estimate the contribution of \(I_\| [f_{j_1,k_1}, g_{j_2,k_2,n_2}] \) for \(n_2 \geq \mathcal{D}\). Since \(|\eta|\) is close to \(\gamma_1\) and \(|\Phi(\xi,\eta)|\) is sufficiently small (see (9.81)), it follows from (10.6) that \(\min(k,k_1,k_2) \geq -40\); moreover, the vectors \(\xi\) and \(\eta\) are almost aligned and \(|\Phi(\xi,\eta)|\) is small, so we may also assume that \(\max(k,k_1,k_2) \leq 100\). Moreover, \(|\nabla_\eta \Phi(\xi,\eta)| \geq 1\) in the support of integration of \(I_\| [f_{j_1,k_1}, g_{j_2,k_2,n_2}]\), in view of Proposition 10.2 (iii). Integration by parts in \(\eta\) using Lemma 7.2 (i) then gives an acceptable contribution unless \(j_2 \geq (1 - \delta^2)m\). We may also reset \(\kappa_\theta = 2^{\delta^2 m - m/2}\), up to small errors, using Lemma 7.3.

To summarize, we may assume that
\[
j_2 \geq (1 - \delta^2)m, \quad j \geq j_1 + m/4, \quad k,k_1,k_2 \in [-100,100], \quad n_2 \geq \mathcal{D}, \quad \kappa_\theta = 2^{\delta^2 m - m/2}. \tag{9.83}
\]
We decompose, with \(p_- := \lfloor l/2 \rfloor\),
\[
I_\| [f_{j_1,k_1}, g_{j_2,k_2,n_2}] = \sum_{p_- \leq p \leq \mathcal{D}} P^p_\| [f_{j_1,k_1}, g_{j_2,k_2,n_2}],
\]
\[
P^p_\| [f,g](\xi) := \int_{\mathbb{R}^2} e^{i\Phi(\xi,\eta)} \chi_I(\Phi(\xi,\eta)) \varphi(\kappa_\theta^{-1} \Theta(\xi,\eta)) \varphi_p^{[p-,\mathcal{D}]}(\nabla_\xi \Phi(\xi,\eta)) \hat{f}(\xi - \eta) \hat{g}(\eta) d\eta.
\]
It suffices to prove that, for any \(p\),
\[
2^{-2(1-5/2)p} \| Q_{jk} P^p_\| [f_{j_1,k_1}, g_{j_2,k_2,n_2}]\|_{L^2} \lesssim 2^{-\delta m}. \tag{9.84}
\]
As a consequence of Proposition 10.4 (iii), under our assumptions in (9.83) and recalling that \(|\nabla_\eta \Phi(\xi,\eta)| \geq 1\) in the support of the integral,
\[
\sup_{\xi} \int_{\mathbb{R}^2} |\chi_I(\Phi(\xi,\eta)) | \varphi(\kappa_\theta^{-1} \Theta(\xi,\eta)) \varphi_{\leq -\mathcal{D}/2}(|\eta| - \gamma_1) 1_{\mathcal{D}_k,k_1,k_2}(\xi,\eta) d\eta \lesssim 2^{\delta m} 2^l \kappa_\theta,
\]
and, for any $p \geq p_-$,
\[
\sup_{\eta} \int_{\mathbb{R}^2} |\chi_l(\Phi(\xi, \eta))| |\varphi(k^{-1} \Theta(\xi, \eta))| \varphi(p(\nabla \xi \Phi(\xi, \eta)))| \varphi \approx -\frac{p}{2} (|\eta| - \gamma_1) 1_{D_k,k_2} (\xi, \eta) d\xi \lesssim 2^{5^2 m} 2^{l - p} k_0.
\]

Using Schur’s test we can then estimate, for $p \geq p_-$,
\[
\|P_k P_l^p [f_{j_1,k_1}, g_{j_2,k_2,n_2}]\|_{L^2} \lesssim 2^{-p/2} 2^{-(l - m + 4)D^2 m} \|f_{j_1,k_1}\|_{L^\infty} \|g_{j_2,k_2,n_2}\|_{L^2} \lesssim 2^{-p/2} 2^{-(l - m + 4)D^2 m}.
\]

The desired bound (9.83) follows if $j \leq m + p + 4Dm$. On the other hand, if $j \geq m + p + 4Dm$ then we use the approximate finite speed of propagation argument to show that
\[
\|Q_{jk} P_l^p [f_{j_1,k_1}, g_{j_2,k_2,n_2}]\|_{L^2} \lesssim 2^{-3m}.
\]

Indeed, we write, as in Lemma 7.4, $\chi_l(\Phi(\xi, \eta)) = e^{i\rho \Phi(\xi, \eta)} d\rho$ and notice that $|\nabla \xi [x \cdot \xi + (s + \rho) \Phi(\xi, \eta)]| \approx 2^l$ in the support of the integral, provided that $|x| \approx 2^l$ and $|\rho| \lesssim 2^m$. Then we recall that $j \geq j_1 + m/4$, see (9.83), and use Lemma 7.2 (i) to prove (9.85). This completes the proof of Lemma 9.6.

9.6. **The case of weakly resonant interactions.** In this subsection we prove Lemma 9.7. We decompose $P_k \partial_k f^\nu$ as in (8.8) and notice that the contribution of the error term can be estimated using the $L^2 \times L^{\infty}$ argument as before.

To estimate the contributions of the terms $A_{k_2,k_3,j_3,k_4,j_4}^{a_3,a_4,a_4,a_4}$ we need more careful analysis of trilinear operators. With $\Phi(\xi, \eta, \sigma) = \Lambda(\xi, \eta, \sigma) = \Lambda(\xi - \eta) - \Lambda(\eta - \sigma) - \Lambda(\sigma)$ and $p \in \mathbb{Z}$ we define the trilinear operators $J_{l,p}$ by
\[
J_{l,p}[f,g,h](\xi, s) := \int_{\mathbb{R}^2} e^{i\Phi(\xi, \eta, \sigma)} f(\xi - \eta) 2^{-l} \phi_{l}(\Phi(\xi + \mu \nu), \Phi(\xi, \eta, \sigma)) \varphi_{k_2}(\xi, \eta, \sigma) \varphi_3(h, \sigma) d\xi d\eta.
\]

Let $J_{l,p} = \sum_{q \leq p} J_{l,q}$ and $J_l = \sum_{q \in \mathbb{Z}} J_{l,q}$. Let
\[
C_{l,p}[f,g,h] := \int_{\mathbb{R}^2} g_m(s) J_{l,p}[f,g,h](s) ds, \quad C_{l,p} := \sum_{q \leq p} C_{l,q}, \quad C_l := \sum_{q \in \mathbb{Z}} C_{l,q}.
\]

Notice that
\[
B_{m,l}[f_{j_1,k_1}^{\mu}, A_{k_2,k_3,j_3,k_4,j_4}^{a_3,a_4,a_4,a_4}] = C_l[f_{j_1,k_1}^{\mu}, f_{j_3,k_3}^{\beta}, f_{j_4,k_4}^{\gamma}].
\]

To prove the lemma it suffices to show that
\[
2^{(1 - 50\delta)l} \|Q_{jk} C_l[f_{j_1,k_1}^{\mu}, f_{j_3,k_3}^{\beta}, f_{j_4,k_4}^{\gamma}]\|_{L^2} \lesssim 2^{-3D^2 m}
\]
provided that
\[
k, k_1, k_2 \in [-3.5m/N_0', 3.2m/N_0], \quad j \leq m + 2D + \max(|k_1|, |k_2|)/2,
k_2, k_3, k_4 \leq m/N_0', \quad (k_3, k_4, j_3, j_4) \in X_{m,k_2}.
\]

The bound (9.41) and the same argument as in the proof of Lemma 7.4 show that
\[
\|P_k J_{l,p}[f,g,h](s)\|_{L^2} \lesssim 2^{(k + k_3 + k_4)/2} 2^{k_3 + k_4 + k_5 + k_4}/2 2^{-l} \min\{|f|_{\infty} |g|_{\infty} |h|_{\infty}, |f|_{\infty} |g|_{\infty} |h|_{2},
(1 + 2^{-l + 2D^2 m + 3 \max(k_3, k_4)/2}) |f|_{2} |g|_{\infty} |h|_{\infty} + 2^{-10m} |f|_{2} |g|_{2} |h|_{2},
\]

(9.91)
provided that \(s \in I_m, 2^{-p} + 2^{-l} \leq 2^{m-2\delta^2 m}, f = P_{[k_1-8,k_1+8]} f, g = P_{[k_3-8,k_3+8]} g, h = P_{[k_4-8,k_4+8]} h \), and, for \(F \in \{f, g, h\}, \)
\[
|F|_q := \sup_{|t| \in [2^{m-4}, 2^{m+4}]} \|e^{it\Delta} F\|_{L^q}.
\] (9.92)

In particular, the bounds (9.91) and (7.43) show that

\[
2^{(1-50\delta)j} \|Q_{jk} C_{[j_1, k_1], \beta_{j_3, k_3}, \gamma_{j_4, k_4}]\|_{L^2} \lesssim 2^{-\delta m}
\]

provided that \(\max(j_1, j_3, j_4) \geq 20m/21 \). Therefore, it remains to prove (9.89) when

\[
\max(j_1, j_3, j_4) \leq 20m/21.
\] (9.93)

Step 1. We consider first the contributions of \(C_{t,p}[f_{j_1, k_1}, f_{j_3, k_3}, f_{j_4, k_4}] \) for \(p \geq -11m/21 \). In this case, we integrate by parts in \(s \) and rewrite

\[
C_{t,p}[f_{j_1, k_1}, f_{j_3, k_3}, f_{j_4, k_4}] = i2^{-p} \left\{ \int_\mathbb{R} q_m(s) \widetilde{J}_{t,p}[f_{j_1, k_1}, f_{j_3, k_3}, f_{j_4, k_4}](s) ds + \widetilde{C}_{t,p}[\partial_s f_{j_1, k_1}, f_{j_3, k_3}, f_{j_4, k_4}] + \tilde{C}_{t,p} [f_{j_1, k_1}, \partial_{j_3, k_3}, f_{j_4, k_4}] + \tilde{C}_{t,p}[f_{j_1, k_1}, f_{j_3, k_3}, \partial_s f_{j_4, k_4}] \right\},
\]

where the operators \(\widetilde{J}_{t,p} \) and \(\tilde{C}_{t,p} \) are defined in the same way as the operators \(J_{t,p} \) and \(C_{t,p} \), but with \(\varphi_p(\tilde{\Phi}(\xi, \eta, \sigma)) \) replaced by \(\tilde{\varphi}_p(\tilde{\Phi}(\xi, \eta, \sigma), \tilde{\varphi}_p(x) = 2^p x^{-1} \varphi_p(x) \), (see the formula (9.86)). The operator \(\widetilde{J}_{t,p} \) also satisfies the \(L^2 \) bound (9.91). Recall the \(L^2 \) bounds (8.21) on \(\partial_s P_k \tilde{f}_\sigma \). Using (9.91) (with \(\partial_s P_k \tilde{f}_\sigma \) always placed in \(L^2 \)), notice that \(2^{-2l} \lesssim 2^{m/4} \), it follows that

\[
\sum_{p \geq -11m/21} 2^{(1-50\delta)j} \|P_k C_{t,p}[f_{j_1, k_1}, f_{j_3, k_3}, f_{j_4, k_4}]\|_{L^2} \lesssim 2^{-3\delta^2 m}.
\]

Step 2. For (9.89) it remains to prove that

\[
2^{(1-50\delta)j} \|Q_{jk} C_{t, \leq -11m/21}[f_{j_1, k_1}, f_{j_3, k_3}, f_{j_4, k_4}]\|_{L^2} \lesssim 2^{-3\delta^2 m}.
\] (9.94)

Since \(\max(j_1, j_3, j_4) \leq 20m/21 \), see (9.93), we have the pointwise approximate identity

\[
P_{k} C_{t, \leq -11m/21}[f_{j_1, k_1}, f_{j_3, k_3}, f_{j_4, k_4}]
\]

\[
= P_{k} C_{t, \leq -11m/21}[A_{\geq D_1, 70^{1/\sigma}} f_{j_1, k_1}, A_{\geq D_1, 10, 70^{1/\sigma}} f_{j_3, k_3}, A_{\geq D_1, 20, 70^{1/\sigma}} f_{j_4, k_4}] + P_{k} C_{t, \leq -11m/21}[A_{\leq D_1, 70^{1/\sigma}} f_{j_1, k_1}, A_{\leq D_1, 10, 70^{1/\sigma}} f_{j_3, k_3}, A_{\leq D_1, 20, 70^{1/\sigma}} f_{j_4, k_4}] + O(2^{-4m}),
\] (9.95)

where \(D_1 \) is the large constant used in section 10. This is a consequence of Lemma 7.2 (i) and the observation that \(|\nabla_{\eta, \sigma} \tilde{\Phi}(\xi, \eta, \sigma)| \gtrsim 1 \) in the other cases. Letting \(g_1 = A_{\geq D_1, 70^{1/\sigma}} f_{j_1, k_1}, g_3 = A_{\geq D_1, 10, 70^{1/\sigma}} f_{j_3, k_3}, g_4 = A_{\geq D_1, 20, 70^{1/\sigma}} f_{j_4, k_4}, h_1 = A_{\leq D_1, 70^{1/\sigma}} f_{j_1, k_1}, h_3 = A_{\leq D_1, 10, 70^{1/\sigma}} f_{j_3, k_3}, h_4 = A_{\leq D_1, 20, 70^{1/\sigma}} f_{j_4, k_4}, \) it remains to prove that

\[
2^{(1-50\delta)j} \|Q_{jk} C_{t, \leq -11m/21}[g_1, g_3, g_4]\|_{L^2} \lesssim 2^{-3\delta^2 m}.
\] (9.96)

and

\[
2^{(1-50\delta)j} \|Q_{jk} C_{t, \leq -11m/21}[h_1, h_3, h_4]\|_{L^2} \lesssim 2^{-3\delta^2 m}.
\] (9.97)

Proof of (9.96). We use Lemma 10.6 (i). If \(l \leq -4m/N_0' \) then \(|\nabla_{\eta, \sigma} \tilde{\Phi}(\xi, \eta, \sigma)| \gtrsim 1 \) in the support of the integral (due to (10.66)) and the contribution is negligible (due to Lemma 7.2 (i) and (9.93)). On the other hand, if

\[
l \geq -4m/N_0' \quad \text{and} \quad j \leq 2m/3 + \max(j_1, j_3, j_4)
\] (9.98)
then we apply (9.91). The left hand side of (9.96) is dominated by
\[
C_2(1-5\delta)j_2^m(1 + 2^{-2l})2^{-5m/3 + 8\delta^2m/2 - \max(j_1,j_3,j_4)}(1-5\delta)^{\frac{m}{2}} \lesssim 2^{-10\delta},
\]
as we notice that max\((k,k_1,k_2,k_3,k_4)\) \leq 20. This suffices to prove (9.96) in this case.

Finally, if
\[
l \geq -4m/N_0' \quad \text{and} \quad j \geq 2m/3 + \max(j_1,j_3,j_4)
\]
then max\((j_1,j_3,j_4)\) \leq m/3 + 10\delta m \quad \text{and} \quad j \geq 2m/3. \quad (9.99)

We define the localized trilinear operators
\[
\mathcal{F}\mathcal{J}_{l \leq p,\kappa}[f,g,h]\left(\xi,\eta,\sigma\right) := \int_{\mathbb{R}^2} e^{i\tilde{\theta}(\xi,\eta,\sigma)f(\xi - \eta)}2^{-l}\tilde{\phi}_l(\hat{\Phi}(\xi,\eta,\sigma))\varphi_{\leq p}(\tilde{\phi}(\xi,\eta,\sigma))
\]
\[
\times \varphi(\kappa^{-1}\nabla_{\eta,\sigma}\tilde{\phi}(\xi,\eta,\sigma))\varphi_k(\eta)\nabla_{\eta,\sigma}\tilde{\phi}(\xi,\eta,\sigma)\hat{h}(\sigma)\,d\xi d\eta,
\]
which are similar to the trilinear operators defined in (9.86) with the additional cutoff factor in \(\nabla_{\eta,\sigma}\tilde{\phi}(\xi,\eta,\sigma)\) and \(p = -11m/21\). Set \(\kappa := 2^{-m/2+\delta^2m}\) and notice that
\[
\|\mathcal{J}_{l \leq 11m/21}[g_1,g_3,g_4] - \mathcal{J}_{l \leq 11m/21}\|L^\infty \lesssim 2^{-6m},
\]
as a consequence of Lemma 7.2 (i). Moreover, \(\|\nabla_{\xi}\tilde{\phi}(\xi,\eta,\sigma)\| \lesssim 2^{2p/3} \approx 2^{-22m/63}\) in the support of the integral defining \(\mathcal{J}_{l \leq 11m/21}\), due to Lemma 10.6 (i). Therefore, using the approximate finite speed of propagation of argument (integration by parts in \(\xi\)),
\[
\|\mathcal{Q}_{jk}\mathcal{J}_{l \leq -11m/21}[g_1,g_3,g_4]\|L^\infty \lesssim 2^{-6m}.
\]

The desired bound (9.96) follows in this case as well (in fact, one has rapid decay if (9.99) holds).

Proof of (9.97). The desired estimate follows from (9.91) and the dispersive bounds (7.41)–(7.42) if max\((j_1,j_3,j_4)\) \geq m/3 or if \(j \leq 2m/3\) or if \(l \geq -10\delta m\). Assume that
\[
\max(j_1,j_3,j_4) \leq m/3, \quad j \geq 2m/3, \quad l \leq -10\delta m. \quad (9.101)
\]

As before, we may replace \(\mathcal{J}_{l \leq 11m/21}[h_1,h_3,h_4]\) with \(\mathcal{J}_{l \leq -11m/21}\), at the expense of a small error, where \(\kappa = 2^{-m/2+20\delta m}\). Moreover, \(\|\nabla_{\xi}\tilde{\phi}(\xi,\eta,\sigma)\| \lesssim \kappa\) in the support of the integral defining \(\mathcal{J}_{l \leq -11m/21}\), due to Lemma 10.6 (ii). The approximate finite speed of propagation of argument (integration by parts in \(\xi\)) then gives rapid decay in the case when (9.101) holds. This completes the proof.

9.7. The case of strongly resonant interactions, II

In this subsection we prove Lemma 9.8. Let \(\mathcal{K} := \max(k,k_1,k_2,0)\). It suffices to prove the lemma in the case
\[
k,k_1,k_2 \in [-\mathcal{K} - 20, \mathcal{K}], \quad j \leq m + 3\mathcal{K} + \mathcal{K}/2, \quad \mathcal{K} \leq 7m/(6N_0'), \quad l_\leq < l \leq -m/14. \quad (9.102)
\]

Indeed, we can assume that \(k,k_1,k_2 \geq -\mathcal{K} - 20\), since otherwise the operator is trivial (due to (10.6)). Moreover, if \(\max(k_1,k_2) \geq 7m/(6N_0') - 10\) then the \(L^2 \times L^\infty\) argument (with Lemma 7.4) easily gives the desired conclusion due to the assumption (9.6).

We define (compare with the definition of the operators \(T_{m,l}\) in (9.18))
\[
T_{m,l}[f,g]\left(\xi\right) = \int_{\mathbb{R}} q_m(s) \int_{\mathbb{R}^2} e^{i\tilde{\theta}(\xi,\eta,\sigma)}\varphi(\kappa_\theta^{-1}\Theta(\xi,\eta))\varphi_l(\phi(\xi,\eta))m_0(\xi,\eta)\tilde{f}(\xi - \eta, s)\tilde{g}(\eta, s) \, d\eta ds,
\]
where \(\kappa_\theta := 2^{-m/2+\delta^2m}\). Let \(T_{m,l}^\perp = T_{m,l} - T_{m,l}^\parallel\), and define \(A_{m,l}^\parallel\) and \(B_{m,l}^\parallel\) similarly, by inserting the factor \(\varphi(\kappa_\theta^{-1}\Theta(\xi,\eta))\) in the integrals in (9.19). We notice that
\[
T_{m,l}^\parallel[P_{k_1}f^\mu, P_{k_2}f^\nu] = iA_{m,l}^\parallel[P_{k_1}f^\mu, P_{k_2}f^\nu] + iB_{m,l}^\parallel[P_{k_1}\partial_s f^\mu, P_{k_2}f^\nu] + iB_{m,l}^\parallel[P_{k_1}f^\mu, P_{k_2}\partial_s f^\nu].
\]
It remains to prove that for any \(j_1, j_2 \)
\[
2^{(1-5\delta)j} \| Q_{jk} T_{m,l}^\perp [f_{j_1,k_1}^\mu, f_{j_2,k_2}^\nu] \|_{L^2} \lesssim 2^{-3\delta^2 m}, \quad (9.103)
\]
and
\[
\| Q_{jk} A_{m,l}^\perp [f_{j_1,k_1}^\mu, f_{j_2,k_2}^\nu] \|_{B_j} \lesssim 2^{-3\delta^2 m}, \quad (9.104)
\]

Proof of (9.103). We may assume that \(\min(j_1, j_2) \geq m - 2K - \delta^2 m \), otherwise the conclusion follows from Lemma 7.3. We decompose \(f_{j_1,k_1} = \sum_{n_1=0}^{j_1+1} f_{j_1,k_1,n_1} \), \(f_{j_2,k_2} = \sum_{n_2=0}^{j_2+1} f_{j_2,k_2,n_2} \) and estimate, using Lemma 10.5, and (7.35)
\[
\| P_k T_{m,l}^\perp [f_{j_1,k_1,n_1}, f_{j_2,k_2,n_2}] \|_{L^2} \lesssim 2^{K_2 m^2 l / 2 - n_1 - 2 - n_2 / 2} \| \sup_{\theta \in \mathbb{S}^1} | f_{j_1,k_1,n_1} (r \theta) | \|_{L^2 (r dr)} \| \sup_{\theta \in \mathbb{S}^1} | f_{j_2,k_2,n_2} (r \theta) | \|_{L^2 (r dr)} \lesssim 2^{K_2 m^2 l / 2} 2^{K_2 m^2 l / 2 - j_1 + 51 \delta j_1} 2^{-j_2 + 51 \delta j_2}.
\]
Therefore, using also (9.102), the left-hand side of (9.103) is dominated by
\[
2^{(1-5\delta)j} . 2^{6\delta^2 m} 2^{K_2 m^2 l / 2 - j_1 + 51 \delta j_1} 2^{-j_2 + 51 \delta j_2} \lesssim 2^{8K_2 m^2 / 2} 54 \delta m.
\]
This suffices to prove the desired bound, since \(2^{l/2} \lesssim 2^{-m/28} \) and \(2^{8K_2 m^2 / 2} 54 \delta m \lesssim 2^{64 \delta m} \lesssim 2^{m/30} \).

Proof of (9.104). In view of Lemma 9.6, it suffices to prove that
\[
2^{(1-5\delta)j} \| Q_{jk} A_{m,l}^\perp [f_{j_1,k_1}^\mu, f_{j_2,k_2}^\nu] \|_{L^2} \lesssim 2^{-3\delta^2 m}.
\]
This is similar to the proof of (9.103) above, using Lemma 10.5 and (7.35).

Proof of (9.105). This is the more difficult estimate, where we need to use the more precise information in Lemma 8.2. We may assume \(j_1 \leq 3m \), since in the case \(j_1 \geq 3m \) we can simply estimate \(\| f_{j_1,k_1}^\mu \|_{L^1} \lesssim 2^{-j_1 + 51 \delta j_1} \) (see (7.36)) and the desired estimate follows easily. We decompose \(\partial_s P_{k_2} f^\nu \) as in (8.8), and then we decompose \(A_{k_2;j_3,k_3;j_4}^{a_3,a_3,a_4,a_4} = \sum_{i=1}^3 A_{k_2;j_3,k_3;j_4}^{a_3,a_3,a_4,a_4;i} \) as in (8.35). Notice that since \(k_2 \geq -3m / (2N_0^2) \) (see (9.102)), it follows from Lemma 8.1 (ii) (2) that \(\min(k_2, k_3, k_4) \geq -2m / N_0^2 \), so Lemma 8.2 applies. It remains to prove that
\[
\| Q_{jk} B_{m,l}^\perp [f_{j_1,k_1}^\mu, P_{k_2} E_{a_2,a_2}^\sigma] \|_{B_j} \lesssim 2^{-4\delta^2 m}, \quad (9.106)
\]
and, for any \([(k_3,j_3), (k_4,j_4)] \in X_{m,k_2}, i \in \{1,2,3\},
\[
\| Q_{jk} B_{m,l}^\perp [f_{j_1,k_1}^\mu, A_{k_2;j_3,k_3;j_4}^{a_3,a_3,a_4,a_4;i}] \|_{B_j} \lesssim 2^{-4\delta^2 m}. \quad (9.107)
\]
These bounds follow from Lemmas 9.10, 9.11, and 9.12 below. Recall the definition
\[
B_{m,l}^\perp [f,g] (\xi) = \int_{\mathbb{R}} q_m(s) \int_{\mathbb{R}^2} e^{i s \phi(\xi,\eta)} \varphi(\kappa_{\tilde{\eta}}^{-1} \Theta(\xi,\eta)) 2^{-l} \tilde{\varphi}(\Phi(\xi,\eta)) m_0(\xi,\eta) \tilde{f}(\xi - \eta, s) \tilde{g}(\eta, s) d\eta d s.
\]

Lemma 9.10. Assume that (9.102) holds and \(\kappa_{\tilde{\eta}} = 2^{-m/2+6K+\delta^2 m} \). Then
\[
\| Q_{jk} B_{m,l}^\perp [f_{j_1,k_1}^\mu, h] \|_{B_j} \lesssim 2^{-4\delta^2 m}, \quad (9.109)
\]
provided that, for any \(s \in I_m \)
\[
h(s) = P_{[k_2-2,k_2+2]} h(s), \quad \| h(s) \|_{L^2} \lesssim 2^{-3m/2+35\delta m-22K}. \quad (9.110)
\]
Proof. The lemma is slightly stronger (with a weaker assumption on \(h \)) than we need to prove (9.106), since we intend to apply it in some cases in the proof of (9.107) as well. We would like to use Schur’s lemma and Proposition 10.4 (iii). For this we need to further decompose the operator \(B^\mu_{m,l} \). For \(p,q \in \mathbb{Z} \) we define the operators \(B^\mu_{p,q} \) by

\[
B^\mu_{p,q}[f,g](\xi) := \int_{\mathbb{R}} q_m(s) \int_{\mathbb{R}^2} e^{is\Phi(\xi,\eta)} \varphi(k_\theta^{-1} \Theta(\xi,\eta)) 2^{-l} \tilde{\varphi}(\Phi(\xi,\eta)) \times \varphi_p(\nabla_\xi \Phi(\xi,\eta)) \varphi_q(\nabla_\eta \Phi(\xi,\eta)) m_0(\xi,\eta) \hat{f}(\xi - \eta, s) \hat{g}(\eta, s) ds.
\]

Let \(H_{p,q} := P_k B^\mu_{p,q}[f^\mu_{j_1,k_1}, h] \). Using the bounds \(\|f^\mu_{j_1,k_1}\|_L^\infty \lesssim 2^{2\delta j_1} 2^{5\delta^2 m_2 2^{51\delta^2}} \lesssim 2^{\delta m} \) (see (7.37)), Proposition 10.4 (iii), and (9.110), we estimate

\[
\|H_{p,q}\|_{L^2} \lesssim 2^{2\delta} 2^m (2^{10\delta} 2^{l/2} 2^{-p/2} 2^{-q/2} 2^{2\delta m}) 2^{-l} \sup_{s \in I_m} \|f^\mu_{j_1,k_1}(s)\|_L^\infty \|h(s)\|_{L^2}.
\]

(9.112)

where \(x_- = \min(x, 0) \). In particular

\[
\sum_{p \geq -4\delta m, q \geq -4\delta m} 2^{j-50\delta j} \|P_k B^\mu_{p,q}[f^\mu_{j_1,k_1}, h]\|_{L^2} \lesssim 2^{-\delta m}.
\]

(9.113)

We show now that

\[
\sum_{p \leq -4\delta m, q \in \mathbb{Z}} 2^{j-50\delta j} \|P_k B^\mu_{p,q}[f^\mu_{j_1,k_1}, h]\|_{L^2} \lesssim 2^{-\delta m}.
\]

(9.114)

For this we notice now that if \(p \leq -4\delta m \) then \(P_k B^\mu_{p,q}[f^\mu_{j_1,k_1}, h] \) is nontrivial only when \(|\eta| \) is close to \(\gamma_1 \), \(|\xi| \), \(|\xi - \eta| \) are close to \(\gamma_1/2 \) (as a consequence of Proposition 10.2 (iii)). In particular

\[
2^\delta \lesssim 1, 2^\alpha \approx 1, \text{and } \|f^\mu_{j_1,k_1}(\xi - \eta, s)\| \lesssim 2^{2\delta m} 2^{-3j_1/2} 2^{51\delta j_1} \text{ in the support of the integral. Therefore we have the stronger estimate, using also (10.44) (compare with (9.112))}
\]

\[
\|H_{p,q}\|_{L^2} \lesssim 2^{m-2l\delta} \kappa_\theta \min(2^{-p/2}, 2^{p/2-1/2}) 2^{2\delta m} \sup_{s \in I_m} \|f^\mu_{j_1,k_1}(s)\|_L^\infty \|h(s)\|_{L^2}.
\]

(9.115)

The desired bound (9.114) follows if \(j_1 \geq j - \delta m \) or if \(j \leq 3m/4 - 5\delta m \), since \(\min(2^{-p/2}, 2^{p/2-1/2}) \lesssim 2^{-1/4} \lesssim 2^{m/4} \). On the other hand, if

\[
j_1 \leq j - \delta m \text{ and } j \geq 3m/4 - 5\delta m
\]

then the sum over \(p \geq (j - m) - 10\delta m \) in (9.114) can also be estimated using (9.115). The remaining sum over \(p \leq (j - m) - 10\delta m \) is negligible using the approximate finite speed of propagation argument (integration by parts in \(\xi \)). This completes the proof of (9.114).

Finally we show that

\[
\sum_{p \in \mathbb{Z}, q \leq -4\delta m} \|Q_{j_1,k_1,1} f^\mu_{j_1,k_1}, h\|_{B_j} \lesssim 2^{-\delta m}.
\]

(9.116)

As before, we notice now that if \(q \leq -4\delta m \) then \(P_k B^\mu_{p,q}[f^\mu_{j_1,k_1}, h] \) is nontrivial only when \(|\xi| \) is close to \(\gamma_1 \), \(|\eta| \), \(|\xi - \eta| \) are close to \(\gamma_1/2 \) (as a consequence of Proposition 10.2 (iii)). In
particular $2^k \lesssim 1$, $2^p \approx 1$ and we have the stronger estimate (compare with (9.115))

$$
\|H_{p,q}\|_{L^2} \lesssim 2^{-j/2 + 51 \delta j} \min(2^{-q/2}, 2^{q/2 - 1/2}) 2^{m + 36 \delta m} \lesssim \frac{2^{\eta/2}}{2^q + 2^{q/2}} 2^{-m + 36 \delta m}.
$$

(9.117)

Moreover, since $|\Phi(\xi, \eta)| \lesssim 2^l$ and $|\nabla_x \Phi(\xi, \eta)| \lesssim 2^q$, the function $\hat{H}_{p,q}$ is supported in the set $\{|\xi| - |\gamma| \lesssim 2^l + 2^{2q}\}$ (see (10.21)). The main observation is that the B_j norm for functions supported in such a set carries an additional small factor. More precisely, after localization to a 2^l ball in the physical space, the function $F\{Q_{jk} B_{p,q}^j[f_{j_1,k_1}], h\}(\xi)$ is supported in the set $\{|\xi| - |\gamma| \lesssim 2^l + 2^{2q} + 2^{-j + 2\delta m}\}$, up to a negligible error. Therefore, using (9.117),

$$
\|Q_{jk} B_{p,q}^j[f_{j_1,k_1}, P_{k_2} E_{k_1}^{\mu}]\|_{B_j} \lesssim 2^{j - 50 \delta j} (2^l + 2^{2q} + 2^{-j + 2\delta m}) 2^{l/2 - 49 \delta j} \|H_{p,q}\|_{L^2} \lesssim 2^{q/8} 2^{-4 \delta m}.
$$

The bound (9.116) follows. The bound (9.109) follows from (9.113), (9.114), and (9.116). □

Lemma 9.11. Assume that (9.102) holds and $\kappa_0 = 2^{-m/2 + 6k + \delta^2 m}$. Then

$$
\|Q_{jk} B_{m,j}^\mu[j_{j_1,k_1}, A_{k_2;k_3,j;3,k_4]}]\|_{B_j} \lesssim 2^{-4 \delta^2 m}.
$$

(9.118)

Proof. Notice that $A_{k_2;k_3,j;3,k_4]}$ is supported in the set $|\xi| - |\gamma| \lesssim 2^{-D}$. Using also the conditions $\Phi(\xi, \eta) \lesssim 2^{l}$ and $\Theta(\xi, \eta) \lesssim \kappa_0$, we have

$$
|\eta| - |\gamma| \lesssim 2^{-D}, \quad |\xi| - \eta \in [2^{-50}, 2^{50}], \quad \min(|\xi| - |\gamma|, |\xi| - \eta - |\gamma|) \geq 2^{-50}
$$

(9.119)

in the support of the integral defining $F\{P_{k} B_{m,j}^\mu[j_{j_1,k_1}, A_{k_2;k_3,j;3,k_4}]}(\xi)$, where $G^{[1]} = A_{k_2;k_3,j;3,k_4}^{\mu}$.

Case 1. Assume first that

$$
\max(j_3, j_4) \geq m/2.
$$

(9.120)

In this case $\|G^{[1]}\|_{L^2} \lesssim 2^{-3m/2 + 30 \delta m}$ (see (8.37)), and the conclusion follows from Lemma 9.10.

Case 2. Assume now that

$$
\max(j_3, j_4) \leq m/2, \quad j_1 \geq m/2.
$$

(9.121)

The bound (9.118) follows again by the same argument as in the proof of (9.109) above. In this case $\|G^{[1]}(s)\|_{L^\infty} \lesssim 2^{-m + 4 \delta m}$ (due to (8.41)) and $\|F\{A_{0,\gamma_1,j_{j_1,k_1}}\}(s)\|_{L^2} \lesssim 2^{\delta^2 m 2 - j_1 + 50 \delta j_1}$ (see (7.37)). We make the change of variables $\eta \rightarrow \xi - \eta$, define $\Psi(\xi, \eta) = \Phi(\xi, \xi - \eta)$ and define the operators $B_{p,q}^\mu$ as in (9.111), by inserting cutoff factors $\varphi_p((\nabla_x \Phi')((\xi, \eta))$ and $\varphi_q((\nabla_x \Phi')((\xi, \eta))$. In this case we may notice that we may assume both $p \geq -D$ and $q \geq -D$. Indeed we have $|\Phi'(\xi, \eta)| \lesssim 2^{-D}$ and $|\xi| - \eta - |\gamma| \lesssim 2^{-D}$, so $|((\nabla_x \Phi')((\xi, \eta)| \gtrsim 1$ and $|((\nabla_x \Phi')((\xi, \eta)| \gtrsim 1$ in the support of the integral (in view of Proposition 10.2 (ii)). Then we estimate, using (10.42),

$$
\|P_k B_{p,q}^\mu[A_{0,\gamma_1,j_{j_1,k_1}} G^{[1]}]\|_{L^2} \lesssim 2^{-j_1 + 50 \delta j_1} 2^{-m/2 + 5 \delta m}.
$$

The bound (9.118) follows by summation over p and q.

Case 3. Assume now that

$$
\max(j_1, j_3, j_4) \leq m/2, \quad j \leq m/2 + 10 \delta m.
$$

(9.122)
We use the bounds \(\| \hat{G}^{[1]}(s) \|_{L^\infty} \lesssim 2^{-m+\delta m} \) (see (8.41)) and \(\| \hat{f}^{\mu}_{j_1,k_1}(s) \|_{L^\infty} \lesssim 2^{\delta m} \). Moreover, \(|\nabla \eta \Phi(\xi, \eta)| \gtrsim 1 \) in the support of the integral. Therefore, using the first bound in (10.42),

\[
\| \mathcal{F}\{ P_k \mathcal{G}_{m,l}(f^{\mu}_{j_1,k_1}, G^{[1][m]}) \} \|_{L^\infty} \lesssim 2^{m-l} \kappa_{\theta} 2^{\delta m} \sup_{s \in I_m} \| G^{[1]}(s) \|_{L^\infty} \| f^{\mu}_{j_1,k_1}(s) \|_{L^\infty} \lesssim 2^{-m/2+8 \delta m}.
\]

The desired bound (9.118) follows when \(j \leq m/2 + 10 \delta m \).

Case 4. Finally, assume that

\[
\max(j_1, j_3, j_4) \leq m/2, \quad j \geq m/2 + 10 \delta m.
\]

We examine the formula (9.108), decompose \(G^{[1]} \) as in (8.41) and notice that the contribution of the error term is easy to estimate. To estimate the main term, we define the modified phase

\[
p(\xi, \eta) := \Phi_{+\mu\nu}(\xi, \eta) + \Lambda_{\nu}(\eta) - 2\Lambda_{\nu}(\eta/2) = \Lambda(\xi) - \Lambda_{\mu}(\xi - \eta) - 2\Lambda_{\nu}(\eta/2).
\]

For \(r \in \mathbb{Z} \) we define the functions \(\mathcal{G}_r = \mathcal{G}_{r,m,l,j_1,j_3} \) by

\[
\widehat{\mathcal{G}}_r(\xi) := \int_{\mathbb{R}} q_m(s) \int_{\mathbb{R}^2} e^{is^\mu(\xi, \eta)} \varphi(\kappa_{\theta}^{-1} \Theta(\xi, \eta)) 2^{-l} \Phi(\xi, \eta)^{\mu}_{j_1,k_1}(\xi - \eta, s) g^{[1]}(\eta, s) \varphi(2^{3 \delta m} (|\eta| - \gamma_1)) d\eta ds.
\]

Notice that the functions \(\mathcal{G}_r \) are negligible for, say, \(r \leq -10m \). It suffices to prove that

\[
2^{j-50 \delta j} \| Q_{jk} \mathcal{G}_r \|_{L^2} \lesssim 2^{-5 \delta^2 m} \quad \text{for any } r \in \mathbb{Z}.
\]

We notice first that \(\| P_k \mathcal{G}_r \|_{L^2} \lesssim 2^{-4m} \) if \(r \geq \max(\delta^2 m - l - m, 6 \delta m - m/2) \), in view of Lemma 7.2 (i). In particular, we may assume that \(r \leq -\mathcal{D} \). In this case, the functions \(\mathcal{G}_r \) are nontrivial only when \(-\mu = \nu = \pm \) and \(\xi \) is close to \(\eta/2 \). Therefore \(\eta/2 = \Lambda(\xi) + \Lambda(\xi - \eta) - 2\Lambda(\eta/2) \), and we have, in the support of the integral defining \(\widehat{\mathcal{G}}_r(\xi) \)

\[
|\nabla \eta p(\xi, \eta)| \approx |\xi - \eta/2| \approx |\nabla \xi p(\xi, \eta)| \approx |\nabla \xi \Phi(\xi, \eta)| \approx 2^r,
\]

\[
|p(\xi, \eta)| \approx |\xi - \eta/2|^2 \approx 2^{2r},
\]

\[
|\eta - \gamma_1| \approx |\Lambda(\eta) - 2\Lambda(\eta/2)| \lesssim |\Phi(\xi, \eta)| + |p(\xi, \eta)| \lesssim 2^l + 2^{2r},
\]

\[
|\xi| - \gamma_1/2 \lesssim 2^l + 2^r.
\]

The finite speed of propagation argument (integration by parts in \(\xi \)) shows that \(\| Q_{jk} \mathcal{G}_r \|_{L^2} \lesssim 2^{-4m} \) if \(j \geq 3 \delta^2 m + \max(m + r, -r) \). To summarize, it remains to prove that

\[
(2^{m+r} + 2^{-r})^{1-50 \delta} \| P_k \mathcal{G}_r \|_{L^2} \lesssim 2^{-\delta m} \quad \text{if } r \leq \max(\delta^2 m - l - m, 6 \delta m - m/2).
\]

For \(\xi \) fixed, the variable \(\eta \) satisfies three restrictions: \(|\eta \cdot \xi| \lesssim \kappa_{\theta} \), \(|\Phi(\xi, \eta)| \lesssim 2^l \), and \(|\eta - 2\xi| \lesssim 2^r \). Therefore, using also (8.41), we have the pointwise bound

\[
|\widehat{\mathcal{G}}_r(\xi)| \lesssim 2^{2 \delta m} 2^{m-l} \min(2^r, 2^{-m/2}) \min(2^l, 2^l) \sup_{s \in I_m} \| f^{\mu}_{j_1,k_1}(s) \|_{L^\infty} \| g^{[1]}(s) \|_{L^\infty}
\]

\[
\lesssim 2^{2 \delta m} \min(2^r, 2^{-m/2}) \min(2^{r-l}, 1).
\]

The desired bound (9.128) follows, using also the support assumption \(|\xi| - \gamma_1/2| \lesssim 2^l + 2^r \) in (9.127), if \(r \leq -m/2 \) or if \(r \in [-m/2, -m/3] \).
It remains to prove (9.128) when \(-m/3 \leq r \leq -l - m + \delta^2 m\). The main observation in this case is that \(|p(\xi, \eta)| \approx 2^{2r}\) is large enough to be able to integrate by parts in \(s\). It follows that

\[
|\hat{G}_r(\xi)| \lesssim \int_\mathbb{R} \int_\mathbb{R}^2 2^{-2r} |\varphi(r^{-1}_\Theta(\xi, \eta)) 2^{-l} \hat{\varphi}(\Phi(\xi, \eta)) \varphi_r(\nabla_\eta p(\xi, \eta)) \varphi(2^{3\delta m}(|\eta| - \gamma_1))| \\
\times |\partial_s f_{j1,k1}(\xi - \eta, s) g^{[1]}(\eta, s) q_m(s)| \, d\eta ds.
\]

For \(\xi\) fixed, the integral in supported in an \(O(r_0 \times 2^l)\) rectangle centered at \(\eta = 2^l \xi\). In this support, we have the bounds, see Lemma 8.2 (ii) and (iii),

\[
\|f_{j1,k1}(s)\|_{L^\infty} \lesssim 2^{\delta_2 m}, \quad \|g^{[1]}(s)\|_{L^\infty} \lesssim 2^{-m+4\delta m}, \quad \|\partial_s g^{[1]}(s)\|_{L^\infty} \lesssim 2^{-2m+18\delta m},
\]

\[
\partial_s f_{j1,k1} = h_2 + h_\infty, \quad \|h_2(s)\|_{L^2} \lesssim 2^{-3m/2+5\delta m}, \quad \|h_\infty(s)\|_{L^\infty} \lesssim 2^{-m+15\delta m}.
\]

The integrals that do not contain the function \(h_2\) can all be estimated pointwise, as in (9.129) by \(C 2^{-2r} 2^{-2m+20\delta m}(2^l r_0) \lesssim 2^{-2r} 2^{-3m/2+21\delta m}\). The integral that contains the function \(h_2\) can be estimated pointwise, using Hölder's inequality, by

\[
C 2^{-2r} 2^{-2m/3+2+10\delta m}(2^l r_0)^{1/2} \lesssim 2^{-2r} 2^{-l/2} 2^{-7m/4+11\delta m} \lesssim 2^{-2r} 2^{-m/4+11\delta m}.
\]

Therefore, using also the support assumption \(|\xi| - \gamma_1/2| \leq 2^r\) in (9.127), and recalling that \(r \geq -m/3, l \leq -m/2\), we have

\[
2^{m+r} \|P_k G_r\|_{L^2} \lesssim 2^{-r/2} 2^{-m/4+11\delta m}.
\]

This suffices to prove (9.128), which completes the proof of the lemma.

\[\square\]

Lemma 9.12. With the same notation as in Lemma 9.11, and assuming (9.102), we have

\[
\|Q_{jk} B_{m,l}^{[1]}(f_{j1,k1}, A_{k2;k3,j3,k4,j4}^{a_3,a_4;a_4,a_4^{[2]}})\|_{B_3} \lesssim 2^{-4\delta^2 m}.
\]

Proof. The main observation here is that, since \(|\Phi_{+\mu\nu}(\xi, \eta)| \lesssim 2^l\) and \(|\Phi_{\nu\beta\gamma}(\eta, \sigma)| \gtrsim 2^{-10\delta m}\), we have \(\bar{\Phi}(\xi, \eta, \sigma) \gtrsim 2^{-10\delta m}\), thus we can integrate by parts in \(s\) once more. Before this, however, we notice that we may assume that

\[
k_3, k_4 \in [-2m/N_0, m/N_0], \quad \text{min}(j_3, j_4) \leq m - 4\delta m.
\]

Indeed, we first use Lemma 8.1 (ii) (2), (3). Moreover, if \(\text{min}(j_3, j_4) \geq m - 4\delta m\) or \(\text{max}(k_3, k_4) \geq m/N_0\) then we would have \(\|A_{k2;k3,j3,k4,j4}^{a_3,a_4;a_4,a_4^{[2]}}\|_{L^2} \lesssim 2^{-3m/2+8\delta m}\) (by the same argument as in the proof of (8.31) or an \(L^2 \times L^\infty\) estimate), and the desired bound would follow from Lemma 9.10.

Step 1. For \(r \in \mathbb{Z}\) we define (compare with (9.86)) the trilinear operators \(J_{l,r}^{[2]}\) by

\[
\mathcal{F}\{J_{l,r}^{[2]}(f, g, h)\}(\xi, s) := \int_{\mathbb{R}^2} e^{i s \bar{\Phi}(\xi, \eta, \sigma)} \bar{f}(\xi - \eta) \varphi(r^{-1}_\Theta(\xi, \eta)) 2^{-l} \hat{\varphi}(\Phi_{+\mu\nu}(\xi, \eta)) \\
\times \varphi_r(\bar{\Phi}(\xi, \eta, \sigma)) \chi^{[2]}(\eta, \sigma) \varphi_{k2}(\eta) m_{\mu\nu}(\xi, \eta) m_{\nu\beta\gamma}(\eta, \sigma) \bar{g}(\eta - \sigma) \hat{h}(\sigma) \, d\sigma d\eta.
\]

Let

\[
C_{l,r}^{[2]}[f, g, h] := \int_{\mathbb{R}} q_m(s) J_{l,r}^{[2]}(f, g, h)(s) \, ds,
\]

and notice that

\[
B_{m,l}^{[1]}[f_{j1,k1}, A_{k2;k3,j3,k4,j4}^{a_3,a_4,a_4^{[2]}}] = \sum_{r \geq -11\delta m} C_{l,r}^{[2]}[f_{j1,k1}^{\mu}, f_{j3,k3}^{\beta}, f_{j4,k4}^{\gamma}]\]

\[\square\]
We integrate by parts in s to rewrite
\[
C_{l,r}^{[2]}[f_{j_1,k_1}, f_{j_3,k_3}, f_{j_4,k_4}] = i2^{-r} \left\{ \int_{\mathbb{R}} d_m(s) \tilde{J}^{[2]}_{l,r}[f_{j_1,k_1}, f_{j_3,k_3}, f_{j_4,k_4}](s) \, ds \\
+ C_{l,r}^{[2]}[\partial_s f_{j_1,k_1}, f_{j_3,k_3}, f_{j_4,k_4}] + C_{l,r}^{[2]}[f_{j_1,k_1}, \partial_s f_{j_3,k_3}, f_{j_4,k_4}] + C_{l,r}^{[2]}[f_{j_1,k_1}, f_{j_3,k_3}, \partial_s f_{j_4,k_4}] \right\},
\]
where the operators $\tilde{J}^{[2]}_{l,r}$ and $C_{l,r}^{[2]}$ are defined in the same way as the operators $J^{[2]}_{l,r}$ and $C_{l,r}^{[2]}$, but with $\varphi_p(\Phi(\xi, \eta, \sigma))$ replaced by $\tilde{\varphi}_p(\Phi(\xi, \eta, \sigma))$, $\tilde{\varphi}_p(x) = 2^p x^{-1} \varphi(x)$, (see the formula (9.132)). It suffices to prove that for any $s \in I_m$ and $r \geq -11\delta m$,
\[
2^{j - 50\delta j} \|Q_{j,k} \tilde{J}^{[2]}_{l,r}[f, g, h]\|_{L^2} \lesssim 2^{-12\delta m}, \tag{9.134}
\]
where $[f, g, h] = [f_{j_1,k_1}, f_{j_3,k_3}, f_{j_4,k_4}]$ for $[f, g, h] = [2^m \partial_s f_{j_1,k_1}, f_{j_3,k_3}, f_{j_4,k_4}]$ or $[f, g, h] = [f_{j_1,k_1}, 2^m \partial_s f_{j_3,k_3}, f_{j_4,k_4}]$ or $[f, g, h] = [f_{j_1,k_1}, f_{j_3,k_3}, 2^m \partial_s f_{j_4,k_4}]$.

Step 2. As in the proof of Lemma 7.4, the function $\tilde{\varphi}_p(\Phi(\xi, \eta, \sigma))$ can be incorporated with the phase $e^{is\Phi(\xi, \eta, \sigma)}$, using the formula (7.30) and the fact that $2^{-r} \leq 2^{11\delta m}$. Then we integrate the variable σ and denote by H_1, H_2, and H_3 the resulting functions,
\[
H_1 := \int_{\mathbb{R}^2} e^{i(s+\lambda)\Phi_{\nu,\beta,\gamma}(\eta, \sigma)} \chi^{[2]}(\eta, \sigma) \varphi_{k_2}(\eta) m_{\nu,\beta,\gamma}(\eta, \sigma) \hat{g}(\eta - \sigma) \hat{h}(\sigma) \, d\sigma.
\]
We claim that
\[
\|H_1\|_{L^2} + 2^m \|H_2\|_{L^2} + 2^m \|H_3\|_{L^2} \lesssim 2^{-5m/6 + 10\delta m}. \tag{9.135}
\]
Notice that the bound on H_1 is already proved (in a stronger form) in the proof of (8.38). The bounds on H_2 and H_3 follow in the same way from the $L^2 \times L^\infty$ argument: indeed, we have $\|\partial_s f_{j_3,k_3}(s)\|_{L^2} + \|\partial_s f_{j_4,k_4}(s)\|_{L^2} \lesssim 2^{-m + 7\delta m}$ (due to (8.21)). Then we notice that we can remove the factor $\varphi(2^{20\delta m}\Theta_{\beta}(\eta, \sigma))$ from the multiplier $\chi^{[2]}(\eta, \sigma)$, at the expenses of a small error (due to Lemma 7.3 and (9.131)). The desired bounds in (9.135) follow using the $L^2 \times L^\infty$ argument with Lemma 7.4.

Step 3. We prove now (9.134) for $[f, g, h] = [f_{j_1,k_1}, f_{j_3,k_3}, f_{j_4,k_4}]$. It suffices to show that
\[
2^{4k} 2^{L^2-30\delta m} \|S[f_{j_1,k_1}](s)\|_{L^2} \lesssim 1 \tag{9.136}
\]
for any $s \in I_m$, where
\[
\mathcal{F}\{S[f, g]\}(\xi) := |\varphi_k(\xi)| \int_{\mathbb{R}^2} \left| \hat{f}(\xi - \eta) \varphi(\kappa^{-1}\Theta(\xi, \eta)) \varphi_{k_2}(\eta) \right|^2 \frac{1}{2^l} \tilde{\varphi}(\Phi(\xi, \eta)) \hat{g}(\eta) \, d\eta. \tag{9.137}
\]
This follows using Schur’s lemma, the bound (9.135), and Proposition 10.4 (iii). Indeed, we have $|\nabla_\eta \Phi(\xi, \eta)| + |\nabla_\xi \Phi(\xi, \eta)| \gtrsim 2^{-4\delta m}$ in the support of the integral (due to the location of space-time resonances), therefore the left-hand side of (9.136) is dominated by
\[
C 2^{4k} 2^{L^2-30\delta m} 2^{-1} (2^{10k} 2^{1/4} 2^{4\delta m}) \|f_{j_1,k_1}(s)\|_{L^\infty} \|H_1\|_{L^2} \lesssim 2^{30k} 2^{-l/4} 2^{-m/3}.
\]
This suffices to prove (9.136) since $2^{-l} \leq 2^m$. Moreover, (9.134) follows in the same way for $[f, g, h] = [f_{j_1,k_1}, 2^m \partial_s f_{j_3,k_3}, f_{j_4,k_4}]$ or $[f, g, h] = [f_{j_1,k_1}, f_{j_3,k_3}, 2^m \partial_s f_{j_4,k_4}]$, since the L^2 bounds on $2^m H_2$ and $2^m H_3$ are the same as for H_1.

GRAVITY-CAPILLARY WATER WAVES IN 3D 89
It remains to prove (9.134) for \([f, g, h] = [2^m \partial_s f^\mu_{j_1, k_1}, f^\beta_{j_3, k_3}, f^\gamma_{j_4, k_4}]\)(s). It suffices to prove that
\[
2^{4\Gamma} 2^{m-30\delta m} \|S[2^m \partial_s f^\mu_{j_1, k_1}(s), H_1]\|_L^2 \lesssim 1,
\]
for any \(s \in I_m\). Let \(f = 2^m \partial_s f^\mu_{j_1, k_1}(s)\) and \(f_{2\gamma_0} := A_{2\gamma_0}^D - 11, 2\gamma_0 f\). We decompose, using (8.40),
\[
f = f_{2\gamma_0} + f_2 + f_\infty, \quad \|f_{2\gamma_0}\|_L^2 \lesssim 2^{7\delta m}, \quad \|f_2\|_L^2 \lesssim 2^{-m/2+5\delta m}, \quad \|f_\infty\|_L^\infty \lesssim 2^{3\Gamma+15\delta m}.
\]
The contribution of \(f_\infty\) can be estimated as before, using Schur’s lemma, (9.135), and Proposition 10.4 (iii). To estimate the other contributions, we also use the bound (see (8.39))
\[
\|H_{1,\infty}\|_L^\infty \lesssim 2^{3\Gamma} 2^{-m+14\delta m} \quad \text{where} \quad H_1 = H_{1,2\gamma_0} + H_{1,\infty} = A_{2\gamma_0}^D + 1, 2\gamma_0 H_1 + A_{2\gamma_0}^D, 2\gamma_0 H_1.
\]
As before, we use Schur’s test and Proposition 10.4 (iii), together with the fact that space-time resonances are possible only when \(|\xi|, |\eta|, |\xi - \eta|\) are all close to either \(\gamma_1\) or \(\gamma_2/2\). We estimate
\[
\|S[f_2, H_{1,\infty}]\|_L^2 \lesssim 2^{-l}(2^{12\Gamma} \kappa_0^2 3^{l/4} 2^{3\delta m}) \|f_2\|_L^2 \|H_{1,\infty}\|_L^\infty \lesssim 2^{20\Gamma} 2^{-l/4} 2^{-2m+40\delta m},
\]
\[
\|S[f_{2\gamma_0}, H_{1,\infty}]\|_L^2 \lesssim 2^{-l}(2^{12\Gamma} \kappa_0^2 3^{l/4} 2^{3\delta m}) \|f_{2\gamma_0}\|_L^2 \|H_{1,\infty}\|_L^\infty \lesssim 2^{20\Gamma} 2^{-l/4} 2^{-3m/2+40\delta m},
\]
\[
\|S[f_2, H_{1,2\gamma_0}]\|_L^2 \lesssim 2^{-l}(2\Gamma \kappa_0^2 3^{l/4} 2^{3\delta m}) \|f_2\|_L^2 \|H_{1,2\gamma_0}\|_L^2 \lesssim 2^{15\Gamma} 2^{-l/2} 2^{-19m/12+20\delta m},
\]
\[
S[f_{2\gamma_0}, H_{1,2\gamma_0}] \equiv 0.
\]
These bounds suffice to prove (9.138), which completes the proof of the lemma.

\[\square\]

9.8 Higher order terms. In this subsection we consider the higher order components in the Duhamel formula (7.5) and show how to control their \(Z\) norms.

Proposition 9.13. With the hypothesis in Proposition 7.1, for any \(t \in [0, T]\) we have
\[
\|W_3(t)\|_Z + \left\| \int_0^t e^{is\Lambda} N_{\geq 4}(s) \, ds \right\|_Z \lesssim \varepsilon_1^2.
\]

The rest of this section is concerned with the proof of Proposition 9.13. The bound on \(N_{\geq 4}\) follows directly from the hypothesis \(\|e^{is\Lambda} N_{\geq 4}(s)\|_Z \lesssim \varepsilon_1^2(1 + s)^{-1-\delta^2}\), see (7.15). To prove the bound on \(W_3\) we start from the formula
\[
\Omega_\xi^\alpha \tilde{W}_3(\xi, t) = \sum_{\mu, \nu, \beta \in \{+, -\}} \sum_{a_1 + a_2 + a_3 = a} \int_0^t \int_{\mathbb{R}^2 \times \mathbb{R}^2} e^{is\tilde{F} + i\mu + i\nu + i\beta}(\xi, \eta, \sigma) n_{\mu\nu\beta}(\xi, \eta, \sigma)
\]
\[
\times (\Omega_1^\alpha \tilde{V}_\mu)(\xi - \eta, s)(\Omega_2^\alpha \tilde{V}_\nu)(\eta - \sigma, s)(\Omega_3^\alpha \tilde{V}_\beta)(\sigma, s) \, d\eta d\sigma ds.
\]

We define the functions \(q_m\) as in (4.8) and the trilinear operators \(C_m = C_m^{\mu\nu\beta}\)
\[
\mathcal{F}\{C_m[f, g, h]\}(\xi) := \int_R q_m(s) \int_{\mathbb{R}^2 \times \mathbb{R}^2} e^{is\tilde{F}} n_{0}(\xi, \eta, \sigma) \tilde{f}(\xi - \eta, s) \tilde{g}(\eta - \sigma, s) \tilde{h}(\sigma, s) \, d\eta d\sigma ds,
\]
\[
\sum_{k_1, k_2, k_3 \in \mathbb{Z}} 2^{j-50b_j} \|Q_{jk} C_m [P_{k_1} D^{\alpha_1} \Omega_1^\alpha \Omega_1^\mu, P_{k_2} D^{\alpha_2} \Omega_2^\alpha \Omega_2^\nu, P_{k_3} D^{\alpha_3} \Omega_3^\alpha \Omega_3^\beta]\|_L^2 \lesssim 2^{-\delta m} \varepsilon_1^3
\]
for any \(\mu, \nu, \beta \in \{+, -\}\), provided that \(a_1 + a_2 + a_3 = a\) and \(\alpha_1 + \alpha_2 + \alpha_3 = \alpha\). Let
\[
f^\mu := \varepsilon^{-1} D^{\alpha_1} \Omega_1^\alpha \Omega_1^\mu, \quad f^\nu := \varepsilon^{-1} D^{\alpha_2} \Omega_2^\alpha \Omega_2^\nu, \quad f^\beta := \varepsilon^{-1} D^{\alpha_3} \Omega_3^\alpha \Omega_3^\beta.
\]
The bootstrap assumption (7.15) gives, for any \(s \in [0, t] \) and \(\gamma \in \{ \mu, \nu, \beta \} \),
\[
\| f^\gamma(s) \|_{H^{N_0^0 \cap \mathbb{Z}^1 \cap \mathbb{N}_1^0}} \lesssim (1 + s)^{k^2}.
\] (9.144)

Simple estimates, as in the proof of Lemma 9.3, show that the parts of the sum in (9.142) over \(\max(k_1, k_2, k_3) \geq 2(j + m)/N_0^0 - D^2 \) or over \(\min(k_1, k_2, k_3) \leq -(j + m)/2 \) are bounded as claimed. For (9.142) it remains to prove that
\[
2^{j - 50\delta j} \| Q_{jk} C_m | P_{k_1} f^\mu, P_{k_2} f^\nu, P_{k_3} f^\beta \|_{L^2} \lesssim 2^{-2\delta j m - \delta j}
\] (9.145)
for any fixed \(m \in [0, L + 1] \), \((k, j) \in \mathcal{J} \), and \(k_1, k_2, k_3 \in \mathbb{Z} \) satisfying
\[
k_1, k_2, k_3 \in [-(j + m)/2, 2(j + m)/N_0^0 - D^2].
\] (9.146)

Let \(k := \max(k, k_1, k_2, k_3, 0) \), \(\bar{k} := \min(k, k_1, k_2, k_3) \) and \(|k| := \max(|k|, |k_1|, |k_2|, |k_3|) \). The \(S^\infty \) bound in (7.12) and Lemma A.1 (ii) show that
\[
\| C_m | P_{k_1} f^\mu, P_{k_2} f^\nu, P_{k_3} f^\beta \|_{L^2} \lesssim 2^{k_2/2} 2^{\mathcal{E}_2 m} \sup_{s \in \mathcal{I}_m} \| e^{-isA_\mu} P_{k_1} f^\mu \|_{L^p} \| e^{-isA_\nu} P_{k_2} f^\nu \|_{L^p} \| e^{-isA_\beta} P_{k_3} f^\beta \|_{L^p},
\] (9.147)
if \(p_1, p_2, p_3 \in \{2, \infty\} \) and \(1/p_1 + 1/p_2 + 1/p_3 = 1/2 \). The desired bound (9.145) follows unless
\[
j \geq 2m/3 + |k|/2 + D^2,
\] (9.148)
using the pointwise bounds in (7.44). Also, by estimating \(\| P_k H \|_{L^2} \lesssim 2^k \| P_k H \|_{L^1} \), and using a bound similar to (9.147), the desired bound (9.145) follows unless
\[
k \geq -(2/3)(j + m/6 + \delta m).
\] (9.149)

Next, we notice that if \(j \geq m + D + |k|/2 \), and (9.149) holds then the desired bound (9.145) follows. Indeed, we use the approximate finite speed of propagation argument as in the proof of (9.12). First we define \(f_{i_1, j_1}^\mu, f_{i_2, j_2}^\nu, f_{i_3, j_3}^\beta \) as in (9.14). Then we notice that the contribution in the case \(\min(j_1, j_2, j_3) \geq 9j/10 \) is suitably controlled, due to (9.147). On the other and, if
\[
\min(j_1, j_2, j_3) \leq 9j/10,
\]
then we may assume that \(j_1 \leq 9j/10 \) (using changes of variables) and it follows that the contribution is negligible, using integration by parts in \(\xi \) as before. To summarize, in proving (9.145) we may assume that
\[
2m/3 + |k|/2 + D^2 \leq j \leq m + D + |k|/2, \quad \max(j, |k|) \leq 2m + 2D, \quad \bar{k} \leq 6m/N_0^0.
\] (9.150)

We define now the functions \(f_{i_1, j_1}^\mu, f_{i_2, j_2}^\nu, f_{i_3, j_3}^\beta \) as in (9.14). The contribution in the case \(\max(j_1, j_2, j_3) \geq 2m/3 \) can be bounded using (9.147). On the other hand, if \(\max(j_1, j_2, j_3) \leq 2m/3 \) then we can argue as in the proof of Lemma 9.7 when \(2^l \approx 1 \). More precisely, we define
\[
g_1 := A_{\geq D_1 - \gamma_0} f_{i_1, j_1}^\mu, \quad g_2 := A_{\geq D_1 - \gamma_0} f_{i_2, j_2}^\nu, \quad A_{\geq D_1 - \gamma_0} f_{i_3, j_3}^\beta.
\] (9.151)
As in the proof of Lemma 9.7, see (9.95)–(9.97), (and after inserting cutoff functions of the form \(\varphi \leq \eta \) and \(\varphi > \eta \), \(l = m - \delta m \), to bound the other terms) for (9.145) it suffices to prove that
\[
2^{j - 50\delta j} \| Q_{jk} C_m | g_1, g_2, g_3 \|_{L^2} \lesssim 2^{-\delta m}.
\] (9.152)
In proving (9.152), we may assume that \(\max(j_1, j_2, j_3) \leq m/3 \) and \(m \leq L \) (otherwise we could use directly (9.147)) and that \(k \geq -100 \) (otherwise the contribution is negligible, by integrating by parts in \(\eta \) and \(\sigma \)). Therefore, using (9.150), we may assume that

\[
|k| \leq 100, \quad m \leq L, \quad 2m/3 + D^2 \leq j \leq m + 2D, \quad j_1, j_2, j_3 \in [0, m/3]. \tag{9.153}
\]

As in the proof of Lemma 9.7, we decompose the operator \(C_m \) in dyadic pieces depending on the size of the modulation. More precisely, let

\[
J_\phi \eta \sigma = \text{defining the operator }
\]

\[
\eta \text{ by parts in } k \nabla \]

\[
\text{Let } \kappa = 2^{-m/3} \text{ and define the operators } J_{\leq m/2, \leq 0} \text{ and } J_{\leq m/2, l} \text{ by inserting the factors } \\
\varphi(k^{-1} \nabla_{\eta, \sigma} \Phi(\xi, \eta, \sigma)) \text{ and } \varphi_l(k^{-1} \nabla_{\eta, \sigma} \Phi(\xi, \eta, \sigma)), \quad l \geq 1, \text{ in the definition of the operators } J_p \text{ above. The point is to observe that } |\nabla \Phi(\xi, \eta, \sigma)| \leq 2^{-m/3+D} \text{ in the support of the integral defining the operator } J_{\leq m/2, \geq 0}, \text{ due to Lemma 10.6 (i). Since } j \geq 2m/3 + D^2, \text{ see (9.153), the contribution of this operator is negligible, using integration by parts in } \xi. \\

To estimate the operators \(J_{\leq m/2, l} \) notice that we may insert a factor of \(\varphi(2^{m/3+l-\delta m} \eta) \), at the expense of a negligible error (due to Lemma 7.2 (i)). To summarize, we define

\[
J'_{\leq m/2, l}[f, g, h](\xi, s) := \int_{\mathbb{R}^2 \times \mathbb{R}^2} e^{i\Phi(\xi, \eta, \sigma)} \varphi_l(k^{-1} \nabla_{\eta, \sigma} \Phi(\xi, \eta, \sigma)) \varphi_{\leq m/2}(\Phi(\xi, \eta, \sigma)) \\
\times \varphi(2^{m/3+l-\delta m} \eta)n_0(\xi, \eta, \sigma) \hat{f}(\xi - \eta, s) \hat{g}(\eta - \sigma, s) \hat{h}(\sigma, s) \, d\sigma d\eta,
\]

and it remains to show that, for \(l \geq 1 \) and \(s \in I_m, \)

\[
2^{j-50kj} 2^m \| Q_{jk} J'_{\leq m/2, l}[g_1, g_2, g_3](s) \|_{L^2} \lesssim 2^{-2\delta m}. \tag{9.155}
\]

Using \(L^\infty \) estimates in the Fourier space, (9.155) follows when \(l \geq m/3 - \delta m \), since \(2^j \lesssim 2^m \) (see (9.153)). On the other hand, if \(l \leq m/3 - \delta m \) then the operator is nontrivial only if

\[
\tilde{\Phi}(\xi, \eta, \sigma) = \Lambda(\xi) - \Lambda(\xi - \eta) - \Lambda(\eta - \sigma) + \mathcal{A}_\nu(\sigma), \quad \nu \in \{+,-\},
\]

due to the smallness of \(|\eta|, |\nabla \tilde{\Phi}(\xi, \eta, \sigma)|, \text{ and } |\tilde{\Phi}(\xi, \eta, \sigma)| \text{ (recall the support restrictions in (9.151))}. In this case \(|\nabla \tilde{\Phi}(\xi, \eta, \sigma)| \leq 2^{-m/2} \text{ in the support of the integral, and the contribution is again negligible using integration by parts in } \xi. \text{ This completes the proof of Proposition 9.13.}

10. Analysis of phase functions

In this section we collect and prove some important facts about the phase functions \(\Phi \).
10.1. **Basic properties.** Recall that
\[
\Phi(\xi, \eta) = \Phi_{\sigma \mu}(\xi, \eta) = \Lambda_{\sigma}(\xi) - \Lambda_{\mu}(\xi - \eta) - \Lambda_{\nu}(\eta), \quad \sigma, \mu, \nu \in \{+,-\},
\]
(10.1)

We have
\[
\lambda'(x) = \frac{1 + 3x^2}{2\sqrt{x + x^2}}, \quad \lambda''(x) = \frac{3x^4 + 6x^2 - 1}{4(x + x^3)^{3/2},} \quad \lambda''(x) = \frac{3(1 + 5x^2 - 5x^4 - x^6)}{8(x + x^3)^{5/2}}.
\]
(10.2)

Therefore
\[
\lambda''(x) \geq 0 \text{ if } x \geq \gamma_0, \quad \lambda''(x) \leq 0 \text{ if } x \in (0, \gamma_0], \quad \gamma_0 := \sqrt{\frac{2\sqrt{3} - 3}{3}} \approx 0.393.
\]
(10.3)

It follows that
\[
\lambda(\gamma_0) \approx 0.674, \quad \lambda'(\gamma_0) \approx 1.086, \quad \lambda''(\gamma_0) \approx 4.452, \quad \lambda'''(\gamma_0) \approx -28.701.
\]
(10.4)

Let \(\gamma_1 := \sqrt{2} \approx 1.414\) denote the radius of the space-time resonant sphere, and notice that
\[
\lambda(\gamma_1) = \sqrt{3\sqrt{2}} \approx 2.060, \quad \lambda'(\gamma_1) = \frac{7}{2\sqrt{3\sqrt{2}}} \approx 1.699, \quad \lambda''(\gamma_1) = \frac{23}{4\sqrt{54\sqrt{2}}} \approx 0.658.
\]
(10.5)

The following simple observation will be used many times: if \(U_2 \geq 1, \xi, \eta \in \mathbb{R}^2, \max(|\xi|, |\eta|, |\xi-\eta|) \leq U_2, \min(|\xi|, |\eta|, |\xi-\eta|) = a \leq 2^{-10}U_2^{-1},\) then
\[
|\Phi(\xi, \eta)| \geq \lambda(a) - \sup_{b \in [a, U_2]} (\lambda(a + b) - \lambda(b)) \geq \lambda(a) - a \max\{\lambda'(a), \lambda'(U_2 + 1)\} \geq \lambda(a)/4.
\]
(10.6)

Lemma 10.1. (i) The function \(\lambda'\) is strictly decreasing on the interval \((0, \gamma_0]\) and strictly increasing on the interval \([\gamma_0, \infty)\), and
\[
\lim_{x \to \infty} \left[\lambda'(x) - \frac{3\sqrt{x}}{2} \right] = 0, \quad \lim_{x \to 0} \left[\lambda'(x) - \frac{1}{2\sqrt{x}} \right] = 0.
\]
(10.7)

The function \(\lambda'\) is concave up on the interval \((0, 1]\) and concave down on the interval \([1, \infty)\).

For any \(y > \lambda'(\gamma_0)\) the equation \(\lambda'(r) = y\) has two solutions \(r_1(y) \in (0, \gamma_0]\) and \(r_2(y) \in (\gamma_0, \infty)\).

(ii) If \(a \neq b \in (0, \infty)\) then
\[
\lambda'(a) = \lambda'(b) \quad \text{if and only if} \quad (a - b)^2 = \frac{(3ab + 1)(3a^2b^2 + 6ab - 1)}{1 - 9ab}.
\]
(10.8)

In particular, if \(a \neq b \in (0, \infty)\) and \(\lambda'(a) = \lambda'(b)\) then \(ab \in (1/9, \gamma_0^2]\).

(iii) Let \(b : [\gamma_0, \infty) \to (0, \gamma_0]\) be the implicit function defined by \(\lambda'(a) = \lambda'(b(a))\). Then \(b\) is a smooth decreasing function and
\[
b'(a) \in [-1, -(b(a)/a)], \quad \frac{a + b(a)}{a} \text{ is increasing on } [\gamma_0, \infty), \quad b(a) \approx 1/a,
\]
\[
b'(a) \approx 1/a^2, \quad b'(a) + 1 \approx (a - \gamma_0)/a.
\]
(10.9)

In particular,
\[
a + b(a) - 2\gamma_0 \approx \frac{(a - \gamma_0)^2}{a}.
\]
(10.10)

Moreover,
\[
-\left[\lambda''(b(a)) + \lambda''(a)\right] \approx a^{-1/2}(a - \gamma_0)^2.
\]
(10.11)

\footnote{In a neighborhood of \(\gamma_0\), \(\lambda'(x)\) behaves like \(A + B(x - \gamma_0)^2 - C(x - \gamma_0)^3\), where \(A, B, C > 0\). The asymptotics described in (10.9)–(10.11) are consistent with this behaviour.}
(iv) If \(a, b \in (0, \infty) \) then
\[
\lambda(a + b) = \lambda(a) + \lambda(b) \quad \text{if and only if} \quad (a - b)^2 = \frac{4 + 8ab - 32a^2b^2}{9ab - 4}. \quad (10.12)
\]
In particular, if \(a, b \in (0, \infty) \) and \(\lambda(a + b) = \lambda(a) + \lambda(b) \) then \(ab \in [4/9, 1/2] \). Moreover,
\[
\begin{align*}
&\text{if } ab > 1/2 \text{ then } \lambda(a + b) - \lambda(a) - \lambda(b) > 0, \\
&\text{if } ab < 4/9 \text{ then } \lambda(a + b) - \lambda(a) - \lambda(b) < 0. \quad (10.13)
\end{align*}
\]

Proof. The conclusions (i) and (ii) follow from (10.2)–(10.4) by elementary arguments. For part (iii) we notice that, with \(Y = \sqrt{a} \),
\[
(a + b(a))^2 = F(Y) := \frac{-9Y^3 - 21Y^2 - 3Y + 1}{9Y - 1} + 4Y = \frac{32/81}{9Y - 1} - Y^2 + 14Y/9 - 49/81,
\]
as a consequence of (10.8). Taking the derivative with respect to \(a \) it follows that
\[
2(a + b(a))(1 + b'(a)) = [a b'(a) + b(a)]F'(Y). \quad (10.14)
\]
Since \(F'(Y) \leq -1/10 \) for all \(Y \in (1/9, \gamma_0^2] \), it follows that \(b'(a) \in [-1, -b(a)/a] \) for all \(a \in [\gamma_0, \infty) \). The claims in the first line of (10.9) follow.

The claim \(-b'(a) \approx 1/a^2 \) follows from the identity \(\lambda''(a) - \lambda''(b(a))b'(a) = 0 \). The last claim in (10.9) is clear if \(a - \gamma_0 \gtrsim 1 \); on the other hand, if \(a - \gamma_0 = \rho \ll 1 \) then (10.14) gives
\[
-b'(a)/(a+b(a)) \approx 1, \quad \gamma_0 - b(a) \approx \rho.
\]
In particular \(1 - b(a)/a \approx \rho \) and the last conclusion in (10.9) follows.

The claim in (10.10) follows by integrating the approximate identity \(b'(x) + 1 \approx (x - \gamma_0)/x \) between \(\gamma_0 \) and \(a \). To prove (10.11) we recall that \(\lambda''(a) - \lambda''(b(a))b'(a) = 0 \). Therefore
\[
-\lambda''(b(a)) = -\lambda''(b(a))(1 + b'(a)) = \lambda''(a) \frac{1 + b'(a)}{-b'(a)},
\]
and the desired conclusion follows using also (10.9).

To prove (iv), we notice that (10.12) and the claim that \(ab \in [4/9, 1/2] \) follow from (10.2)–(10.4) by elementary arguments. To prove (10.13), let \(G(x) := \lambda(a + x) - \lambda(a) - \lambda(x) \). For \(a \in (0, \infty) \) fixed we notice that \(G(x) > 0 \) if \(x \) is sufficiently large and \(G(x) < 0 \) if \(x > 0 \) is sufficiently small. The desired conclusion follows from the continuity of \(G \).

\[\square \]

10.2. Resonant sets. We prove now an important proposition describing the geometry of resonant sets.

Proposition 10.2. (Structure of resonance sets) The following claims hold:

(i) There are functions \(p_{++} = p_{-1} : (0, \infty) \to (0, \infty) \), \(p_{++} = p_{-2} : [2\gamma_0, \infty) \to (0, \gamma_0] \), \(p_{-1} = p_{-2} : (0, \infty) \to (\gamma_0, \infty) \) such that, if \(\sigma, \mu, \nu \in \{+, -\} \) and \(\xi \neq 0 \) then
\[
(\nabla_{\eta} \Phi_{\sigma \mu \nu})(\xi, \eta) = 0 \quad \text{if and only if} \quad \eta \in \mathcal{P}_{\mu \nu}(\xi) := \left\{ p_{\mu \nu}(|\xi|) \frac{\xi}{|\xi|} : \xi - p_{\mu \nu}(|\xi|) \frac{\xi}{|\xi|} : k \in \{1, 2\} \right\}. \quad (10.15)
\]

(ii) (Space resonances) With \(\mathcal{D}_{k_1, k_2} \) as in (2.11), assume that
\[
(\xi, \eta) \in \mathcal{D}_{k_1, k_2} \quad \text{and} \quad \left| (\nabla_{\eta} \Phi_{\sigma \mu \nu})(\xi, \eta) \right| \leq \varepsilon_2 \leq 2^{-D_1} 2^{-k_{-\max(k_1, k_2)}}, \quad (10.16)
\]
for some constant \(D_1 \) sufficiently large. Then \(\sum_{k \in \{1, 2\}} \left| k_1 - |k_2| \right| \leq 20 \) and, for some \(\mu, \nu \in \{+, -, (-, +)\} \),

\[\text{The set } \mathcal{P}_{\mu \nu}(\xi) \text{ contains 2 points if } (\mu, \nu) \in \{(+, -), (-, +)\} \text{ and at most 3 points if } (\mu, \nu) \in \{(+, +), (-, -)\}. \]
• if \(|k| \leq 100\) then \(\max(|k_1|, |k_2|) \leq 200\) and

\[
\begin{cases}
\mu = -\nu, & |\eta - p| \lesssim \epsilon_2, \\
\text{or} & \\
\mu = \nu, & \left| (\eta - p) \cdot \xi^\perp / |\xi| \right| \lesssim \epsilon_2, \text{ and } \left| (\eta - p) \cdot \xi / |\xi| \right| \lesssim \frac{\epsilon_2}{\epsilon_2^{3/4} + |\xi|^{-2\gamma_0}}. \tag{10.17}
\end{cases}
\]

• if \(|k| \leq -100\) then

\[
\begin{cases}
\mu = -\nu, & k_1, k_2 \in [-10, 10], \text{ and } |\eta - p| \lesssim \epsilon_2^{2|k|}, \\
\text{or} & \\
\mu = \nu, & k_1, k_2 \in [k - 10, k + 10], \text{ and } |\eta - \xi/2| \lesssim 2^{-3|k|/2} \epsilon_2; \tag{10.18}
\end{cases}
\]

• if \(|k| \geq 100\) then

\(|\eta - p| \lesssim \epsilon_2^{2k/2}. \tag{10.19}\)

(iii) (Space-time resonances) Assume that \((\xi, \eta) \in \mathcal{D}_{k,k_1,k_2},\)

\[
|\Phi_{\sigma\mu\nu}(\xi, \eta)| \leq \epsilon_1 \leq 2^{-D_1} 2^{\min(k,k_1,k_2,0)/2}, \quad |(\nabla_\eta \Phi_{\sigma\mu\nu})(\xi, \eta)| \leq \epsilon_2 \leq 2^{-D_1} 2^{k - \max(k_1, k_2)} 2^{-2k^+}. \tag{10.20}\]

Then, with \(\gamma_1 := \sqrt{2},\)

\[
\pm(\sigma, \mu, \nu) = (+, +, +), \quad |\eta - p_{++1}(\xi)| = |\eta - \xi/2| \lesssim \epsilon_2, \quad \left| |\xi| - \gamma_1 \right| \lesssim \epsilon_1 + \epsilon_2^2. \tag{10.21}\]

Proof. (i) We have

\[
(\nabla_\eta \Phi_{\sigma\mu\nu})(\xi, \eta) = \mu \lambda'(|\xi - \eta|) \frac{\xi - \eta}{|\xi - \eta|} - \nu \lambda'(|\eta|) \frac{\eta}{|\eta|}. \tag{10.22}\]

Assume that \(\xi = \alpha e\) for some \(\alpha \in (0, \infty)\) and \(e \in S^1\). In view of (10.22), \((\nabla_\eta \Phi_{\sigma\mu\nu})(\xi, \eta) = 0\) if and only if

\[
\eta = \beta e, \quad \beta \in \mathbb{R} \setminus \{0, \alpha\}, \quad \mu \lambda'(|\alpha - \beta|) \operatorname{sgn}(\alpha - \beta) = \nu \lambda'(|\beta|) \operatorname{sgn}(\beta). \tag{10.23}\]

We observe that it suffices to define the functions \(p_{++1}, p_{++2},\) and \(p_{+-1}\) satisfying (10.15), since clearly \(p_{+-1} = p_{++1}, p_{--2} = p_{++2}\), and \(p_{+-1} = p_{++1}\).

If \((\mu, \nu) = (+, +)\) then, as a consequence of (10.23), \(\beta \in (0, \alpha)\) and \(\lambda'(\alpha - \beta) = \lambda'(\beta).\) Therefore, according to Lemma 10.1 (i)–(iii), there are two possible solutions,

\[
\beta = p_{++1}(\alpha) := \alpha/2, \quad \beta = p_{++2}(\alpha) \quad \text{uniquely determined by } \lambda'(\beta) = \lambda'(\alpha - \beta) \text{ and } \beta \in (0, \gamma_0]. \tag{10.24}\]

The uniqueness of the point \(p_{++2}(\alpha)\) is due to the fact that the function \(x \to x + b(x)\) is increasing on \([\gamma_0, \infty),\) see (10.9). On the other hand, if \((\mu, \nu) = (+, -)\) then, as a consequence of (10.23), \(\beta < 0\) or \(\beta > \alpha\) and \(\lambda'(\alpha - \beta) = \lambda'(|\beta|).\) Therefore, according to Lemma 10.1, there is only one solution \(\beta \geq \gamma_0.\)

\[
\beta = p_{+-1}(\alpha) \quad \text{uniquely determined by } \lambda'(\beta) = \lambda'(\beta - \alpha) \text{ and } \beta \in [\max(\alpha, \gamma_0), \alpha + \gamma_0]. \tag{10.25}\]

The conclusions in part (i) follow.

(ii) Assume that (10.16) holds and that \((\mu, \nu) \in \{(+, +), (+, -)\}. Let \(\xi = \alpha e, \ |e| = 1, \ \alpha \in [2^{-k-4}, 2^{k+4}], \ \eta = \beta e + v, v \cdot e = 0, (\beta^2 + |v|^2)^{1/2} \in [2^{-k-4}, 2^{k+4}].\) The condition \(|(\nabla_\eta \Phi_{\sigma\mu\nu})(\xi, \eta)| \leq \epsilon_2\) gives, using (10.22), \(|k_1| - |k_2| \leq 20\) and

\[
\left| \mu \lambda'(\xi - \eta) \frac{\alpha - \beta}{|\xi - \eta|} - \nu \lambda'(\eta) \frac{\beta}{|\eta|} \right| \leq \epsilon_2, \quad \left| - \mu \frac{\lambda'(\xi - \eta)}{|\xi - \eta|} - \nu \frac{\lambda'(\eta)}{|\eta|} \right| v \leq \epsilon_2. \tag{10.26}\]
Since $\alpha \geq 2^k$ and $|\xi - \eta|^{-1} \lambda'(|\xi - \eta|) \geq 2^{|k_1|/2 - k_1}$, the first inequality in (10.26) shows that
\[
\left| \frac{\mu \lambda'(|\xi - \eta|)}{|\xi - \eta|} - \nu \lambda'(|\eta|) \right| \gtrsim 2^{k + \frac{|k_1|}{2} - k_1}.
\]
Since $1/|\beta| \geq 2^{-k_2 - 4}$, using also the second inequality in (10.26) it follows that
\[
|v| \lesssim \epsilon_2 2^{-k_2 - |k_1|/2 + k_1 + k_2}
\]
and
\[
\left| - \frac{\lambda'(|\xi - \eta|)}{|\xi - \eta|} - \frac{\lambda'(|\eta|)}{|\eta|} \right| \gtrsim 2^{k + \frac{|k_1|}{2} - k_1 - k_2}.
\]
In particular $|v| \lesssim 2^{-202\min(k_1, k_2)}$,
\[
||\eta| - |\beta|| \lesssim \epsilon_2 2^{-2k - |k_1| + 2k_1 + k_2}, \quad ||\xi - \eta| - |\alpha - \beta|| \lesssim \epsilon_2 2^{-2k - |k_1| + k_1 + 2k_2}.
\]
Using the first inequality in (10.26) it follows that
\[
|\mu \lambda'(|\alpha - \beta|) \text{sgn}(\alpha - \beta) - \nu \lambda'(|\beta|) \text{sgn}(\beta)| \lesssim \epsilon_2 + C\epsilon_2 2^{-2k - |k_1| + 2\max(k_1, k_2)}.
\]

Proof of (10.17). Assume first that $|k| \leq 100$. Then $\max(|k_1|, |k_2|) \leq 200$, since otherwise (10.29) cannot hold (so there are no points (ξ, η) satisfying (10.16)). The conclusion $|\eta - p| - \xi^{-2} / |\xi| \lesssim \epsilon_2$ in (10.17) follows from (10.27).

Case 1. If $(\mu, \nu) = (+, -)$ then (10.29) gives
\[
|\lambda'(|\alpha - \beta|) - \lambda'(|\beta|)| \leq 2\epsilon_2, \quad \text{sgn}(\alpha - \beta) + \text{sgn}(\beta) = 0.
\]
Therefore either $\beta > \alpha$ and $|\lambda'(|\beta - \alpha|) - \lambda'(|\beta|)| \leq 2\epsilon_2$, in which case $\beta - \alpha < \gamma_0$, $\beta > \gamma_0$, and $|\beta - p_{+1}(\alpha)| \lesssim \epsilon_2$, or $\beta < \alpha$ and $|\lambda'(|\alpha - \beta|) - \lambda'(|-\beta|)| \leq 2\epsilon_2$, in which case $\alpha - \beta > \gamma_0$, $-\beta < \gamma_0$, and $|\alpha - \beta - p_{+1}(\alpha)| \lesssim \epsilon_2$. The desired conclusion follows in the stronger form $|\eta - p| \lesssim \epsilon_2$.

Case 2. If $(\mu, \nu) = (+, +)$ then (10.29) gives
\[
|\lambda'(|\alpha - \beta|) - \lambda'(|\beta|)| \leq 2\epsilon_2, \quad \text{sgn}(\alpha - \beta) = \text{sgn}(\beta).
\]
Therefore
\[
\beta \in (0, \alpha) \quad \text{and} \quad |\lambda'(|\alpha - \beta|) - \lambda'(|\beta|)| \leq 2\epsilon_2.
\]
Assume α fixed and let $G(\beta) := \lambda'(|\beta|) - \lambda'(|\alpha - \beta|)$. The function G vanishes when $\beta = \alpha/2$ or $\beta \in \{p_{++2}(\alpha), \alpha - p_{++2}(\alpha)\}$ (if $\alpha \geq 2\gamma_0$).

Assume that $\alpha = 2\gamma_0 + \rho > 2\gamma_0$, $\rho \in [0, 2^{110}]$. Then, using Lemma 10.1 (iii),
\[
p_{++2}(\alpha) \leq \gamma_0 \leq \alpha/2 \leq \alpha - p_{++2}(\alpha), \quad \alpha/2 - \gamma_0 = \rho/2, \quad \gamma_0 - p_{++2}(\alpha) \approx \sqrt{\rho},
\]
where the last conclusion follows from (10.10) with $a = \alpha - p_{++2}(\alpha), b(a) = p_{++2}(\alpha)$. Moreover, $|G'(\beta)| = |\lambda''(\beta) + \lambda''(\alpha - \beta)| \approx \rho$ if $\beta \in \{\alpha/2, p_{++2}(\alpha), \alpha - p_{++2}(\alpha)\}$, using (10.11) and (10.31). Also, $|G''(\beta)| = |\lambda'''(\beta) - \lambda'''(\alpha - \beta)| \approx \sqrt{\rho}$ if $|\beta - \alpha/2| \lesssim \sqrt{\rho}$, therefore
\[
|G'(\beta)| \approx \rho \quad \text{if} \quad \beta \in I_\alpha := \{x : \min(|x - \alpha/2|, |x - p_{++2}(\alpha)|, |x - \alpha + p_{++2}(\alpha)|) \leq \sqrt{\rho}/C_0\},
\]
for some large constant C_0.

If $\rho \leq C_0^2 \epsilon_2^3/3$ then the points $\alpha/2, p_{++2}(\alpha), \alpha - p_{++2}(\alpha)$ are within distance $\leq C_0^4 \epsilon_2^{1/3}$. In this case it suffices to prove that $|G(\beta)| \geq 3\epsilon_2$ if $|\beta - \alpha/2| \geq 2C_0^4 \epsilon_2^{1/3}$. Assume, for contradiction, that this is not true, so there is $\beta \leq \gamma_0 - C_0^4 \epsilon_2^{1/3}$ such that $|\lambda'(\beta) - \lambda'(\alpha - \beta)| \leq \epsilon_2$. So there is x close to β, $|x - \beta| \lesssim \epsilon_2^{2/3}$, such that $\lambda'(x) = \lambda'(\alpha - \beta)$. In particular, using (10.10) with $a = \alpha - \beta$,
that $\lambda \alpha$ we have

As a consequence (recall that $\beta |\gamma_0| (2C_0)$, provided that the constant D_1 in (10.16) is sufficiently large. So there is x close to β, $|x - \beta| \leq C_0^\epsilon \sqrt{\mu}/\rho$, such that $\lambda'(x) = \lambda'(\alpha - \beta)$. Using (10.9), it follows there is a point y close to x, $|y - x| \leq \epsilon_2 C_0^\epsilon \rho$, such that $\lambda'(y) = \lambda'(\alpha - y)$. Therefore $y = p_{+2}(\alpha)$. In particular $|\beta - p_{+2}(\alpha)| \leq \epsilon_2 C_0^\epsilon \rho$, in contradiction with the assumption $\beta \notin I_\alpha$, so $|\beta - p_{+2}(\alpha)| \geq \sqrt{\mu}/C_0$ (recall that $\rho \geq C_0^\epsilon \epsilon_2^2/\gamma$).

The case $\alpha = 2\gamma_0 - \rho \leq 2\gamma_0$ is easier, since there is only one point to consider, namely $\alpha/2$. As in (10.32), $|G(\beta)| \approx \rho$ if $|\beta - \alpha/2| \leq \sqrt{\mu}/C_0$. The proof then proceeds as before, by considering the two cases $\rho \leq C_0^\epsilon \epsilon_2^2/\gamma$ and $\rho \geq C_0^\epsilon \epsilon_2^2/\gamma$.

Proof of (10.18). Assume now that $k \leq -100$, so $|k_1 - k_2| \leq 20$, and consider two cases:

Case 1. Assume first that $(\mu, \nu) = (+, -)$. In view of (10.22) we have

If $\max(|\eta|, |w|) \leq \gamma_0 - 2^{-10}$ or $\min(|\eta|, |w|) \geq \gamma_0 + 2^{-10}$ it follows from (10.33) that $|\lambda'(\eta) - \lambda'(|w|)| \leq \epsilon_2$, therefore $|\eta - |w|| \leq \epsilon_2 2^{-|k_1|/2}$. Therefore

As a consequence $|\eta - w| \leq \epsilon_2 2^{-|k_1|/2}$.

On the other hand $|\eta - |w|| \geq \epsilon_2 2^k$, in contradiction with the assumption $\epsilon_2 \leq 2^{-D_1 2^{k-k_1}}$.

Since $|\eta - w| \leq 2^{-90}$ it remains to consider the case

In particular $k_1, k_2 \in [-10, 10]$, as claimed. Moreover $|v| \leq \epsilon_2 2^{|k|}$ as desired, in view of (10.27).

The condition (10.29) gives

Without loss of generality, we may assume that

Notice that $p_{+1}(\alpha) \in (\gamma_0, \alpha + \gamma_0)$. We have two cases: if $\epsilon_2 \geq 2^{-D_1 2^{2k}}$ then we need to prove that $|\beta - \gamma_0| \leq 2^{4D_1} \epsilon_2 2^{2k}$. This follows from (10.33): otherwise, if $|\beta - \gamma_0| = d \geq 2^{4D_1} \epsilon_2 2^{2k} \geq 2^{3D_1} 2^k$ then $|\eta - \gamma_0| \approx d$ and $|w - \gamma_0| \approx d$, using also (10.27). As a consequence of (10.33), we have $|\eta - |w|| \approx \epsilon_2 2^{d-1}$, so

Thus $|\eta - w| \approx \epsilon_2 2^{d-1} \leq \epsilon_2 + 2^{k-4D_1}$, in contradiction with the fact that $|\eta - w| = |\xi| \geq 2^k$.

On the other hand, if $\epsilon_2 \leq 2^{-D_1 2^{2k}}$ then (10.35) gives $|\lambda'(\beta) - \lambda'(\beta - \alpha)| \leq 2\epsilon_2$ and $\beta \in (\gamma_0, \alpha + \gamma_0)$. Let $H(\beta) := \lambda'(\beta) - \lambda'(\beta - \alpha)$ and notice that

$$|H'(\beta)| \geq |\beta - \gamma_0| + |\beta - \alpha - \gamma_0| \geq 2^k$$
if β is in this set. The desired conclusion follows since $H(p_{+1}(\alpha)) = 0$.

Case 2. If $(\mu, \nu) = (+, +)$ then (10.29) gives
\[
|\lambda'(\alpha - \beta) - \lambda'(\beta)| \leq \varepsilon_2 + C_2 \varepsilon_2 2^{-2k - |k_1|/2 + 2\max(k_1, k_2)}, \quad \beta \in (0, \alpha).
\]
This shows easily that $k_1, k_2 \in [k - 10, k + 10]$ and $|\alpha - 2\beta| \lesssim 2^{-3|k_1|/2} \varepsilon_2$. The desired conclusion follows using also (10.27).

Proof of (10.19). Assume now that $k \geq 100$ and consider two cases:

Case 1. If $(\mu, \nu) = (+, -)$ then (10.29) gives
\[
|\lambda'(\alpha - \beta) - \lambda'(\beta)| \leq \varepsilon_2 + C_2 \varepsilon_2 2^{-2k - |k_1|/2 + 2\max(k_1, k_2)}, \quad \text{sgn}(\alpha - \beta) + \text{sgn}(\beta) = 0.
\]
We may assume $\beta > \alpha$, $|\max(k_1, k_2) - k| \leq 20$, and $|\lambda'(\alpha - \beta) - \lambda'(\beta)| \leq 2\varepsilon_2$. In particular $\beta \in (0, \alpha + \gamma_0)$. Let $H(\beta) := \lambda'(\beta) - \lambda'(\beta - \alpha)$ as before and notice that $|H'(\beta)| \gtrsim 3k/2$ in this set. The desired conclusion follows since $H(p_{+1}(\alpha)) = 0$, using also (10.27).

Case 2. If $(\mu, \nu) = (+, +)$ then (10.29) gives
\[
|\lambda'(\alpha - \beta) - \lambda'(\beta)| \leq \varepsilon_2 + C_2 \varepsilon_2 2^{-2k - |k_1|/2 + 2\max(k_1, k_2)}, \quad \beta \in (0, \alpha). \quad (10.36)
\]
If both β and $\alpha - \beta$ are in $[\gamma_0, \infty)$ then (10.36) gives $|\beta - \alpha/2| \lesssim \varepsilon_2 2^{k/2}$, which suffices (using also (10.27)). Otherwise, assuming for example that $\beta \in (0, \gamma_0)$, it follows from (10.36) that $\beta \leq 2^{-k+20}$. Let, as before, $G(\beta) := \lambda'(\beta) - \lambda'(\beta - \alpha)$ and notice that $|G'(\beta)| \gtrsim 3k/2$ if $\beta \in (0, 2^{-k+20}]$. The desired conclusion follows since $G(p_{+2}(\alpha)) = 0$, using also (10.27).

(iii) If $k \leq 100$ then $\Phi_{\sigma, \mu}(\xi, \eta) \gtrsim 2^{k/2}$, in view of (10.6) and (10.18), which is not not allowed by the condition on ε_1.

If $k \geq 100$ and $(\mu, \nu) = (+, -)$ then $p_{+1}(\alpha) - \alpha \leq 2^{-k+10} \lesssim 2^{-k} \leq \alpha$ and
\[
|\Phi(\xi, \eta)| \geq |\pm \lambda(\alpha) - \lambda(p_{+1}(\alpha)) + \lambda(p_{+1}(\alpha) - \alpha)| - C_2 \varepsilon_2 2^k,
\]
for some constant C sufficiently large. Moreover, in view of Lemma 10.1 (i), $\alpha(p_{+1}(\alpha) - \alpha) \leq \gamma_0^2 \lesssim 0.2$. In particular, using also Lemma 10.1 (iv), $|\Phi(\xi, \eta)| \gtrsim 2^{-k}/2$, which is impossible in view of the assumption on ε_1. A similar argument works also in the case $k \leq 100$ and $(\mu, \nu) = (+, +)$ to show that there are no points (ξ, η) satisfying (10.20).

Finally, assume that $|k| \leq 100$, so $|k_1|, |k_2| \in [0, 200]$. If $(\mu, \nu) = (+, -)$ then there are still no solutions (ξ, η) of (10.20), using the same argument as before: in view of Lemma 10.1 (i), $\alpha(p_{+1}(\alpha) - \alpha) \leq \gamma_0^2 \lesssim 0.2$, so $|\Phi(\xi, \eta)| \gtrsim 1$ as a consequence of Lemma 10.1 (iv).

On the other hand, if $(\mu, \nu) = (+, +)$ then we may also assume that $\sigma = +$. If β is close to $p_{+2}(\alpha)$ or to $\alpha - p_{+2}(\alpha)$ then $\Phi(\xi, \eta) \gtrsim 1$, for the same reason as before. We are left with the case $|\beta - \alpha/2| \lesssim \varepsilon_2$ and $\alpha \geq 1$. Therefore $|\eta - \xi/2| \lesssim \varepsilon_2$. We notice now that the equation $\lambda(x) - 2\lambda(x/2) = 0$ has the unique solution $x = \sqrt{2} =: \gamma_1$, and the desired bound on $|\xi| - \gamma_1$ follows since
\[
|\xi| - \gamma_1 \lesssim |\Phi_{\sigma, \mu}(\xi, \xi/2)| \lesssim \left| \Phi_{\sigma, \mu}(\xi, \eta) \right| + |\Phi_{\sigma, \mu}(\xi, \xi/2) - \Phi_{\sigma, \mu}(\xi, \eta)| \lesssim \varepsilon_1 + \varepsilon_2.
\]
This completes the proof of the proposition.

\[\Box\]

10.3. Bounds on sublevel sets. In this subsection we analyze the sublevel sets of the phase functions Φ, and the interaction of these sublevel sets with several other structures. We start with a general bound on the size of sublevel sets of functions, see [31, Lemma 8.5] for the proof.
Lemma 10.3. Suppose $L, R, M \in \mathbb{R}$, $M \geq \max(1, L, L/R)$, and $Y : B_R := \{x \in \mathbb{R}^n : |x| < R\} \to \mathbb{R}$ is a function satisfying $\|\nabla Y\|_{C^l(B_R)} \leq M$, for some $l \geq 1$. Then, for any $\epsilon > 0$,

$$\left|\left\{ x \in B_R : |Y(x)| \leq \epsilon \text{ and } \sum_{|\alpha| \leq l} |\partial^\alpha Y(x)| \geq L\right\}\right| \lesssim R^n M L^{-1} 1/\epsilon^{1/l}. \quad (10.37)$$

Moreover, if $n = l = 1$, K is a union of at most A intervals, and $|Y'(x)| \geq L$ on K, then

$$\left|\left\{ x \in K : |Y(x)| \leq \epsilon\right\}\right| \lesssim A L^{-1} \epsilon. \quad (10.38)$$

We prove now several important bounds on the sets of time resonances. Assume $\Phi = \Phi_{\sigma \mu \nu}$, for some choice of $\sigma, \mu, \nu \in \{+,-\}$, and D_1 is the large constant fixed in Proposition 10.2.

Proposition 10.4 (Volume bounds of sublevel sets). Assume that $k, k_1, k_2 \in \mathbb{Z}$, define D_k, k_1, k_2 as in (2.11), let $\overline{k} := \max(k_1, k_2)$, and assume that

$$\min(k, k_1, k_2) + \max(k, k_1, k_2) \geq -100. \quad (10.39)$$

(i) Let

$$E_{k, k_1, k_2; \epsilon} := \{(\xi, \eta) \in D_k, k_1, k_2 : |\Phi(\xi, \eta)| \leq \epsilon\}.$$

Then

$$\sup_\xi \int_{\mathbb{R}^2} 1_{E_{k, k_1, k_2; \epsilon}}(\xi, \eta) \ d\eta \lesssim 2^{\overline{k}/2} \epsilon \log(2 + 1/\epsilon) 2^{4 \min(k_1^+, k_2^+)} \quad (10.40)$$

(ii) Assume that $r_0 \in [2^{-D_1}, 2^{D_1}]$, $\epsilon \leq 2^{\min(k, k_1, k_2, 0)/2 - D_1}$, $\epsilon' \leq 1$ and let

$$E'_{k, k_1, k_2; \epsilon, \epsilon'} := \{(\xi, \eta) \in D_k, k_1, k_2 : |\Phi(\xi, \eta)| \leq \epsilon, ||\xi - \eta| - r_0| \leq \epsilon'\}.$$

Then we can write $E'_{k, k_1, k_2; \epsilon, \epsilon'} = E'_1 \cup E'_2$ such that

$$\sup_\xi \int_{\mathbb{R}^2} 1_{E'_1}(\xi, \eta) \ d\eta + \sup_\eta \int_{\mathbb{R}^2} 1_{E'_2}(\xi, \eta) \ d\xi \lesssim \epsilon \log(1/\epsilon) \cdot 2^{2\overline{k}} (\epsilon')^{1/2}. \quad (10.41)$$

(iii) Assume that $\epsilon \leq 2^{\min(k, k_1, k_2, 0)/2 - D_1}$, $\kappa \leq 1$, $p, q \leq 0$, and let

$$E''_{k, k_1, k_2; \epsilon, \kappa} := \{(\xi, \eta) \in D_k, k_1, k_2 : |\Phi(\xi, \eta)| \leq \epsilon, |(\Omega_{\eta, \Phi}(\xi, \eta)| \leq \kappa\}.$$

Then

$$\sup_\xi \int_{\mathbb{R}^2} 1_{E''_{k, k_1, k_2; \epsilon, \kappa}}(\xi, \eta) \varphi_{\geq q}(\nabla_\eta \Phi(\xi, \eta)) \ d\eta \lesssim 2^{8 \min(|k_1|, |k_2|)} \epsilon \log(1/\epsilon) \cdot 2^{-\kappa} q 2^\overline{k},$$

$$\sup_\eta \int_{\mathbb{R}^2} 1_{E''_{k, k_1, k_2; \epsilon, \kappa}}(\xi, \eta) \varphi_{\geq p}(\nabla_\xi \Phi(\xi, \eta)) \ d\xi \lesssim 2^{8 \min(|k_1|, |k|)} \epsilon \log(1/\epsilon) \cdot 2^{-\kappa} p 2^\overline{k}. \quad (10.42)$$

As a consequence, we can write $E''_{k, k_1, k_2; \epsilon, \kappa} = E''_1 \cup E''_2$ such that

$$\sup_\xi \int_{\mathbb{R}^2} 1_{E''_1}(\xi, \eta) \ d\eta + \sup_\eta \int_{\mathbb{R}^2} 1_{E''_2}(\xi, \eta) \ d\xi \lesssim \epsilon \log(1/\epsilon) \cdot 2^{12\overline{k}}. \quad (10.43)$$
Moreover, if \(\kappa \leq 2^{-8\max(k,k_1,k_2)-D_1} \) then

\[
\sup_{\xi} \int_{\mathbb{R}^2} 1_{E^\kappa,k_1,k_2;\kappa} (\xi, \eta) \varphi_{\leq q}(\nabla_\eta \Phi(\xi, \eta)) \, d\eta \lesssim \kappa 2^{q_28\overline{k}}
\]

\[
\sup_{\eta} \int_{\mathbb{R}^2} 1_{E^\kappa,k_1,k_2;\kappa} (\xi, \eta) \varphi_{\leq p}(\nabla_\xi \Phi(\xi, \eta)) \, d\xi \lesssim \kappa 2^{p_22\overline{k}}.
\] (10.44)

Proof. The condition (10.39) is natural due to (10.6), otherwise \(|\Phi(\xi, \eta)| \approx 2^{\min(k,k_1,k_2)/2} \) in \(D_{k,k_1,k_2} \). Compare also with the condition \(\epsilon \leq 2^{\min(k,k_1,k_2,0)/2-D_1} \) in (ii) and (iii).

(i) By symmetry, it suffices to prove the inequality in the first line of (10.40). We may assume that \(k_2 \leq k_1 \), so, using (10.39),

\[k_1, \max(k, k_2) \in [\overline{k} - 10, \overline{k}], \quad k, k_2 \geq -\overline{k} - 100. \] (10.45)

Assume that \(\xi = (s, 0), \eta = (r \cos \theta, r \sin \theta) \), so

\[-\Phi(\xi, \eta) = -\sigma \lambda(s) + \nu \lambda(r) + \mu \lambda((s^2 + r^2 - 2sr \cos \theta)^{1/2}) =: Z(r, \theta). \] (10.46)

We may assume that \(\epsilon \leq 2^{\min(k,k_2)}2^{\overline{k}/2-D_1} \). Notice that

\[
\left| \frac{d}{d\theta} Z(r, \theta) \right| = \left| \lambda'((s^2 + r^2 - 2sr \cos \theta)^{1/2}) \right| = \frac{sr \sin \theta}{(s^2 + r^2 - 2sr \cos \theta)^{1/2}}.
\] (10.47)

Assume that \(|s - r| \geq 2^{\overline{k} - 100}, s \in [2^{ k_2 - 4}, 2^{k_2 + 4}], r \in [2^{ k_2 - 4}, 2^{k_2 + 4}] \). Then, for \(r, s \) fixed,

\[
|\{ \theta \in [0, 2\pi] : |Z(r, \theta)| \leq \epsilon \}| \lesssim \sum_{b \in \{0, 1\}} \frac{\epsilon}{2^{\overline{k}/2}2^{\min(k,k_2)}(\epsilon + Z(r, b\pi))}. \] (10.48)

Indeed, this follows from (10.47) since in this case \(|\partial_\theta Z(r, \theta)| \approx 2^{\min(k,k_2)}2^{\overline{k}/2} \sin \theta \) for all \(\theta \in [0, 2\pi] \). Next, we observe that

\[
|\{ r \in [2^{k_2 - 4}, 2^{k_2 + 4}] : |s - r| \geq 2^{\overline{k} - 100} \} | \lesssim \kappa 2^{k_2},
\] (10.49)

provided that \(\overline{k} \geq 200 \) and \(b \in \{0, 1\} \). Indeed, in proving (10.49) we may assume that \(\kappa \leq 2^{-D_1} \). Then we notice that the set in the left-hand side of (10.49) is nontrivial only if

\[\pm Z(r, b\pi) = \lambda(s) - \lambda(s \pm r) \pm \lambda(r) \quad \text{and} \quad s \in [2^{\overline{k} - 10}, 2^{\overline{k} + 10}], \]

\[r \in [2^{\overline{k} - 10}, 2^{\overline{k} + 10}]; \]

or

\[\pm Z(r, b\pi) = \lambda(r) - \lambda(r \pm s) \pm \lambda(s) \quad \text{and} \quad r \in [2^{\overline{k} - 10}, 2^{\overline{k} + 10}], s \in [2^{\overline{k} - 10}, 2^{\overline{k} + 10}]. \]

In all cases, the desired conclusion (10.49) follows easily, since \(|\partial_r Z(r, b\pi)| \) is suitably bounded away from 0. Using also (10.48) it follows that

\[
\{ \eta : |\eta| \in [2^{k_2 - 4}, 2^{k_2 + 4}], |\xi| - |\eta| \geq 2^{\overline{k} - 100} \} \lesssim \epsilon 2^{-\overline{k}/2}a^{k_2} \] (10.50)

provided that \(|\xi| \in [2^{k_2 - 4}, 2^{k_2 + 4}], \overline{k} \geq 200 \), and (10.45) holds.

The case \(\overline{k} \leq 200 \) is easier. In this case we have \(a^{k_1} 2^{k_2} \approx 1 \), due to (10.45). In view of Proposition 10.2 (iii), if \(|Z(r, b\pi)| \leq \kappa \leq 2^{-2D_1} \) and \(|\partial_r Z(r, b\pi)| \leq 2^{-2D_1} \) then \(s \) is close to \(r_1 \), \(r \) is close to \(\gamma_1/2 \), \(b = 0 \). As a consequence \(|\partial_\theta^2 Z(r, b\pi)| \gtrsim 1 \). It follows from Lemma 10.3 that

\[
|\{ r \in [2^{k_2 - 4}, 2^{k_2 + 4}] : |s - r| \geq 2^{\overline{k} - 100} \} | \lesssim \kappa^{1/2},
\]

provided that \(\overline{k} \leq 200 \) and \(\kappa \in \mathbb{R} \). Using (10.48) again it follows that

\[
|\{ \eta : |\eta| \in [2^{k_2 - 4}, 2^{k_2 + 4}], |\xi| - |\eta| \geq 2^{\overline{k} - 100} \} | \lesssim \epsilon \log(2 + 1/\epsilon) \] (10.51)
provided that $|\xi| \in [2^{k-4}, 2^{k+4}]$ and $\overline{K} \leq 200$.

Finally, we estimate the contribution of the set where $||\xi| - |\eta|| \leq 2^{\overline{K}-100}$. In this case we may assume that $k, k_1, k_2 \geq \overline{K} - 20$. We replace (10.48) by

$$\{ \{ \theta \in [2^{-D_1}, 2\pi - 2^{-D_1}] : |Z(r, \theta)| \leq \epsilon \} \} \lesssim \frac{\epsilon}{\sqrt{2^{3\overline{K}/2}(\epsilon + Z(r, \pi))}},$$

(10.52)

which follows from (10.47) (since $|\partial_\theta Z(r, \theta)| \approx 2^{3\overline{K}/2} |\sin \theta|$ for all $\theta \in [2^{-D_1}, 2\pi - 2^{-D_1}]$). The proof proceeds as before, by analyzing the vanishing of the function $r \to Z(r, \pi)$ (it is in fact slightly easier since $|Z(r, \pi)| \gtrsim 2^{3\overline{K}/2}$ if $\overline{K} \geq 200$). It follows that

$$\{ \{ \eta : |\eta| \in [2^{k_2-4}, 2^{k_2+4}], ||\xi| - |\eta|| \leq 2^{\overline{K}-100} \text{ and } |\Phi(\xi, \eta)| \leq \epsilon \} \} \lesssim \epsilon \log(2 + 1/\epsilon) 2^{\overline{K}/2}.$$

The desired bound in the first line of (10.40) follows using also (10.50)–(10.51).

(ii) We may assume that $\min(k, k_2) \geq -2D_1$ and that $\epsilon' \leq 2^{-D_2}$. Define

$$E'_1 := \{ (\xi, \eta) \in E'_{k_k, k_1, k_2, \epsilon, \epsilon' : |\nabla_\xi \Phi(\xi, \eta)| \geq 2^{-20D_1}\},$$

$$E'_2 := \{ (\xi, \eta) \in E'_{k_k, k_1, k_2, \epsilon, \epsilon' : |\nabla_\eta \Phi(\xi, \eta)| \geq 2^{-20D_2}\}.$$

(10.53)

It is easy to see that $E'_{k_k, k_1, k_2, \epsilon, \epsilon'} = E'_1 \cup E'_2$, using Proposition 10.2 (ii). By symmetry, it suffices to prove (10.41) for the first term in the left-hand side. Let $\xi = (s, 0)$, $\eta = (r \cos \theta, r \sin \theta)$, and

$$E'_{1, \xi, 1} := \{ \eta : (\xi, \eta) \in E'_1, |\sin \theta| \leq (\epsilon')^{1/2} 2^{-2k_2}\},$$

$$E'_{1, \xi, 2} := \{ \eta : (\xi, \eta) \in E'_1, |\sin \theta| \geq (\epsilon')^{1/2} 2^{-2k_2}\}.$$

(10.54)

It follows from Lemma 10.3 that $|E'_{1, \xi, 1}| \lesssim \epsilon \cdot (\epsilon')^{1/2}$. Indeed, since $|\nabla_\xi \Phi(\xi, \eta)| \gtrsim 2^{-20D_1}$ and $|\sin \theta| \leq (\epsilon')^{1/2} 2^{-2k_2}$, it follows from formula (10.46) that $|\partial \Phi(\xi, \eta)| \gtrsim 2^{-21D_1}$ in $E'_{1, \xi, 1}$. The desired conclusion follows by applying Lemma 10.3 for every suitable angle θ.

To estimate $|E'_{1, \xi, 2}|$ we use the formula (10.46). It follows from definitions that

$$E'_{1, \xi, 2} \subseteq \{ \eta : r \in [2^{k_2-4}, 2^{k_2+4}], \lambda(r) \in K, r_0, |\sin \theta| \geq (\epsilon')^{1/2} 2^{-2k_2}, |\Phi(\xi, \eta)| \leq \epsilon\},$$

where K, r_0 is an interval of length $\gtrsim \epsilon'$ and $k_2 \geq -2D_1$. Therefore, using the formula (10.46) as before, $|E'_{1, \xi, 2}| \lesssim 2^{k_2} (\epsilon')^{1/2}$, as desired.

(iii) For (10.42) it suffices to prove the inequality in the first line. We may also assume that (10.39) holds, and that $\kappa \leq 2^{-2 \max(k, k_1, k_2) - 2D_1}$. Assume, as before, that $\xi = (s, 0)$, $\eta = (r \cos \theta, r \sin \theta)$. Since

$$|\langle (\Omega_\eta \Phi)(\xi, \eta) \rangle| = \frac{\lambda(|\xi - \eta|)}{|\xi - \eta|} |\langle \xi \cdot \eta \rangle|,$$

the condition $|\langle (\Omega_\eta \Phi)(\xi, \eta) \rangle| \leq \kappa$ gives

$$|\sin \theta| \lesssim \kappa 2^{k_1 - k - k_2 - |k_1|/2},$$

(10.55)

in the support of the integral. The formula (10.46) shows that

$$r^{-1} |\partial_\theta \Phi(\xi, \eta)| = \frac{\lambda(|\xi - \eta|)}{|\xi - \eta|} s |\sin \theta| \lesssim \kappa 2^{-k_2}$$

in the support of the integral. Therefore $|\partial_\theta \Phi(\xi, \eta)| \gtrsim 2^{-4}$ in the support of the integral.

We assume now that θ is fixed satisfying (10.55). If $|k_2 - |k_1|| \geq 100$ then $|\partial_\theta \Phi(\xi, \eta)| \gtrsim 2^{k_1/2} + 2^{k_2/2}$ for all $(\xi, \eta) \in D_{k, k_1, k_2}$, and the desired bound follows from (10.37), with $l = 1.$
and \(n = 1\). If \(\|k_2| - |k_1|| \leq 100\) then we use still use (10.37) to conclude that the integral is dominated by

\[
C \epsilon 2^{-2q} 2^{5|k_1|/2} \cdot \kappa 2^{k_1 - k - |k_1|/2} \lesssim \epsilon \kappa 2^{-2q} 2^{4|k_1|}.
\]

This suffices to prove (10.42) if \(2^q \geq 2^{-6 \max(k, k_1, k_2) - D_1}\). Finally, if

\[
\|k_2| - |k_1|| \leq 100,
\]

\[
2^q \leq 2^{-6 \max(k, k_1, k_2) - D_1},
\]

\[
\kappa \leq 2^{q - 2 \max(k, k_1, k_2) - D_1},
\]

then we would like to apply (10.38). For this it suffices to verify that for any \(\theta\) fixed satisfying (10.55) the number of intervals (in the variable \(r\)) where \(\partial_r \Phi(x, \eta)| \leq 2^{q-4}\) is uniformly bounded.

In view of Proposition 10.2 (iii) these intervals are present only when \(k, k_1, k_2 \in [-10, 10], |s - \gamma_1| \ll 1, |r - \gamma_1/2| \ll 1\) and \(\Phi(x, \eta) = \pm [\lambda(s) - \lambda(r) - \lambda((s^2 + r^2 - 2sr \cos \theta)1/2)]\). In this case, however \(|\partial_r^2 \Phi(x, \eta)| \gtrsim 1\). As a consequence, for any \(s\) and \(\theta\) there is at most one interval in \(r\) where \(\partial_r \Phi(x, \eta)| \leq 2^{q-4}\), and the desired bound follows from (10.38).

The decomposition (10.43) follows from (10.42) and Proposition 10.2 (ii), by setting \(2^q = 2^q = 2^{-2D_1} 2^{-2 \max(k, k_1, k_2)}\).

To prove the first inequality in (10.44), we may assume that \(q \leq -5 \max(k, k_1, k_2) - D_1\) (due to (10.55)). In view of Proposition 10.2 (iii) we may assume that \(k, k_1, k_2 \in [-10, 10], |s - \gamma_1| \ll 1, |r - \gamma_1/2| \ll 1\) and \(\Phi(x, \eta) = \pm [\lambda(s) - \lambda(r) - \lambda((s^2 + r^2 - 2sr \cos \theta)1/2)]\). As before, \(|\partial_r^2 \Phi(x, \eta)| \gtrsim 1\) in this case. As a consequence, for any \(s\) and \(\theta\) fixed, the measure of the set of numbers \(r\) for which \(\partial_r \Phi(x, \eta)| \leq 2^{q}\) is bounded by \(C2^q\), and the desired bound follows.

We will also need a variant of Schur's lemma for suitably localized kernels.

Lemma 10.5. Assume that \(n, p \leq -D/10, k, k_1, k_2 \in \mathbb{Z}, l \leq \min(k, k_1, k_2, 0)/2 - D/10, \rho_1, \rho_2 \in \{\gamma_0, \gamma_1\}\). Then, with \(D_{k, k_1, k_2}\) as in (2.11), and assuming that \(\sup_{r \in \mathbb{S}^1} |\hat{f}(r\omega)| \|L^2| f(r\omega)| \leq 1\),

\[
\left\| \int_{\mathbb{R}^2} 1_{D_{k, k_1, k_2}}(x, \eta) \varphi_l(\Phi(x, \eta)) \varphi_n(|\xi - \eta| - \rho_1) \hat{f}(\xi - \eta) \tilde{g}(\eta) \, d\eta \right\|_{L^2_x} \leq 2^{(l+n)/2} \|g\|_{L^2},
\]

(10.56)

\[
\left\| \int_{\mathbb{R}^2} 1_{D_{k, k_1, k_2}}(x, \eta) \varphi_l(\Phi(x, \eta)) \varphi_n(|\xi - \eta| - \rho_1) \varphi_p(|\eta| - \rho_2) \hat{f}(\xi - \eta) \tilde{g}(\eta) \, d\eta \right\|_{L^2_x} \leq 2^{(l+n)/2} \|g\|_{L^2},
\]

(10.57)

and

\[
\left\| \int_{\mathbb{R}^2} 1_{D_{k, k_1, k_2}}(x, \eta) \varphi_l(\Phi(x, \eta)) \hat{f}(\xi - \eta) \tilde{g}(\eta) \, d\eta \right\|_{L^2_x} \lesssim 2^{5|k_1|/2} \|f\|_{L^2},
\]

(10.58)

Proof. In view of (10.6), we may assume that \(\min(k, k_1, k_2) + \kappa \geq -100\), where \(\kappa = \max(k, k_1, k_2)\).

We start with (10.56). We may assume that \(\min(k, k_1, k_2) \geq -200\). By Schur's test, it suffices to show that

\[
\sup_{\xi} \int_{\mathbb{R}^2} 1_{D_{k, k_1, k_2}}(x, \eta) \varphi_l(\Phi(x, \eta)) \varphi_n(|\xi - \eta| - \rho_1) |\hat{f}(\xi - \eta)| \, d\eta \lesssim 2^{(l+n)/2},
\]

(10.59)

\[
\sup_{\eta} \int_{\mathbb{R}^2} 1_{D_{k, k_1, k_2}}(x, \eta) \varphi_l(\Phi(x, \eta)) \varphi_n(|\xi - \eta| - \rho_1) |\hat{f}(\xi - \eta)| \, d\xi \lesssim 2^{(l+n)/2}.
\]

We focus on the first inequality. Fix \(\xi \in \mathbb{R}^2\) and introduce polar coordinates, \(\eta = \xi - r\omega, r \in (0, \infty), \omega \in \mathbb{S}^1\). The left-hand side is dominated by

\[
C \int_{\omega \in \mathbb{S}^1} \int_{r = 2^{k_1+4}} 1_{D_{k, k_1, k_2}}(x, \xi - r\omega) \varphi_l(\Phi(x, \xi - r\omega)) \varphi_n(r - \rho_1) |\hat{f}(r\omega)| \, r \, dr \, d\omega,
\]
for a constant C sufficiently large. Therefore it suffices to show that
\[
\sup_{r,\xi} \int_{\mathbb{S}^1} 1_{D_{k_1,k_2}}(\xi, \xi - r\omega) \varphi_l(\Phi(\xi, \xi - r\omega)) \, d\omega \lesssim 2^{l/2} 2^{k_1/2}, \tag{10.60}
\]
which is easily verified as in Proposition 10.4, using the identity (10.46). Indeed for ξ and r fixed, and letting $\omega = (\cos \theta, \sin \theta)$, the absolute value of the $d/d\theta$ derivative of the function $\theta \to \Phi(\xi, \xi - r(\cos \theta, \sin \theta))$ is bounded from below by $c |\sin \theta| 2^{k_1-k_2} 2^{k_2/2} \gtrsim |\sin \theta| 2^{-k_1/2}$.

The bound (10.60) follows using also (10.38). The second inequality in (10.59) follows similarly.

We prove now (10.57). We may assume that $k, k_1, k_2 \in [-80, 80]$ and it suffices to show that
\[
\sup_{l} \int_{\mathbb{R}^2} 1_{D_{k_1,k_2}}(\xi, \eta) \varphi_l(\Phi(\xi, \eta)) \varphi_n(\|\xi - \eta| - \rho_1) \varphi_n(\|\eta| - \rho_2) |\hat{f}(\xi - \eta)| \, d\eta \lesssim 2^{n/2} \min\{2^l, 2^n\},
\]
\[
\sup_{\eta} \int_{\mathbb{R}^2} 1_{D_{k_1,k_2}}(\xi, \eta) \varphi_l(\Phi(\xi, \eta)) \varphi_n(\|\xi - \eta| - \rho_1) \varphi_n(\|\eta| - \rho_2) |\hat{f}(\xi - \eta)| \, d\xi \lesssim 2^{l+n/2}. \tag{10.61}
\]

We proceed as for (10.59) but replace (10.60) by
\[
\sup_{|\xi| \leq 1} \sup_r \int_{\mathbb{S}^1} \varphi_l(\Phi(\xi, \xi - r\omega)) \varphi_n(r - \rho_1) \varphi_n(\|\xi - r\omega| - \rho_2) \, d\omega \lesssim \min\{2^l, 2^n\},
\]
\[
\sup_{\eta} \int_{\mathbb{S}^1} \varphi_l(\Phi(\eta + r\omega, \eta)) \varphi_n(r - \rho_1) \varphi_n(\|\eta| - \rho_2) \varphi_{-90}(\eta + r\omega) \, d\omega \lesssim 2^l.
\]
The bounds (10.61) follow easily, using also the formula (10.46) to prove the 2^l bounds, once we notice that $|\sin \theta| \gtrsim 1$ in the support of the integrals. For this we only need to verify that the points ξ and η cannot be almost aligned; more precisely, we need to verify that if ξ and η are aligned then $|\Phi(\xi, \xi - \eta)| + |\|\xi - \eta| - \rho_2| + ||\eta| - \rho_1| \gtrsim 1$. For this it suffices to notice that
\[
|\pm \lambda(\|\xi|) \pm \lambda(\rho_1) \pm \lambda(\rho_2)| \gtrsim 1 \quad \text{if} \quad |\xi| \gtrsim 1 \quad \text{and} \quad \pm |\xi| \pm \rho_1 \pm \rho_2 = 0.
\]

Recalling that $\rho_1, \rho_2 \in \{\gamma_0, \gamma_1\}$, it suffices to verify that $\lambda(2\gamma_0 - 2\gamma_0) \neq 0$, $\lambda(2\gamma_1 - 2\gamma_1) \neq 0$, $\lambda(\gamma_0 + \gamma_1) - \lambda(\gamma_0) - \lambda(\gamma_1) \neq 0$, $\lambda(\gamma_0 + \gamma_1) + \lambda(\gamma_0) - \lambda(\gamma_1) \neq 0$. These claims follow from Lemma 10.1 (iv), since the numbers $\gamma_0^2, \gamma_1^2, \gamma_0\gamma_1$, and $\gamma_0(1 - \gamma_0)$ are not in the interval $[4/9, 1/2]$.

We now turn to (10.58). By Schur’s lemma it suffices to show that
\[
\sup_{\xi} \int_{\mathbb{R}^2} \varphi_l(\Phi(\xi, \eta)) 1_{D_{k_1,k_2}}(\xi, \eta) |\hat{f}(\xi - \eta)| \, d\eta \lesssim 2^{5k_1} 2^{3l/4}(1 + |l|),
\]
\[
\sup_{\eta} \int_{\mathbb{R}^2} \varphi_l(\Phi(\xi, \eta)) 1_{D_{k_1,k_2}}(\xi, \eta) |\hat{f}(\xi - \eta)| \, d\xi \lesssim 2^{5k_1} 2^{3l/4}(1 + |l|). \tag{10.62}
\]

We show the first inequality. Introducing polar coordinates, as before, we estimate
\[
\int_{\mathbb{R}^2} \varphi_l(\Phi(\xi, \xi - r\omega)) 1_{D_{k_1,k_2}}(\xi, \xi - r\omega) |\hat{f}(r\omega)| \, rdrd\omega
\lesssim \|\sup_{\omega} |\hat{f}(r\omega)|\|_{L^2(rdr)} \int_{\mathbb{S}^1} \varphi_l(\Phi(\xi, \xi - r\omega)) 1_{D_{k_1,k_2}}(\xi, \xi - r\omega) \, d\omega \|_{L^2(rdr)}
\lesssim \|\varphi_{l+2} \Phi(\xi, \xi - \eta)\|_{L^4} \|\varphi_{l+2} \Phi(\xi, \xi - \eta)\|_{L^4} \lesssim 2^{5k_1} 2^{3l/4}(1 + |l|),
\]
using Proposition 10.4 (i) and (10.60). The second inequality in (10.62) follows similarly. \qed
10.4. Iterated resonances. In this subsection we prove a lemma concerning some properties of the cubic phases

$$\tilde{\Phi}(\xi, \eta, \sigma) = \tilde{\Phi}_B(\xi, \eta, \sigma) = \Lambda(\xi) - \Lambda_\mu(\xi - \eta) - \Lambda_\beta(\eta - \sigma) - \Lambda_\gamma(\sigma).$$

(10.63)

These properties are used only in the proof of Lemma 9.7 and Lemma 9.8.

Lemma 10.6. (i) Assume that $\xi, \eta, \sigma \in \mathbb{R}^2$ satisfy

$$\max(||\xi - \eta| - \gamma_0|, ||\eta - \sigma| - \gamma_0|, ||\sigma| - \gamma_0|) \leq 2^{-D_1/2},$$

(10.64)

and

$$|\nabla_{\eta, \sigma} \tilde{\Phi}(\xi, \eta, \sigma)| \leq \kappa_1 \leq 2^{-4D_1}.$$

(10.65)

Then, for $\nu \in \{+,-\}$,

$$\Lambda(\xi) - \Lambda_\mu(\xi - \eta) - \Lambda_\nu(\eta) \gtrsim |\eta|.$$

(10.66)

Moreover,

$$\text{if} \quad |\nabla_\xi \tilde{\Phi}(\xi, \eta, \sigma)| \geq \kappa_2 \geq 2^{D_1} \kappa_1 \quad \text{then} \quad |\tilde{\Phi}(\xi, \eta, \sigma)| \geq \kappa_2^{3/2}.$$

(10.67)

(ii) Assume that $\xi, \eta, \sigma \in \mathbb{R}^2$ satisfy $|\xi - \eta|, |\eta - \sigma|, |\sigma| \in [2^{-10}, 2^{10}]$ and

$$|\Phi_+\mu(\xi, \eta)| = |\Lambda(\xi) - \Lambda_\mu(\xi - \eta) - \Lambda_\nu(\eta)| \leq 2^{-2D_1},$$

(10.68)

$$|\Phi_\nu\beta(\eta, \sigma)| = |\Lambda_\nu(\eta) - \Lambda_\beta(\eta - \sigma) - \Lambda_\gamma(\sigma)| \leq 2^{-2D_1}.$$

If

$$|\nabla_{\eta, \sigma} \tilde{\Phi}(\xi, \eta, \sigma)| \leq \kappa \leq 2^{-4D_1},$$

(10.69)

then

$$\mu = -, \nu = \beta = \gamma = +, \quad |\eta - 2\sigma| + |\xi - \sigma| \lesssim \kappa, \quad |\nabla_\xi \tilde{\Phi}(\xi, \eta, \sigma)| \lesssim \kappa.$$

(10.70)

Proof. (i) If (10.64) and (10.65) hold then the vectors $\xi - \eta, \eta - \sigma, \sigma$ are almost aligned. Thus either $|\eta| \leq 2^{-D_1/2+10}$ or $|\eta| - 2\gamma_0 \leq 2^{-D_1/2+10}$. We will assume that we are in the second case, $|\eta| - 2\gamma_0 \leq 2^{-D_1/2+10}$. The other case is similar, in fact slightly easier because the inequality (10.66) is a direct consequence of (10.65). Therefore either $||\xi| - 3\gamma_0| \leq 2^{-D_1/2+20}$, and in this case the desired conclusions are trivial, or $|\xi| - 2\gamma_0 \leq 2^{-D_1/2+20}$. In this case (10.66) follows since $|\Lambda(\gamma_0) \pm \Lambda(\gamma_0) \pm \Lambda(2\gamma_0)| \gtrsim 1$; it remains to prove (10.67) in the case $\mu = -, \beta = \gamma = +$,

$$\tilde{\Phi}(\xi, \eta, \sigma) = \Lambda(\xi) + \Lambda(\xi - \eta) - \Lambda(\eta - \sigma) - \Lambda(\sigma).$$

(10.71)

$$||\eta - 2\gamma_0| \leq 2^{-D_1/2+20}, \quad |\xi| - 2\gamma_0 \leq 2^{-D_1/2+20}.$$

In view of (10.65), the angle between any two of the vectors $\{\xi - \eta, \eta - \sigma, \sigma\}$ is either $O(\kappa_1)$ or $\pi + O(\kappa_1)$. Given $\sigma = ze$ for some $e \in S^1$, we write $\eta = ye + \eta'$, $\xi = xe + \xi'$, with $e \cdot \eta' = e \cdot \xi' = 0$ and $|\eta'| + |\xi'| \lesssim \kappa_1$. Notice that $|\tilde{\Phi}(\xi, \eta, \sigma) - \tilde{\Phi}(xe, ye, ze)| \lesssim \kappa_1^2$. Therefore, we may assume that

$$|x - \gamma_0| + |y - 2\gamma_0| + |z - \gamma_0| \leq 2^{-D_1/2+30},$$

$$|\lambda'(y - z) - \lambda'(z)| \leq 2\kappa_1, \quad |\lambda'(y - x) - \lambda'(y - z)| \leq 2\kappa_1, \quad |\lambda'(x) - \lambda'(y - x)| \geq \kappa_2/2,$$

(10.72)

and it remains to prove that

$$|\tilde{\Phi}(xe, ye, ze)| = |\lambda(x) + \lambda(y - x) - \lambda(y - z) - \lambda(z)| \gtrsim \kappa_2^{3/2}.$$

(10.73)

Let $z' \neq z$ denote the unique solution to the equation $\lambda'(z') = \lambda'(z)$, and let $d := |z - \gamma_0|$. Then $|z' - \gamma_0| \approx d$, in view of (10.10). Moreover $d \geq \sqrt{\kappa_1}$; otherwise $|y - z - \gamma_0| \lesssim \sqrt{\kappa_1}$,
\[|y - x - \gamma_0| \lesssim \sqrt{\kappa_1}, \text{ so } |x - \gamma_0| \lesssim \sqrt{\kappa_1}, \text{ in contradiction with the assumption } |\lambda(x) - \lambda'(y - x)| \geq \kappa_2/2. \] Moreover,

there are \(\sigma_1, \sigma_2 \in \{z, z'\} \) such that

\[|y - z - \sigma_1| + |y - x - \sigma_2| \lesssim \kappa_1/d. \] (10.74)

In fact, we may assume \(d \geq 2^{-D_1/4} \kappa_2^{1/2} \), since otherwise \(|x - \gamma_0| + |y - x - \gamma_0| \lesssim d \), and hence \(|\lambda(x) - \lambda'(y - x)| \lesssim d^2 \), which contradicts (10.65).

Now we must have \(\sigma_1 = z \); in fact, if \(\sigma_1 = z' \), then \(x = z + z' - \sigma_2 + O(\kappa_1/d) \), thus

\[|\lambda(x) - \lambda'(\sigma_2)| \lesssim \kappa_1, \]

which again contradicts (10.72). Similarly \(\sigma_2 = z' \). Therefore

\[y = 2z + O(\kappa_1/d), \quad x = 2z - z' + O(\kappa_1/d), \quad y - x = z' + O(\kappa_1/d). \] (10.75)

We expand the function \(\lambda \) at \(\gamma_0 \) in its Taylor series

\[\lambda(v) = \lambda(\gamma_0) + c_1(v - \gamma_0) + c_3(v - \gamma_0)^3 + O(v - \gamma_0)^4, \]

where \(c_1, c_3 \neq 0 \). Using (10.75) we have

\[
\Phi(xe, ye, ze) = c_3[(x - \gamma_0)^3 + (y - x - \gamma_0)^3 - (z - \gamma_0)^3 - (y - z - \gamma_0)^3] + O(d^4)
\]

\[= c_3[(2z - z' - \gamma_0)^3 + (z' - \gamma_0)^3 - 2(z - \gamma_0)^3] + O(d^4 + \kappa_1 d). \]

In view of (10.10), \(z + z' - 2\gamma_0 = O(d^2) \). Therefore \(\Phi(xe, ye, ze) = 24(z - \gamma_0)^3 + O(d^4 + \kappa_1 d) \) which shows that \(|\Phi(xe, ye, ze)| \gtrsim d^3 \). The desired conclusion (10.73) follows.

(ii) The conditions \(|\Phi(v, \gamma_1)(\eta, \sigma)| \leq 2^{-2D_1} \) and \(|(\nabla_\sigma \Phi(v, \gamma_1)(\eta, \sigma)| \leq \kappa \) show that \(\eta \) corresponds to a space-time resonance output. It follows from Lemma 10.2 (iii) that

\[|\eta - ye| + |\sigma - ye/2| \lesssim \kappa, \quad |y - \gamma_1| \leq 2^{-2D_1}, \quad \nu = \beta = \gamma, \] (10.76)

for some \(e \in \mathbb{S}^1 \). Let \(b \approx 0.207 \) denote the unique nonnegative number \(b \neq \gamma_1/2 \) with the property that \(\lambda'(b) = \lambda'(\gamma_1/2) \). The condition \(|\nabla_\sigma \Phi(\xi, \eta, \sigma)| \leq \kappa \) shows that \(\xi - \eta \) is close to one of the vectors \((\gamma_1/2)e, -(\gamma_1/2)e, be, -be \). However, \(\lambda(b) \approx 0.465, \lambda(\gamma_1 + b) \approx 2.462, \lambda(\gamma_1 - b) \approx 1.722 \). \(\lambda(\gamma_1) \approx 2.060 \). Therefore, the condition \(|\Phi_+(\xi, \eta, \eta)| \leq 2^{-2D_1} \) prevents \(\xi - \eta \) from being close to one of the vectors \(be \) or \(-be\). Similarly, \(\xi - \eta \) cannot be close to the vector \((\gamma_1/2)e \), since \(\lambda(\gamma_1/2) \approx 1.030, \lambda(3\gamma_1/2) \approx 3.416 \). It follows that \(|(\xi - \eta) + (\gamma_1/2)e| \leq 2^{-2D_1}, |(\xi) - (\gamma_1/2) \leq 2^{-2D_1}, \mu = -, \nu = + \). The condition \(|\nabla_\eta \Phi(\xi, \eta, \sigma)| \leq \kappa \) then gives \(|(\eta - \xi) - (\eta - \sigma)| \leq \kappa \), and remaining bounds in (10.70) follow using also (10.76).

\section{The functions \(\Upsilon \)}

The analysis in the proofs of the crucial \(L^2 \) lemmas in section 6 depends on understanding the properties of the functions \(\Upsilon : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R} \),

\[\Upsilon(\xi, \eta) := (\nabla_\xi^2 \Phi(\xi, \eta), (\nabla_\xi \Phi(\xi, \eta), (\nabla_\xi \Phi)(\xi, \eta)). \] (11.1)

We calculate

\[
(\nabla_\eta \Phi)(\xi, \eta) = -\lambda_\nu(|\eta|) \frac{\eta}{|\eta|} + \lambda'_\nu(|\xi - \eta|) \frac{\xi - \eta}{|\xi - \eta|},
\]

\[
(\nabla_\xi \Phi)(\xi, \eta) = \lambda''_\sigma(|\xi|) \frac{\xi}{|\xi|} - \lambda'_\nu(|\xi - \eta|) \frac{\xi - \eta}{|\xi - \eta|}, \] (11.2)
and
\[
(\nabla_{\xi,\eta}^2 \Phi)(\xi, \eta)[\partial_i, \partial_j] = \lambda'_{\nu}(|\xi - \eta|)(\xi_i - \eta_i)(\xi_j - \eta_j) \frac{\delta_{ij}|\xi - \eta|^2 - (\xi_i - \eta_i)(\xi_j - \eta_j)}{|\xi - \eta|^3}.
\]
(11.3)

Using these formulas and the identity \((\nu \cdot w^\perp)^2 + (\nu \cdot w)^2 = |\nu|^2 |w|^2\) we calculate \(-\Upsilon(\xi, \eta)\)
\[
-\Upsilon(\xi, \eta) = \frac{\lambda''(|\xi|)}{|\xi|^2} \frac{\lambda'(|\xi|)}{|\eta|}(\eta \cdot \xi^\perp)^2
\]
\[
+ \frac{\lambda''(|\xi|)}{|\xi|^3} \left\{ \lambda'_\nu(|\xi|)\xi - \frac{\lambda'_\nu(|\eta|)}{|\eta|} \eta \right\} \left\{ \lambda'_\nu(|\xi|)|\xi| - \frac{\lambda'_\nu(|\eta|)}{|\eta|} \eta \cdot \xi \right\},
\]
(11.4)
where \(z := \xi - \eta\). We define also the normalized function \(\hat{\Upsilon}(\xi, \eta)\).
\[
\hat{\Upsilon}(\xi, \eta) := \frac{\Upsilon(\xi, \eta)}{|(\nabla_\xi \Phi)(\xi, \eta) \cdot (\nabla_\eta \Phi)(\xi, \eta)|}.
\]
(11.5)

We consider first the case of large frequencies:

Lemma 11.1. Assume that \(\sigma = \nu = +, k \geq D_1, \) and \(p - k/2 \leq -D_1\).

(i) Assume that
\[
|\Phi(\xi, \eta)| \leq 2^p, \quad |\xi|, |\eta| \in [2^{k-2}, 2^{k+2}], \quad 2^{-20} \leq |\xi - \eta| \leq 2^{10}.
\]
(11.6)
Let \(z := \xi - \eta\). Then, with \(p^+ = \max(p, 0)\),
\[
\frac{|\xi \cdot \eta^\perp|}{|\xi| |\eta|} \approx 2^{-k}, \quad \frac{|\xi \cdot z|}{|\xi| |\eta|} + \frac{|\eta \cdot z|}{|\eta| |z|} \leq 2^{p^+-k/2}.
\]
(11.7)
Moreover, we can write
\[
- \mu \Upsilon(\xi, \eta) = \lambda''(|\xi|)|A(\xi, \eta) + B(\xi, z)B(\eta, z),
\]
(11.8)
\[
|A(\xi, \eta)| \gtrsim 2^k, \quad \|D^\alpha A\|_{L^\infty} \lesssim \alpha 2^k, \quad \|B\|_{L^\infty} \lesssim \|
\]

(ii) Assume that \(z = (\rho \cos \theta, \rho \sin \theta), |\rho| \in [2^{-20}, 2^{20}]\). There exists functions \(\theta_1 = \theta^1_{|\xi|, \mu} \) and \(\theta_2 = \theta^2_{|\eta|, \nu} \) such that,
\[
\frac{|\theta_1(\rho) - \pi/2| + |\theta_2(\rho) - \pi/2|}{\rho} \lesssim |\rho| \lesssim 2^{-k/2}, \quad |\rho \theta_1| + |\rho \theta_2| \lesssim 2^{-k/2}.
\]
(11.9)
Moreover,
\[
|\theta_1(\rho) - \pi/2| + |\theta_2(\rho) - \pi/2| \lesssim 2^{-k/2}, \quad |\rho \theta_1| + |\rho \theta_2| \lesssim 2^{-k/2}.
\]
(11.10)
(iii) Assume that \(|\xi|, |\eta| \in [2^{k-2}, 2^{k+2}]\). For \(0 < \kappa \leq 2^{-D_1}\) and integers \(r, q\) such that \(q \leq -D_1, |\kappa r| \in [1/4, 4]\), define
\[
S^1_{p,q,r}(\xi) := \{z : |z| = \rho \in [2^{-15}, 2^{15}], |\Phi(\xi, \xi - z)| \leq 2^p, |\arg(z) - \arg(\xi) \equiv \theta_1(\rho)| \leq 2^{-D_1/2}, |\hat{\Upsilon}(\xi, \xi - z) - \kappa r 2^q| \leq 10\kappa 2^q\},
\]
(11.11)
and
\[
S^2_{p,q,r}(\eta) := \{z : |z| = \rho \in [2^{-15}, 2^{15}], |\Phi(\eta + z, \eta)| \leq 2^p, |\arg(z) - \arg(\eta) \equiv \theta_1(\rho)| \leq 2^{-D_1/2}, |\hat{\Upsilon}(\eta + z, \eta) - \kappa r 2^q| \leq 10\kappa 2^q\}.
\]
(11.12)
Then, for any $i \in \{+, -, \}$,
\[
|S_{p,q,r}^{1,i}(\xi)| + |S_{p,q,r}^{2,i}(\eta)| \lesssim 2^{q+p-k/2}, \quad \text{diam}(S_{p,q,r}^{1,i}(\xi)) + \text{diam}(S_{p,q,r}^{2,i}(\eta)) \lesssim 2^{p-k/2} + \kappa 2^q. \tag{11.13}
\]
Moreover, if $2^{p-k/2} \ll \kappa 2^q$ then there exist intervals $I_{p,q,r}^1$ and $I_{p,q,r}^2$ such that
\[
S_{p,q,r}^{1,i}(\xi) \subseteq \{(\rho \cos \theta, \rho \sin \theta) : \rho \in I_{p,q,r}^1, |\theta - \arg(\xi) + \theta^1(\rho)| \lesssim 2^{p-k/2}\}, \quad |I_{p,q,r}^1| \lesssim \kappa 2^q,
\]
\[
S_{p,q,r}^{2,i}(\eta) \subseteq \{(\rho \cos \theta, \rho \sin \theta) : \rho \in I_{p,q,r}^2, |\theta - \arg(\eta) + \theta^2(\rho)| \lesssim 2^{p-k/2}\}, \quad |I_{p,q,r}^2| \lesssim \kappa 2^q. \tag{11.14}
\]

Proof. (i) Notice that if $|\xi| = s$, $|\eta| = r$, and $z = \xi - \eta = (\rho \cos \theta, \rho \sin \theta)$ then
\[
2\xi \cdot \eta = r^2 + s^2 - \rho^2, \quad 2z \cdot \xi = \rho^2 + s^2 - r^2, \quad 2z \cdot \eta = s^2 - r^2 - \rho^2, \quad (2\eta \cdot \xi^\perp)^2 = 4r^2s^2 - (r^2 + s^2 - \rho^2)^2. \tag{11.15}
\]
Under the assumptions (11.6), we see that $|\lambda(r) - \lambda(s)| \lesssim 2^{p^+}$, therefore $|r - s| \lesssim 2^{-k/2}2^{p^+}$. The bounds (11.7) follow using also (11.15). The decomposition (11.8) follows from (11.4), with
\[
A(x, y) := \frac{\lambda'(|x|)}{|x|} \frac{\lambda'(|y|)}{|y|} (x \cdot y - 2^\alpha)^2, \quad B(w, z) := \frac{\sqrt{\lambda'(|w|)}}{|w|} \left\{ |w| \phi(|w|) - \frac{\lambda'(|w|)}{|w|} (w \cdot z) \right\}.
\]
The bounds in the second line of (11.8) follow from this definition and (11.7).

(ii) We will show the estimates for fixed ξ, since the estimates for fixed η are similar. We may assume that $\xi = (s, 0)$, so
\[
\Phi(\xi, \xi - z) = \lambda(s) - \lambda_\mu(\rho) - \lambda(\sqrt{s^2 + \rho^2 - 2sp \cos \theta}). \tag{11.16}
\]
Let $f(\theta) := -\lambda(s) + \lambda_\mu(\rho) + \lambda(\sqrt{s^2 + \rho^2 - 2sp \cos \theta})$. We notice that $-f(0) \gtrsim 2^{k/2}$, $f(\pi) \gtrsim 2^{k/2}$, and $f'(\theta) \approx 2^{k/2} \sin \theta$ for $\theta \in [0, \pi]$. Therefore f is increasing on the interval $[0, \pi]$ and vanishes at a unique point $\theta^1(\rho) = \hat{\theta}(\mu, \rho)$. Moreover, it is easy to see that $|\cos(\theta^1(\rho))| \lesssim 2^{-k/2}$, therefore $|\theta^1(\rho) - \pi/2| \lesssim 2^{-k/2}$. The remaining conclusions in (11.9)–(11.10) follow easily.

(iii) We will only prove the estimates for the sets $S_{p,q,r}^{1,i}(\xi)$, since the others are similar. With $z = (\rho \cos \theta, \rho \sin \theta)$ and $\xi = (s, 0)$, we define $F(\rho, \theta) := \Phi(\xi, \xi - z)$ and $G(\rho, \theta) := \hat{\Upsilon}(\xi, \xi - z)$. The condition $|\hat{\Upsilon}(\xi, \xi - z)| \lesssim 2^{-D_1}$ shows that $|\Upsilon(\xi, \xi - z)| \lesssim 2^{k-D_1}$, thus $|\rho - \gamma_0| \lesssim 2^{k-2D_1}$ (see (11.8)). Moreover, $|\theta - \pi/2| \lesssim 2^{-D_1/2}$ in view of (11.9)–(11.10). Using (11.16),
\[
|\partial_\theta F(\rho, \theta)| \approx 2^{k/2}, \quad |\partial_{\rho} F(\rho, \theta)| \lesssim 2^{k/2-D_1/2}
\]
in the set $\{(\rho, \theta) : |\rho - \gamma_0| \lesssim 2^{-D_1/2}, |\theta - \pi/2| \lesssim 2^{-D_1/2}\}$. In addition, using (11.8) we have
\[
-\mu \partial_\rho G(\rho, \theta) = \lambda''(\rho) \frac{A(\xi, \xi - z)}{|\lambda'(\xi)|^{2} |\lambda'(\xi - z)|} + O(2^{-D_1/2}), \quad |\partial_\theta G(\rho, \theta)| = O(2^{-D_1/2}).
\]
Therefore, the mapping $(\rho, \theta) \mapsto [2^{-k/2}F(\rho, \theta), G(\rho, \theta)]$ is a regular change of variables for ρ, θ satisfying $|\rho - \gamma_0| \lesssim 2^{-D_1/2}, |\theta - \pi/2| \lesssim 2^{-D_1/2}$. The desired conclusions follow. \qed

It follows from (11.4) and (11.15) that if $|\xi| = s$, $|\eta| = r$, $|\xi - \eta| = \rho$ then
\[
-4\Upsilon(\xi, \eta) \frac{\rho^3}{\lambda'_\mu(\rho)} \frac{s}{\lambda'_\nu(s)} \frac{r}{\lambda'_\nu(r)} = G(s, r, \rho). \tag{11.17}
\]

where

\[
G(s, r, \rho) := \frac{\rho \lambda''(\rho)}{\lambda'(\rho)} \left[4r^2 s^2 - (r^2 + s^2 - \rho^2)^2 \right] \\
+ \left[2ps \frac{\lambda'(\rho)}{\lambda'(s)} - \rho^2 - s^2 + r^2 \right] \left[2ps \frac{\lambda'(\rho)}{\lambda'(r)} + \rho^2 + r^2 - s^2 \right].
\]

(11.18)

We assume now that \(|\xi - \eta|\) is close to \(\gamma_0\) and consider the case of bounded frequencies.

Lemma 11.2. If \(|\xi| = s, |\eta| = r, |\xi - \eta| = \rho, |\rho - \gamma_0| \leq 2^{-SD_1}, \text{ and } 2^{-200} \leq r, s \leq 2^{2D_1} \), then

\[
|\Phi(\xi, \eta)| + |\Upsilon(\xi, \eta)| \gtrsim 1.
\]

(11.19)

Proof. **Case 1:** \((\sigma, \mu, \nu) = (+, +, +)\). Notice first that the function \(f(r) := \lambda(r) + \lambda(\gamma_0) - \lambda(r + \gamma_0)\) is concave down for \(r \in [0, \gamma_0] \) (in view of (10.3)) and satisfies \(f(0) = 0, f(\gamma_0) \geq 0.1\). Therefore \(f(r) \gtrsim 1\) if \(r \in [2^{-200}, \gamma_0], \) so

\[
|\Phi(\xi, \eta)| \gtrsim 1 \quad \text{if} \quad r \leq \gamma_0 \quad \text{or} \quad s \leq 2\gamma_0.
\]

(11.20)

Assume, for contradiction, that (11.19) fails. In view of (11.17), \(|\Phi(\xi, \eta)| \ll 1\) and

\[
\left[2pr \frac{\lambda'(\rho)}{\lambda'(s)} + (\rho^2 + r^2 - s^2) \right] \left[2ps \frac{\lambda'(\rho)}{\lambda'(r)} - (\rho^2 + s^2 - r^2) \right] \ll 1 + s + r.
\]

(11.21)

It is easy to see that if \(|\Phi(\xi, \eta)| = |\lambda(s) - \lambda(\rho) - \lambda(r)| \ll 1, r \geq 100, \text{ and } |\rho - \gamma_0| \leq 2^{-SD_1}\), then

\[
r \leq s - \frac{\lambda(\rho) - 0.1}{\lambda'(s)} \quad \text{and} \quad s \geq r + \frac{\lambda(\rho) - 0.1}{\lambda'(r)}.\]

Therefore, using (10.2)–(10.4), if \(r \geq 100\) then

\[
-2rs \frac{\lambda'(\rho)}{\lambda'(s)} + \rho^2 + s^2 - r^2 \geq \frac{2s}{\lambda'(s)} \left(\lambda(\rho) - 0.1 - \rho \lambda'(\rho) \right) \gtrsim \sqrt{s}
\]

\[
-2pr \frac{\lambda'(\rho)}{\lambda'(r)} - \rho^2 - r^2 + s^2 \geq \frac{2r}{\lambda'(r)} \left(\lambda(\rho) - 0.1 - \rho \lambda'(\rho) \right) - \rho^2 \gtrsim \sqrt{r}.
\]

In particular, (11.21) cannot hold if \(r \geq 100\).

For \(y \in [0, \infty)\), the equation \(\lambda(x) = y\) admits a unique solution \(x \in [0, \infty)\),

\[
x = -\frac{1}{Y(y)} + \frac{Y(y)}{3}, \quad Y(y) := \left(\frac{27y^2 + \sqrt{27} \sqrt{27y^4 + 4}}{2} \right)^{1/3}.
\]

(11.22)

Assuming \(|\rho - \gamma_0| \leq 2^{-SD_1}, 2\gamma_0 \leq s \leq 110, \text{ and } |\lambda(s) - \lambda(r) - \lambda(\rho)| \ll 1\), we show now that \(G(s, r, \rho) \gtrsim 1\), where \(G\) is as in (11.18). Indeed, we solve the equation \(\lambda(r(s)) = \lambda(s) - \lambda(\gamma_0)\) according to (11.22) and define the function \(G_0(s) := G(s, r(s), \gamma_0)\). A simple Mathematica program shows that \(G_0(s) \gtrsim 1\) if \(2\gamma_0 \leq s \leq 110\). This completes the proof of (11.19) when \((\sigma, \mu, \nu) = (+, +, +)\).

Case 2: the other triplets. Notice that if \((\sigma, \mu, \nu) = (+, -, +)\) then

\[
\Phi_{++-}(\xi, \eta) = -\Phi_{+++}(\eta, \xi), \quad \Upsilon_{++-}(\xi, \eta) = -\Upsilon_{+++}(\eta, \xi).
\]

(11.23)

The desired bound in this case follows from the case \((\sigma, \mu, \nu) = (+, +, +)\) analyzed earlier.

On the other hand, if \((\sigma, \mu, \nu) = (+, -, -)\) then \(\Phi(\xi, \eta) = \lambda(s) + \lambda(r) + \lambda(\rho) \gtrsim 1\), so (11.19) is clearly verified. Finally, if \((\sigma, \mu, \nu) = (+, +, -)\) then \(\Phi(\xi, \eta) = \lambda(s) + \lambda(r) - \lambda(\rho)\) and we
Therefore, assuming $2^{-200} \leq r \leq \rho/2$,
\[
\lambda(s) + \lambda(r) - \lambda(\rho) \geq \lambda(r) + \lambda(\rho - r) - \lambda(\rho) = \int_{0}^{r} \left[\lambda'(x) - \lambda'(x + \rho - r) \right] \, dx \gtrsim 1.
\]

A similar estimate holds if $2^{-200} \leq s \leq \rho/2$ or if $s, r \geq \rho/2$. Therefore $\Phi(\xi, \eta) \gtrsim 1$ in this case.

The cases corresponding to $\sigma = -$ are similar by replacing Φ with $-\Phi$ and Υ with $-\Upsilon$. This completes the proof of the lemma. \hfill \square

Finally, we consider the case when $|\xi - \eta|$ is close to γ_1.

Lemma 11.3. If $|\xi| = s$, $|\eta| = r$, $|\xi - \eta| = \rho$, $|\rho - \gamma_1| \leq 2^{-D_1}$, and $2^{-200} \leq r, s$ then
\[
|\Phi(\xi, \eta)| + \frac{|\Upsilon(\xi, \eta)|}{|\xi| + |\eta|} + \frac{|(\nabla_\eta \Upsilon)(\xi, \eta) \cdot (\nabla_\eta^\perp \Phi)(\xi, \eta)|}{(|\xi| + |\eta|)^6} \gtrsim 1,
\]
and
\[
|\Phi(\xi, \eta)| + \frac{|\Upsilon(\xi, \eta)|}{|\xi| + |\eta|} + \frac{|(\nabla_\xi \Upsilon)(\xi, \eta) \cdot (\nabla_\xi^\perp \Phi)(\xi, \eta)|}{(|\xi| + |\eta|)^6} \gtrsim 1.
\]

Proof. **Case 1:** $(\sigma, \mu, \nu) = (+, +, +)$. Notice first that the function $f(r) := \lambda(r) + \lambda(\gamma_1) - \lambda(r + \gamma_1)$ is concave down for $r \in [0, 0.3]$ (in view of (10.3)) and satisfies $f(0) = 0$, $f(0.3) \geq 0.02$. Therefore $f(r) \gtrsim 1$ if $r \in [2^{-200}, 0.3]$, so
\[
|\Phi(\xi, \eta)| \gtrsim 1 \quad \text{if} \quad r \leq 0.3 \quad \text{or} \quad s \leq \gamma_1 + 0.3.
\]

On the other hand, if $|\Phi(\xi, \eta)| \ll 1$, $r \geq 1000$, and $|\rho - \gamma_1| \leq 2^{-D_1}$ then
\[
s \leq r + \frac{\lambda(\rho) + 0.2}{\lambda'(r)} \quad \text{and} \quad r \geq s - \frac{\lambda(\rho) + 0.2}{\lambda'(s)}.
\]

Therefore, using also (10.5), if $r \geq 1000$ then
\[
2 \rho^2 \frac{\lambda'(\rho)}{\lambda'(r)} + r^2 - s^2 \geq \frac{2r}{\lambda'(r)}(\rho \lambda'(\rho) - \lambda(\rho) - 0.2) \gtrsim \sqrt{r},
\]
\[
2 \rho s \frac{\lambda'(\rho)}{\lambda'(s)} - \rho^2 - s^2 \geq 2 \frac{s}{\lambda'(s)}(\rho \lambda'(\rho) - \lambda(\rho) - 0.2) - \rho^2 \gtrsim \sqrt{s},
\]
\[
\rho \frac{\lambda''(\rho)}{\lambda'(\rho)} \left[4 r^2 s^2 - (r^2 + s^2 - \rho^2)^2 \right] \gtrsim r^2.
\]

Using the formula (11.17) and assuming $|\rho - \gamma_1| \leq 2^{-D_1}$, it follows that
\[
\text{if} \quad |\Phi(\xi, \eta)| \ll 1 \quad \text{and} \quad r \geq 1000 \quad \text{then} \quad -\Upsilon(\xi, \eta) \gtrsim r.
\]

Therefore both (11.24) and (11.25) follow if $r \geq 1000$.

It remains to consider the case $\gamma_1 + 0.3 \leq s \leq 1010$. We show first that
\[
\text{if} \quad 3 \leq s \leq 1010 \quad \text{and} \quad |\lambda(s) - \lambda(r) - \lambda(\rho)| \ll 1 \quad \text{then} \quad -\Upsilon(\xi, \eta) \gtrsim 1.
\]

Indeed, we solve the equation $\lambda(r(s)) = \lambda(s) - \lambda(\gamma_1)$ according to (11.22), and define the function $G_1(s) := G(s, r(s), \gamma_1)$, see (11.17)–(11.18). A simple Mathematica program shows that
\(G_1(s) \gtrsim 1 \) if \(3 \leq s \leq 1010 \). The bound (11.28) follows, so both (11.24) and (11.25) follow if \(3 \leq s \leq 1010 \).

On the other hand the function \(G_1(s) \) does vanish for some \(s \in [\gamma_1 + 0.3, 3] \) (more precisely at \(s \approx 1.94 \)). In this range we can only prove the weaker estimates in the lemma. Notice that

\[
\Upsilon(\xi, \eta) = \tilde{\Upsilon}(|\xi|, |\eta|, |\xi - \eta|), \quad \tilde{\Upsilon}(s, r, \rho) := -\frac{1}{4} G(s, r, \rho) \frac{\lambda'(\rho) \lambda'(s)}{\rho^3} \frac{\lambda'(r)}{r}.
\]

Then, using also (11.2), we have

\[
(\nabla_\eta \Upsilon)(\xi, \eta) \cdot (\nabla_\eta ^\perp \Phi)(\xi, \eta) = (r \rho)^{-1} (\eta \cdot \xi \perp) \left[(\partial_s \tilde{\Upsilon})(s, r, \rho) \lambda'(\rho) - (\partial_r \tilde{\Upsilon})(s, r, \rho) \lambda'(r) \right],
\]

\[
(\nabla_\xi \Upsilon)(\xi, \eta) \cdot (\nabla_\xi ^\perp \Phi)(\xi, \eta) = (s \rho)^{-1} (\xi \cdot \eta \perp) \left[(\partial_s \tilde{\Upsilon})(s, r, \rho) \lambda'(\rho) + (\partial_r \tilde{\Upsilon})(s, r, \rho) \lambda'(s) \right].
\]

(11.29)

It is easy to see, using the formulas (11.15) and (11.17), that

\[
|\Phi(\xi, \eta)| + |\Upsilon(\xi, \eta)| + |\xi \cdot \eta \perp| \gtrsim 1 \tag{11.30}
\]

if \(s \in [\gamma_1 + 0.3, 3] \). Moreover, let

\[
G_{11}(s) := (\partial_s \tilde{\Upsilon})(s, r(s), \gamma_1) \lambda'(\gamma_1) - (\partial_r \tilde{\Upsilon})(s, r(s), \gamma_1) \lambda'(r(s)),
\]

\[
G_{12}(s) := (\partial_s \tilde{\Upsilon})(s, r(s), \gamma_1) \lambda'(\gamma_1) + (\partial_r \tilde{\Upsilon})(s, r(s), \gamma_1) \lambda'(s),
\]

where, as before, \(r(s) \) is the unique solution of the equation \(\lambda'(r(s)) = \lambda(s) - \lambda(\gamma_1) \), according to (11.22). A simple Mathematica program shows that \(G_1(s) + G_{11}(s) \gtrsim 1 \) and \(G_1(s) + G_{12}(s) \gtrsim 1 \) if \(s \in [\gamma_1 + 0.3, 3] \). Using also (11.29) and (11.30) it follows that

\[
|\Upsilon(\xi, \eta)| + (\nabla_\eta \Upsilon)(\xi, \eta) \cdot (\nabla_\eta ^\perp \Phi)(\xi, \eta) \gtrsim 1,
\]

\[
|\Upsilon(\xi, \eta)| + (\nabla_\xi \Upsilon)(\xi, \eta) \cdot (\nabla_\xi ^\perp \Phi)(\xi, \eta) \gtrsim 1, \tag{11.31}
\]

if \(s \in [\gamma_1 + 0.3, 3] \), \(|\Phi(\xi, \eta)| \ll 1 \), and \(|\rho - \gamma_0| \leq 2^{-2,1} \). The bounds (11.24) follow from (11.26)–(11.28) and (11.31). The bounds (11.25) follow from (11.26)–(11.28), and (11.30).

Case 2: the other triplets. The desired bounds in the case \((\sigma, \mu, \nu) = (+, -, +)\) follow from the corresponding bounds the case \((\sigma, \mu, \nu) = (+, +, +)\) and (11.23). Moreover, if \((\sigma, \mu, \nu) = (+, -, -)\) then \(\Phi(\xi, \eta) = \lambda(s) + \lambda(r) + \lambda(\rho) \gtrsim 1 \), so (11.24)–(11.25) are clearly verified.

Finally, if \((\sigma, \mu, \nu) = (+, +, -)\) then \(\Phi(\xi, \eta) = \lambda(s) + \lambda(r) - \lambda(\rho) \). We may assume that \(s, r \in [2^{-20}, \gamma_1] \). In this case we prove the stronger bound

\[
|\Phi(\xi, \eta)| + |\Upsilon(\xi, \eta)| \gtrsim 1. \tag{11.32}
\]

Indeed, for this is suffices to notice that the function \(x \to \lambda(x) + \lambda(\gamma_1 - x) - \lambda(\gamma_1) \) is nonnegative for \(x \in [0, \gamma_1] \) and vanishes only when \(x \in \{0, \gamma_1/2, \gamma_1\} \). Moreover \(\Upsilon((\gamma_1/2)e, -(-\gamma_1/2)e) \neq 0 \) if \(|e| = 1 \) (using (11.4)), and the lower bound (11.32) follows.

The cases corresponding to \(\sigma = - \) are similar by replacing \(\Phi \) with \(-\Phi\) and \(\Upsilon \) with \(-\Upsilon\). This completes the proof of the lemma.

Appendix A. Paradifferential calculus

The paradifferential calculus allows us to understand the high frequency structure of our system. In this section we record the definitions, and state and prove several useful lemmas.

A.1. Operators bounds. In this subsection we define our main objects, and prove several basic nonlinear bounds.
A.1.1. Fourier multipliers. We will mostly work with bilinear and trilinear multipliers. Many of the simpler estimates follow from the following basic result (see [45, Lemma 5.2] for the proof).

Lemma A.1. (i) Assume \(l \geq 2, f_1, \ldots, f_l, f_{l+1} \in L^2(\mathbb{R}^2) \), and \(m : (\mathbb{R}^2)^l \to \mathbb{C} \) is a continuous compactly supported function. Then

\[
\left| \int_{(\mathbb{R}^2)^l} m(\xi_1, \ldots, \xi_l) \hat{f}_1(\xi_1) \cdot \ldots \hat{f}_l(\xi_l) \cdot \hat{f}_{l+1}(-\xi_1 - \ldots - \xi_l) \, d\xi_1 \ldots d\xi_l \right| \lesssim \|F^{-1}(m)\|_{L^1} \|f_1\|_{L^{p_1}} \cdot \ldots \cdot \|f_{l+1}\|_{L^{p_{l+1}}},
\]

for any exponents \(p_1, \ldots, p_{l+1} \in [1, \infty] \) satisfying \(\frac{1}{p_1} + \ldots + \frac{1}{p_{l+1}} = 1 \).

(ii) Assume \(l \geq 2 \) and \(L_m \) is the multilinear operator defined by

\[
\mathcal{F}\{L_m[f_1, \ldots, f_l]\}(\xi) = \int_{(\mathbb{R}^2)^l} m(\xi, \eta_2, \ldots, \eta_l) \hat{f}_1(\xi - \eta_2) \cdot \ldots \hat{f}_{l-1}(\eta_1 - \eta_l) \hat{f}_l(\eta_l) \, d\eta_2 \ldots d\eta_l.
\]

Then, for any exponents \(p, q_1, \ldots, q_l \in [1, \infty] \) satisfying \(\frac{1}{q_1} + \ldots + \frac{1}{q_l} = \frac{1}{p} \), we have

\[
\|L_m[f_1, \ldots, f_l]\|_{L_p} \lesssim \|F^{-1}(m)\|_{L^1} \|f_1\|_{L^{q_1}} \cdot \ldots \cdot \|f_l\|_{L^{q_l}}.
\]

Given a multiplier \(m : (\mathbb{R}^2)^2 \to \mathbb{C} \), we define the bilinear operator \(M \) by the formula

\[
\mathcal{F}[M[f, g]](\xi) = \frac{1}{4\pi^2} \int_{\mathbb{R}^2} m(\xi, \eta) \hat{f}(\xi - \eta) \hat{g}(\eta) \, d\eta.
\]

With \(\Omega = x_1 \partial_2 - x_2 \partial_1 \), we notice the formula

\[
\Omega M[f, g] = M[\Omega f, g] + M[f, \Omega g] + \tilde{M}[f, g],
\]

where \(\tilde{M} \) is the bilinear operator defined by the multiplier \(\tilde{m}(\xi, \eta) = (\Omega_\xi + \Omega_\eta)m(\xi, \eta) \).

For simplicity of notation, we define the following classes of bilinear multipliers:

\[
S^\infty := \{ m : (\mathbb{R}^2)^n \to \mathbb{C} : m \text{ continuous and } \|m\|_{S^\infty} := \|F^{-1}m\|_{L^1} < \infty \},
\]

\[
S_\Omega^\infty := \{ m : (\mathbb{R}^2)^2 \to \mathbb{C} : m \text{ continuous and } \|m\|_{S_\Omega^\infty} := \sup_{l \leq N_1} \|\Omega_\xi + \Omega_\eta\|^l m \|_{S^\infty} < \infty \}.
\]

We will often need to analyze bilinear operators more carefully, by localizing in the frequency space. We therefore define, for any symbol \(m \),

\[
m^{k, k_1, k_2}(\xi, \eta) := \varphi_k(\xi) \varphi_{k_1}(\xi - \eta) \varphi_{k_2}(\eta)m(\xi, \eta).
\]

For any \(t \in [0, T] \), \(p \geq -N_3 \), and \(m \geq 1 \) let \((t) = 1 + t \) and let \(O_{m, p} = O_{m, p}(t) \) denote the Banach spaces of functions \(f \in L^2 \) defined by the norms

\[
\|f\|_{O_{m, p}} := \langle t \rangle^{(m+1)(5/6 - 2t^2) - \delta^2} \left[\|f\|_{H^{N_0+p}} + \|f\|_{H^{N_1,N_3+p}} + \langle t \rangle^{5/6 - 2\delta^2} \|f\|_{W^{N_1/2,N_2+p}_{\Omega}} \right].
\]

This is similar to the definition of the spaces \(O_{m, p} \) in Definition 2.4, except for the supremum over \(t \in [0, T] \). We show first that these spaces are compatible with \(S_\Omega^\infty \) multipliers.

Lemma A.2. Assume \(M \) is a bilinear operator with symbol \(m \) satisfying \(\|m^{k, k_1, k_2}\|_{S_\Omega^\infty} \leq 1 \), for any \(k, k_1, k_2 \in \mathbb{Z} \). Then, if \(p \in [-N_3, 10] \), \(t \in [0, T] \), and \(m, n \geq 1 \),

\[
\langle t \rangle^{12\delta^2} \|M[f, g]\|_{O_{m+n,p}} \lesssim \|f\|_{O_{m,p}} \|g\|_{O_{n,p}}.
\]
Proof. In view of the definition we may assume that $m = n = 1$ and $\|f\|_{\mathcal{O}_{m,p}} = \|g\|_{\mathcal{O}_{n,p}} = 1$. Therefore, we may assume that
\[
\|h\|_{H^{N_0+p}} + \sup_{j \leq N_1} \|\Omega^j h\|_{H^{N_3+p}} \lesssim \langle t \rangle^{3\delta^2 - 5/6}, \quad \sup_{j \leq N_1/2} \|\Omega^j h\|_{H^{N_3+p}} \lesssim \langle t \rangle^{6\delta^2 - 5/6}, \quad (A.9)
\]
where $h \in \{f(t), g(t)\}$. With $F := M[f(t), g(t)]$, it suffices to prove that
\[
\|F\|_{H^{N_0+p}} + \sup_{j \leq N_1} \|\Omega^j F\|_{H^{N_3+p}} \lesssim \langle t \rangle^{6\delta^2 - 5/6},
\]
\[
\sup_{j \leq N_1/2} \|\Omega^j F\|_{H^{N_3+p}} \lesssim \langle t \rangle^{8\delta^2 - 5/3}. \quad (A.10)
\]

For $k, k_1, k_2 \in \mathbb{Z}$ let
\[
F_k := P_k M[f(t), g(t)], \quad F_{k,k_1,k_2} := P_k M[P_{k_1} f(t), P_{k_2} g(t)].
\]

For $k \in \mathbb{Z}$ let
\[
\mathcal{X}_k^1 := \{(k_1, k_2) \in \mathbb{Z} \times \mathbb{Z} : k_1 \leq k - 8, \ |k_2 - k| \leq 4\},
\]
\[
\mathcal{X}_k^2 := \{(k_1, k_2) \in \mathbb{Z} \times \mathbb{Z} : k_2 \leq k - 8, \ |k_1 - k| \leq 4\},
\]
\[
\mathcal{X}_k^3 := \{(k_1, k_2) \in \mathbb{Z} \times \mathbb{Z} : \min(k_1, k_2) \geq k - 7, \ |k_1 - k_2| \leq 20\},
\]
and let $\mathcal{X}_k := \mathcal{X}_k^1 \cup \mathcal{X}_k^2 \cup \mathcal{X}_k^3$. Let
\[
a_k := \|P_k h\|_{H^{N_0+p}}, \quad b_k := \sup_{0 \leq j \leq N_1} \|\Omega^j P_k h\|_{H^{N_3+p}}, \quad c_k := \sup_{0 \leq j \leq N_1/2} \|\Omega^j P_k h\|_{H^{N_3+p}},
\]
\[
\bar{a}_k := \sum_{m \in \mathbb{Z}} a_{k+m} 2^{-|m|/100}, \quad \bar{b}_k := \sum_{m \in \mathbb{Z}} b_{k+m} 2^{-|m|/100}, \quad \bar{c}_k := \sum_{m \in \mathbb{Z}} c_{k+m} 2^{-|m|/100}. \quad (A.11)
\]

We can prove now (A.10). Assuming $k \in \mathbb{Z}$ fixed we estimate, using Lemma A.1 (ii),
\[
\|F_{k,k_1,k_2}\|_{H^{N_0+p}} \lesssim a_k \left(2^{-4 \max(k_2,0)} c_{k_2}\right) \quad \text{if} \ (k_1, k_2) \in \mathcal{X}_k^2,
\]
\[
\|F_{k,k_1,k_2}\|_{H^{N_0+p}} \lesssim a_k \left(2^{-4 \max(k_1,0)} c_{k_1}\right) \quad \text{if} \ (k_1, k_2) \in \mathcal{X}_k^2 \cup \mathcal{X}_k^3. \quad (A.12)
\]

Since $\sum_l c_l \lesssim \langle t \rangle^{3\delta^2 - 5/6}$, it follows that
\[
\sum_{(k_1, k_2) \in \mathcal{X}_k} \|F_{k,k_1,k_2}\|_{H^{N_0+p}} \lesssim \langle t \rangle^{3\delta^2 - 5/6} \left[\bar{a}_k + \sum_{l \geq k} \bar{a}_l 2^{-4l+}\right]. \quad (A.13)
\]

Therefore, since $\sum_{k \in \mathbb{Z}} \bar{a}_k^2 \lesssim \langle t \rangle^{2\delta^2}$, it follows that
\[
\left[\sum_{2^k \geq (1+t)^{-10}} \|F_k\|_{H^{N_0+p}}\right]^{1/2} \lesssim \langle t \rangle^{6\delta^2 - 5/6}. \quad (A.14)
\]

To bound the contribution of small frequencies, $2^k \leq \langle t \rangle^{-10}$, we also use the bound
\[
\|F_{k,k_1,k_2}\|_{L^2} \lesssim 2^k \|F_{k,k_1,k_2}\|_{L^1} \lesssim 2^k a_k c_{k_2} \quad \text{when} \ (k_1, k_2) \in \mathcal{X}_k^3, \quad (A.15)
\]
when $(k_1, k_2) \in \mathcal{X}_k^3$, in addition to the bounds (A.12). Therefore
\[
\sum_{(k_1, k_2) \in \mathcal{X}_k} \|F_{k,k_1,k_2}\|_{H^{N_0+p}} \lesssim \langle t \rangle^{3\delta^2 - 5/6} \bar{a}_k + 2^k \sum_{l \in \mathbb{Z}} \bar{a}_l^2, \quad (A.16)
\]
if $2^k \leq \langle t \rangle^{-10}$. It follows that
\[
\left[\sum_{2^k \leq \langle t \rangle^{-10}} \| F_k \|_{H^{N_0 + p}}^2 \right]^{1/2} \lesssim \langle t \rangle^{6\delta^2 - 5/6},
\] (A.17)
and the desired bound $\| F \|_{H^{N_0 + p}} \lesssim (1 + t)^{6\delta^2 - 5/6}$ in (A.10) follows.

The proof of the second bound in (A.10) is similar. We start by estimating, as in (A.12),
\[
\| \Omega^j F_{k,k_1,k_2} \|_{H^{N_3 + p}} \lesssim 2^{(N_3 + p)k^+} \left[b_{k_1} 2^{-(N_3 + p)k_1^+} c_{k_2} 2^{-(N_2 + p)k_2^+} + b_{k_2} 2^{-(N_3 + p)k_2^+} c_{k_1} 2^{-(N_2 + p)k_1^+} \right]
\]
for any $j \in [0, N_1]$. We remark that this is weaker than (A.12) since the Ω derivatives can distribute on either $P_{k_1} f(t)$ or $P_{k_2} (t)$, and we are forced to estimate the factor with more than $N_1/2$ Ω derivatives in L^2. To bound the contributions of small frequencies we also estimate
\[
\| \Omega^j F_{k,k_1,k_2} \|_{H^{N_3 + p}} \lesssim 2^{\min(k,k_1,k_2)} b_{k_1} b_{k_2},
\]
as in (A.15). Recall that $N_2 - N_3 \geq 5$. We combine these two bounds to estimate
\[
\sum_{(k_1,k_2) \in \mathcal{X}_k} \| \Omega^j F_{k,k_1,k_2} \|_{H^{N_3 + p}} \lesssim \langle t \rangle^{3\delta^2 - 5/6} \left[\tilde{b}_k + \sum_{l \geq k} \tilde{b}_l 2^{-4l^+} \right] + \langle t \rangle^{2\delta^2} 2^{-2(N_2 - N_3)k^+} \tilde{c}_k.
\]
When $2^k \leq (1 + t)^{-10}$ this does not suffice; we have instead the bound
\[
\sum_{(k_1,k_2) \in \mathcal{X}_k} \| \Omega^j F_{k,k_1,k_2} \|_{H^{N_3 + p}} \lesssim \langle t \rangle^{3\delta^2 - 5/6} b_k + 2^k \sum_{l \in \mathbb{Z}} \tilde{b}_l^2 + \langle t \rangle^{2\delta^2} 2^{-2(N_2 - N_3)k^+} \tilde{c}_k.
\]
The desired estimate $\| \Omega^j F \|_{H^{N_3 + p}} \lesssim \langle t \rangle^{6\delta^2 - 5/6}$ in (A.10) follows.

For the last bound in (A.10), we estimate as before for any $j \in [0, N_1/2]$,
\[
\| \Omega^j F_{k,k_1,k_2} \|_{\mathcal{W}^{N_2 + p}} \lesssim 2^{(N_2 + p)k^+} c_{k_1} 2^{-(N_2 + p)k_1^+} c_{k_2} 2^{-(N_2 + p)k_2^+}, \quad \| \Omega^j F_{k,k_1,k_2} \|_{\mathcal{W}^{-N_2 + p}} \lesssim 2^k b_{k_1} b_{k_2},
\]
where the last estimate holds only for $k \leq 0$. The desired bound follows as before. □

A.1.2. Paradifferential operators. We recall first the definition of paradifferential operators (see (2.22): given a symbol $a = a(x, \xi) : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{C}$, we define the operator T_a by
\[
\mathcal{F} \{ T_a f \} (\xi) = \frac{1}{4\pi^2} \int_{\mathbb{R}^2} \chi \left(\frac{\xi - \eta}{\xi + \eta} \right) \tilde{a}(\xi - \eta, (\xi + \eta)/2) \tilde{f}(\eta) d\eta,
\] (A.18)
where \tilde{a} denotes the partial Fourier transform of a in the first coordinate and $\chi = \varphi_{-20}$. We define the Poisson bracket between two symbols a and b by
\[
\{ a, b \} := \nabla_x a \cdot \nabla_\xi b - \nabla_\xi a \cdot \nabla_x b.
\] (A.19)
We will use several norms to estimate symbols of degree 0. For $q \in \{2, \infty\}$, $r \in \mathbb{Z}_+$, let
\[
\| a \|_{\mathcal{M}_{r,q}} := \sup_{\zeta} \| a | r(\cdot, \zeta) \|_{L^q_\zeta}, \quad \text{where} \quad | a | r(x, \zeta) := \sum_{|\alpha| + |\beta| \leq r} |\zeta|^{|\beta|} |\partial_\zeta^\beta \partial_\xi^\alpha a(x, \zeta)|.
\] (A.20)
At later stages we will use more complicated norms, which also keep track of multiplicity and degree. For now we record a few simple properties, which follow directly from definitions:
\[
\begin{align*}
\| ab \|_{\mathcal{M}_{r,q}} + \| | \{ a, b \} |_{\mathcal{M}_{r-2,q}} \|_{\mathcal{M}_{r-2,q}} & \lesssim \| a \|_{\mathcal{M}_{r,q}} \| b \|_{\mathcal{M}_{r,q}}, \quad \{ \infty, q \} = \{ q_1, q_2 \}, \\
\| P_k a \|_{\mathcal{M}_{r,q}} & \lesssim 2^{-sk} \| P_k a \|_{\mathcal{M}_{r+s,q}}, \quad q \in \{2, \infty\}, \ k \in \mathbb{Z}, \ s \in \mathbb{Z}_+.
\end{align*}
\] (A.21)
We start with some simple properties.
Lemma A.3. (i) Let \(a \) be a symbol and \(1 \leq q \leq \infty \), then
\[
\| P_k T_a f \|_{L^q} \lesssim \| a \|_{\mathcal{M}_{8,\infty}} \| P_{[k-2,k+2]} f \|_{L^q} \tag{A.22}
\]
and
\[
\| P_k T_a f \|_{L^2} \lesssim \| a \|_{\mathcal{M}_{8,2}} \| P_{[k-2,k+2]} f \|_{L^\infty}. \tag{A.23}
\]
(ii) If \(a \in \mathcal{M}_{8,\infty} \) is real-valued then \(T_a \) is a bounded self-adjoint operator on \(L^2 \).
(iii) We have
\[
T_a f = T_{a'} f, \quad \text{where } a'(y, \zeta) := \overline{a(y, -\zeta)} \tag{A.24}
\]
and
\[
\Omega(T_a f) = T_a(\Omega f) + T_{a''} f \quad \text{where } a''(y, \zeta) = (\Omega_y a)(y, \zeta) + (\Omega_\zeta a)(y, \zeta). \tag{A.25}
\]

Proof. (i) Inspecting the Fourier transform, we directly see that \(P_k T_a f = P_k T_a P_{[k-2,k+2]} f \). By rescaling, we may assume that \(k = 0 \) and write
\[
\langle P_0 T_a h, g \rangle = C \int_{\mathbb{R}^4} \hat{g}(x) h(y) I(x, y) dxdy,
\]
where
\[
I(x, y) = \int_{\mathbb{R}^6} a(z, (\xi + \eta)/2) e^{i\xi \cdot (x-y)} e^{i\eta \cdot (z-y)} \chi \left(\frac{|\xi - \eta|}{|\xi + \eta|} \right) \varphi_0(\xi) d\eta d\xi dz.
\]
We observe that
\[
(1 + |x-y|^2)^2 I(x, y) = \int_{\mathbb{R}^6} \frac{a(z, (\xi + \eta)/2)}{(1 + |z-y|^2)^2} \chi \left(\frac{|\theta|}{|2\xi + \theta|} \right) \varphi_0(\xi) d\xi dz.
\]
By integration by parts in \(\xi \) and \(\theta \) it follows that
\[
(1 + |x-y|^2)^2 |I(x, y)| \lesssim \int_{\mathbb{R}^6} |a|_8 (z, (\xi + \eta)/2) \chi \left(\frac{|\theta|}{|2\xi + \theta|} \right) \varphi_{[-4,4]}(\xi) \varphi_{[-10]}(\theta) d\xi d\theta dz, \tag{A.26}
\]
where \(|a|_8 \) is defined as in (A.20).

The bounds (A.22) and (A.23) now follow easily. Indeed, it follows from (A.26) that
\[
(1 + |x-y|^2)^2 |I(x, y)| \lesssim \| a \|_{\mathcal{M}_{8,\infty}}.
\]

Therefore \(\| P_0 T_a h \|_{L^q} \lesssim \| a \|_{\mathcal{M}_{8,\infty}} \| h \|_{L^q} \| g \|_{L^{q'}} \). This gives (A.22), and (A.23) follows similarly.

Part (ii) and (A.24) follow directly from definitions. To prove (A.25) we start from the formula
\[
\mathcal{F} \{ \Omega T_a f \} (\xi) = \frac{1}{4\pi^2} \int_{\mathbb{R}^2} (\Omega_\xi + \Omega_\eta) \left[\chi \left(\frac{|\xi - \eta|}{|\xi + \eta|} \right) \overline{a}(\xi - \eta, (\xi + \eta)/2) \hat{f}(\eta) \right] d\eta,
\]
and notice that \((\Omega_\xi + \Omega_\eta) \left[\chi \left(\frac{|\xi - \eta|}{|\xi + \eta|} \right) \right] \equiv 0 \). The formula (A.25) follows. \(\square \)

The paradifferential calculus is useful to linearize products and compositions. More precisely:
Lemma A.4. (i) If $f, g \in L^2$ then

$$f g = T_f g + T_g f + \mathcal{H}(f, g)$$

where \mathcal{H} is smoothing in the sense that

$$\|P_k \mathcal{H}(f, g)\|_{L^q} \lesssim \sum_{k', k'' \geq k - 40, |k' - k''| \leq 40} \min(\|P_{k'} f\|_{L^q}\|P_{k''} g\|_{L^q}, \|P_{k'} f\|_{L^\infty}\|P_{k''} g\|_{L^q}).$$

As a consequence, if $f \in \mathcal{O}_{m, -5}$ and $g \in \mathcal{O}_{n, -5}$ then

$$\langle t \rangle^{12k^2} \|\mathcal{H}(f, g)\|_{\mathcal{O}_{m+n, 5}} \lesssim \|f\|_{\mathcal{O}_{m, -5}}\|g\|_{\mathcal{O}_{n, -5}}. \quad (A.27)$$

(ii) Assume that $F(z) = z + h(z)$, where h is analytic for $|z| < 1/2$ and satisfies $|h(z)| \lesssim |z|^3$. If $\|u\|_{L^\infty} \leq 1/100$ and $N \geq 10$ then

$$F(u) = T_{\varphi^2(u)} u + E(u), \quad \langle t \rangle^{12k^2} \|E(u)\|_{\mathcal{O}_{3, 5}} \lesssim \|u\|_{\mathcal{O}_{1, 5}}^3 \quad \text{if} \quad \|u\|_{\mathcal{O}_{1, -5}} \leq 1. \quad (A.28)$$

Proof. (i) This follows easily by defining $\mathcal{H}(f, g) = f g - T_f g - T_g f$ and observing that $P_k \mathcal{H}(P_{k'} f, P_{k''} g) \equiv 0$ unless $k', k'' \geq k - 40, |k' - k''| \leq 40$.

The bound (A.27) follows as in the proof of Lemma A.2 (the remaining bilinear interactions correspond essentially to the set \mathcal{X}_k^3).

(ii) Since F is analytic, it suffices to show this for $F(x) = x^n$, $n \geq 3$. This follows, however, as in part (i), using the Littlewood–Paley decomposition for u. \qed

We show now that compositions of paradifferential operators can be approximated well by paradifferential operators with suitable symbols. More precisely:

Proposition A.5. Let $1 \leq q \leq \infty$. Given symbols a and b, we may decompose

$$T_a T_b = T_{a b} + \frac{i}{2} T_{\{a, b\}} + E(a, b). \quad (A.29)$$

The error E obeys the following bounds: assuming $k \geq -100$,

$$\|P_k E(a, b) f\|_{L^q} \lesssim 2^{-2k} \|a\|_{\mathcal{M}_{16, \infty}} \|b\|_{\mathcal{M}_{16, \infty}} \|P_{k-5, k+5} f\|_{L^q}, \quad \text{for } q \in \{2, \infty\}, \quad (A.30)$$

$$\|P_k E(a, b) f\|_{L^2} \lesssim 2^{-2k} \|a\|_{\mathcal{M}_{16, 2}} \|b\|_{\mathcal{M}_{16, \infty}} \|P_{k-5, k+5} f\|_{L^\infty}, \quad (A.31)$$

Moreover $E(a, b) = 0$ if both a and b are independent of x.

Proof. We may assume that $a = P_{\leq k-100} a$ and $b = P_{\leq k-100}$, since the other contributions can also be estimated using Lemma A.3 (i) and (A.21). In this case we write

$$(16\pi^4)^2 \mathcal{F} \{P_k(T_a T_b - T_{a b}) f\} (\xi) = \varphi_k(\xi) \int_{\mathbb{R}^4} \hat{f}(\eta) \varphi_{\leq k-100}(\xi - \theta) \varphi_{\leq k-100}(\theta - \eta)$$

$$\times \left[a(\xi - \theta, \frac{\xi + \theta}{2}) b(\theta - \eta, \frac{\eta + \theta}{2}) - a(\xi - \theta, \frac{\xi + \eta}{2}) b(\theta - \eta, \frac{\xi + \eta}{2}) \right] d\eta d\theta.$$

Moreover, using the definition,

$$(16\pi^4)^2 \mathcal{F} \{P_k(i/2) T_{\{a, b\}} f\} (\xi) = \varphi_k(\xi) \int_{\mathbb{R}^4} \hat{f}(\eta) \varphi_{\leq k-100}(\xi - \theta) \varphi_{\leq k-100}(\theta - \eta)$$

$$\times \left[\frac{\theta - \eta}{2} (\nabla \varphi(\xi - \theta, \frac{\xi + \eta}{2}) b(\theta - \eta, \frac{\xi + \eta}{2}) - a(\xi - \theta, \frac{\xi + \eta}{2}) \frac{\xi - \theta}{2} (\nabla \varphi(\theta - \eta, \frac{\xi + \eta}{2}) \right] d\eta d\theta.$$
Therefore
\[
(16\pi^4)P_k E(a, b)f = U^1f + U^2f + U^3f,
\]
\[
\mathcal{F}(U^j f)(\xi) = \varphi_k(\xi) \int_{\mathbb{R}^4} \tilde{f}(\eta) \varphi_{\leq k-100}(\xi - \theta) \varphi_{\leq k-100}(\theta - \eta) m^j(\xi, \eta, \theta) \, d\eta d\theta,
\]
where
\[
m^1(\xi, \eta, \theta) := \tilde{a}(\xi - \theta, \xi + \eta, \frac{\eta + \theta}{2}) b(\theta - \eta, \frac{\eta + \theta}{2}) - \tilde{a}(\xi - \theta, \xi + \eta, \frac{\eta + \theta}{2}) b(\theta - \eta, \frac{\eta + \theta}{2}) - \tilde{a}(\xi - \theta, \xi + \eta, \frac{\eta + \theta}{2}) b(\theta - \eta, \frac{\eta + \theta}{2}) - \tilde{a}(\xi - \theta, \xi + \eta, \frac{\eta + \theta}{2}) b(\theta - \eta, \frac{\eta + \theta}{2}) - \frac{\eta - \theta}{2} (\nabla_\zeta \tilde{b})(\xi - \theta, \xi + \eta + \frac{\eta + \theta}{2}) - \frac{\eta - \theta}{2} (\nabla_\zeta \tilde{b})(\theta - \eta, \frac{\eta + \theta}{2}),
\]
and
\[
m^3(\xi, \eta, \theta) := \frac{\eta - \theta}{2} (\nabla_\zeta \tilde{b})(\xi - \theta, \xi + \eta + \frac{\eta + \theta}{2}) \varphi_{\leq k-100}(\xi - \theta, \xi + \eta + \frac{\eta + \theta}{2}) \varphi_{\leq k-100}(\theta - \eta) - \frac{\eta - \theta}{2} (\nabla_\zeta \tilde{b})(\theta - \eta, \frac{\eta + \theta}{2}) - \frac{\eta - \theta}{2} (\nabla_\zeta \tilde{b})(\xi - \theta, \xi + \eta + \frac{\eta + \theta}{2}) \varphi_{\leq k-100}(\xi - \theta, \xi + \eta + \frac{\eta + \theta}{2}) \varphi_{\leq k-100}(\theta - \eta).
\]

It remains to prove the bounds (A.30) and (A.31) for the operators \(U^j, j \in \{1, 2, 3\}\). The operators \(U^j\) are similar, so we will only provide the details for the operator \(U^1\). We rewrite
\[
m^1(\xi, \eta, \theta) = \int_0^1 \tilde{a}(\xi - \theta, \xi + \eta, \frac{\eta + \theta}{2}) (\theta - \xi) \varphi_{\leq k-100}(\xi - \theta, \xi + \eta + \frac{\eta + \theta}{2}) \varphi_{\leq k-100}(\theta - \eta) m^1(\xi, \eta, \theta) \, d\eta d\theta d\xi.
\]
Therefore
\[
U^1 f(x) = \int_{\mathbb{R}^2} f(y) K^1(x, y) \, dy
\]
where
\[
K^1(x, y) := C \int_{\mathbb{R}^6} e^{-iy \cdot \eta} e^{ix \cdot \xi} \tilde{\varphi}_k(\xi) \varphi_{\leq k-100}(\xi - \theta) \varphi_{\leq k-100}(\theta - \eta) m^1(\xi, \eta, \theta) \, d\eta d\theta d\xi.
\]

We use the formula (A.36) and make changes to variables to rewrite
\[
K^1(x, y) = C \int_0^1 ds (1-s) \int_{\mathbb{R}^{10}} e^{-iy \cdot \xi} e^{ix \cdot \xi} e^{i\mu \cdot \mu} e^{i\nu \cdot \nu} \tilde{\varphi}_k(\xi) \varphi_{\leq k-100}(\mu) \varphi_{\leq k-100}(\nu)

\times (\partial_x \partial_y a)(z, \xi + \mu/2 + \nu/2)(\partial_x \partial_y b)(w, \xi + \mu/2 + \nu/2 + s \mu/2) \, dpdqdzdw.
\]

We integrate by parts in \(\xi, \mu, \nu\), using the operators \((2^{-2k} - \Delta_\xi)^2, (2^{-2k} - \Delta_\mu)^2\) and \((2^{-2k} - \Delta_\nu)^2\). It follows that
\[
|K^1(x, y)| \leq \int_{\mathbb{R}^{10}} \frac{2^{-2k}}{(2^{-2k} + |x - y|)^2} \frac{2^{-2k}}{(2^{-2k} + |z - y|)^2} \frac{2^{-2k}}{(2^{-2k} + |w - y|)^2} F_{a,b}(z, w) \, dzdw,
\]
where, with \(\varphi(X, Y, Z) := \varphi_0(X) \varphi_{\leq -100}(Y) \varphi_{\leq -100}(Z)\),
\[
F_{a,b}(z, w) := 2^{6k} \int_0^1 ds \int_{\mathbb{R}^6} \left| \left[(2^{-2k} - \Delta_\xi)^2 (2^{-2k} - \Delta_\mu)^2 (2^{-2k} - \Delta_\nu)^2 \right] \{ \varphi(2^{-k} \xi, 2^{-k} \mu, 2^{-k} \nu)

\times (\partial_x \partial_y a)(z, \xi + \mu/2 + \nu/2)(\partial_x \partial_y b)(w, \xi + \mu/2 + \nu/2 + s \mu/2) \right| d\xi dpdq.
\]
With $|a|_{16}$ and $|b|_{16}$ defined as in (A.20), it follows that

$$|F_{a,b}(z, w)| \lesssim 2^{-2k} \int_0^1 ds \int_{\mathbb{R}^6} |a|_{16}(z, \xi + \mu/2 + \nu/2)|b|_{16}(w, \xi + \mu/2 + \nu/2 + s\mu/2) \times \varphi_{[-4,4]}(2^{-k} \xi)\varphi_{\leq -10}(2^{-k} \mu)\varphi_{\leq -10}(2^{-k} \nu) \frac{d\xi d\mu d\nu}{2^{6k}}.$$

The desired bounds (A.30) and (A.31) for U^1 follow using also (A.37) and (A.38).

We also make the following observation: if $a = a(\zeta)$ is a Fourier multiplier, b is a symbol, and f is a function, then

$$E(a, b)f(\xi) = \frac{1}{4\pi^2} \int_{\mathbb{R}^2} \chi \left(\frac{\xi - \eta}{\xi + \eta} \right) \left(a(\eta) - a\left(\frac{\xi + \eta}{2} \right) - \frac{\xi - \eta}{2} \cdot \nabla a\left(\frac{\xi + \eta}{2} \right) \right) b(\xi - \eta, \frac{\xi + \eta}{2}) \tilde{f}(\eta)d\eta,$$

$$E(b, a)f(\xi) = \frac{1}{4\pi^2} \int_{\mathbb{R}^2} \chi \left(\frac{\xi - \eta}{\xi + \eta} \right) \left(a(\eta) - a\left(\frac{\xi + \eta}{2} \right) - \frac{\eta - \xi}{2} \cdot \nabla a\left(\frac{\xi + \eta}{2} \right) \right) b(\xi - \eta, \frac{\xi + \eta}{2}) \tilde{f}(\eta)d\eta.$$

(A.39)

A.2. Decorated norms and estimates. In the previous subsection we proved bounds on paraproduct operators. In our study of the water wave problem, we need to keep track of several parameters, such as order, decay, and vector-fields. It is convenient to use two compatible hierarchies of bounds, one for functions and one for symbols of operators.

A.2.1. Decorated norms. Recall the spaces $O_{m,p}$ defined in (A.7). We define now the norms we will use to measure symbols.

Definition A.6. For $l \in [-10, 10]$, $r \in \mathbb{Z}_+$, $m \in \{1, 2, 3, 4\}$, $t \in [0, T]$, and $q \in \{2, \infty\}$, we define classes of symbols $\mathcal{M}^{l,m}_{r,q} = \mathcal{M}^{l,m}_{r,q}(t) \subseteq C(\mathbb{R}^2 \times \mathbb{R}^2 : \mathbb{C})$ by the norms

$$||a||_\mathcal{M}^{l,m}_{r,q} := \sup_{|\alpha|+|\beta| \leq r} \sup_{\zeta \in \mathbb{R}^2} \langle t \rangle^{m(5/6-2\delta^2)+16\delta^2} \langle \zeta \rangle^{-l} \langle |\zeta|^{|\beta|} \partial^\beta_x \partial^\alpha_x a \|_{L^\infty_t}^2},$$

$$||a||_\mathcal{M}^{l,m}_{r,\infty} := ||a||_{\mathcal{M}^{l,m}_{r,\infty}} + ||a||_{\mathcal{M}^{l,m}_{r,q}},$$

where

$$\Omega_{x,\xi} a := \Omega_x a + \Omega_\xi a = (x_1 \partial_{x_2} - x_2 \partial_{x_1} + \zeta_1 \partial_{\zeta_2} - \zeta_2 \partial_{\zeta_1}) a,$$

see (A.25). We also define

$$||a||_{\mathcal{M}^{l,m}} := ||a||_{\mathcal{M}^{l,m}_{r,\infty}} + ||a||_{\mathcal{M}^{l,m}_{r,2}}, \quad m \geq 1.$$

(A.42)

Note that this hierarchy is naturally related to the hierarchy in terms of $O_{m,p}$. In this definition the parameters m (the “multiplicity” of a, related to the decay rate) and l (the “order”) will play an important role. Observe that for a function $f = f(x)$, and $m \in [1, 4]$,

$$||f||_{\mathcal{M}^{l,m}_{r,q}} \lesssim ||f||_{O_{m,p}}.$$

(A.43)

Note also that we have the simple linear rule

$$||P_k a||_{\mathcal{M}^{l,m}_{r,q}} \lesssim 2^{-sk}||P_k a||_{\mathcal{M}^{l,m}_{r+k,q}}, \quad k \in \mathbb{Z}, \quad s \geq 0, \quad q \in \{2, \infty\},$$

(A.44)

and the basic multiplication rules

$$\langle t \rangle^{2\delta^2} \langle |ab||_{\mathcal{M}^{l+1,2^m,m+1}_r} + ||\zeta \{a, b\}||_{\mathcal{M}^{l+1,2^m,m+1}_r} \rangle \lesssim ||a||_{\mathcal{M}^{l,2^m,m}_r} ||b||_{\mathcal{M}^{l,2^m,m}_r}.$$

(A.45)
A.2.2. **Bounds on operators.** We may now pass the bounds proved in subsection A.1 to decorated norms. We consider the action of paradifferential operators on the classes $\mathcal{O}_{k,p}$. We will often use the following simple facts: paradifferential operators preserve frequency localizations,

$$P_k T_a f = P_k T_a [P_{k-4,k+4}] f = P_k T_a (x, \zeta) \varphi \leq \zeta + 4 \langle \zeta \rangle f; \quad (A.46)$$

the rotation vector-field Ω acts nicely on such operators, see (A.25),

$$\Omega(T_a f) = T_{\Omega \cdot \zeta} a f + T_a (\Omega f); \quad (A.47)$$

the following relations between basic and decorated norms for symbols hold:

$$\|\Omega^j a(x, \zeta) \varphi \leq k(\zeta)\|_{\mathcal{M}_{r, \infty}} \lesssim 2^{\ell k^+} \|a\|_{\mathcal{M}_{r, \infty}^1} \langle t \rangle^{-m(5/6-2\delta^2)-16\delta^2}, \quad 0 \leq j \leq N_1/2,$$

$$\|\Omega^j a(x, \zeta) \varphi \leq k(\zeta)\|_{\mathcal{M}_{r, 2}} \lesssim 2^{\ell k^+} \|a\|_{\mathcal{M}_{r, 2}^1} \langle t \rangle^{-m(5/6-2\delta^2)+2\delta^2}, \quad 0 \leq j \leq N_1. \quad (A.48)$$

A simple application of the above remarks and Lemma A.3 (i) gives the bound

$$\|T_{\sigma} f\|_{H^s} \lesssim \langle t \rangle^{-m(5/6-2\delta^2)-16\delta^2} \|\sigma\|_{\mathcal{M}_{k,m}^1} \|f\|_{H^{s+t}}. \quad (A.49)$$

We prove now two useful lemmas:

Lemma A.7. If $q, q - l \in [-N_3, 10]$ and $m, m_1 \geq 1$ then

$$\langle t \rangle^{12\delta^2} T_{a \mathcal{O}_{m,q}} \subseteq \mathcal{O}_{m+m_1,q-l}, \quad \text{for } a \in \mathcal{M}_{10}^{m_1}, \quad (A.50)$$

In particular, using also (A.43),

$$\langle t \rangle^{12\delta^2} T_{\mathcal{O}_{m_1-10} \mathcal{O}_{m,q}} \subseteq \mathcal{O}_{m+m_1,q}. \quad (A.51)$$

Proof. The estimate (A.50) follows using the definitions and the linear estimates (A.22) and (A.23) in Lemma A.3. We may assume $m = m_1 = 1$. Using (A.22) and (A.48) we estimate

$$2^{(N_0+q-l)k^+} \|P_k T_a f\|_{L^2} \lesssim \|a\|_{\mathcal{M}_{k,+\infty}} 2^{(N_0+q-l)k^+} \|P_{[k-2,k+2]} f\|_{L^2} \lesssim \langle t \rangle^{-5/6+4\delta^2} \|a\|_{\mathcal{M}_{k,+\infty}^1} 2^{(N_0+q)k^+} \|P_{[k-2,k+2]} f\|_{L^2},$$

for any $f \in \mathcal{O}_{1,q}$. By orthogonality we deduce the desired bound on the H^{N_0} norm.

To estimate the weighted norm we use (A.22), (A.23), and (A.48) to estimate

$$2^{(N_3+q-l)k^+} \|\Omega^j P_k T_a f\|_{L^2} \lesssim \sum_{n \leq j/2} 2^{(N_3+q-l)k^+} \left[\|P_k T_{\Omega^j \varphi \leq k(\zeta)} f\|_{L^2} + \|P_k T_{\Omega^j \varphi \leq k(\zeta)}^+ f\|_{L^2}\right],$$

for every $j \in [0, N_1]$. The desired weighted L^2 bound follows since

$$\left[\sum_{k \in \mathbb{Z}} 2^{2(N_3+q)k^+} \|P_{[k-2,k+2]} \Omega^j \varphi \leq k(\zeta) f\|_{L^2}^2\right]^{1/2} + \langle t \rangle^{5/6-2\delta^2} \left[\sum_{k \in \mathbb{Z}} 2^{2(N_3+q)k^+} \|P_{[k-2,k+2]} \Omega^j f\|_{L^\infty}^2\right]^{1/2} \lesssim \langle t \rangle^{2\delta^2} \|f\|_{\mathcal{O}_{1,q}}.$$
Finally, for the L^∞ bound we use (A.22) to estimate
\[
2^{(N_2+q-l)k^+} \| \Omega^j P_k T_a f \|_{L^\infty} \lesssim \sum_{j_1, j_2 \leq N_1/2} 2^{(N_2+q-l)k^+} \| \Omega^j a \|_{\mathcal{M}_{k+2}^1} \| P_{[k-2,k+2]} \Omega^j f \|_{L^\infty},
\]
for any $j \in [0, N_1/2]$. The desired bound follows by summation over k. \[\]

Lemma A.8. Let E be defined as in Proposition A.5. Assume that $m, m_1, m_2 \geq 1$, $q, q-l_1, q-l_2, q-l_1-l_2 \in [-N_3, 10]$ and consider $a \in \mathcal{M}_{0,20}^{l_1,m_1}$, $b \in \mathcal{M}_{0,20}^{l_2,m_2}$. Then
\[
\langle t \rangle^{12}\| P_{\geq -100} E(a, b) \Omega_{m,q} \subseteq \mathcal{O}_{m+m_1+m_2,q-l_1-l_2}^2,
\]
\[
\langle t \rangle^{12}\| P_{\geq -100} (T_a T_b + T_b T_a - 2T_{ab}) \Omega_{m,q} \subseteq \mathcal{O}_{m+m_1+m_2,q-l_1-l_2}^2. \tag{A.52}
\]

In addition,
\[
\langle t \rangle^{12}\| ([T_a, T_b] \Omega_{m,q} \subseteq \mathcal{O}_{m+m_1+m_2,q-l_1-l_2+1},
\]
\[
\langle t \rangle^{12}\| (T_a T_b - T_{ab}) \Omega_{m,q} \subseteq \mathcal{O}_{m+m_1+m_2,q-l_1-l_2+1}. \tag{A.53}
\]

Moreover, if $a \in \mathcal{M}_{20}^{l_1,m_1}$, $b \in \mathcal{M}_{0,20}^{l_2,m_2}$ are functions then
\[
\langle t \rangle^{12}\| (T_a T_b - T_{ab}) \Omega_{m,-5} \subseteq \mathcal{O}_{m+m_1+m_2,5}. \tag{A.54}
\]

Proof. We record the formulas
\[
\Omega_{x,\zeta}(ab) = (\Omega_{x,\zeta} a)b + a(\Omega_{x,\zeta} b), \quad \Omega_{x,\zeta} \{\{a, b\}\} = \{\Omega_{x,\zeta} a, b\} + \{a, \Omega_{x,\zeta} b\}. \tag{A.55}
\]

Therefore, letting $U(a, b) := T_a T_b - T_{ab}$, we have
\[
[T_a, T_b] = U(a, b) - U(b, a), \quad E(a, b) = U(a, b) - (i/2) T_{\{a, b\}},
\]
\[
T_a T_b + T_b T_a - 2T_{ab} = E(a, b) + E(b, a), \tag{A.56}
\]
and
\[
\Omega(U(a, b)f) = U(\Omega_{x,\zeta} a)f + U(a, \Omega_{x,\zeta} b)f + U(a, b)\Omega f,
\]
\[
\Omega(T_{\{a, b\}}f) = T_{\{\Omega_{x,\zeta} a, b\}}f + T_{\{a, \Omega_{x,\zeta} b\}}f + T_{\{a, b\}}\Omega f,
\]
\[
\Omega(E(a, b)f) = E(\Omega_{x,\zeta} a)f + E(a, \Omega_{x,\zeta} b)f + E(a, b)\Omega f. \tag{A.57}
\]

The bound (A.54) follows as in the proof of Lemma A.2, once we notice that
\[
P_k([T_a T_b - T_{ab})f] = \sum_{\max(k_1, k_2) \geq k-40} P_k([T_{P_{k_1}a} T_{P_{k_2}b} - T_{P_{k_1}a} P_{k_2}b])f].
\]

The bounds (A.52) follow from (A.30)–(A.31) and (A.48), in the same way the bound (A.50) in Lemma A.7 follows from (A.22)–(A.23). Moreover, using (A.45),
\[
\langle t \rangle^{12}\| \{a, b\}(x, \zeta) \varphi_{\geq -200}(\zeta) \|_{\mathcal{M}_{18}^{l_1+2-l_2, m_1+m_2}} \lesssim \| a \|_{\mathcal{M}_{20}^{l_1,m_1}} \| b \|_{\mathcal{M}_{20}^{l_2,m_2}}.
\]

Therefore, using (A.50) and frequency localization,
\[
\langle t \rangle^{12}\| P_{\geq -100} T_{\{a, b\}} \Omega_{m,q} \subseteq \mathcal{O}_{m+m_1+m_2,q-l_1-l_2+1}. \tag{A.58}
\]

Therefore, using (A.56) and (A.52),
\[
\langle t \rangle^{12}\| P_{\geq -100} U(a, b) \Omega_{m,q} \subseteq \mathcal{O}_{m+m_1+m_2,q-l_1-l_2+1}.
\]
For (A.53) it remains to prove that
\[
\langle t \rangle^{128^2} P_{\leq 0} U(a, b) O_{m, q} \subseteq O_{m+m_1+m_2,q-l_1-l_2+1}.
\] (A.59)
However, using (A.50) and (A.45),
\[
\langle t \rangle^{128^2} T_a T_b O_{m, q} \subseteq O_{m+m_1+m_2,q-l_1-l_2}, \quad \langle t \rangle^{128^2} T_{ab} O_{m, q} \subseteq O_{m+m_1+m_2,q-l_1-l_2},
\]
and (A.59) follows. This completes the proof of (A.53). □

APPENDIX B. THE DIRICHLET-NEUMANN OPERATOR

Assume \((h, \phi)\) are as in Proposition 2.2 and let \(\Omega := \{(x, z) \in \mathbb{R}^3 : z \leq h(x)\}\). Let \(\Phi\) denote the (unique in a suitable space, see Lemma B.4) harmonic function in \(\Omega\) satisfying \(\Phi(x, h(x)) = \phi(x)\). We define the Dirichlet-Neumann\(^8\) map as
\[
G(h)\phi = \sqrt{1 + |\nabla h|^2} (\nu \cdot \nabla \Phi)
\] (B.1)
where \(\nu\) denotes the outward pointing unit normal to the domain \(\Omega\). The main result of this section is the following paralinearization of the Dirichlet-Neumann map.

Proposition B.1. Assume that \(t \in [0, T]\) is fixed and \((h, \phi)\) satisfy
\[
\| \langle \nabla \rangle h \|_{O_{1,0}} + \| \langle \nabla \rangle^{1/2} \phi \|_{O_{1,0}} \lesssim \varepsilon_1.
\] (B.2)
Define
\[
B := \frac{G(h)\phi + \nabla x h \cdot \nabla x \phi}{1 + |\nabla h|^2}, \quad V := \nabla x \phi - B \nabla x h, \quad \omega := \phi - T_B h.
\] (B.3)
Then we can paralinearize the Dirichlet-Neumann operator as
\[
G(h)\phi = T_{\lambda_{DN}} \omega - \text{div} (TV h) + G_2 + \varepsilon_1^3 O_{3,3/2},
\] (B.4)
recall the definition (A.7), where
\[
\lambda_{DN} := \lambda^{(1)} + \lambda^{(0)}, \quad \lambda^{(1)}(x, \zeta) := \sqrt{(1 + |\nabla h|^2)|\zeta|^2 - (\zeta \cdot \nabla h)^2}, \quad \lambda^{(0)}(x, \zeta) := \left(1 + |\nabla h|^2\right)^2 \left\{ \frac{\lambda^{(1)}}{1 + |\nabla h|^2} \cdot \frac{\zeta \cdot \nabla h}{1 + |\nabla h|^2} + \frac{1}{2} \Delta h \right\} \varphi_{\geq 0}(\zeta).
\] (B.5)
The quadratic terms are given by
\[
G_2 = G_2(h, |\nabla|^{1/2} \omega) \in \varepsilon_1^2 O_{2,5/2}, \quad \widehat{G_2}(\xi) = \frac{1}{4\pi^2} \int_{\mathbb{R}^2} g_2(\xi, \eta) \hat{h}(\xi - \eta) \eta^{1/2} \hat{\omega}(\eta) \, d\eta,
\] (B.6)
where \(g_2\) is a symbol satisfying (see the definition of the class \(S_{\Omega}^\infty\) in (A.5))
\[
\| g_2^{k_1,k_2} (\xi, \eta) \|_{S_{\Omega}^\infty} \lesssim 2^{k_1} 2^{k_2} \left(\frac{1 + 2^{\min\{k_1,k_2\}}}{1 + 2^{\max\{k_1,k_2\}}} \right)^{7/2}.
\] (B.7)

\(^8\)To be precise this is \(\sqrt{1 + |\nabla h|^2}\) times the standard Dirichlet-Neumann operator, but we will slightly abuse notation and call \(G(h)\phi\) the Dirichlet-Neumann operator.
Remark B.2. Using (B.5), Definition A.6, and (A.43)-(A.45) we see that, for any \(t \in [0, T] \),
\[
\lambda^{(1)} = |\zeta|(1 + \varepsilon_1 \mathcal{M}_{N_3-1}^{2}), \quad \lambda^{(0)} \in \varepsilon_1 \mathcal{M}_{N_3-2}^{0}.
\]

For later use we further decompose \(\lambda^{(0)} \) into its linear and higher order parts:
\[
\lambda^{(0)} = \lambda_1^{(0)} + \lambda_2^{(0)}, \quad \lambda_1^{(0)} := \left[\frac{1}{2} \Delta h - \frac{1}{2} \frac{\zeta}{|\zeta|^2} \partial h \right] \varphi_{\geq 0}(\zeta), \quad \lambda_2^{(0)} \in \varepsilon_1 \mathcal{M}_{N_3-2}^{0}.
\]

According to the formulas in (B.5) and (B.9) we have:
\[
\lambda_{DN} - |\zeta| - \lambda_1^{(0)} \in \varepsilon_1 \mathcal{M}_{N_3-2}^{1}, \quad \lambda_{DN} - \lambda^{(1)} - \lambda_1^{(0)} \in \varepsilon_1 \mathcal{M}_{N_3-2}^{3}.
\]

B.1. Linearization. We start with a result that identifies the linear and quadratic part of the Dirichlet-Neumann operator.

We first use a change of variable to flatten the surface. We thus define
\[
u(x, y) := \Phi(x, h(x) + y), \quad (x, y) \in \mathbb{R}^2 \times (-\infty, 0],
\]
\[
\Phi(x, z) = u(x, z - h(x)).
\]

In particular \(u|_{y=0} = \phi, \partial_y u|_{y=0} = B \), and the Dirichlet-Neumann operator is given by
\[
G(h)\phi = (1 + |\nabla h|^2)\partial_y u|_{y=0} - \nabla_x h \cdot \nabla_x u|_{y=0}.
\]

A simple computation yields
\[
0 = \Delta_x \Phi = (1 + |\nabla_x h|^2)\partial_y^2 u + \Delta_x u - 2 \partial_y \nabla_x u \cdot \nabla_x h - \partial_y u \Delta_x h.
\]

Since we will also need to study the linearized operator, it is convenient to also allow for error terms and consider the equation
\[
(1 + |\nabla_x h|^2)\partial_y^2 u + \Delta_x u - 2 \partial_y \nabla_x u \cdot \nabla_x h - \partial_y u \Delta_x h = \partial_y \epsilon_a + |\nabla|\epsilon_b.
\]

With \(\mathcal{R} := |\nabla|^{-1} \nabla \) (the Riesz transform), this can be rewritten in the form
\[
(\partial_y^2 - |\nabla|^2) u = \partial_y Q_a + |\nabla|Q_b,
\]
\[
Q_a := \nabla u \cdot \nabla h - |\nabla h|^2 \partial_y u + \epsilon_a, \quad Q_b := \mathcal{R}(\partial_y u \nabla h) + \epsilon_b.
\]

To study the solution \(u \) we will need an additional class of Banach spaces, to measure functions that depend on \(y \in (-\infty, 0] \) and \(x \in \mathbb{R}^2 \). These spaces are only used in this section.

Definition B.3. For \(t \in [0, T] \), \(p \geq -10 \), and \(m \geq 1 \) let \(\mathcal{L}_{m,p} = \mathcal{L}_{m,p}(t) \) denote the Banach space of functions \(g \in C((-\infty, 0] : \dot{H}^{1/2,1/2}) \) defined by the norm
\[
\|g\|_{\mathcal{L}_{m,p}} := \|\nabla g\|_{L^2_{z}O_{m,p}} + \|\partial_y g\|_{L^2_{z}O_{m,p}} + \|\nabla|^{1/2} g\|_{L^\infty_{z}O_{m,p}}.
\]

The point of these spaces is to estimate solutions of equations of the form \((\partial_y - |\nabla|)u = \mathcal{N} \), in terms of the initial data \(u(0) = \psi \). It is easy to see that if \(|\nabla|^{1/2} \psi \in O_{m,p} \) then
\[
\|e^{|\nabla|^{1/2} t}\psi\|_{\mathcal{L}_{m,p}} \lesssim \|\nabla|^{1/2} t\psi\|_{O_{m,p}}.
\]

To see this estimate for the \(L^2_{y}\Omega_{N_1/2,N_2+1} \) component we use the bound \(\|c\|_{L^2_{y}L^1_{t}k} \lesssim \|c\|_{L^2_{y}kL^1_{t}} \) for any \(c : Z \times (-\infty, 0] \to \mathbb{C} \). Moreover, if \(Q \in L^2_{y}\mathcal{O}_{m,p} \) then
\[
\left\|\nabla|^{1/2} \int_{-\infty}^{0} e^{-|y-s|\|\nabla|}1_{\pm}(y-s)Q(s) \, ds\right\|_{L^\infty_{z}O_{m,p}} \lesssim (t)^{\delta/2}\|Q\|_{L^2_{z}O_{m,p}}.
\]
and
\[
\left\| \nabla \int_{-\infty}^{0} e^{-|y-s|\nabla} 1_\pm(y-s)Q(s) \, ds \right\|_{L^2_yO_{m,p}} \lesssim \langle t \rangle^{\delta/2} \|Q\|_{L^2_\gamma O_{m,p}}. \tag{B.19}
\]

Indeed, these bounds follow directly from the definitions for the \(L^2\)-based components of the space \(O_{m,p}\), which are \(H^{N_0+p}\) and \(H^{N_1,N_3+p}_\Omega\). For the remaining component one can control uniformly the \(W_{\Omega}^{N_1/2,N_2+p}\) norm of the function localized at every single dyadic frequency, without the factor of \(\langle t \rangle^{\delta/2}\) in the right-hand side. The full bounds follow once we notice that only the frequencies satisfying \(2^k [\langle t \rangle^{-8} \langle t \rangle^{8}]\) are relevant in the \(W_{\Omega}^{N_1/2,N_2+p}\) component of the space \(O_{1,p}\); the other frequencies are already accounted by the stronger Sobolev norms.

Our first result is the following:

Lemma B.4. (i) Assume that \(t \in [0,T]\) is fixed, \(\|\nabla\|_{O_{1,0}} \lesssim \varepsilon_1\), as in (B.2), and
\[
\|\nabla^{1/2}\psi\|_{O_{1,p}} \lesssim A < \infty, \quad \|\epsilon_a\|_{L^2_yO_{1,p}} + \|\epsilon_b\|_{L^2_\gamma O_{1,p}} \leq A\varepsilon_1 \langle t \rangle^{-12\delta^2}, \tag{B.20}
\]
for some \(p \in [-10,0]\). Then there is a unique solution \(u \in L_{1,p}\) of the equation
\[
u(y) = e^y|\nabla| \left(\psi - \frac{1}{2} \int_{-\infty}^{0} e^{s|\nabla|}(Q_a(s) - Q_b(s)) \, ds \right) + \frac{1}{2} \int_{-\infty}^{0} e^{-|y-s|\nabla}|(\text{sign}(y-s)Q_a(s) - Q_b(s))| \, ds, \tag{B.21}
\]
where \(Q_a\) and \(Q_b\) are as in (B.15). Moreover, \(u\) is a solution of the equation \((\partial_y^2 - |\nabla|^2)u = \partial_y Q_a + |\nabla| Q_b\) in (B.15) (and therefore a solution of (B.14) in \(\mathbb{R}^2 \times (-\infty,0]\)), and
\[
\|u\|_{L_{1,p}} = \|\nabla u\|_{L^2_\gamma O_{1,p}} + \|\partial_y u\|_{L^2_\gamma O_{1,p}} + \|\nabla^{1/2} u\|_{L^2_\gamma O_{1,p}} \lesssim A. \tag{B.22}
\]

(ii) Assume that we make the stronger assumptions, compare with (B.20),
\[
\|\nabla^{1/2}\psi\|_{O_{1,p}} \leq A < 0, \quad \|\partial_y\epsilon\|_{L^2_\gamma O_{2,p-\delta}} + \|\partial_y^2\epsilon\|_{L^2_\gamma O_{2,p-1/2-\delta}} \leq A\varepsilon_1 \langle t \rangle^{-12\delta^2}, \tag{B.23}
\]
for \(\epsilon \in \{\epsilon_a, \epsilon_b\}\) and \(j \in \{0,1,2\}\). Then
\[
\|\partial_y\epsilon(\partial_y u - |\nabla| u)\|_{L^2_\gamma O_{2,p-\delta}} + \|\partial_y^2(\partial_y u - |\nabla| u)\|_{L^2_\gamma O_{2,p-1/2-\delta}} \lesssim A\varepsilon_1. \tag{B.24}
\]

Proof. (i) We use a fixed point argument in a ball of radius \(\approx A\) in \(L_{1,p}\), for the functional
\[
\Phi(u) = e^y|\nabla| \left(\psi - \frac{1}{2} \int_{-\infty}^{0} e^{s|\nabla|}(Q_a(s) - Q_b(s)) \, ds \right) + \frac{1}{2} \int_{-\infty}^{0} e^{-|y-s|\nabla}|(\text{sign}(y-s)Q_a(s) - Q_b(s))| \, ds. \tag{B.25}
\]
Notice that, using Lemma A.2 and (B.20), if \(\|u\|_{L_{1,p}} \lesssim 1\) then
\[
\|Q_a\|_{L^2_\gamma O_{1,p}} + \|Q_b\|_{L^2_\gamma O_{1,p}} \lesssim A\varepsilon_1 \langle t \rangle^{-12\delta^2}.
\]
Therefore, using (B.17)–(B.19), \(\|\Phi(u) - e^y|\nabla|\psi\|_{L_{1,p}} \lesssim A\varepsilon_1\). Similarly, one can show that \(\|\Phi(u) - \Phi(v)\|_{L_{1,p}} \lesssim \varepsilon_1\|u - v\|_{L_{1,p}}\), and the desired conclusion follows.

(ii) The identity (B.21) shows that
\[
\partial_y u(y) - |\nabla| u(y) = Q_a(y) + \int_{-\infty}^{y} |\nabla| e^{-|s-y|\nabla}(Q_b(s) - Q_a(s)) \, ds. \tag{B.26}
\]
Given (B.22), the definition (B.15), and the stronger assumptions in (B.23), we have

$$
\|Q\|_{L_y^2 \mathcal{O}_{2,p}} + \|Q\|_{L_y^\infty \mathcal{O}_{2,p-1/2}} \lesssim A \varepsilon_1(t)^{-128^2},
$$

for $Q \in \{Q_a, Q_b\}$. Using estimates similar to (B.18) and (B.19) it follows that

$$
\|\partial_y u - |\nabla|u\|_{L_y^2 \mathcal{O}_{2,p}} + \|\partial_y u - |\nabla|u\|_{L_y^\infty \mathcal{O}_{2,p-1/2}} \lesssim A \varepsilon_1.
$$

To prove (B.24) for $j \in \{1, 2\}$, we observe that, as a consequence of (B.14),

$$
\partial_y^2 u - |\nabla|^2 u = (1 + |\nabla_x h|^2)^{-1}(-|\nabla|^2 u |\nabla_x h|^2 + 2 \partial_y \nabla_x u \cdot \nabla_x h + \partial_y u \Delta_x h + \partial_y \xi_\alpha + |\nabla| \xi_b).
$$

Using (B.22) and (B.28), together with Lemma A.2, it follows that

$$
\|\partial_y^2 u - |\nabla|^2 u\|_{L_y^2 \mathcal{O}_{2,p-1}} + \|\partial_y^2 u - |\nabla|^2 u\|_{L_y^\infty \mathcal{O}_{2,p-3/2}} \lesssim A \varepsilon_1.
$$

The desired bound (B.24) for $j = 1$ follows using also (B.28). The bound for $j = 2$ then follows by differentiating (B.29) with respect to y. This completes the proof of the lemma. □

B.2. Paralinearization

The previous analysis allows us to isolate the linear (and the higher order) components of the Dirichlet-Neumann operator. However, this is insufficient for our purpose because we also need to avoid losses of derivatives in the equation. To deal with this we follow the approach of Alazard-Metivier [5], Alazard-Burq-Zuily [1, 2] and Alazard-Delort [3] using paradifferential calculus. Our choice is to work with the (somewhat unusual) Weyl quantization, instead of the standard one used by the cited authors. We refer to Appendix A for a review of the paradifferential calculus using the Weyl quantization.

For simplicity of notation, we set $\alpha = |\nabla| h|^2$ and let

$$
\omega := u - T_{\partial_y} h.
$$

Notice that ω is naturally extended to the fluid domain, compare with the definition (B.3). We will also assume (B.2) and use Lemma B.4. Using (A.51) in Lemma A.7 and (B.24), we see that

$$
\|\omega - u\|_{L_y^2 \mathcal{O}_{2,1} \cap L_y^\infty \mathcal{O}_{2,1}} \lesssim \varepsilon_1^2.
$$

Using Lemma A.4 to paralinearize products, we may rewrite the equation (B.13) as

$$
T_{1+\alpha} \partial_y^2 \omega + \Delta \omega - 2 T_{\nabla h} \nabla \partial_y \omega - T_{\Delta h} \partial_y \omega = Q + C
$$

where

$$
- Q = -2 \mathcal{H}(\nabla h, \nabla \partial_y u) - \mathcal{H}(\Delta h, \partial_y u),
$$

$$
- C = \partial_y (T_{1+\alpha} \partial_y^2 u + T_{\Delta u} - 2 T_{\nabla h} \nabla \partial_y u - T_{\Delta h} \partial_y u) h + 2 (T_{\partial_y^2 u} T_{\nabla h} - T_{\nabla h} T_{\partial_y^2 u}) \nabla h + T_{\partial_y^2 u} \mathcal{H}(\nabla h, \nabla h) + \mathcal{H}(\alpha, \partial_y^2 u).
$$

Notice that the error terms are quadratic and cubic strongly semilinear. More precisely, using Lemma A.4, Lemma A.8, and the equation (B.13), we see that

$$
Q \in \varepsilon_1^2 [L_y^2 \mathcal{O}_{2,1} \cap L_y^\infty \mathcal{O}_{2,4}], \quad C \in \varepsilon_1^2(t)^{-116^2} [L_y^2 \mathcal{O}_{3,4} \cap L_y^\infty \mathcal{O}_{3,4}].
$$

We now look for a factorization of the main elliptic equation into

$$
T_{1+\alpha} \partial_y^2 + \Delta - 2 T_{\nabla h} \nabla \partial_y - T_{\Delta h} \partial_y
= (T_{\sqrt{1+\alpha}} \partial_y - A + B)(T_{\sqrt{1+\alpha}} \partial_y - A - B) + \varepsilon
$$

$$
= T^2_{\sqrt{1+\alpha}} \partial_y - \{(A T_{\sqrt{1+\alpha}} + T_{\sqrt{1+\alpha}} A) + [T_{\sqrt{1+\alpha}, B}]\} \partial_y + A^2 - B^2 + [A, B] + \varepsilon
$$
where the error term is acceptable (in a suitable sense to be made precise later), and \([A, \partial_y] = 0, [B, \partial_y] = 0\). Identifying the terms, this leads to the system
\[
T_{\sqrt{1+\alpha}} A + AT_{\sqrt{1+\alpha}} + [T_{\sqrt{1+\alpha}}, B] = 2T_i \zeta \nabla h + \mathcal{E},
\]
\[
A^2 - B^2 + [A, B] = \Delta + \mathcal{E}.
\]
We may now look for paraprodut solutions in the form
\[
A = iT_a, \quad a = a^{(1)} + a^{(0)}, \quad B = T_b, \quad b = b^{(1)} + b^{(0)}
\]
where both \(a\) and \(b\) are real and are a sum of a two symbols of order 1 and 0. Therefore \(A\) corresponds to the skew-symmetric part of the system, while \(B\) corresponds to the symmetric part. Using Proposition A.5, and formally identifying the symbols, we obtain the system
\[
2ia\sqrt{1+\alpha} + i\{\sqrt{1+\alpha}, b\} = 2i\zeta \cdot \nabla h + \varepsilon_1^2 \mathcal{M}^{-1,2}_{N_3-2},
\]
\[
a^2 + b^2 + \{a, b\} = |\zeta|^2 + \varepsilon_1^2 \mathcal{M}^{0,2}_{N_3-2}.
\]
We can solve this by letting
\[
a^{(1)} := \frac{\zeta \cdot \nabla h}{\sqrt{1+\alpha}}, \quad a^{(0)} := -\frac{1}{2\sqrt{1+\alpha}} \{\sqrt{1+\alpha}, b^{(1)}\} \varphi \geq 0(\zeta),
\]
\[
b^{(1)} = \sqrt{|\zeta|^2 - (a^{(1)})^2}, \quad b^{(0)} = \frac{1}{2b^{(1)}(-2a^{(1)}a^{(0)} - \{a^{(1)}, b^{(1)}\} \varphi \geq 0(\zeta)).
\]
This gives us the following formulas:
\[
a^{(1)} = \frac{1}{\sqrt{1+|\nabla h|^2}} (\zeta \cdot \nabla h) = (\zeta \cdot \nabla h)(1 + \varepsilon_1^2 \mathcal{M}^{0,2}_{N_3}), \quad (B.35)
\]
\[
b^{(1)} = \sqrt{\frac{(1+|\nabla h|^2)|\zeta|^2 - (\zeta \cdot \nabla h)^2}{1+|\nabla h|^2}} = |\zeta|(1 + \varepsilon_1^2 \mathcal{M}^{0,2}_{N_3}), \quad (B.36)
\]
\[
a^{(0)} = -\frac{\{\sqrt{1+|\nabla h|^2}, b^{(1)}\}}{2\sqrt{1+|\nabla h|^2}} \varphi \geq 0(\zeta) = \varphi \geq 0(\zeta) \varepsilon_1^2 \mathcal{M}^{0,2}_{N_3-1}, \quad (B.37)
\]
\[
b^{(0)} = -\frac{\sqrt{1+|\nabla h|^2}}{2b^{(1)}} \left\{ \frac{\zeta \cdot \nabla h}{1+|\nabla h|^2}, b^{(1)} \right\} \varphi \geq 0(\zeta) = \varphi \geq 0(\zeta) \left[-\frac{\zeta \cdot \zeta \cdot \partial_j \partial_i h}{2|\zeta|^2} + \varepsilon^3_1 \mathcal{M}^{0,3}_{N_3-1} \right]. \quad (B.38)
\]
We now verify that
\[
(T_{\sqrt{1+\alpha}} \partial_y - iT_a + T_b)(T_{\sqrt{1+\alpha}} \partial_y - iT_a - T_b)
\]
\[
= T_{1+\alpha} \partial_y^2 - \{2T_{\sqrt{1+\alpha}} + T_{\{1+\alpha, b^{(1)}\}}\} i\partial_y - T_{a^2} - T_{b^2} - T_{\{a^{(1)}, b^{(1)}\} \varphi \geq 0(\zeta)} + \mathcal{E}, \quad (B.39)
\]
where
\[
\mathcal{E} := (T_{\sqrt{1+\alpha}} T_{\sqrt{1+\alpha}} - T_{1+\alpha})\partial_y^2 - \{T_a T_{\sqrt{1+\alpha}} + T_{\sqrt{1+\alpha}} T_a - 2T_{\sqrt{1+\alpha}}\} i\partial_y - [T_{\sqrt{1+\alpha}} T_{b^{(0)}}] \partial_y
\]
\[
- (T_{\sqrt{1+\alpha}}, T_{b^{(1)}}) \partial_y + (T_{a^2} - T_a^2) + (T_{b^2} - T_b^2) + i[T_a, T_b] + T_{\{a^{(1)}, b^{(1)}\} \varphi \geq 0(\zeta)}.
\]
We also verify that
\[
2a\sqrt{1+\alpha} + \{\sqrt{1+\alpha}, b^{(1)}\} = 2\zeta \cdot \nabla h + \{\sqrt{1+\alpha}, b^{(1)}\} \varphi \leq -1(\zeta),
\]
\[
a^2 + b^2 + \{a^{(1)}, b^{(1)}\} \varphi \geq 0(\zeta) = |\zeta|^2 + (a^{(0)})^2 + (b^{(0)})^2.
\]
Lemma B.5. With the definitions above, we have

$$T_{\sqrt{1+\alpha}}\partial_y - iT_a + T_b)(T_{\sqrt{1+\alpha}}\partial_y - iT_a - T_b)\omega = Q_0 + \tilde{C},$$ \hspace{1cm} (B.40)

where

$$\tilde{C} \in \varepsilon_1(t)^{-11\delta^2}[L_y^\infty O_{3,1/2} \cap L_y^2 O_{3,1}], \quad Q_0 \in \varepsilon_1^2[L_y^\infty O_{2,3/2} \cap L_y^2 O_{2,2}],$$

$$\tilde{Q}_0(\xi, y) = \frac{1}{4\pi^2} \int_{\mathbb{R}^2} q_0(\xi, \eta) \tilde{h}(\xi - \eta) \tilde{h}(\eta, y) d\eta,$$

and

$$q_0(\xi, \eta) := \chi\left(\frac{|\xi - \eta|}{|\xi + \eta|}\right) \left(|\xi| - |\eta|\right)^2 \left(|\xi| + |\eta|\right)^2 \frac{2\xi \cdot \eta - 2|\xi||\eta|}{|\xi + \eta|^2} \varphi_{\geq 0}\left(\frac{\xi + \eta}{2}\right) + \varphi_{\leq -1}\left(\frac{\xi + \eta}{2}\right)$$

$$+ \left[1 - \chi\left(\frac{|\xi - \eta|}{|\xi + \eta|}\right) - \chi\left(\frac{|\eta|}{2|\xi - \eta|}\right)\right]\left(|\eta|^2 - |\xi|^2\right)|\eta|.$$ \hspace{1cm} (B.42)

Notice that (see (A.6) for the definition),

$$\|q_0^{k_1,k_2}\|_{\mathcal{S}^\infty_0} \lesssim 2^{k_2}2^{2k_1}\left[2^{-2(k_2-2k_1)}1_{[-40,\infty)}(k_2-k_1) + 1_{(-\infty,4]}(k_2)\right], \quad (\Omega_{\xi} + \Omega_{\eta})q_0 = 0. \hspace{1cm} (B.43)$$

Proof. Using (B.32) and (B.39) we have

$$\left(T_{\sqrt{1+\alpha}}\partial_y - iT_a + T_b\right)\left(T_{\sqrt{1+\alpha}}\partial_y - iT_a - T_b\right)\omega = \mathcal{C} + \mathcal{E} \omega - T_{\left(\alpha^{(0)}\right)^2 + (\beta^{(0)})^2}\omega - T_{\left(\sqrt{1+\alpha}, b^{(1)}\right)}\varphi_{\leq -1}\mathcal{i}\partial_y \omega.$$ \hspace{1cm}

The terms \mathcal{C}, $T_{\left(\alpha^{(0)}\right)^2 + (\beta^{(0)})^2}\omega$ and $T_{\left(\sqrt{1+\alpha}, b^{(1)}\right)}\varphi_{\leq -1}\mathcal{i}\partial_y \omega$ are in $\varepsilon_1^3(1 + t)^{-11\delta^2}[L_y^\infty O_{3,1/2} \cap L_y^2 O_{3,1}].$ Moreover, using Lemma B.4, Lemma A.8, and (B.35)–(B.38), we can verify that

$$\mathcal{E} \omega - \left[T_{2\xi}b^{(0)} - T_{\xi}T_{b^{(0)}} - T_{b^{(0)}}\right]\omega - \left[i[T_{\xi} \nabla h, T_{\xi}] + T_{\xi, u}(\xi, \eta, \xi, \eta, \xi, \eta)\right] \omega$$

is an acceptable cubic error, where $b_1^{(0)} := -\varphi_{\leq 0}(\xi) - \frac{\xi}{2|\xi|^2} \partial\delta h\eta.$ Indeed, most of the terms in \mathcal{E} are already acceptable cubic errors; the last three terms become acceptable cubic errors after removing the quadratic components corresponding to the symbols $\xi \cdot \nabla h$ in $\alpha^{(1)}$, $|\xi|$ in $\beta^{(1)}$, and $b_1^{(0)}$ in $b^{(0)}$. As a consequence, $\mathcal{E} \omega - Q_0 \in \varepsilon_1^3(1 + t)^{-11\delta^2}[L_y^\infty O_{3,1/2} \cap L_y^2 O_{3,1}],$ where

$$\tilde{Q}_0(\xi, y) := \frac{1}{4\pi^2} \int_{\mathbb{R}^2} \chi\left(\frac{|\xi - \eta|}{|\xi + \eta|}\right)q_0(\xi, \eta) \tilde{h}(\xi - \eta) \tilde{h}(\eta, y) d\eta,$$

$$q_0(\xi, \eta) := \frac{(|\xi| - |\eta|)^2(|\xi| + |\eta|)(\xi \cdot \eta - |\xi||\eta|)}{|\xi + \eta|^2} \varphi_{\geq 0}\left(\frac{\xi + \eta}{2}\right) + \varphi_{\leq -1}\left(\frac{\xi + \eta}{2}\right).$$

The desired conclusions follow, using also the formula $Q = 2\mathcal{H}(\nabla u, \nabla \partial_y u) + \mathcal{H}(\Delta h, \partial_y u)$ in (B.33), and the approximations $\partial_y u \approx |\nabla u|, \omega \approx u$, up to suitable quadratic errors. \hfill \Box

In order to continue we want to invert the first operator in (B.40) which is elliptic in the domain under consideration.

Lemma B.6. Let $U := \left(T_{\sqrt{1+\alpha}}\partial_y - iT_a - T_b\right)\omega \in \varepsilon_1[L_y^\infty O_{3,-1/2} \cap L_y^2 O_{3,0},$ so

$$\left(T_{\sqrt{1+\alpha}}\partial_y - iT_a + T_b\right)U = Q_0 + \tilde{C}. \hspace{1cm} (B.44)$$

Define

$$M_0(f, g)(\xi) = \frac{1}{4\pi^2} \int_{\mathbb{R}^2} m_0(\xi, \eta) f(\xi - \eta) \tilde{h}(\eta) d\eta, \quad m_0(\xi, \eta) := \frac{q_0(\xi, \eta)}{|\xi| + |\eta|}. \hspace{1cm} (B.45)$$
Then, recalling the notation (A.7), and letting $U_0 := U_{|y=0}$, $u_0 := u_{|y=0} = \phi$, we have

$$P_{\geq 10}(U_0 - M_0[h, u_0]) \in \varepsilon_1^3(t)^{-116^2} O_{3,3/2}.$$ \hspace{1cm} (B.46)

Proof. Set

$$\tilde{U} := T_{(1+\alpha)^{1/4}} U \in \varepsilon_1^1 L_y^{\infty, 1/2} \cap L_y^2 O_{1,1}, \quad \sigma := \frac{b - ia}{\sqrt{1 + \alpha}} = |\zeta|(1 + \varepsilon_1^2 M_{N_3 - 1}^{0,1}).$$ \hspace{1cm} (B.47)

Using (B.44) and Lemma A.8, and letting $f := (1 + \alpha)^{1/4} - 1 \in \varepsilon_1^2 O_{2,0}$, we calculate

$$T_{(1+\alpha)^{1/4}} (\partial_y + T_\sigma) \tilde{U} = Q_0 + C_1,$n

$$C_1 := \tilde{C} + \left[T_f - T\right]_{\sigma} \partial_y U + \left[T_{f+1} T_\sigma T_{f+1} - T_{(f+1)^2 \sigma}\right] U \in \varepsilon_1^3(t)^{-116^2} \left[L_y^{\infty} O_{3,1/2} \cap L_y^2 O_{3,1}\right].$$

Let $g = (1 + f)^{-1} - 1 \in \varepsilon_1^2 O_{2,0}$ and apply the operator T_{1+g} to the identity above. Using Lemma A.8, it follows that

$$(\partial_y + T_\sigma) \tilde{U} = Q_0 + C_2, \quad C_2 \in \varepsilon_1^3(t)^{-116^2} \left[L_y^{\infty} O_{3,1/2} \cap L_y^2 O_{3,1}\right].$$ \hspace{1cm} (B.48)

Notice that, using Lemma B.4, (B.43), (B.45) and Lemma A.2,

$$M_0[h, \sigma u] \in \varepsilon_1^3 \left[L_y^{\infty} O_{2,5/2} \cap L_y^2 O_{2,3}\right], \quad M_0[h, \partial_y u] \in \varepsilon_1^2 \left[L_y^{\infty} O_{2,3/2} \cap L_y^2 O_{2,2}\right].$$ \hspace{1cm} (B.49)

We define $V := \tilde{U} - M_0[h, u]$. Since

$$V = T_{(1+\alpha)^{1/4}} (U - M_0[h, u]) + C', \quad C' \in \varepsilon_1^3 \left[t^{1/2} L_y^{\infty} O_{3,3/2}\right],$$

for (B.46) it suffices to prove that

$$P_{\geq 10} V(y) \in \varepsilon_1^3 \left(t^{1/2} O_{3,3/2}\right) \quad \text{for any} \quad y \in (-\infty, 0].$$ \hspace{1cm} (B.50)

Using also (B.24) we verify that

$$(\partial_y + T_\sigma) V = (\partial_y + T_\sigma) \tilde{U} - (\partial_y + |\nabla|) M_0[h, u] - T_{(\sigma - |\zeta|)} M_0[h, u]$$

$$= C_2 + M_0[h, |\nabla| u - \partial_y u] - T_{(\sigma - |\zeta|)} M_0[h, u]$$

$$= C_3 \in \varepsilon_1^3 \left[t^{1/2} L_y^{\infty} O_{3,1/2} \cap L_y^2 O_{3,1}\right].$$ \hspace{1cm} (B.51)

Letting $\sigma' := \sigma - |\zeta|$ and $V_k := P_k V$, $k \geq 0$, we calculate

$$(\partial_y + T_{|\zeta|}) V_k = P_k C_3 - P_k T_{\sigma'} V.$$

We can rewrite this equation in integral form,

$$V_k(y) = \int_{-\infty}^{y} e^{(s-y)|\nabla|} [P_k C_3(s) - P_k T_{\sigma'} V(s)] ds.$$ \hspace{1cm} (B.52)

To prove the desired bound for the high Sobolev norm, let, for $k \in \mathbb{Z},$

$$X_k := \sup_{y \leq 0} 2^{(N_0 + 3/2)k} \left\| V_k(y) \right\|_{L^2}.$$

Since $\sigma'/|\zeta| \in \varepsilon_1 M_{N_3 - 1}^{0,1}$, it follows from Lemma A.7 that, for any $y \leq 0$,

$$2^{(N_0 + 3/2)k} \int_{-\infty}^{y} \left\| e^{(s-y)|\nabla|} P_k T_{\sigma'} V(s) \right\|_{L^2} ds$$

$$\lesssim 2^{(N_0 + 3/2)k} \varepsilon_1 \sum_{|k' - k| \leq 4} \int_{-\infty}^{y} e^{(s-y)2^{k+4}} 2^k \left\| P_{k'} V(s) \right\|_{L^2} ds \lesssim \varepsilon_1 \sum_{|k' - k| \leq 4} X_{k'}.$$
It follows from (B.52) that, for any \(k \in \mathbb{Z} \)
\[
X_k \lesssim \varepsilon_1 \sum_{|k'|-k| \leq 4} X_{k'} + \sup_{y \leq 0} 2^{(N_0+3/2)k} \int_{-\infty}^{y} e^{(s-y)2^{k-4}} \| P_k C_3(s) \|_{L^2} \, ds
\]
\[
\lesssim \varepsilon_1 \sum_{|k'|-k| \leq 4} X_{k'} + 2^{(N_0+1)k} \left[\int_{-\infty}^{0} \| P_k C_3(s) \|_{L^2}^{2} \, ds \right]^{1/2}.\]

We take \(l^2 \) summation in \(k \), and absorb the first term in the right-hand side\(^9\) into the left-hand side, to conclude that
\[
\left(\sum_{k \in \mathbb{Z}} X_k^{2} \right)^{1/2} \lesssim \left[\sum_{k \in \mathbb{Z}} 2^{2(N_0+1)k} \int_{-\infty}^{0} \| P_k C_3(s) \|_{L^2}^{2} \, ds \right]^{1/2} \lesssim \varepsilon_1^3 \langle t \rangle^{-11\delta^2} \langle t \rangle^{-2(5/6-20\delta^2)+\delta^2}, \tag{B.53}
\]
where the last inequality in this estimate is a consequence of \(C_3 \in \varepsilon_1^3 \langle t \rangle^{-11\delta^2} L^2_y O_{3,1} \). The desired bound \(\| P_{\geq -20} V(y) \|_{H^{N_0+3/2}} \lesssim \varepsilon_1^3 \langle t \rangle^{-11\delta^2} \langle t \rangle^{-2(5/6-20\delta^2)+\delta^2} \) in (B.50) follows.

The proof of the bound for the weighted norms is similar. For \(k \in \mathbb{Z} \) let
\[
Y_k := \sup_{y \leq 0} 2^{(N_3+3/2)k} \sum_{j \leq N_1} \| \Omega^j V_k(y) \|_{L^2}.
\]

As before, we have the bounds,
\[
2^{(N_3+3/2)k} \int_{-\infty}^{y} \| e^{(s-y)|\nabla|} \Omega^j P_k T_{\sigma} V(s) \|_{L^2} \, ds \lesssim \varepsilon_1 \sum_{|k'|-k| \leq 4} [Y_{k'} + \langle t \rangle^{6\delta^2} X_{k'}],
\]
for any \(y \in (-\infty, 0] \) and \(j \leq N_1 \), and therefore, using (B.52),
\[
Y_k \lesssim \varepsilon_1 \sum_{|k'|-k| \leq 4} Y_{k'} + \varepsilon_1 \langle t \rangle^{6\delta^2} \sum_{|k'|-k| \leq 4} X_{k'} + \sum_{j \leq N_1} 2^{(N_3+1)k} \left[\int_{-\infty}^{0} \| \Omega^j P_k C_3(s) \|_{L^2}^{2} \, ds \right]^{1/2}.
\]

As before, we take the \(l^2 \) sum in \(k \) and use (B.53) and the hypothesis \(C_3 \in \varepsilon_1^3 \langle t \rangle^{-11\delta^2} L^2_y O_{3,1} \). The desired bound \(\| P_{\geq -20} V(y) \|_{H^{N_0+3/2}} \lesssim \varepsilon_1^3 \langle t \rangle^{-4\delta^2} \langle t \rangle^{-2(5/6-20\delta^2)+\delta^2} \) in (B.50) follows.

Finally, for the \(L^\infty \) bound, we let, for \(k \in \mathbb{Z} \),
\[
Z_k := \sup_{y \leq 0} 2^{(N_2+3/2)k} \sum_{j \leq N_1/2} \| \Omega^j V_k(y) \|_{L^\infty}.
\]

As before, using (B.52) it follows that
\[
Z_k \lesssim \varepsilon_1 \sum_{|k'|-k| \leq 4} Z_{k'} + \sum_{j \leq N_1/2} 2^{(N_2+1)k} \left[\int_{-\infty}^{0} \| \Omega^j P_k C_3(s) \|_{L^\infty}^{2} \, ds \right]^{1/2}.
\]

After taking \(l^2 \) summation in \(k \) it follows that
\[
\left(\sum_{k \in \mathbb{Z}} Z_k^{2} \right)^{1/2} \lesssim \left[\sum_{k \in \mathbb{Z}} 2^{2(N_2+1)k} \int_{-\infty}^{0} \| \Omega^j P_k C_3(s) \|_{L^\infty}^{2} \, ds \right]^{1/2} \lesssim \varepsilon_1^3 \langle t \rangle^{-11\delta^2} \langle t \rangle^{-5/2+45\delta^2},
\]
\(^9\)To make this step rigorous, one can modify the definition of \(X_k \) to \(X_k' := \sup_{y \leq 0} 2^{(N_0+3/2) \min(k,K)} \| V_k(y) \|_{L^2} \), in order to make sure that \(\sum_k (X_k')^2 < \infty \), and then prove uniform estimates in \(K \) and finally let \(K \to \infty \).
where the last inequality is a consequence of $C_3 \in \varepsilon_3^3(t)^{-11d^2}L_y^2 \mathcal{O}_{3,1}$. The desired bound on $\|P_{\geq -20}V(y)\|_{\tilde{W}_{3/2}^{N_1},N_2+3/2}$ in (B.50) follows, once we recall that only the sum over $2^{k}\leq \langle t \rangle ^{8}$ is relevant when estimating the $\tilde{W}_{3/2}^{N_1},N_2+3/2$ norm; the remaining frequencies are already accounted for by the stronger Sobolev norms.

We are now ready to obtain the paralinearization of the Dirichlet-Neumann operator.

Proof of Proposition B.1. Recall that $G(h)\phi = (1 + |\nabla h|^2)\partial_y u_{y=0} - \nabla h \cdot \nabla u_{y=0}$, see (B.12), and $\mathcal{B} = \partial_y u_{y=0}$. All the calculations below are done on the interface, at $y=0$. We observe that, using Corollary C.1,

$$
P_{\leq 6}((1 + |\nabla h|^2)\partial_y u - \nabla h \cdot \nabla u) = P_{\leq 6} (\partial_y u - \nabla h \cdot \nabla u) + \varepsilon_1^3 \mathcal{O}_{3,3/2}
$$

Thus low frequencies give acceptable contributions. To estimate high frequencies we compute

$$
(1 + |\nabla h|^2)\partial_y u - \nabla h \cdot \nabla u
= T_{1+\alpha}\partial_y u - TV_h u - TV_u \partial_y u + T \partial_y u + \mathcal{H}(\partial_y u, u) - \mathcal{H}(\nabla h, \nabla u)
$$

Using Lemma B.6 with $U = (T\sqrt{1+\alpha}\partial_y) - iT_a - Tb)\omega$ and (B.49), Lemma A.7, and Lemma A.8, we find that

$$
T_{1+\alpha}\partial_y u = T_{1+\alpha}\partial_y u + iT_{\sqrt{1+\alpha}}(T_b + iT_a)\omega + M[0, h, u] + C' + (T_{1+\alpha} - T_{2+\alpha})\partial_y u
$$

where C' satisfies $P_{\geq -6}C' \in \varepsilon_3^3 \mathcal{O}_{3,3/2}$. Therefore, with $V = \nabla u - \partial_y u \nabla h$,

$$
(1 + |\nabla h|^2)\partial_y u - \nabla h \cdot \nabla u = T_{1+\alpha}\partial_y u + iT_{\sqrt{1+\alpha}}(T_b + iT_a)\omega + M[0, h, u] + C' + \mathcal{H}(\nabla h, \nabla u)
$$

with cubic terms C_1, C_2 given explicitly by

$$
C_1 = (T_{b,\partial_y} - 2TV_hT_{b,\partial_y}) + \mathcal{H}(\alpha, \partial_y u),
$$

$$
C_2 = (T_{\mathcal{D} V} + T_{(1+\alpha)T_{b,\partial_y} - TV_{h}T_{b,\partial_y} } + (TV_{h}T_{b,\partial_y} - T_{b,\partial_y} \nabla h)).
$$

Notice that $\nabla V + (1 + \alpha)\partial_y u - \nabla h \nabla \partial_y u = 0$, as a consequence of (B.13). Using also Lemma A.8 it follows that $C_1, C_2 \leq \varepsilon_3^3 \mathcal{O}_{3,3/2}$.

Moreover, using the formulas (B.36), (B.38), Lemma A.5, and Lemma A.8, we see that

$$
T_{\sqrt{1+\alpha}}T_n \omega = T_{b,\sqrt{1+\alpha}} \omega + iT_{\sqrt{1+\alpha, b}} \omega + \mathcal{E}(\sqrt{1+\alpha} - 1, b) \omega
$$

where λ^{1} is the principal symbol in (B.5). Similarly, using (B.35), (B.37),

$$
iT_{\sqrt{1+\alpha}}T_n \omega - TV_{h} \nabla \omega = T_{i\sqrt{1+\alpha}} \omega - TV_{h} \nabla \omega + iT_{a,\sqrt{1+\alpha}} \omega - \frac{1}{2}T_{\sqrt{1+\alpha, a}} \omega + i \mathcal{E}(\sqrt{1+\alpha} - 1, a) \omega
$$

$$
= \frac{1}{2}T_{\Delta h} \omega + iT_{a,\sqrt{1+\alpha}} \omega - \frac{1}{2}T_{\sqrt{1+\alpha, a, a}} \omega + \varepsilon_3^3 \mathcal{O}_{3,3/2}.
$$

Summing these last two identities and using (B.35)-(B.38) we see that
\[T_{\sqrt{1+\alpha}} T_b \omega + i T_{\sqrt{1+\alpha}} T_\omega - T_{\nabla h} \nabla \omega = T_{\lambda(1)} \omega + T_m \omega + \varepsilon_1^3 O_{3,3/2} \] (B.56)
where
\[m := b^{(0)} \sqrt{1 + \alpha} - \frac{1}{2} \{ \sqrt{1 + \alpha}, a^{(1)} \} + \frac{1}{2} \Delta h \]
\[= \frac{(1 + \alpha)^{3/2}}{2 \lambda^{(1)}} \left\{ \frac{\lambda^{(1)}}{\sqrt{1 + \alpha}}, \frac{\zeta \cdot \nabla h}{1 + \alpha} \right\} \varphi_{\geq 0}(\zeta) - \frac{1}{2} \{ \sqrt{1 + \alpha}, \frac{\zeta \cdot \nabla h}{\sqrt{1 + \alpha}} \} + \frac{1}{2} \Delta h \]
(B.57)

We conclude from (B.55) and (B.56) that
\[P_{\geq 7} ((1 + |\nabla h|^2) \partial_y u - \nabla h \nabla u) = P_{\geq 7} (T_{\lambda|DN} \omega - \operatorname{div}(T_V h) + M_0[h, u] - \mathcal{H}(\nabla h, \nabla u) + \varepsilon_1^3 \bar{O}_{3,3/2}). \]
Moreover, the symbol of the bilinear operator \(M_0[h, u] - \mathcal{H}(\nabla h, \nabla u) \) is
\[q_0(\xi, \eta) = \left\{ \varepsilon^{(1)} + \frac{1}{2 \lambda^{(1)}} \left\{ \frac{\lambda^{(1)}}{\sqrt{1 + \alpha}}, \frac{\zeta \cdot \nabla h}{1 + \alpha} \right\} \varphi_{\geq 0}(\zeta) - \frac{1}{2} \{ \sqrt{1 + \alpha}, \frac{\zeta \cdot \nabla h}{\sqrt{1 + \alpha}} \} \varphi_{\leq 0}(\zeta) + \frac{\Delta h}{2} \varphi_{\leq 0}(\zeta) \right\} \]
where \(q_0 \) is defined in (B.42). The symbol bounds (B.7) follow. Combining this with (B.54), we finish the proof. \(\square \)

Appendix C. Taylor expansion of the Dirichlet–Neumann operator

C.1. A simple expansion. We start a simple expansion the Dirichlet-Neumann operator, using only the \(O_{m,p} \) hierarchy, which suffices in many cases.

Corollary C.1. (i) Assume that \(\| (\nabla) h \|_{\mathcal{O}_{1,0}} + \| (\nabla)^{1/2} \psi \|_{\mathcal{O}_{1,0}} \lesssim \varepsilon_1 \) and \(\varepsilon_a = 0, \varepsilon_b = 0, \) and define \(u \) as in Lemma B.4. Then we have an expansion
\[\partial_y u = |\nabla|u + \nabla h \cdot \nabla u + N_2[h, u] + \mathcal{E}^{(3)}, \quad \| \mathcal{E}^{(3)} \|_{L^2_y \mathcal{O}_{3,0} \cap L^\infty_y \mathcal{O}_{3,-1/2}} \lesssim \varepsilon_1^3 (t)^{-11\delta^2}, \] (C.1)
where
\[\mathcal{F}\{N_2[h, \phi]\}(\xi) = \frac{1}{4\pi^2} \int_{\mathbb{R}^2} n_2(\xi, \eta) \hat{h}(\xi - \eta) \hat{\phi}(\eta) d\eta, \quad n_2(\xi, \eta) := \xi \cdot \eta - |\xi||\eta|, \] (C.2)
In particular,
\[\| G(h) \psi - |\nabla| \psi - N_2[h, \psi] \|_{\mathcal{O}_{3,-1/2}} \lesssim \varepsilon_1^3 (t)^{-11\delta^2}. \] (C.3)
Moreover
\[\| n_2^{k,k_1,k_2} \|_{\mathcal{O}_{3,-1/2}} \lesssim 2^{\min\{k,k_1\}} 2^{k_2}, \quad (\Omega_\xi + \Omega_\eta)n_2 \equiv 0. \] (C.4)

(ii) As in Proposition 2.2, assume that \((h, \phi) \in C([0, T] : H^{N_0+1} \times H^{N_0+1/2})\) is a solution of the system (2.1) with \(g = 1 \) and \(\sigma = 1, t \in [0, T] \) is fixed, and (B.2) holds. Then
\[\| \partial_t (G(h) \phi) - |\nabla| \partial_t \phi \|_{\mathcal{O}_{2,-2}} \lesssim \varepsilon_1^2. \] (C.5)

Proof. (i) Let \(u^{(1)} := e^{y|\nabla| \psi} \) and \(Q_a^{(1)} := \nabla u^{(1)} - \nabla h, Q_b^{(1)} := \mathcal{R}(\partial_y u^{(1)} \nabla h). \) It follows from (B.18)–(B.19) and Lemma B.4 (more precisely, from (B.22), (B.24), and (B.27)) that
\[\| (\nabla)^{1/2}(u - u^{(1)}) \|_{L^2_y \mathcal{O}_{2,0}} + \| (\nabla)(u - u^{(1)}) \|_{L^2_y \mathcal{O}_{2,0}} \]
\[+ \| \partial_y (u - u^{(1)}) \|_{L^2_y \mathcal{O}_{2,-1/2}} + \| \partial_y (u - u^{(1)}) \|_{L^2_y \mathcal{O}_{2,0}} \lesssim \varepsilon_1^2. \] (C.6)
Therefore, using Lemma A.2, for \(d \in \{a, b\} \),
\[
\|Q_d - Q_d^{(1)}\|_{L^\infty_y L^{3-\epsilon}_{x,t}} + \|Q_d - Q_d^{(1)}\|_{L^2_y L^3_{x,0}} \lesssim \varepsilon_1^3 (t)^{-1/42}.
\] (C.7)
Therefore, using (B.18)–(B.19) and (B.26),
\[
\left\| \partial_y u - |\nabla|u - \nabla h \cdot \nabla u \right\|_{L^2_y L^3_{x,0} \cap L^\infty_y L^2_{x,-1/2}} \lesssim \varepsilon_1^3 (t)^{-1/42}.
\] (C.3)

Since
\[
F\{ Q_b^{(1)}(s) - Q_a^{(1)}(s) \}(\xi) = \frac{1}{4\pi^2} \int_{\mathbb{R}^2} \left[\eta \cdot (\xi - \eta) - \frac{\xi \cdot (\xi - \eta)}{\xi} |\eta| \right] \widehat{h}(\xi - \eta) e^{i|\eta|} \psi(\eta) \, d\eta,
\]
we have
\[
F\left\{ \int_{-\infty}^y |\nabla| e^{-s-y} |\nabla| (Q_b^{(1)}(s) - Q_a^{(1)}(s)) \, ds \right\}(\xi) = \frac{1}{4\pi^2} \int_{\mathbb{R}^2} \left[\eta \cdot (\xi - \eta) - \frac{\xi \cdot (\xi - \eta)}{\xi} |\eta| \right] \frac{|\xi|}{|\xi| + |\eta|} \widehat{h}(\xi - \eta) e^{i|\eta|} \psi(\eta) \, d\eta
\]
\[
= F\{ N_2[h, u^{(1)}] \}(\xi).
\]
Moreover, using the assumption \(\|\nabla h\|_{C^{1,0}} \lesssim \varepsilon_1 \) and the bounds (C.6), we have
\[
\| N_2[h, u - u^{(1)}] \|_{L^2_y L^3_{x,0} \cap L^\infty_y L^2_{x,-1/2}} \lesssim \varepsilon_1^3 (t)^{-1/42},
\]
as a consequence of Lemma A.2. The desired identity (C.1) follows. The bound (C.3) follows using also the identity (B.12).

(ii) We define \(u = u(x, y, t) \) as in (B.11), let \(v = \partial_t u \), differentiate (B.13) with respect to \(t \), and find that \(v \) satisfies (B.14) with
\[
\epsilon_a = \nabla_x u \cdot \nabla_x \partial_t h - 2 \partial_y u \nabla_x h \cdot \nabla_x \partial_t h, \quad \epsilon_b = R(\partial_y u \nabla_x \partial_t h).
\]
In view of (C.3),
\[
\|\partial_t h\|_{C^{1,0}} + \|\partial_t \phi\|_{C^{1,0}} \lesssim \varepsilon_1.
\]
Therefore the triplet \((\partial_t \phi, \epsilon_a, \epsilon_b)\) satisfies (B.23) with \(p = -3/2 \). Therefore, using (B.24),
\[
\|\partial_y v - |\nabla| v\|_{L^\infty_y L^2_{x,-2}} \lesssim \varepsilon_1^2,
\]
and the desired bound (C.5) follows using also (B.12).
\[
\blacksquare
\]

C.2. Proof of Proposition 2.3. We show now that Proposition 2.3 follows from Proposition 7.1. The starting point is the system (2.1). We need to verify that it can be rewritten in the form stated in Proposition 7.1. For this we need to expand the Dirichlet–Neumann operator
\[
G(h) \phi = |\nabla| \phi + N_2[h, \phi] + N_3[h, h, \phi] + \text{Quartic Remainder},
\]
and then prove the required claims. To justify this rigorously and estimate the remainder, the main issue is to prove space localization. We prefer not to work with the \(Z \) norm itself, which is too complicated, but define instead certain auxiliary spaces which are used only in this section.

Step 1. We assume that the bootstrap assumption (2.6) holds. Notice first that
\[
\sup_{2a + |a| \leq N_1 + N_4, a \leq N_2 / 2 + 20} \sum_{(k, j) \in J} 2^{\theta j} 2^{-\theta |k| / 2} \|Q_{jk} D^a \Omega^2 U(t)\|_{L^2} \lesssim \varepsilon_1 (1 + t)^{\theta + 6\delta^2},
\] (C.8)
\[
\sup_{2a + |a| \leq N_1 + N_4, a \leq N_2 / 2 + 20} \sum_{(k, j) \in J} 2^{\theta j} 2^{-\theta |k| / 2} \|Q_{jk} D^a \Omega^2 U(t)\|_{L^\infty} \lesssim \varepsilon_1 (1 + t)^{-5 / 6 + \theta + 6\delta^2}.
\] (C.9)
for \(\theta \in [0, 1/3] \), where the operators \(Q_{jk} \) are defined as in (2.10). Indeed, let \(f = e^{itA} \Omega^a D^a U(t) \) and assume that \(t \in [2^m - 1, 2^{m+1}] \), \(m \geq 0 \). We have
\[
\|f\|_{H^l} \lesssim |\theta| N + \|f\|_{L^2},
\]
as a consequence (2.6), where, as in (8.27), \(N' := (N_1 - N_4)/2 = 1/(2\delta) \) and \(N'_0 := (N_0 - N_3)/2 - N_4 = 1/\delta \). To prove (C.8) we need to show that
\[
\sum_{(k,j) \in J} 2^{\theta j} 2^{-\theta j/2} \|Q_{jk} e^{-itA} f\|_{L^2} \lesssim \varepsilon_1 2^{\theta m + 6\delta^2 m}.
\]
The desired bound (C.11) follows, which completes the proof of (C.8). The proof of (C.9) is similar, using also the decay bound (7.44). As a consequence, it follows that
\[
\sum_{(k,j) \in J} 2^{\theta j} 2^{-\theta j/2} \|Q_{jk} g(t)\|_{L^\infty} \lesssim \varepsilon_1 2^{-5m/6 + \theta m + 6\delta^2 m},
\]
for \(g \in \{ D^a \Omega^a (\nabla) h, D^a \Omega^a |\nabla|^1/2 f : \theta a + |\alpha| \leq N_1 + N_4, a \leq N_1/2 + 20 \} \) and \(\theta \in [0, 1/3] \).

Step 2. We need to define now certain norms that allow us to extend our estimates to the region \(\{ y \leq 0 \} \), compare with the analysis in subsection B.1.

Lemma C.2. For \(q \geq 0 \) and \(\theta \in [0, 1] \), \(p, r \in [1, \infty] \), define the norms
\[
\|f\|_{Y^p_{q, \theta}} := \sum_{(k,j) \in J} 2^{\theta j} 2^{q k^+} \|Q_{jk} f\|_{L^p},
\]
\[
\|f\|_{L^p_{q, \theta}} := \sum_{(k,j) \in J} 2^{\theta j} 2^{q k^+} \|Q_{jk} f\|_{L^p_{q, \theta}}.
\]

(i) Then, for any \(p \in [2, \infty] \) and \(\theta \in [0, 1] \),
\[
\|e^{itA} f\|_{L^\infty_{q, \theta} Y^p_{q, \theta}} + \||\nabla|^{1/2} e^{itA} f\|_{L^2_{q, \theta} Y^p_{q, \theta}} \lesssim \|f\|_{Y^p_{q, \theta}}
\]
and
\[
\|\int_0^s |\nabla|^{1/2} e^{-|s-y|} |\nabla| 1_{\pm} (y-s) f(s) ds\|_{L^\infty_{q, \theta} Y^2_{q, \theta}} \lesssim \|f\|_{Y^2_{q, \theta}}.
\]

(ii) If \(p_1, p_2, p, r_1, r_2, r \in \{2, \infty\}, 1/p = 1/p_1 + 1/p_2, 1/r = 1/r_1 + 1/r_2 \) then
\[
\|(fg)\|_{L^r_{q, \theta} Y^p_{q_1, \theta_1} Y^p_{q_2, \theta_2}} \lesssim \|f\|_{L^r_{q_1, \theta_1} Y^p_{q_1, \theta_1}} \|g\|_{L^r_{q_2, \theta_2} Y^p_{q_2, \theta_2}}
\]
provided that \(\theta_1, \theta_2 \in [0, 1], \theta_1 + \theta_2 \in [\delta^2, 1], q \geq \delta^2 \). Moreover
\[
\|(fg)\|_{L^2_{q, \theta} Y^2_{q_1, \theta_1} Y^2_{q_2, \theta_2}} \lesssim \|f\|_{L^\infty_{q_1, \theta_1}} \|g\|_{L^2_{q_2, \theta_2} H^2_{q_2, \theta_2}}.
\]
Proof. The linear bounds in part (i) follow by parabolic estimates, once we notice that the kernel of the operator \(e^{y|\nabla|}P_k\) is essentially localized in a ball of radius \(\lesssim 2^{-k}\) and is bounded by \(C2^{2k}(1+2^k|y|)^{-4}\).

The bilinear estimates in part (ii) follow by unfolding the definitions. The implicit factors \(2^{-\delta j}2^{-\delta k}\) in the left-hand side allow one to prove the estimate for \((k,j)\) fixed. Then one can decompose \(f = \sum f_{j_1,k_1}\), \(g = \sum g_{j_2,k_2}\) as in (7.33) and estimate \(\|Q_{jk}(f_{j_1,k_1} \cdot g_{j_2,k_2})\|_{L^p_yL^q_x}\) using simple product estimates. The case \(j = -k \gg \min(j_1,j_2)\) requires some additional attention; in this case one can use first Sobolev imbedding and the hypothesis \(\theta_1 + \theta_2 \leq 1\).

\[\text{Step 3.} \quad \text{Recall now the formula (B.21)} \]
\[u = e^{y|\nabla|}\phi + L(u),\]
\[L(u) := -\frac{1}{2}e^{y|\nabla|}\int_{-\infty}^{0} e^{-y|\nabla|}Q_a(s) - Q_b(s) ds + \frac{1}{2} \int_{-\infty}^{0} e^{-y|\nabla|}(|\nabla| \text{sgn}(y-s)Q_a(s) - Q_b(s)) ds,\]

where \(Q_a[u] = \nabla u \cdot \nabla h - |\nabla h|^2 \partial_y u\) and \(Q_b[u] = R(\partial_y u \nabla h)\). Let, as in Corollary C.1,

\[u^{(1)} = e^{y|\nabla|}\phi, \quad u^{(n+1)} = e^{y|\nabla|}\phi + L(u^{(n)}), \quad n \geq 1.\]

(C.17)

We can prove now a precise asymptotic expansion on the Dirichlet–Neumann operator.

Lemma C.3. We have

\[G(h)\phi = |\nabla|\phi + N_2[h, \phi] + N_3[h, \phi] + |\nabla|^{1/2}N_4[h, \phi],\]

where \(N_2\) is as in (C.2),

\[F\{N_3[h, \phi]\}(\xi) = \frac{1}{(4\pi)^2} \int_{\mathbb{R}^2} n_3(\xi, \eta, \sigma) \hat{h}(\xi - \eta) \hat{h}(\eta - \sigma) \hat{\phi}(\sigma) d\eta d\sigma,\]

\[n_3(\xi, \eta, \sigma) := \frac{|\xi||\sigma|}{|\xi| + |\sigma|}[|(|\xi| - |\eta|)(|\eta| - |\sigma|) - (\xi - \eta) \cdot (\eta - \sigma)],\]

and, for \(\theta \in [\delta^2, 1/3]\) and \(V \in \{D^a\Omega^a : a \leq N_1/2 + 20, 2a + |\alpha| \leq N_1 + N_4 - 2\},\)

\[\|V N_4[h, \phi]\|_{Y^2_{3\theta - 3\delta^2, 1 - \delta^2}} \lesssim \varepsilon_1^{2\theta m - 5m/2 + 2\delta^2 m}.\]

(C.20)

Proof. Recall that \(h\) is constant in \(y\). In view of (C.12) we have, for \(t \in [2^m - 1, 2^{m+1}],\)

\[\|\nabla|^{1/6} \nabla|^{5/6} V h(t)\|_{L^p_{\theta}Y^2_{\theta}} \lesssim \varepsilon_1^{2^{m+6\delta^2 m}}, \quad \theta \in [0, 1/3],\]

(C.21)

and

\[\|\nabla|^{1/6} \nabla|^{5/6} V h(t)\|_{L^p_{\theta}Y^2_{\theta}} \lesssim \varepsilon_1^{2^{m+6\delta^2 m}}, \quad \theta \in [0, 1/3],\]

(C.22)

for \(V \in \{D^a\Omega^a : a \leq N_1/2 + 20, 2a + |\alpha| \leq N_1 + N_4 - 2\}\). Moreover, using also (B.22)

\[\|\nabla V u(t)\|_{L^p_{\theta}H^1_{\theta}} + \|\partial_y V u(t)\|_{L^p_{\theta}H^2_{\theta}} \lesssim \varepsilon_1^{2\delta^2 m},\]

(C.23)

for operators \(V\) as before. Therefore, using (C.16),

\[\|V [Q[u]]\|_{L^p_{\theta}Y^2_{\theta - \delta^2, 1 - \delta^2}} \lesssim \varepsilon_1^{2^{m-5m/6 + 12\delta^2 m}},\]

for \(Q \in \{Q_a, Q_b\}\) and \(\theta \in [\delta^2, 1/3]\). Therefore

\[\|\nabla V L(u)\|_{L^p_{\theta}Y^2_{\theta - \delta^2, 1 - \delta^2}} + \|\partial_y V L(u)\|_{L^p_{\theta}Y^2_{\theta - \delta^2, 1 - \delta^2}} \lesssim \varepsilon_1^{2^{m-5m/6 + 12\delta^2 m}},\]

(C.24)
After algebraic simplifications, this gives

\[
\| \nabla V[u - u^{(1)}]\|_{L^2_{\delta - \delta^2, 1 - \delta^2}} + \| \partial_y V[u - u^{(1)}]\|_{L^2_{\delta - \delta^2, 1 - \delta^2}} \lesssim \varepsilon_1^{2\theta m - 5m/6 + 12\delta^2 m}.
\]

(C.25)

Since \(u - u^{(2)} = L(u - u^{(1)}) \), we can repeat this argument to prove that for \(\theta \in [\delta^2, 1/3] \) and \(V \in \{D^\alpha \Omega^a : a \leq N_1/2 + 20, 2a + |\alpha| \leq N_1 + N_4 - 2 \} \),

\[
\| \nabla V[u - u^{(2)}]\|_{L^2_{\delta - \delta^2, 1 - \delta^2}} + \| \partial_y V[u - u^{(2)}]\|_{L^2_{\delta - \delta^2, 1 - \delta^2}} \lesssim \varepsilon_1^{2\theta m - 5m/3 + 18\delta^2 m}.
\]

(C.26)

To prove the decomposition (C.18) we start from the identities (B.26) and (B.12), which gives \(G(h)\phi = \partial_y u - Q_a \). Letting \(Q_a^{(n)} = Q_a[u^{(n)}], Q_b^{(n)} = Q_b[u^{(n)}], n \in \{1, 2\} \), it follows that

\[
G(h)\phi = |\nabla|\phi + \int_{-\infty}^0 |\nabla|e^{-|s||\nabla|}(Q_b^{(2)}(s) - Q_a^{(2)}(s)) ds + N_{4,1},
\]

(C.27)

where

\[
N_{4,1} := \int_{-\infty}^0 |\nabla| e^{-|s||\nabla|}[(Q_b - Q_b^{(2)})(s) - (Q_a - Q_a^{(2)})(s)] ds.
\]

In view of (C.26), (C.22), and the algebra rule (C.16), we have

\[
\| V(Q - Q_b^{(2)})\|_{L^2_{\delta - \delta^2, 1 - \delta^2}} \lesssim \varepsilon_1^{2\theta m - 5m/2 + 24\delta^2 m},
\]

for \(Q \in \{Q_a, Q_b\} \). Therefore, using (C.14), \(|\nabla|^{-1/2}N_{4,1} \) satisfies the desired bound (C.20).

It remains to calculate the integral in the first line of (C.27). Letting \(\alpha = |\nabla h| \) we have

\[
\mathcal{F}\{u^{(1)}\}(\xi, y) = e^{i|\xi|\hat{\phi}(\xi)},
\]

\[
\mathcal{F}\{Q_a^{(1)}\}(\xi, y) = -\frac{1}{4\pi^2} \int_{\mathbb{R}^2} (\xi - \eta) \cdot (\eta e^{i|\eta|}\hat{h}(\xi - \eta) \hat{\phi}(\eta)) d\eta - \frac{1}{4\pi^2} \int_{\mathbb{R}^2} |\eta| e^{i|\eta|} \hat{\alpha}(\xi - \eta) \hat{\phi}(\eta) d\eta,
\]

\[
\mathcal{F}\{Q_b^{(1)}\}(\xi, y) = -\frac{1}{4\pi^2} \int_{\mathbb{R}^2} (\xi - \eta) \cdot (\xi |\eta| e^{i|\eta|}\hat{h}(\xi - \eta) \hat{\phi}(\eta)) d\eta.
\]

(C.28)

Therefore

\[
\mathcal{F}\{L(u^{(1)})\}(\xi, y) = \frac{1}{8\pi^2} \int_{\mathbb{R}^2} (e^{iy|\xi|} - e^{iy|\eta|})(\frac{(\xi - \eta) \cdot \eta}{|\xi| + |\eta|} - \frac{|\eta|(\xi - \eta) \cdot \xi}{|\xi|(|\xi| + |\eta|)}) \hat{h}(\xi - \eta) \hat{\phi}(\eta) d\eta
\]

\[
+ \frac{1}{8\pi^2} \int_{\mathbb{R}^2} (e^{iy|\xi|} - e^{iy|\eta|})(\frac{(\xi - \eta) \cdot \eta}{|\xi| + |\eta|} + \frac{|\eta|(\xi - \eta) \cdot \xi}{|\xi|(|\xi| + |\eta|)}) \hat{h}(\xi - \eta) \hat{\phi}(\eta) d\eta
\]

\[
+ \tilde{E}_1(\xi, y),
\]

where

\[
\| |\nabla| V E_1\|_{L^2_{\delta - \delta^2, 1 - \delta^2}} + \| \partial_y V E_1\|_{L^2_{\delta - \delta^2, 1 - \delta^2}} \lesssim \varepsilon_1^{2\theta m - 5m/3 + 18\delta^2 m}.
\]

After algebraic simplifications, this gives

\[
\mathcal{F}\{L(u^{(1)})\}(\xi, y) = -\frac{1}{4\pi^2} \int_{\mathbb{R}^2} (e^{iy|\xi|} - e^{iy|\eta|}) |\eta| \hat{h}(\xi - \eta) \hat{\phi}(\eta) d\eta + \tilde{E}_1(\xi, y).
\]

Since \(u^{(2)} - u^{(1)} = L(u^{(1)}) \) we calculate

\[
\mathcal{F}\{Q_a^{(2)} - Q_a^{(1)}\}(\xi, y)
\]

\[
= \frac{1}{16\pi^4} \int_{(\mathbb{R}^2)^2} |\sigma|(\xi - \eta) \cdot \eta (e^{iy|\xi|} - e^{iy|\sigma|}) \hat{h}(\xi - \eta) \hat{h}(\eta - \sigma) \hat{\phi}(\sigma) d\eta d\sigma + \tilde{E}_2(\xi, y).
\]

(C.29)
and
\[
\mathcal{F}\{Q_b^{(2)} - Q_b^{(1)}\}(\xi, y) = \frac{1}{16\pi^4} \int_{\mathbb{R}^2} |\sigma| \frac{(\xi - \eta) \cdot \xi}{|\xi|} ((|\eta|e^{y|\eta|} - |\sigma|e^{y|\sigma|})\hat{h}(\xi - \eta)\hat{h}(\eta - \sigma)\hat{\phi}(\sigma)) \, d\eta d\sigma + \hat{E}_3(\xi, y)
\] \tag{C.30}
\]
where
\[
\|VE_2\|_{L^2_y |_{y < \frac{3\lambda}{2} - \lambda^2}} + \|VE_3\|_{L^2_y |_{y < \frac{3\lambda}{2} - \lambda^2}} \leq \varepsilon_1^{2\delta - m - 5m/2 + 2\delta^2m}.
\]

We examine now the formula in the first line of (C.27). The contributions of E_2 and E_3 can be estimated as part of the quartic error term, using also (C.14). The main contributions can be divided into quadratic terms (coming from $Q_a^{(1)}$ and $Q_b^{(1)}$ in (C.28)), and cubic terms coming from (C.29)–(C.30) and the cubic term in $Q_a^{(1)}$. The conclusion of the lemma follows. \qed

Step 4. Finally, we can prove the desired expansion of the water-wave system.

Lemma C.4. Assume that (h, ϕ) satisfy (2.1) and (2.6). Then
\[
(\partial_t + i\Lambda) U = N_2 + N_3 + N_{\geq 4},
\] \tag{C.31}
where $U = \langle \nabla \rangle h + i\langle \nabla \rangle^{1/2} \phi$ and $N_2, N_3, N_{\geq 4}$ are as in subsection 7.1.

Proof. We rewrite (2.1) in the form
\[
\partial_t U = \langle \nabla \rangle G(h)\phi + i\langle \nabla \rangle^{1/2} \left[-h + \text{div} \left(\frac{\nabla h}{(1 + |\nabla h|^2)^{1/2}} \right) - \frac{1}{2} |\nabla \phi|^2 + \frac{(G(h)\phi + \nabla h \cdot \nabla \phi)^2}{2(1 + |\nabla h|^2)} \right].
\] \tag{C.32}

We use now the formula (C.18) to extract the linear, the quadratic, and the cubic terms in the right-hand side of this formula. More precisely, we set
\[
N_1 := \langle \nabla \rangle \langle \nabla \rangle \phi + i\langle \nabla \rangle^{1/2} (-h + \Delta h) = -i\Lambda U,
\]
\[
N_2 := \langle \nabla \rangle N_2[h, \phi] + i\langle \nabla \rangle^{1/2} \left[-\frac{1}{2} |\nabla \phi|^2 + \frac{1}{2} (|\nabla |\phi|^2) \right],
\] \tag{C.33}
\[
N_3 := \langle \nabla \rangle N_3[h, \phi] + i\langle \nabla \rangle^{1/2} \left[-\frac{1}{2} \text{div} (\nabla h|\nabla h|^2) + |\nabla |\phi| (N_2[h, \phi] + \nabla h \cdot \nabla \phi) \right].
\]

Then we substitute $h = \langle \nabla \rangle^{-1}(U + \overline{U})/2$ and $\langle \nabla \rangle^{1/2} \phi = (U - \overline{U})/(2i)$. The symbols that define the quadratic component N_2 are linear combinations of the symbols
\[
n_{2,1}(\xi, \eta) = \sqrt{1 + |\xi|^2} \frac{\xi \cdot \eta - |\xi||\eta|}{|\eta|^{1/2} \sqrt{1 + |\xi - \eta|^2}}, \quad n_{2,2}(\xi, \eta) = |\xi|^{1/2} (\xi - \eta) \cdot \eta + |\xi - \eta||\eta| \frac{|\xi - \eta|^{1/2}|\eta|^{1/2}}{|\xi - \eta|^2}. \tag{C.32}
\]

It is easy to see that these symbols verify the properties (7.11). A slightly nontrivial argument is needed for $n_{2,1}$ in the case $k_1 = \min(k_1, k_1, k_2) \ll k$.

The cubic terms in N_3 in (C.33) are defined by finite linear combinations of the symbols
\[
n_{3,1}(\xi, \eta, \sigma) = \frac{1}{\sqrt{(1 + |\xi - \eta|^2)(1 + |\eta - \sigma|^2)}} \frac{|\xi| |\sigma|^{1/2}}{|\xi| + |\sigma|} \left[((|\xi| - |\eta||\eta| - |\sigma|) - (\xi - \eta) \cdot (\eta - \sigma)) \right],
\]
\[
n_{3,2}(\xi, \eta, \sigma) = \frac{|\xi|^{1/2}}{\sqrt{(1 + |\xi - \eta|^2)(1 + |\eta - \sigma|^2)(1 + |\sigma|^2)}} \left(\xi \cdot (\xi - \eta) ((\eta - \sigma) \cdot \sigma) \right),
\]
\[
n_{3,3}(\xi, \eta, \sigma) = \frac{|\xi|^{1/2} |\xi - \eta|^{1/2} |\sigma - \eta|^{1/2}}{\sqrt{1 + |\eta - \sigma|^2}} \right].
\]
It is easy to verify the properties (7.12) for these explicit symbols.

The higher order remainder in the right-hand of (C.32) can be written in the form

$$\mathcal{N}_{\geq 4} = |\nabla|^{1/2}N'_4,$$

$$\sup_{a \leq N_1/2+20, 2a+|\alpha| \leq N_1+N_4-4} \|D^\alpha \Omega^a N'_4\|_{Y^2_{1-\delta,1-\delta}} \lesssim \varepsilon^4_1 2^{-3m/2+\delta m}, \quad (C.34)$$

using (C.20), (C.12), and the algebra property (C.15). Moreover, using only the O hierarchy as in the proof of Corollary C.1, we have $\|\mathcal{N}_{\geq 4}\|_{O_{4,-4}} \lesssim \varepsilon^4_1$, i.e.

$$\|\mathcal{N}_{\geq 4}\|_{H^{N_0-4}} + \|\mathcal{N}_{\geq 4}\|_{H^{N_1, N_3-4}} \lesssim \varepsilon^4_1 2^{-5m/2+\delta m}. \quad (C.35)$$

These two bounds suffice to prove the desired claims on $\mathcal{N}_{\geq 4}$ in (7.15). Indeed, the L^2 bound follows directly from (C.35). For the Z norm bound it suffices to prove that, for any $(k,j) \in J$,

$$\sup_{a \leq N_1/2+20, 2a+|\alpha| \leq N_1+N_4} 2^{(1-50\delta)}\|Q_{j,k} e^{i\lambda D^\alpha \Omega^a N_{\geq 4}}\|_{L^2} \lesssim \varepsilon^{4}_{1} 2^{-m-\delta m}. \quad (C.36)$$

This follows easily from (C.35) and (C.34), unless

$$j \geq 3m/2 + (N_0/4)k^k + D \quad \text{and} \quad j \geq 3m/2 - k/2 + D.$$

On the other hand, if these inequalities hold then let $f = D^\alpha \Omega^a N_{\geq 4}, a \leq N_1/2 + 20, 2a + |\alpha| \leq N_1 + N_4$, and decompose $f = \sum_{(k',j') \in J} f_{j',k'}$ as in (7.33). The bound (C.34) shows that

$$\sum_{(k',j') \in J} 2^{-4 \max(k',0)j'(1-\delta)} \|f_{j',k'}\|_{L^2} \lesssim \varepsilon^{4}_{1} 2^{-3m/2+\delta m}. \quad (C.37)$$

The desired bound (C.35) follows by the usual approximate finite speed of propagation argument: we may assume $|k' - k| \leq 4$ and consider the cases $j' \leq j - \delta j$ (which gives negligible contributions) and $j' \geq j - \delta j$ (in which case (C.37) suffices). This completes the proof. \qed

References

Princeton University
E-mail address: yudeng@math.princeton.edu

Princeton University
E-mail address: aionescu@math.princeton.edu

Brown University
E-mail address: benoit.pausader@math.brown.edu

Princeton University
E-mail address: fabiop@math.princeton.edu