Self-similar blowup for the Nonlinear Schrödinger Equation and the Complex Ginzburg-Landau Equation

Joel Dahne

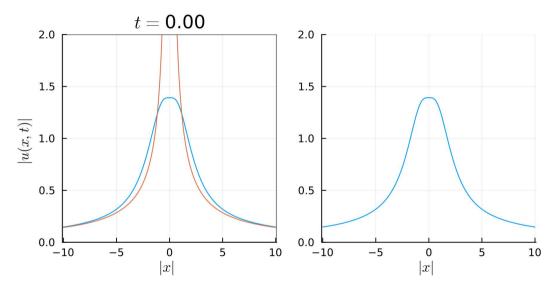
University of Minnesota

Joint with Jordi-Lluís Figueras

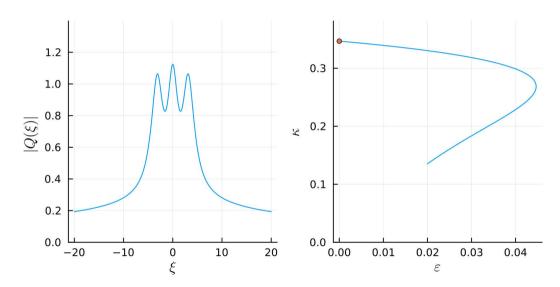
NSF-FRG Collaboration

Whether three-dimensional incompressible flows develop singularities in finite time and whether (weak) solutions of Navier-Stokes equations are unique, are two of the most important problems in mathematical fluid dynamics. Any progress towards resolving these problems would have significant implications for the entire field.

Self-similar blowup



Branches with self-similar blowup



The Nonlinear Schrödinger Equation (NLS)

$$i\frac{\partial u}{\partial t} + \Delta u + |u|^{2\sigma}u = 0$$

 $u(x,t) : \mathbb{R}^d \times (0,T) \to \mathbb{C}$
 $u(x,0) = u_0(x)$

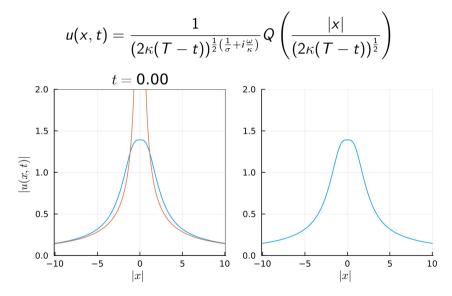
Parameters $d \in \mathbb{Z}_{\geq 1}$, $\sigma \geq 0$

The Complex Ginzburg-Landau Equation (CGL)

$$i\frac{\partial u}{\partial t} + (1 - i\epsilon)\Delta u + (1 + i\delta)|u|^{2\sigma}u = 0$$
$$u : \mathbb{R}^d \times (0, T) \to \mathbb{C}$$
$$u(x, 0) = u_0(x)$$

Parameters $d \in \mathbb{Z}_{\geq 1}$, $\sigma, \epsilon, \delta \geq 0$ Nonlinear Schrödinger Equation $\epsilon = \delta = 0$

Self-similar solutions



Self-similar solutions

$$u(x,t) = \frac{1}{(2\kappa(T-t))^{\frac{1}{2}(\frac{1}{\sigma}+i\frac{\omega}{\kappa})}}Q\left(\frac{|x|}{(2\kappa(T-t))^{\frac{1}{2}}}\right)$$

$$\begin{cases} (1-i\epsilon)\left(Q''+\frac{d-1}{\xi}Q'\right)+i\kappa\xi Q'+i\frac{\kappa}{\sigma}Q-\omega Q+(1+i\delta)|Q|^{2\sigma}Q=0\\ Q'(0)=0\\ Q(\xi)\sim \xi^{-\frac{1}{\sigma}-i\frac{\omega}{\kappa}} \text{ as } \xi\to\infty \end{cases}$$

Parameters $\omega, \kappa > 0$

B / 29

Previous work - NLS

Book Sulem, Sulem (1999)

$$s_c = \frac{d}{2} - \frac{1}{\sigma}$$

- $s_c < 0$ Global existence
- $s_c = 0$ Merle, Raphaël (CMP (2004), Inventiones (2004), Annals (2005), JAMS (2006))
- $0 < s_c \ll 1$ Merle, Raphaël, Szeftel (2010)
 - ▶ Bahri, Martel, Raphaël (2021)
 - $s_c = \frac{1}{3}$ Donninger, Schörkhuber (2024) (3D cubic NLS)

Sulem, Sulem (1999) - Chapter 7: Supercritical collapse

We are interested in complex solutions Q of (7.1.2) with a monotonically decreasing amplitude |Q| and zero Hamiltonian, which provide the limiting profiles of singular solutions of the NLS equation. We call such solutions "admissible solutions".

Conjecture (based on numerics by Budd, Chen, Russel (1999))

The supercritical NLS equation has a countable number of nontrivial radial self-similar singular solutions. In certain regimes, these solutions are characterized by the number, j, of monotone intervals of the profile |Q|. Except for j=1, these solutions are all unstable.

Previous work - NLS

Theorem (Donninger, Schörkhuber (2024))

There exist a nontrivial, radial function $Q \in L^4(\mathbb{R}^3) \cap \dot{H}^1(\mathbb{R}^3) \cap C^\infty(\mathbb{R}^3)$ and a $\kappa > 0$ such that

$$u(x,t) = \frac{1}{(2\kappa(T-t))^{\frac{1}{2}(1+\frac{i}{\kappa})}}Q\left(\frac{x}{(2\kappa(T-t))^{\frac{1}{2}}}\right)$$

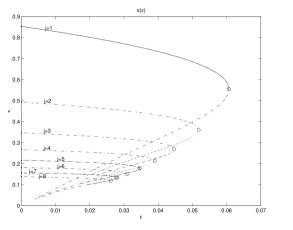
is a self-similar singular solution to the 3D cubic NLS equation

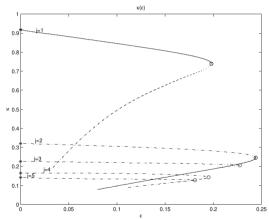
$$i\frac{\partial u}{\partial t} + \Delta u + |u|^2 u = 0.$$

Branches of self-similar singular solutions

Case I:
$$d=1$$
, $\sigma=2.3$, $\delta=0$ and $\omega=1$

Case II: d=3, $\sigma=1$, $\delta=0$ and $\omega=1$





Plecháč and Šverák (2001)

Equation to solve

$$\begin{cases} (1-i\epsilon)\left(Q''+\frac{d-1}{\xi}Q'\right)+i\kappa\xi Q'+i\frac{\kappa}{\sigma}Q-\omega Q+(1+i\delta)|Q|^{2\sigma}Q=0\\ Q'(0)=0\\ Q(\xi)\sim \xi^{-\frac{1}{\sigma}-i\frac{\omega}{\kappa}} \text{ as } \xi\to\infty \end{cases}$$

Fix
$$d$$
, σ , δ , ω

Case I $d=1$, $\delta=0$, $\sigma=2.3$, $\omega=1$
Case II $d=3$, $\delta=0$, $\sigma=1$, $\omega=1$
Vary κ , ϵ

13 / 2

Results - NLS

Theorem (D, Figueras, 2024)

Consider the equation

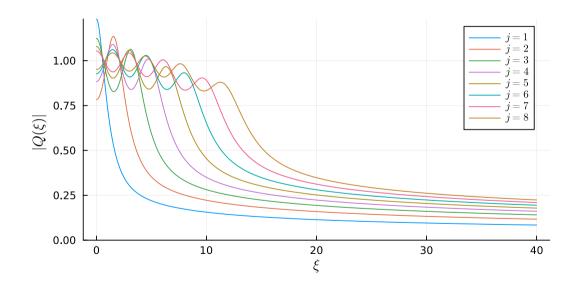
$$\begin{cases} Q'' + \frac{d-1}{\xi}Q' + i\kappa\xi Q' + i\frac{\kappa}{\sigma}Q - \omega Q + |Q|^{2\sigma}Q = 0 \\ Q'(0) = 0, Q(\xi) \sim \xi^{-\frac{1}{\sigma} - i\frac{\omega}{\kappa}} \end{cases}$$

Case I There exist solutions for at least 8 values of κ .

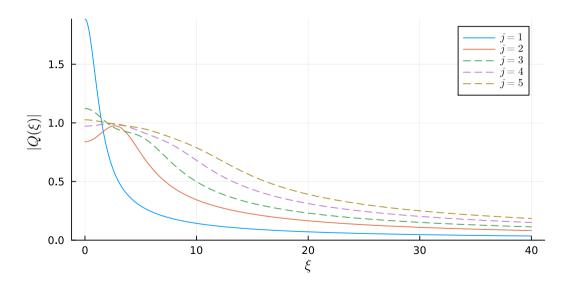
Case II There exist solutions for at least 2 values of κ .

The number of intervals of monotonicity is given by the index j of the solution.

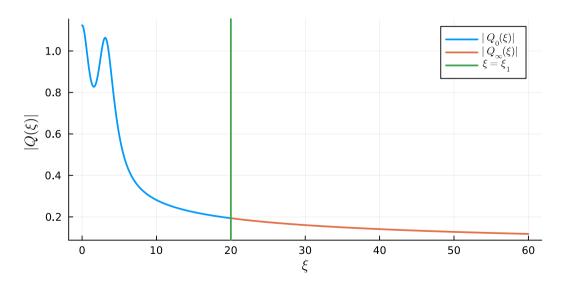
Solutions for Case I



Solutions for Case II



Proof idea - Matching solutions



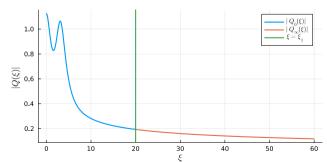
Q_0 and Q_{∞}

$$\begin{cases} (1-i\epsilon)\left(Q''+\frac{d-1}{\xi}Q'\right)+i\kappa\xi Q'+i\frac{\kappa}{\sigma}Q-\omega Q+(1+i\delta)|Q|^{2\sigma}Q=0\\ Q'(0)=0,\,Q(0)=\mu>0, \lim_{\xi\to\infty}Q(\xi)=0\\ Q_0(\xi)=Q_0(\mu,\kappa;\xi) \text{ Solution with } Q_0'(0)=0,\,Q_0(0)=\mu\\ Q_\infty(\xi)=Q_\infty(\gamma,\kappa;\xi) \text{ Solution with } Q_\infty(\xi)\sim \xi^{-\frac{1}{\sigma}-i\frac{\omega}{\kappa}} \text{ as } \xi\to\infty \end{cases}$$

Fix $\xi_1 > 0$. Want to find μ, γ, κ s.t.

$$Q_0(\mu, \kappa; \xi_1) = Q_{\infty}(\gamma, \kappa; \xi_1)$$

$$Q_0'(\mu,\kappa;\xi_1) = Q_\infty'(\gamma,\kappa;\xi_1)$$



Proving matching condition

$$\begin{split} G(\mu,\gamma,\kappa) &= (Q_0(\mu,\kappa;\xi_1) - Q_\infty(\gamma,\kappa;\xi_1), Q_0'(\mu,\kappa;\xi_1) - Q_\infty'(\gamma,\kappa;\xi_1)) \\ \\ G(\mu,\mathsf{Re}\,\gamma,\mathsf{Im}\,\gamma,\kappa) &: \mathbb{R}^4 \to \mathbb{R}^4 \end{split}$$

- 1. Find a numerical approximation
- 2. Rigorously verify approximation using the interval Newton method
 - Requires computing rigorous interval enclosures for

 - ▶ Derivatives w.r.t. μ, γ, κ

j	μ_{j}	γ_{j}	κ_{j}	ξ_1
1	1.88565_{67}^{73}	$1.71360_{05}^{13} - 1.49179_{35}^{42}i$	0.91735_{59}^{63}	60
2	0.8399_{57}^{62}	$13.852_{46}^{78} + 6.034_{44}^{59}i$	0.3212_{39}^{41}	140

Things to explain

$$G(\mu, \gamma, \kappa) = (Q_0(\mu, \kappa; \xi_1) - Q_{\infty}(\gamma, \kappa; \xi_1), Q'_0(\mu, \kappa; \xi_1) - Q'_{\infty}(\gamma, \kappa; \xi_1))$$

- 1. How to find an approximate numerical solution
- 2. What is the interval Newton method?
- 3. How to compute, approximately and rigorously:
 - 3.1 $Q_0(\mu, \kappa; \xi_1)$, $Q'_0(\mu, \kappa; \xi_1)$, $Q_{0,\mu}(\mu, \kappa; \xi_1)$, $Q'_{0,\mu}(\mu, \kappa; \xi_1)$, $Q'_{0,\kappa}(\mu, \kappa; \xi_1)$, $Q'_{0,\kappa}(\mu, \kappa; \xi_1)$
 - 3.2 $Q_{\infty}(\gamma, \kappa; \xi_1)$, $Q_{\infty}'(\gamma, \kappa; \xi_1)$, $Q_{\infty, \gamma}(\gamma, \kappa; \xi_1)$, $Q_{\infty, \gamma}'(\gamma, \kappa; \xi_1)$, $Q_{\infty, \kappa}'(\gamma, \kappa; \xi_1)$, $Q_{\infty, \kappa}'(\gamma, \kappa; \xi_1)$

A simplified example

$$(1-i\epsilon)\left(Q''+rac{d-1}{\xi}Q'
ight)+i\kappa\xi Q'+irac{\kappa}{\sigma}Q-\omega Q+(1+i\delta)|Q|^{2\sigma}Q=0$$

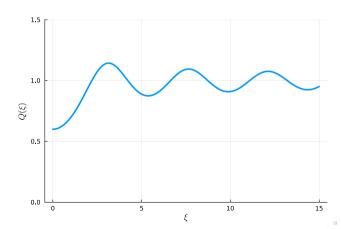
- $ightharpoonup \epsilon = \delta = 0 \text{ (NLS)}$
- ightharpoonup d = 2, $\sigma = 1$ (2D cubic NLS)
- $ightharpoonup \omega = 1$, $\kappa = 0$ ("Excited states")
- Q real valued

$$Q'' + \frac{1}{\xi}Q' - Q + Q^3 = 0$$

Computing Q_0 - Approximately

$$\begin{cases} Q_0'' + \frac{1}{\xi}Q_0' - Q_0 + Q_0^3 = 0, \\ Q_0(0) = \mu, \ Q_0'(0) = 0. \end{cases}$$

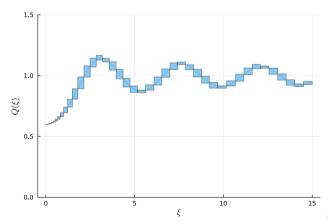
► Use numerical ODE solver, e.g. RK4, TSit5 or Vern7.



Computing Q_0 - Rigorously

$$\begin{cases} Q_0'' + \frac{1}{\xi} Q_0' - Q_0 + Q_0^3 = 0, \\ Q_0(0) = \mu, \ \ Q_0'(0) = 0. \end{cases}$$

- Use rigorous numerical ODE solver, e.g. CAPD library.
- ▶ Taylor expand at $\xi = 0$.
- More next lecture!



Computing Q_{∞} - Linear equation

$$Q'' + \frac{1}{\xi}Q' - Q = 0$$

$$\xi^2 Q'' + \xi Q' - \xi^2 Q = 0$$

- Modified Bessel equation with parameter zero
- ▶ Regular singular point at $\xi = 0$
- ▶ Irregular singular point at $\xi = \infty$
- ▶ Solutions: $K_0(\xi) \sim \xi^{-\frac{1}{2}} e^{-\xi}$ and $I_0(\xi) \sim \xi^{-\frac{1}{2}} e^{\xi}$ (modified Bessel functions)

Computing Q_{∞} - Approximately

$$\begin{cases} Q_\infty'' + \frac{1}{\xi} Q_\infty' - Q_\infty + Q_\infty^3 = 0, \\ \lim_{\xi \to \infty} Q_\infty(\xi) = 0. \end{cases}$$

$$Q_{\infty}$$
 small $ightarrow$ ignore Q_{∞}^3

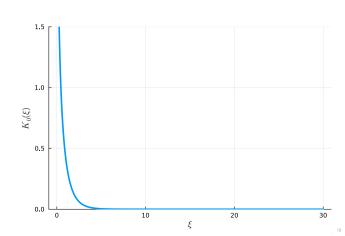
$$egin{cases} Q_\infty'' + rac{1}{\xi}Q_\infty' - Q_\infty = 0, \ \lim_{\xi o \infty} Q_\infty(\xi) = 0. \end{cases}$$

•
$$K_0(\xi) \sim \xi^{-\frac{1}{2}} e^{-\xi}$$

• $I_0(\xi) \sim \xi^{-\frac{1}{2}} e^{\xi}$

$$I_0(\xi) \sim \xi^{-\frac{1}{2}} e^{\xi}$$

$$Q_{\infty}(\xi) \approx \gamma K_0(\xi)$$



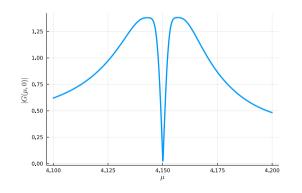
Computing Q_{∞} - Rigorously

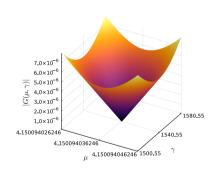
$$Q_{\infty}(\xi) = \gamma K_0(\xi) + K_0(\xi) I_I(\gamma, \xi) + I_0(\xi) I_K(\gamma, \xi)$$

- Initial bounds with contraction argument
- Improved bounds by bootstrapping
- More next lecture!

Finding approximate numerical solution

$$G(\mu, \gamma) = (Q_0(\mu; \xi_1) - Q_{\infty}(\gamma; \xi_1), Q'_0(\mu; \xi_1) - Q'_{\infty}(\gamma; \xi_1))$$

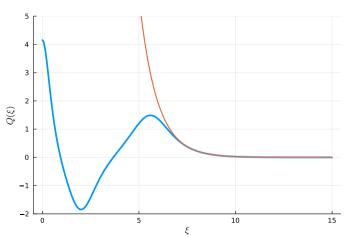




Finding approximate numerical solution

G(4.150094036246, 1540.55)

 $\approx (2.5204639319664074 \cdot 10^{-10}, -2.942687336480402 \cdot 10^{-10})$



Next lecture

- ightharpoonup Computing Q_0 and Q_{∞} rigorously
- Rigorously verifying an approximate solution (interval Newton method)
- Handling the full equation
- ► Results for CGL