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Last time - Complex Ginzburg-Landau Equation
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Let us remind ourselves about what we looked at last time, and where we ended. We were interested in the complex Ginzburg-Landau equation. It consisted of three terms, i times the t-derivative, 1 minus i-epsilon times the Laplacian and i plus i-delta times a non-linear term. Taking epsilon and delta equal to zero gave us the nonlinear Schrödinger equation. For our purposes we will fix the parameters d, sigma and delta, and vary the parameter epsilon.


Last time - Self-similar solutions
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Our interest was in the existence of self-similar singular solutions for this equation, solutions that blow up in finite time in a self-similar way. By scaling the input and output in this way we could a self-similar profile Q that is independent of time.


Last time - Self-similar solutions

B 1 x|
u(x,t) = (2k(T — t))%(é+i%) Q ((2/{(7_ — t)ﬁ)

(1—ie) (@"+ 422 Q') + in€Q' +2Q —wQ + (1+ D) QP Q = 0

Parameters w,k > 0


Inserting this ansatz into the equation gave a non-linear second order ODE of this form. With some boundary conditions at zero and at infinity. This introduced two more parameters, omega and kappa. For symmetry reasons we could however always take omega to be one. Our actual task in the end was to solve this equation, we could at this point more or less forget about the underlying ODE.


Last time - Results for NLS

Theorem (D, Figueras, 2024)

Consider the equation
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Case | There exist solutions for at least 8 values of k.
Case Il There exist solutions for at least 2 values of k.

The number of intervals of monotonicity is given by the index j of the solution.


I also gave you these results which were specifically for the NLS equation, so epsilon and delta equal to zero. We looked at two cases of parameter values, which we called case I and case II. For case I we proved that the ODE has solutions for at least 8 values of kappa, and for case II that it has solutions for at least 2 values of kappa. Moreover we control the number of oscillations, or the number of monotone indices, for the solutions. Recall however that the conjecture behavior would be that there is a countable number of such solutions.


Last time - Proof idea
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The approach for proving this result was to use what in numerics is called a shooting method. We look at two families of solutions, Q-0 and Q-infinity, satisfying the boundary conditions at zero and infinity respectively. The goal is then to make these two solutions match at an intermediate point, in which they form a joint global solution satisfying both boundary conditions.


Last time - Proving matching condition
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To prove this matching we introduced this function G, which is the difference between Q-0 and Q-infinity and their derivatives at the matching point xi-1. The problem then reduces to finding mu, gamma and kappa so that G is zero, corresponding to a matching of Q-0 and Q-infinity. To do that we need to first find an approximate numerical solution. Then we need to rigorously verify this solution using the interval Newton method, and to do this we need to be able to compute rigorous interval enclosures of Q-0 and Q-infinity. The result would be intervals of the parameters which are proved to contain a unique zero of G.


A simplified example
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To make our lives a bit easier we at this point switched to looking at a simpler equation, but which still keeps the most important properties. This was the equation here. In this case there is no kappa in the equation, and the function G only depends on mu and gamma. What we did last time was we looked at how to compute Q-0 approximately, using standard numerical ODE solvers, and how to compute Q-infinity approximately by approximating it by the solution to the linear equation. We also looked at finding an approximate zero of G, which I did using a combination of plotting the values and using the classical Newton method. What will we do today then? We will more or less do what we did last time, but everything rigorously. How to compute rigorous enclosures of Q-0 and Q-infinity? How to rigorously verify the approximate zero using the interval Newton method?


Interval Newton method - ldea
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Let us start by taking a look at the interval Newton method, that will also tell us exactly what it is we need to compute. In our case we will apply the method in two dimensions, but the intuition for the method is best seen in one dimension. The method is closely related to the classical Newton method in numerical analysis that is used to refine approximate roots of functions. The difference with the interval Newton method is that it allows us to actually prove the existence of a root. Lets say we are trying to find a zero of the function I have plotted in blue here, so the zero is here but we don't apriori know that. Let us take some more or less random starting point and evaluate the function there, that is this black point here. The classical Newton method works by looking at the tangent line at this point, that's this dotted orange line here. We can explicitly compute where this dotted line crosses the x-axis, that is this orange dot here. Now if the blue function is well approximate by the tangent line in this neighborhood, then the orange dot should be very close to the blue dot. But in general they will not be exactly the same, what we get is still only an approximation. Here is where the interval Newton method comes in, which is represented by this orange two sided cone here. Where does the cone come from? The idea is that we, somehow, know of a lower bound and an upper bound of the derivative of the function in this whole region. If we draw a straight line through our point corresponding to the lower bound of the derivative we get this part of the cone, if we draw the straight line corresponding to the upper bound we get this part. If the derivative stays between these two extremes, then the value of the function has to stay inside this cone. And in terms of finding zeros of the function this is very good, because that means that the zero in this case has to lie in this interval here, since that is the only part of the cone that intersects the x-axis. So we still don't know what the exact zero of the function is, but we know that there is a zero and that it lies inside this interval!


Interval Newton method - One variable

2.0
Classical Newton
B f_(XO) 15F
TR PG
1.0
Interval Newton
X0 = [50770] .l
f(x0) f(xo)
=Xg— o = — X € .
X1 X0 f’(xo) {Xo I (X) X & Xp 0.0
Success if x1 C Xp

5 (s 1 1 1 )
1.00 1.25 1.50 1.75 2.00 2.25


Lets give some formulas for this. The classical Newton method takes the initial point x-0 and gives the new approximation x-1 according to this formula, this is the orange point here. The interval Newton method only slightly changes this formula. In addition to the initial point x-0 we take some interval around this point. Here I have written so that x0 is at the center of this interval, but this is not strictly necessary. The result is then a new interval x1, which is computed using the same rule as the regular Newton method, except that we don't just take the derivative at the point x0 but on the hole interval x0. We essentially do a classical Newton iteration, but with every possible derivative in our interval x0. The key here now is that if this new interval x1 lies inside the original interval x0, then we have proved that our function has a unique root inside x1.


Interval Newton method - Multiple variables

fiR" = R", Jp: R™" — R™"

Xo = (xél),xéz), e ,Xé")) e R”
xo0 = [x0%) = [x§"x5V] x [x%P] % - x [x$x7] € R”

X1 = Xo — Jf(Xo)ilf(Xo)

Success if x; € xp


That was in one variable. For multivariable functions the situation is more or less the same, except its a lot harder to draw nice pictures. Lets take an n variable function f, with Jacobian J-f. Our initial point is now a vector in Rn and the initial interval is now some box enclosing this point. The only change in the formula is that we replace the division by the derivative with the left multiplication of the inverse of the Jacobian. Again we get success if x1 is strictly contained in x0.


Interval Newton method - Applying it
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Lets try to apply this to our equation! We take our matching point xi-1 to be 15, this doesn't really play a role in the zero finding but it is where we evaluate Q-0 and Q-infinity. We then take our initial point x0 to be the vector mu-0 gamma-0 given by this approximate root that I have you last time. From last time we got that if we evaluated G at this point then the numerical approximation we got was this. For the interval box we take our approximation and add a little bit of radius. For my we only add a very small radius, for gamma it's a bit larger. What we now need to verify is that x1, which was given by this expression here, is strictly contained in x0. What we need to compute is thus G on the initial point x0 and the Jacobian of G on the whole interval x0. Not that for these purposes this approximation here is not okay. We need to compute a rigorous enclosure for it.


Interval Newton method - Applying it
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Let me just remind you that G was given by this difference here. To compute G of x0 we thus have to compute both Q-0 and Q-infinity at xi-1 and also their derivatives. For the Jacobian we need to compute the derivatives with respect to mu and gamma, so in this case Q-0 differentiated with respect to mu and Q-infinity differentiated with respect to gamma. How do we do that?


Computing @ - Rigorously
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Let us start with Q-0. Computing Q-0 rigorously in this case means that instead of computing a line which approximates the solution, we compute a series of boxes. The solution will then be proved to lie inside these boxes. Due to the singularity at zero we split the computation of these boxes into two parts. The first is done using a Taylor expansion at zero, and the rest using not a numerical ODE solver but a rigorous numerical ODE solver, whatever that is.


Computing @y - Taylor expansion
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Let us start with the Taylor expansion at zero. If we make this ansatz for the solution Q in terms of a Taylor series, then first of all we get from the equation that a0 has to be mu and a1 has to be zero. We also get this recurrence relation for the coefficients, where un denotes the nth coefficient of Q cubed (which we can compute since we now the n first coefficients of Q at this stage). So okay, this gives us an infinite series representing Q, how does that help us with computing a rigorous enclosure? The idea is to split this sum into one finite part and one tail. For the tail we prove, more or less by hand but using some computer help, that the coefficients satisfy this bound. That allows us to easily bound the tail by this value here. So to compute an enclosure of Q-0 we can now evaluate this finite polynomial, that corresponds to the thin line here, and then add the error coming from the tail. As this figure indicates the error grows as we go further out from zero. In practice the error is a lot smaller than what it seen here, but this gives a better visualization. In either case, this allows us to compute a rigorous enclosure of the solution at some point slightly away from zero.


Computing @ - CAPD
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After this first step with the Taylor expansion to get away from the singularity at zero, the rest of the calculations are done using the CAPD library. It's a C++ library for rigorous ODE solvers that is been developed by a group on Krakow. The library has existed for quite a long time and they have used it for various proofs in dynamical systems. They also have a somewhat recent paper were they describe the library in some more detail. Unfortunately I won't be able to go into details on how this library is implemented. As a user of the library you don't really have to care, you write down the equation, give the initial conditions and then it does it job. It is however based on higher order Taylor expansions. Compared to our expansion at zero which was done more or less by hand, this uses automatic differentiation techniques to compute the expansions. The remainder terms are also handled in a slightly different way. One important part of it is also that they make use of clever representations of the enclosures to avoid what is known as the wrapping effect. The end result is at least that we get this type of enclosure of the solution with the boxes.


Last time - Computing Q - Approximately
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The next step is computing Q-infinity. Last time we discussed how to do this approximately. The idea was to neglect the non-linear term, which should be small for large xi, and work with the linear equation. In this case the linear equation is the modified Bessel equation and we have the two solutions K0 and I0. K0 is the only solution that goes to zero at infinity, and we therefore approximate Q-infinity by just K0 times a constant.


Computing @ - Rigorously
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But this only gives an approximate solution, how can we get a rigorous enclosure of the solution? If we move the non-linearity to the other side we can write the equation like this, it then sort of looks like a non-homogenous linear equation. A classical method for solving non-homogenous linear equations is to use the method of variation of parameters. What one does in that case is to write the solution as a linear combination of the two solutions to the linear equation, in our case K0 and I0. One can then find formulas for the coefficients c1 and c2 in terms of the right hand side, in this case Q-infinity cubed. Doing that gives us that Q-infinity is equal to gamma times K0, this is our initial approximation, but then plus two more terms. The first is K0 times some integral and the second is I0 times another integral. The integrands here contain K0 and I0 as well as W, which is the Wronskian of the solutions, importantly they also contain Q-infinity cubed. So this doesn't really give us Q-infinity directly, but gives us an equation it has to satisfy.


Computing @ - Rigorously
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How do we get Q-infinity from this new equation then? What we do is set up this operator T, which is just the right hand side of the previous equation. The idea is then to look for fixed points of this operator, so we are looking for a function Q-infinity that satisfies that T of Q-infinity is equal to Q-infinity. The proof of existence of such a fixed point is done using a, well, fixed point argument. We introduce this v-norm of Q, which is a weight L-infinity norm of Q. One can then prove that the norm of T applied to Q is bounded by this value here, where CK0 and CT are explicit constants. The first term comes from the gamma times K0, which is the main term of T, and the second term comes from the two integrals. Note that the second term has an exponential factor in front of it, which means that if xi is large then it is very small. In a similar way one can also get bounds on the difference between two Ts in terms of the difference of their arguments. After checking that these coefficients satisfy some simple inequalities this allows us to prove that T has a fixed point. Of course we are not content with just knowing that we have a solution, we also want to get good qualitative bounds on it. This is done using some bootstrapping approach where the initial bounds from the fixed point argument is inserted back into this equation to get improved bounds. This really is the technically most difficult part of the paper, and requires quite a lot of tedious computations. In this simplified example it is maybe not that bad, but for the full CGL equation about half of the 90 page paper is devoted to deriving all of the bounds required for this.


Rigorously verifying zero
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With this we now know how to compute Q-0 and Q-infinity rigorously, what remains is applying the interval Newton method to rigorously prove the existence of a zero. A couple of slides ago I gave you the explicit approximation of the zero, which I denoted by x0. I also have you a small interval around this which I denote by this bold x0. What we needed to compute was G of x0 and J of the bold x0. Evaluating G on x0 using this rigorous methods we get that it is enclosed in these two intervals. Note that even though x0 is an exact point, we still cannot compute G of x0 exactly, we always get some overestimations in our computations. For J we evaluate it on the box x0 we get these enclosures for the elements. The Newton iteration was then this computation, which gives us that x1 is contained in this interval. The condition we needed to check was then that x1 was contained in x0. x1 was this box here that we just computed, and x0 was this box, and here we can even verify by hand that x1 is contained in x0. We can thus declare success, we have now proved that our function G has a zero in this interval, which in turn proves that the ODE has a solution and that then proves that our PDE has a solution! So we are done!


Back to CGL
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Of course, what I have presented here is for a simplified example, this equation here. What we actually want to deal with is this significantly more complicated ODE. The general ideas are however still very much the same. Our solutions are now complex valued and they also depend on this extra parameter kappa, so G is now a four variable function in real coordinates. But the interval Newton method still applies the same. To compute Q-0 we use a Taylor expansion at xi is equal to zero and then the rigorous numerical integrator from CAPD, same as before. For Q-infinity the idea is also exactly the same, we get an initial approximation from the linear equation and do a fixed point argument around that. The formulas are significantly more annoying to deal with, but the idea stays the same.


Results - NLS Case |
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The results we get for CGL in Case I is then that G has the following 8 zeros. Where for each zero we have enclosures for the parameters that guarantee a locally unique solution.


Results - NLS Case Il
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For Case II the picture is the same, in this case we get two enclosures of locally unique zeros.
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So now I have spent almost all of this time telling you how to compute solutions for the NLS equation, but as I mentioned in the beginning we are actually interested in computing branches of solutions. Luckily it is fairly straight forward to go from computing the solutions for NLS to the branches for CGL. The idea now is that we are solving for G of mu, gamma and kappa equal to zero, but mu, gamma and kappa will now be functions of epsilon. So we get solutions that depend continuously on epsilon. Using standard numerical continuation methods we can fairly easily compute numerical approximations of these branches. Here I have plotted this numerical approximation for one of the branches. To the left you see the kappa giving us a zero for G as a function of epsilon, and to the right you see mu as a function of epsilon. Of course, as during last lecture, this is only a numerical approximation and our goal now is to rigorously prove the existence of these branches.


Branches - Pointwise
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Something we already know how to do is to verify the branch pointwise. In that case we do exactly the same as for the NLS equation, except that we take epsilon to be some other fixed value. By doing that we can rigorously verify a lot of separate points. So each blue point here is proved to correspond to a self-similar solution. This is however not enough, we have a lot of points but we have not proved that they actually join together into one continuous branch.


Branches - Enclosure
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How can we verify that we have a continuous branch then? We make use of the fact that we are doing our computations with interval arithmetic. That means that we are not restricted do doing our computations of a fixed epsilon, we can actually take epsilon itself to be a small interval in our computations. What we do is thus to split the range of epsilon into thousands of small segments. For each segment we essentially treat epsilon as a constant, represented by a fixed interval. We can then apply the whole procedure I just discussed to locally prove the existence of a solution. Doing so far all segments we get something that looks like this. Each split along the epsilon-axis corresponds to one segment. For each segment we compute intervals giving both existence and uniqueness of the solution. From the fact that the existence enclosure is contained in the uniqueness enclosure of the box to the left we get that these solutions form a continuous branch of solutions. In reality the existence and uniqueness is in the full mu-gamma-kappa space, but here I have only plotted the kappa projection.
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The approach on the previous slide mostly works well, but if you think a little bit about it you might realize that it can't handle the turning of the branches. The way we handle this is that we split the branch into three parts like this. On the two green parts we do what I just discussed. On the blue part, we switch perspective, and instead do the continuation in kappa, treating epsilon as an unknown. There is no fundamental different with that, except that we need to handle more expansions. To connect these three different parts, ensuring that they in fact form one continuous branch, we need to do a bit of extra work at the red point, but that turns out to not be too bad.


Results - CGL
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Let us then finally get to our results for CGL. In case I we prove that the 8 solutions for NLS gives extend into 8 branches of solutions in epsilon. These branches are given in the left figure here, I'll show this in more detail in a bit. Case II turns out to be a bit more computationally challenging, here we are only able to prove the existence of parts of these branches. Again, I'll show a larger picture later. In the first case we also show that the number of intervals of monotonicity is constant along the branches, for the second case we don't attempt these computations.
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Here are the 8 branches we prove in case I. You might note that for the last three branches we stop before the turning point. This is not due to any theoretical limitations, but simply due to the computational cost increasing for the higher branches.


Branches Case | - Runtime
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In fact, let me give you a little bit more details about these computational costs. We ran these computations on an HPC cluster called Dardel, which is a NAISS computer cluster at KTH in Sweden. We count the runtime in core hours. On this cluster each node has 256 logical cores, so one hour of runtime corresponds to 256 core hours. To the left you see the runtime for proving the existence of the branches. The top part, in blue, is relatively cheap, but as we go further along the branches it gets more and more computationally costly. For the last two branches the runtime for the turning parts were prohibitively costly, so we simply skipped them. Around 200 core hours per branch, corresponding to one regular hour each. As mentioned we also count the number of intervals of monotonicity, which essentially corresponds to counting the number of critical points. This is significantly more costly, by about a factor 10 for some of the branches. Even if these numbers sound high, in terms of computations on a computer cluster these are still relatively cheap computations. So one could in principle compute the branches for longer, but since there was no specific end goal we had in mind we simply stopped here.
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Let use finally take a brief look at Case II. As mentioned we are here not able to compute the full branches, again this is primarily due to the very large computational cost. The dashed parts of the branches here are numerical approximations, whereas the filled in parts are the ones we actually prove. There is one important thing here I want to point out. Look at the third branch, the green one, the qualitative behavior of this branch is different from all other cases we have seen so far. It does a turn not only in the epsilon parameter, but also in the kappa parameter. This behavior was not noticed by Plechac and Vladimir, their computations end right before this turn in kappa. In the end it does seem like the branch turns back and goes towards the origin, but the precise behavior is still not clear. In fact the fifth branch seems to do something similar as well, but we haven't verified any of those computations.
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Here is computational cost for Case II, in this case we don't count any critical points so this is only for the existence. Compared to Case I the cost is much higher, by about a factor 10, and then we are still only treating a small part of the branches.


Code

Code available at github.com/Joel-Dahne/CGL.jl|

Simplified example CGL
Qo ~ 800 loc ~ 2,000 loc
Qoo ~ 500 loc ~ 3,300 loc
Branches - ~ 3,300 loc

Total - ~ 12,000 loc


As one final thing, let me comment a bit on the code. As for all computer assisted proofs the code for the proof is available online, in this case on my Github page. It is always difficult to estimate the size of some code, but as a rough proxy one can use the number of lines of code. For the simplified example I have shown you, which is not in this Github repository but part of some ongoing work, the code for computing Q-0 is around 800 loc and the part for computing Q-infinity around 500 loc. Moving to the full version for the CGL equation. The number of lines for Q-0 roughly doubles, this is primarily because it is complex valued and we have to split things a bit more and because we have to compute the derivative also in kappa. For Q-infinity the code increases by more than a factor 6, this really is a very large part of the work and a large part of the paper is also dedicated to all of the required estimates. A fairly large part of the code is also just the orchestration and setup required to compute the branches in an efficient way. Adding some other utility code and the code for running it on the HPC cluster we end up with around 20,000 lines of code in total.

https://github.com/Joel-Dahne/CGL.jl

Thank you!
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Let me end there, thank you very much!


