Self-similar blowup for the Nonlinear Schrödinger Equation and the Complex Ginzburg-Landau Equation

Joel Dahne

University of Minnesota

Joint with Jordi-Lluís Figueras

Last time - Complex Ginzburg-Landau Equation

$$i\frac{\partial u}{\partial t} + (1 - i\epsilon)\Delta u + (1 + i\delta)|u|^{2\sigma}u = 0$$
$$u : \mathbb{R}^d \times (0, T) \to \mathbb{C}$$
$$u(x, 0) = u_0(x)$$

Parameters $d \in \mathbb{Z}_{\geq 1}$, $\sigma, \epsilon, \delta \geq 0$ Nonlinear Schrödinger Equation $\epsilon = \delta = 0$

Last time - Self-similar solutions

$$u(x,t) = \frac{1}{(2\kappa(T-t))^{\frac{1}{2}(\frac{1}{\sigma}+i\frac{\omega}{\kappa})}} Q\left(\frac{|x|}{(2\kappa(T-t))^{\frac{1}{2}}}\right)$$

$$t = 0.00$$

$$1.5$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$1.0$$

$$0.5$$

$$0.1$$

$$0.0$$

$$0.1$$

$$0.0$$

$$0.1$$

$$0.0$$

$$0.1$$

$$0.0$$

$$0.1$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

Last time - Self-similar solutions

$$u(x,t) = \frac{1}{(2\kappa(T-t))^{\frac{1}{2}(\frac{1}{\sigma}+i\frac{\omega}{\kappa})}}Q\left(\frac{|x|}{(2\kappa(T-t))^{\frac{1}{2}}}\right)$$

$$\begin{cases} (1-i\epsilon)\left(Q''+\frac{d-1}{\xi}Q'\right)+i\kappa\xi Q'+i\frac{\kappa}{\sigma}Q-\omega Q+(1+i\delta)|Q|^{2\sigma}Q=0\\ Q'(0)=0\\ Q(\xi)\sim \xi^{-\frac{1}{\sigma}-i\frac{\omega}{\kappa}} \text{ as } \xi\to\infty \end{cases}$$

Parameters $\omega, \kappa > 0$

4 / 34

Last time - Results for NLS

Theorem (D, Figueras, 2024)

Consider the equation

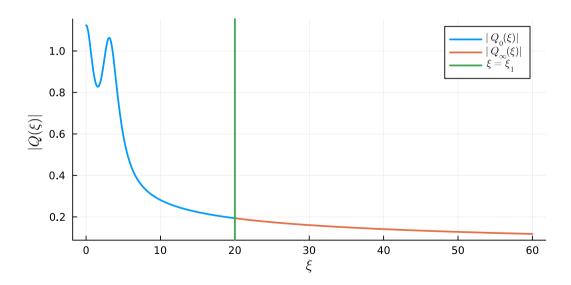
$$\left\{egin{aligned} Q''+rac{d-1}{\xi}Q'+i\kappa\xi Q'+irac{\kappa}{\sigma}Q-\omega Q+|Q|^{2\sigma}Q=0\ Q'(0)=0,\,Q(\xi)\sim \xi^{-rac{1}{\sigma}-irac{\omega}{\kappa}} \end{aligned}
ight.$$

Case I There exist solutions for at least 8 values of κ .

Case II There exist solutions for at least 2 values of κ .

The number of intervals of monotonicity is given by the index j of the solution.

Last time - Proof idea



Last time - Proving matching condition

$$\begin{split} G(\mu,\gamma,\kappa) &= (Q_0(\mu,\kappa;\xi_1) - Q_\infty(\gamma,\kappa;\xi_1), Q_0'(\mu,\kappa;\xi_1) - Q_\infty'(\gamma,\kappa;\xi_1)) \\ \\ G(\mu,\operatorname{Re}\gamma,\operatorname{Im}\gamma,\kappa) &: \mathbb{R}^4 \to \mathbb{R}^4 \end{split}$$

- 1. Find a numerical approximation
- 2. Rigorously verify approximation using the interval Newton method
 - Requires computing rigorous interval enclosures for
 - $\qquad \qquad Q_0(\mu,\kappa;\xi_1),\,Q_0'(\mu,\kappa;\xi_1),\,Q_\infty(\gamma,\kappa;\xi_1),\,Q_\infty'(\gamma,\kappa;\xi_1)$
 - ▶ Derivatives w.r.t. μ, γ, κ

j	μ_{j}	γ_{j}	κ_{j}	ξ_1
1	1.88565_{67}^{73}	$1.71360_{05}^{13} - 1.49179_{35}^{42}i$	0.91735_{59}^{63}	60
2	0.8399_{57}^{62}	$13.852_{46}^{78} + 6.034_{44}^{59}i$	0.3212_{39}^{41}	140

A simplified example

$$Q'' + \frac{1}{\xi}Q' - Q + Q^3 = 0$$

$$G(\mu, \gamma) = (Q_0(\mu; \xi_1) - Q_{\infty}(\gamma; \xi_1), Q'_0(\mu; \xi_1) - Q'_{\infty}(\gamma; \xi_1))$$

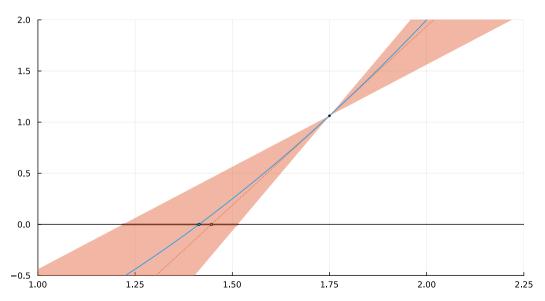
Last time

- ightharpoonup How to compute Q_0 approximately (numerical ODE solver)
- ▶ How to compute Q_{∞} approximately $(\approx \gamma K_0(\xi))$
- ▶ How to find approximate zero of $G(\mu, \gamma)$

This time

- ightharpoonup How to compute Q_0 rigorously
- ▶ How to compute Q_{∞} rigorously
- ▶ How to rigorously verify zero of $G(\mu, \gamma)$

Interval Newton method - Idea



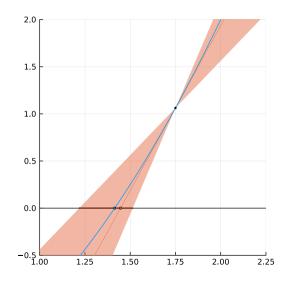
Interval Newton method - One variable

Classical Newton

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Interval Newton

$$egin{aligned} oldsymbol{x_0} &= [\underline{x}_0, \overline{x}_0] \ oldsymbol{x_1} &= x_0 - rac{f(x_0)}{f'(oldsymbol{x_0})} = \left\{ x_0 - rac{f(x_0)}{f'(x)} : x \in oldsymbol{x_0}
ight\} \end{aligned}$$
 Success if $oldsymbol{x_1} \subsetneq oldsymbol{x_0}$



Interval Newton method - Multiple variables

$$f: \mathbb{R}^n \to \mathbb{R}^n, \ J_f: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$$

$$x_0 = (x_0^{(1)}, x_0^{(2)}, \dots, x_0^{(n)}) \in \mathbb{R}^n$$

$$x_0 = [\underline{x_0}\overline{x_0}] = [\underline{x}_0^{(1)}\overline{x}_0^{(1)}] \times [\underline{x}_0^{(2)}\overline{x}_0^{(2)}] \times \dots \times [\underline{x}_0^{(n)}\overline{x}_0^{(n)}] \subset \mathbb{R}^n$$

$$x_1 = x_0 - J_f(x_0)^{-1}f(x_0)$$
Success if $x_1 \subsetneq x_0$

Interval Newton method - Applying it

$$\xi_1 = 15$$
, $x_0 = (\mu_0, \gamma_0) = (4.150094036246, 1540.55)$

$$G(x_0; \xi_1) \approx (2.5204639319664074 \cdot 10^{-10}, -2.942687336480402 \cdot 10^{-10})$$

$$\mathbf{x_0} = \boldsymbol{\mu_0} \times \boldsymbol{\gamma_0} = [\mu_0 \pm 2 \cdot 10^{-11}] \times [\gamma_0 \pm 2 \cdot 10^{-2}]$$

Need to verify:

$$\mathbf{x_1} = x_0 - J_G^{-1}(\mathbf{x_0}; \xi_1) G(x_0; \xi_1) \subsetneq \mathbf{x_0}$$

Need to compute:

$$J_G(\mathbf{x_0}; \xi_1)$$
 and $G(x_0; \xi_1)$

Interval Newton method - Applying it

$$G(\mu, \gamma) = (Q_0(\mu; \xi_1) - Q_\infty(\gamma; \xi_1), Q'_0(\mu; \xi_1) - Q'_\infty(\gamma; \xi_1))$$

For $G(x_0; \xi_1)$:

- $ightharpoonup Q_0(\mu_0; \xi_1), Q'_0(\mu_0; \xi_1)$
- $ightharpoonup Q_{\infty}(\gamma_0; \xi_1), Q_{\infty}'(\gamma_0; \xi_1)$

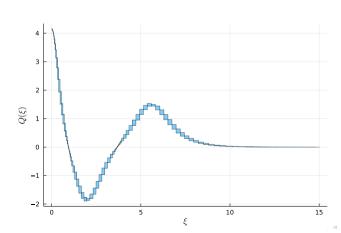
For $J_G(\mathbf{x_0}; \xi_1)$:

- $ightharpoonup Q_{0,\mu}(\mu_0;\xi_1), \ Q'_{0,\mu}(\mu_0;\xi_1)$
- $ightharpoonup Q_{\infty,\gamma}(\gamma_0;\xi_1), \ Q'_{\infty,\gamma}(\gamma_0;\xi_1)$

Computing Q_0 - Rigorously

$$\begin{cases} Q_0'' + \frac{1}{\xi}Q_0' - Q_0 + Q_0^3 = 0, \\ Q_0(0) = \mu, \ \ Q_0'(0) = 0. \end{cases}$$

- 1. Taylor expand at $\xi = 0$
- 2. Use the rigorous numerical ODE solver from the CAPD library.

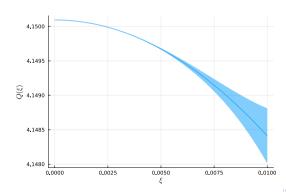


Computing Q_0 - Taylor expansion

$$Q(\xi) = \sum_{n=0}^{\infty} a_n \xi^n$$
 with $a_0 = \mu$, $a_1 = 0$, $a_{n+2} = \frac{a_n - u_n}{(n+2)^2}$, $u_n = (Q^3)_n$

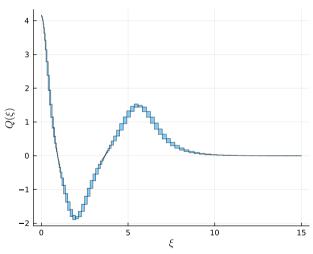
$$Q(\xi) = \sum_{n=0}^{N} a_n \xi^n + \sum_{n=N+1}^{\infty} a_n \xi^n$$
$$|a_n| < r^n \text{ for } n > N$$

$$\left|\sum_{n=N+1}^{\infty} a_n \xi^n\right| \leq \frac{(r\xi)^{N+1}}{1-r\xi}$$



Computing Q_0 - CAPD

- ► C++ library for rigorous ODE solvers
- Developed by group in Krakow
 - Kapela, Mrozek, Wilczak, Zgliczyński (2021)
- ► High order Taylor methods
 - Automatic differentiation
- ► Clever representations of enclosures



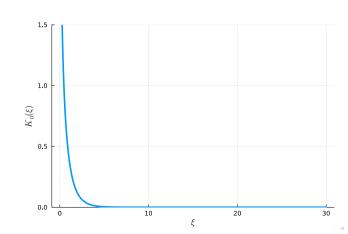
Last time - Computing Q_{∞} - Approximately

$$\begin{cases} Q_\infty'' + \frac{1}{\xi} Q_\infty' - Q_\infty + Q_\infty^3 = 0, \\ \lim_{\xi \to \infty} Q_\infty(\xi) = 0. \end{cases}$$

$$Q_{\infty}$$
 small $ightarrow$ ignore Q_{∞}^3
$$\begin{cases} Q_{\infty}'' + rac{1}{\xi}Q_{\infty}' - Q_{\infty} = 0, \ \lim_{\xi
ightarrow \infty} Q_{\infty}(\xi) = 0. \end{cases}$$

- $K_0(\xi) \sim \xi^{-\frac{1}{2}} e^{-\xi}$ $I_0(\xi) \sim \xi^{-\frac{1}{2}} e^{\xi}$

$$Q_{\infty}(\xi) \approx \gamma K_0(\xi)$$



Computing Q_{∞} - Rigorously

$$Q_\infty'' + rac{1}{arepsilon}Q_\infty' - Q_\infty = -Q_\infty^3.$$

Method of variation of parameters

$$Q_{\infty}(\xi) = c_1(\xi) K_0(\xi) + c_2(\xi) I_0(\xi)$$

$$\begin{split} Q_{\infty}(\xi) &= \gamma K_{0}(\xi) + K_{0}(\xi) \int_{\xi_{1}}^{\xi} I_{0}(\eta) W(\eta)^{-1} Q_{\infty}(\eta)^{3} d\eta \\ &+ I_{0}(\xi) \int_{\xi}^{\infty} K_{0}(\eta) W(\eta)^{-1} Q_{\infty}(\eta)^{3} d\eta \end{split}$$

Computing Q_{∞} - Rigorously

$$T[Q](\xi) = \gamma K_0(\xi) + K_0(\xi) \int_{\xi_1}^{\xi} I_0(\eta) W(\eta)^{-1} Q(\eta)^3 d\eta + I_0(\xi) \int_{\xi}^{\infty} K_0(\eta) W(\eta)^{-1} Q(\eta)^3 d\eta$$

- 1. Look for fixed point of T: $Q_{\infty} = T[Q_{\infty}](\xi)$
 - $||Q||_{v} = \sup_{\xi \geq \xi_{1}} \xi^{\frac{1}{2} v} e^{\xi} |Q(\xi)|$
 - $||T[Q]||_{\nu} \le C_{K_0} |\gamma| \xi_1^{-\nu} + C_T \xi_1^{2\nu 1} e^{-2\xi_1} ||Q||_{\nu}^3$
 - $\|T[Q_1] T[Q_2]\|_{\nu} \le C_T \xi_1^{2\nu 1} e^{-2\xi_1} \|Q_1 Q_2\|_{\nu} (\|Q_1\|_{\nu}^2 + \|Q_1\|_{\nu} \|Q_2\|_{\nu} + \|Q_2\|_{\nu}^2)$
- 2. Improve bounds using bootstrapping

Rigorously verifying zero

1. Enclose $G(x_0; \xi_1)$ and $J_G(x_0; \xi_1)$

$$G(\mathbf{x}_0; \xi_1) \subseteq ([2.0531 \cdot 10^{-10}, 2.0532 \cdot 10^{-10}], [-3.3942 \cdot 10^{-10}, -3.3941 \cdot 10^{-10}])$$

$$J_G(\mathbf{x}_0; \xi_1) \subseteq \begin{pmatrix} [-400.69 \pm 3.62 \cdot 10^{-3}] & [9.819536 \cdot 10^{-8} \pm 5.85 \cdot 10^{-15}] \\ [-387.09 \pm 1.82 \cdot 10^{-3}] & [-1.0141729 \cdot 10^{-7} \pm 4.69 \cdot 10^{-15}] \end{pmatrix}$$

2. Compute interval Newton iteration

$$\mathbf{x_1} = x_0 - J_G(\mathbf{x_0})^{-1}G(x_0) \subseteq ([4.150094036246 \pm 8.19 \cdot 10^{-13}], [1540.55 \pm 4.04 \cdot 10^{-3}])$$

3. Verify $x_1 \subsetneq x_0$

$$\begin{split} ([4.150094036246 \pm 8.19 \cdot 10^{-13}], [1540.55 \pm 4.04 \cdot 10^{-3}]) \\ & \subsetneq ([4.150094036246 \pm 2 \cdot 10^{-11}], [1540.55 \pm 2 \cdot 10^{-2}]) \end{split}$$

Success!

Back to CGL

► Simplified example

$$Q'' + \frac{1}{\xi}Q' - Q + Q^3 = 0$$

- $ightharpoonup G(\mu,\gamma):\mathbb{R}^2\to\mathbb{R}^2$
- ► Full CGL

$$(1-i\epsilon)\left(Q''+rac{d-1}{\xi}Q'
ight)+i\kappa\xi Q'+irac{\kappa}{\sigma}Q-\omega Q+(1+i\delta)|Q|^{2\sigma}Q=0$$

 $G(\mu, \gamma, \kappa) : \mathbb{R}^4 \to \mathbb{R}^4$

Results - NLS Case I

$$d = 1, \ \delta = 0, \ \sigma = 2.3, \ \omega = 1$$

j	μ_{j}	γ_{j}	κ_j	ξ_1
1	1.2320375_{02}^{49}	$0.758150_{46}^{86} - 0.43437_{09}^{14}i$	0.853108_{70}^{97}	10
2	0.78307_{65}^{77}	$1.7916_{27}^{57} - 1.1049_{05}^{210}i$	0.49322_{24}^{33}	15
3	1.12384_{11}^{44}	$4.331_{23}^{\overline{34}} - 1.5341_{05}^{83}i$	$0.34675_{29}^{\overline{44}}$	20
4	0.8838_{73}^{82}	$9.73_{77}^{82} + 0.046_{26}^{66}i$	0.2667_{58}^{61}	25
5	1.07955_{88}^{96}	$18.156_{79}^{91} + 9.263_{15}^{23}i$	0.216402_{13}^{210}	40
6	0.92718_{29}^{58}	$21.94_{06}^{15} + 36.28_{20}^{31}i$	0.18183_{76}^{82}	45
7	1.054410_{05}^{86}	$-8.221_{04}^{77} + 87.50_{42}^{52}i$	0.15667_{78}^{81}	60
8	0.95114_{55}^{63}	$-130.05_{38}^{62} + 126.99_{18}^{28}i$	0.137564_{36}^{44}	75

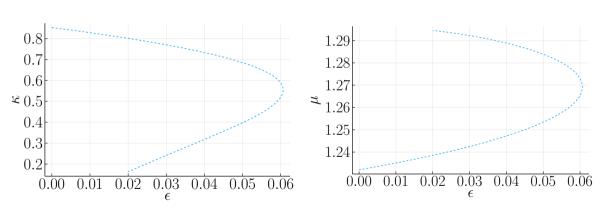
Results - NLS Case II

$$d=3, \ \delta=0, \ \sigma=1, \ \omega=1$$

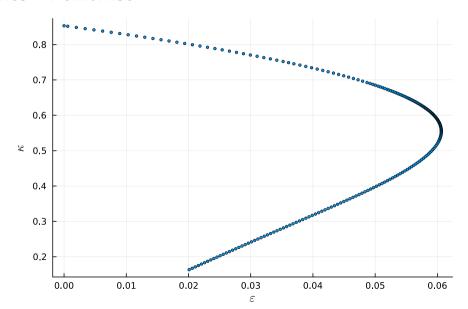
j	μ_{j}	γ_{j}	κ_j	ξ_1
1	1.88565_{67}^{73}	$1.71360_{05}^{13} - 1.49179_{35}^{42}i$	0.91735_{59}^{63}	60
2	0.8399_{57}^{62}	$13.852_{46}^{78} + 6.034_{44}^{59}i$	0.3212_{39}^{41}	140

Branches

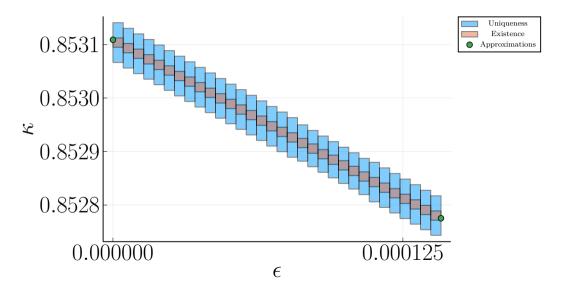
$$G(\mu(\epsilon), \gamma(\epsilon), \kappa(\epsilon)) = 0$$



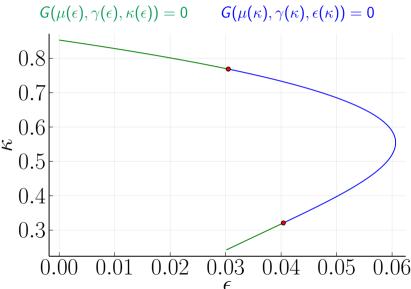
Branches - Pointwise



Branches - Enclosure



Branches - Handling turning



Results - CGL

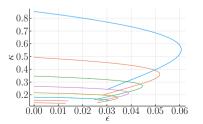
Theorem (D, Figueras, 2024)

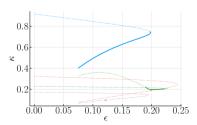
Consider the equation

$$\begin{cases} (1-i\epsilon)\left(Q''+\frac{d-1}{\xi}Q'\right)+i\kappa\xi Q'+i\frac{\kappa}{\sigma}Q-\omega Q+(1+i\delta)|Q|^{2\sigma}Q=0\\ Q'(0)=0,Q(\xi)\sim\xi^{-\frac{1}{\sigma}-i\frac{\omega}{\kappa}} \end{cases}$$

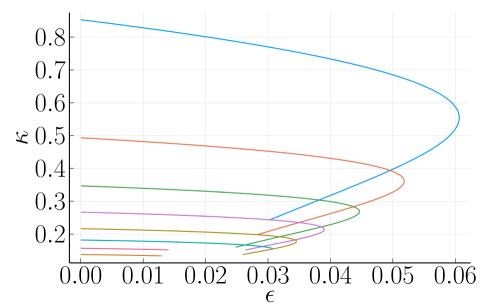
Case I There exists at least 8 branches of solutions. The number of intervals of monotonicity is constant along these branches.

Case II There exists branches of solutions.





Branches Case I



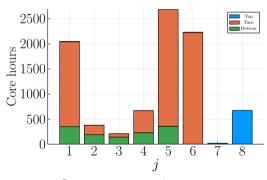
Branches Case I - Runtime

Computations done on Dardel - NAISS computer cluser at KTH

▶ 256 logical cores per node (AMD EPYC Zen2)

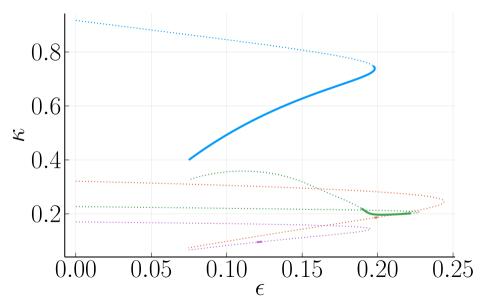


Proving existence



Counting critical points

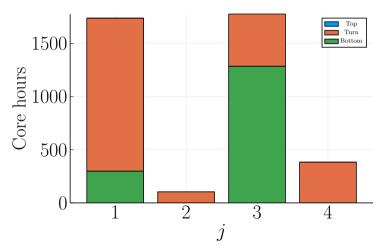
Branches Case II



Branches Case II - Runtime

Computations done on Dardel - NAISS computer cluser at KTH

▶ 256 logical cores per node (AMD EPYC Zen2)



Code

${\sf Code\ available\ at\ github.com/Joel-Dahne/CGL.jl}$

	Simplified example	CGL
Q_0	pprox 800 loc	pprox 2,000 loc
Q_{∞}	pprox 500 loc	pprox 3,300 loc
Branches	-	pprox 3,300 loc
Total	-	$pprox 12,000 \; loc$

Thank you!

