Self-similar blowup for the Nonlinear Schrodinger
Equation and the Complex Ginzburg-Landau Equation

Joel Dahne

University of Minnesota

Joint with Jordi-Lluis Figueras


Present myself. Joint work with ...


NSF-FRG Collaboration

Whether three-dimensional incompressible flows develop singularities
in finite time and whether (weak) solutions of Navier-Stokes equations
are unique, are two of the most important problems in mathematical
fluid dynamics. Any progress towards resolving these problems would
have significant implications for the entire field.


As you know this summer school is connected to the NSF-FRG grant. If you go to their web page you can read these first few lines of their abstract for the grant. The are interested in questions regarding finite time singularity formation and uniqueness of solutions for, in particular, the Navier-Stokes equation. The topic of my talk is about finite time singularity formation, not for the Navier-Stokes equation, but for the complex Ginzburg-Landau equation, which we will get to soon. There are however similarities between these two equations, and the situation I'll talk about today was originally studied by Vladimir Sverak to try and get some insight into a possible scenario for blowup for Navier-Stokes (which however turned out to not work as he was hoping for). There is actually also some relationship to the uniqueness question, but I won't talk about that here.


Self-similar blowup
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So, this talk is about self-similar blowup. What do I mean with self-similar blowup? If we take data for our equation, which I'll get to soon, that at t = 0 is given by the blue curve here, then as we go forward in time the data grows and at time t = 1 it blows up and becomes infinite at the origin. So okay, this is a solution that blows up in finite time. Why is this self-similar blowup? To the right I have plotted exactly the same solution, the only difference is that as time evolves I change the scales on the x and y axis. What you see is that in this case curve keeps the same shape over time, the fact that it blows up is seen by the scale on the y-axis growing to infinity. By properly rescaling our solution we can hence get something that no longer depends on time. Our goal is to prove the existence of solutions of this type!
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Branches with self-similar blowup
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We will however not be satisfied with proving the existence of only one such solution, our goal is to prove the existence of several families of such solutions. Here is one such family, given by a branch of solutions. Our equation, which again I'll get to soon, depends on a parameter, epsilon. What we are proving is as we vary epsilon we get a branch of solutions. To the right here you see epsilon along the x-axis and this blue curve is the branch of solutions. To the left I have plotted the self-similar profile and how it changes as we move along the curve. As you see it keeps the general shape, but slightly deforms.


The Nonlinear Schrédinger Equation (NLS)
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Okay, let us finally get to the equation. I mentioned the complex Ginzburg-Landau equation, but let us start by looking at a more well known equation, the nonlinear Schrödinger equation, or NLS as it is commonly called. This is a very classical and well studied equation. The equation is given by i times the t derivative of u, plus the Laplacian of u and a nonlinear term with a power depending on the parameter sigma. It is complex valued and can in general be defined in any dimension. So we have two parameters to play with, the strength of the non-linearity, sigma, and the space dimension, d.


The Complex Ginzburg-Landau Equation (CGL)
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Now, the complex Ginzburg-Landau equation. It can be written in several different forms, we use this one because it makes the relationship with the nonlinear Schrödinger equation very clear. The equation is exactly the same as the NLS equation, except that we have two new parameters, epsilon and delta, that show up as coefficients for the Laplacian and the non-linear term. So in this case we have 4 parameters, the dimension d of our space, the strength sigma of the non-linearity and epsilon and delta that are in the coefficients. Taking epsilon and delta equal to zero we recover the nonlinear Schrödinger equation. In our case delta will always be zero and epsilon is small.


Self-similar solutions
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You have already seen this animation of the blowup to the left and the self-similar profile to the right. The scaling we need to get this profile is this factor here along the y-axis, and along the x-axis it is this factor. Note that as we approach the blowup time capital T, both of these factors go to infinity. The function Q here is the self-similar profile.


Self-similar solutions
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So what happens if we make this ansatz for the solution and insert into the equation? What pops up is this. We get an equation for the profile Q which is given by a second order non-linear ODE. So instead of having to solve a PDE we now just have to solve and ODE. I say just solve, but of course actually doing this turns out to be rather tricky. Apart from the ODE for Q we also get two boundary conditions, these are here to ensure that the solution we get has finite energy. The derivative should be zero and zero and we should have this decay at infinity. The precise value for this decay is not immediate, it comes from some analysis of the ODE at infinity. Note that this self-similar solution introduces two more parameters, omega and kappa. As we will see the equation does in general not have any solutions satisfying these two boundary conditions, only for specific values of omega and kappa do we find solutions.


Previous work - NLS
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Before I get to our results and methods, let me say a bit more about previous results in this area. Let us start with the nonlinear Schrödinger equation. This is as I mentioned in the beginning a very well studied equation and my focus here is only on results related to self-similar blowup, often called Type I blowup, though in some cases other types of blowup can occur. A very good reference, though by now a bit dated, is the book on self-focusing and wave collapse for the nonlinear Schrödinger equation by Sulem and Sulem. In particular, it contains a lot of references to numerical simulations giving strong indication of self-similar blowup. An important piece is this scaling parameter, s-c. The value of this parameter is important for the existence of self-similar solutions. If s-c is less than zero, called the subcritical case, there is generally global existence and no self-similar blowup. If s-c is zero, called the critical case, then the situation changes. In this case you get what is called asymptotically self-similar blowup, were the solution converges to a self-similar profile. The book by Sulem and Sulem discusses this case in quite a lot of detail, they refer to a lot of numerical results trying to determine the behavior of the solution and in particular the rate of the blowup. The existence of this solution was finally proved by Merle and Raphael a couple of years later in a very strong series of papers, published in CMP, Inventiones, Annals and JAMS. Their work more or less completely describes the behavior in this case. In the supercritical case, when s-c is greater than zero, much less is known. Merle and Raphael, together with collaborators, managed to prove the self-similar blowup in the case when s-c is very close to zero. Their argument is perturbative and relies on being close to the critical case. For larger values of s-c the question has remained completely open for a long time. Last year, the paper appeared on arxiv in July, Donninger and Schörkuber managed proved self-similar blowup for the 3D nonlinear Schrödinger equation, which corresponds to s-c equal to one half and is probably physically the most interesting case. This is also the case we'll be interested in and I'll get back with some more details about their result soon.


Sulem, Sulem (1999) - Chapter 7: Supercritical collapse

We are interested in complex solutions Q of (7.1.2) with a mono-
tonically decreasing amplitude |Q| and zero Hamiltonian, which provide
the limiting profiles of singular solutions of the NLS equation. We call
such solutions “admissible solutions”.

Conjecture (based on numerics by Budd, Chen, Russel (1999))

The supercritical NLS equation has a countable number of nontrivial radial
self-similar singular solutions. In certain regimes, these solutions are characterized
by the number, j, of monotone intervals of the profile |Q|. Except for j = 1,
these solutions are all unstable.


Going back to the book by Sulem and Sulem. Chapter 7 of the book is dedicated to supercritical collapse of the nonlinear Schrödinger equation, which is situation we are interested in. About this they write the following [read citation]. In the same chapter they discuss some, by then very recent, numerical results by Budd, Chen and Russel. They don't explicitly write it out as a conjecture, but they more or less say that the numerics indicate that the supercritical nonlinear Schrödinger equation has a countable number of nontrivial radial self-similar singular solutions, and that these solutions are characterized by the number, j, of monotone intervals of the profile absolute value of Q. Furthermore, except for the monotone solution, they are all unstable. One however has to be a little bit careful with what they write, this characterization given by the number of monotone intervals is a bit delicate. In their numerics they consider branches of solutions starting from the critical case, s-c equal to zero, and it is only close to this starting point that this characterization seems to hold. Once we leave this regime it does no longer seem to be the case. There is still a lot of open questions related to this that remains to be answered.


Previous work - NLS

Theorem (Donninger, Schérkhuber (2024))

There exist a nontrivial, radial function Q € L*(R%) N HY(R3) N C*(R3) and a
k > 0 such that

1 X
u(x, t) = (2x(T — t))%(”é) @ ((2/@(7- - t))%)

is a self-similar singular solution to the 3D cubic NLS equation

i@ + Au+ |ul*u=0.
ot



I mentioned this recent result by Donninger and Schörkhuber for the 3D cubic NLS. More precisely what they proves is that there exists a nontrivial, radial function Q, in the intersection of these three spaces. For this function Q, the function u(x, t) given by this is a self-similar singular solution to the 3D cubic NLS equation. Similar to our proof, which I'll get to soon, their proof is computer-assisted. What they do is that they give an explicit approximation for kappa and an approximation for Q given by an explicit degree 50 Chebyshev polynomial. They then prove that there exists an exact solution nearby this approximation using a fixed point argument. Their proof has a lot of similarities with ours, it relies the computer to compute a lot of quantitative bounds that are required for the fixed point argument. The specifics of the approach are however quite different. They do actually not prove the monotonicity of the profile, but it should be fairly straight forward to verify it based on their computations.


Branches of self-similar singular solutions
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So now I have talked about results for the NLS equation. But as I mentioned we are interested in the complex Ginzburg-Landau equation. Let us look a the situation there. One of the main references of our work is a paper by Plechac and Vladimir Sverak from 2001. They were inspired by the numerical results for the NLS equation and wanted to study what happens with these self-similar solutions as you go to the CGL equation. As you might recall there were a lot of parameters involved, the consider two different cases of parameters. The first case is for d = 1 and the somewhat arbitrarily chosen sigma = 2.3, note that sigma = 2 is the critical case so for it to be supercritical we need sigma to be larger than 2. The second case is much less arbitrary, it is exactly the case corresponding to the 3D cubic nonlinear Schrödinger equation, probably the most interesting case. In both cases they let delta stay zero, and due to some symmetries they can take omega to be 1. The parameters that remain are epsilon and kappa. Starting at epsilon equation to zero, corresponding to the NLS equation, they in the first case numerically find 8 different values of kappa for which there exists self-similar solutions. What they then do is they move epsilon and make it positive. What happens is that these 8 solutions turns into 8 branches of solutions. Each point on this branch corresponds to a self-similar solution for that specific value of epsilon. As you follow these branches they eventually make a turn and all start to go back towards the origin. Most of these branches have dashed lines, but the upper part of the first branch is a solid line. That indicates that these solutions appear to be stable. According to the conjecture by Sulem and Sulem there should be a countable number of branches like this, this being the first 8. They also conjectured that all solutions except the first should be unstable, which agrees with what we see here, except that the first solution becomes unstable after the turning point. In the second case, the physically more interesting one, the situation is similar, but with some notable changes. In this case they find 5 different values of kappa for which we get self-similar solutions to the NLS equation. Again they extend to branches as we vary epsilon, and these branches eventually turn back. One difference is however that the first branch is no longer the one that reaches the furthest, that seems to be the second one. For the stability the first branch is stable before it turns around. However, we also have that the second branch is stable AFTER it turns around. This means that for every epsilon there is at least one branch which is stable. When they started on this work they didn't know this would be the case. In fact, one of the reasons they did look at this was for the possibility that it would not be the case. If this branch was not stable, then that would mean that for epsilon parameters past this first branch there would exist solutions that blow up in finite time, but they would all be unstable. This is the scenario that at least Vladimir, but also many others by now, believes happens for the Navier-Stokes equation. The hope was therefore to find situation for the CGL equation and then hopefully be able to gain insight that could also be valuable for the Navier-Stokes equation. However, in the end it turned out to not be the case here, or at least that is what the numerics indicate. For the Navier-Stokes the question is of course still very much open.


Equation to solve
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I'll soon tell you our results, well part of our results, some of them I'll talk about in the next lecture. But before that, let us just remind ourselves about what our setup it. We are interested in self-similar solutions to the CGL equation. Inserting the self-similar ansatz into the equation gave us this ODE. This is what we will actually work with in practice. Our results are really about the existence of solutions to this ODE, but of course the reason we care about them are because of the relationship to the PDE. So okay, we have this ODE. It has a lot of parameters, 6 of them to be precise. Four of these parameters we will fix, d, sigma, delta and omega, and we will look at the two cases that Plechac and Vladimir looked at. Most of what we do works for other cases as well, but we only do the actual computations for these two cases. With these four parameters fixed that leaves us with two parameters to vary, epsilon and kappa. We will then look for branches of solutions in these two parameters.


Results - NLS

Theorem (D, Figueras, 2024)

Consider the equation
Q" + %Q’ +ikEQ +i5Q —wQ+(Q*Q =0
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Case | There exist solutions for at least 8 values of k.

Case Il There exist solutions for at least 2 values of k.

The number of intervals of monotonicity is given by the index j of the solution.


So okay, what are our results? My focus today will be on the NLS equation, and we get to the branches for CGL next lecture. This means that we actually also fix epsilon equal to zero, and the only parameter we vary is kappa. In case I we prove that there exist solutions for at least 8 values of kappa, and in case II (the 3D cubic NLS equation) we prove that there exists solutions for at least 2 values of kappa. In both cases we prove that the number of intervals of monotonicity of the solutions are the same as their index j. Remember though that the conjecture would be that there is a countable number of such solutions, and the monotonicity property is not expected to be true for all such solutions. The 8 solutions in case I are exactly the solutions computed by Plechac and Vladimir in the previous slide. The 2 solutions in Case II are the first two of the 5 solutions they computed, this case turns out to be numerically much more challenging and we therefore don't verify the other 3. The first of these solutions should also be the same as the one computed by Donninger and Shörkuber, at least they look the same and the kappa values agree. But strictly speaking one would have to do some more work to fully prove that they are the same.
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As part of the proof we do compute very accurate enclosures of the profiles, so we can actually see what they look like. This is a somewhat messy plot of the 8 solutions in Case I. Asymptotically they have the same decay rate at infinity, but we can see that the coefficient grow larger in j. This is one of the reasons that they get harder to rigorously verify. The left side is a bit of a mess, but you can see that we have more and more oscillations for larger j. There is actually quite a lot of structure here, the initial values alternate with being above and below 1 and seem to converge to 1. The oscillations are also somewhat regular, the peaks follow a somewhat regular pattern. It would be very interesting to study this behavior as j goes to infinity, but it is not something we looked at so far.


Solutions for Case Il
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In Case II we only prove existence of two solutions, but here I also include three more solutions, with dashed lines, that there is only numerical evidence for. The picture here is however not as regular as the previous one. The decay rate is the same for all of them and the coefficient seems to grow with j. For the oscillations the picture is however very different. The first one is monotone and the second one has one bump. The latter ones do however not follow this pattern. There is some sort of up and down movement for the third one, but it seems to be decreasing all the time. The fourth one has one bump and the fifth one seems to be monotone. So the situation is not as clear, and it even becomes difficult to know if we have missed any solutions in between.


Proof idea - Matching solutions
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But okay, how do we prove all of this? How can we prove both the existence of the self-similar solutions, and also get quantitative information about them? Our approach is based on what in numerics would be called a shooting method, you could also maybe refer to it as a matched asymptotics approach. We look at two families of solutions to the ODE. The first one, represented by the blue line here, satisfies the boundary condition at zero. The second one, represented by the orange line, satisfies the boundary condition at infinity. We fix a matching point, that we denote by xi-1 and is here given by the green line. The goal is then to prove that these two solutions match at this point, and hence form a global solution satisfying both boundary conditions.
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So what are these two families Q-0 and Q-infinity? They are both solutions to our ODE, but with different boundary conditions. Q-0 satisfies the boundary condition at 0, its derivative is zero there. The initial value we are however free to choose, and we denote it by the parameter mu. For symmetry reasons we can choose it to be real and positive. Of course the solution also depends on the value of kappa that we use for the equation. So Q-0 depends on two real parameters, mu and kappa. Q-infinity on the other hand, satisfies the boundary condition at infinity. This, however, doesn't completely determine the solution. There is a one parameter family of such solutions, that we will parametrize by a complex parameter gamma. Again the solution of course depends on kappa. So we have three parameters, mu, gamma and kappa. Our goal now is to find parameter values such that these two solutions, Q-0 and Q-infinity, agree on the matching point xi-1 with both their value and their derivative. It then follows from classical uniqueness theory for second order ODE:s that they must agree everywhere, and hence form a global solution satisfying both boundary conditions.


Proving matching condition
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So we have this matching condition that we need to verify, how can we do that? We introduce the function G, depending on our three parameters mu, gamma and kappa and given by the difference for the values and the derivatives of our two solutions. Proving the matching condition corresponds to finding a zero of this function. Since mu and kappa are real and gamma is complex we can consider this as a function from R4 to R4. How do we find a zero then? Well, the first step is to find a numerical approximation. This is a classical numerical approximation, there is no guarantee that this corresponds to an actual zero and we don't control for any rounding errors or discretization errors. The next step, which is the crucial one, is that we rigorously verify this approximate solution using a method known as the interval Newton method, a standard method in computer-assisted proofs. I'll give you much more details about this method in the next lecture. The short version is that the interval Newton method is related to the classical numerical Newton method. But compared to the classical version it allows us not only to compute approximations of roots, but also prove the existence of a unique root in the neighborhood of the approximation. To apply the interval Newton method we need to be able to compute rigorous interval enclosures of Q-0 and Q-infinity as well as their derivatives in xi, so that we can evaluate G. We also need to compute the derivative of G with respect to the arguments, for this we also need to be able to compute derivatives of Q-0 and Q-infinity with respect to mu, gamma and kappa. What this method then spits out is an enclosure for a locally unique root. Here are what this looks like for the two solutions for case II. The notation I'm using here is a compact way of writing intervals. If you read the lower numbers you get a lower bound and if you read the upper numbers you get an upper bound. So what this says is that the first solution corresponds to mu, gamma and kappa values, where mu lies in this interval, gamma in this complex box, and kappa in this interval. We will see more details about this next lecture.


Things to explain
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So what do we have now? Our goal has been reduced to proving the existence of zeros to this function G, which depends on Q-0 and Q-infinity. The first thing I need to tell you is how to find an approximate numerical zero of G. Then I have to tell you what the interval Newton method is. And finally, and this is were most of the work actually lies, I have to tell you how we actually compute all of these values, both approximately but in particular how to do it in a rigorous way. Today I'll tell you how to compute them approximately, and in the next lecture we'll look at the interval Newton method and how to compute them rigorously.


A simplified example
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To make our lives easier we will, instead of working with this ODE, which is rater complicated, work with a simplified example. The one in the bottom here. They do however share a lot of similarities, and it is only really one of the simplifications that changes any of the qualitative behavior. My hope is that it in the end should be somewhat clear how to adapt what I have discussed to the full equation. So what are the simplifications we make? The first one is simply that we consider the NLS equation instead of the CGL equation, so we set epsilon and delta to zero. The second simplification is that we choose a specific case of the NLS equation, namely the 2D cubic NLS. Why not the 3D cubic one? Well, in principle we could do that one as well, but the 2D version was the one I had already written most of this code for. The third simplification, and the one that actually changes what we do a bit, is that we take omega to be one (this is not important) and kappa to be zero. This means that we are no longer actually computing self-similar solutions, instead what we are computing are what is known as excited states of the 2D cubic NLS. These excited states are already known to exist, so solving this equation will not prove anything new. It does however give us good quantitative control of the excited states, which is the reason we are looking at this in some ongoing work. Finally, as a consequence of the above choices of parameters, we can take Q to be real valued. This leaves us with the following equation, which I believe you will agree is a much nicer looking one. So solving this equation will not solve our actual problem, but the process is significantly similar so that I think understanding how to solve this one will get you a long way.
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So we have this new simplified equation. The task is the same, we need to be able to compute Q-0 and Q-infinity. Let us start with Q-0, and let us start with computing a numerical approximation. Well, we have an ODE, not even a particularly complicated one, and we have initial conditions at zero. This is a standard ODE problem and we can use any numerical ODE solver, such as Runge-Kutta 4, TSit5 or Vern7. If you for example implement this in the Julia programming language using their packages for solving ODE:s it is only a couple of lines of code. To the right I have just take some random initial value and computed the solution numerically. Note that this solution doesn't go to zero at infinity, so it is not one of the solutions we are looking for!


Computing @ - Rigorously
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So okay, we can numerically compute an approximation of Q-0, that's great! But what we will need to do in the end is compute a rigorous numerical value. How is that done? I'll talk more about this in the next lecture, but the short answer is that instead of using a regular numerical ODE solver we use a rigorous numerical ODE solver. More specifically we use one implemented by the CAPD library. This will not give us an exact solution of the ODE, but it will give us an enclosure of the ODE. So instead of having a thin line that approximates the solution, we get a collection of boxes that enclose the solution. There is some more work to be done because the solution has a regular singular point at zero, which we handle by Taylor expanding. But more about this in the next lecture!


Computing Q- - Linear equation
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So Q-0 was easy, at least for computing an approximation we only had to use some standard numerical ODE solver. What about Q-infinity then? Let us start by ignoring the non-linear term in our equation, and only consider the linear part. We then get this equation here. If we multiply by xi-squared we get this. This is a well known linear ODE, known as the modified Bessel equation, in this case having parameter zero (so there is no parameter). This equation has a regular singular point at zero, which is not so important for us now, and an irregular singular point at infinity, which is important for us. A linearly independent set of solutions is given by the modified Bessel functions K and I. Due to the singular point at infinity they have an exponential dependence on xi, with K decreasing exponentially and I increasing exponentially.


Computing Q- - Approximately
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So what does the linear equation tell us about the non-linear one? Well, quite a lot! For Q-infinity we are looking for a solution to this equation which goes to zero at infinity. If it goes to zero at infinity, that means that the cubic term becomes negligible for large values of xi. If we just remove the cubic term we of course get the linear equation, the modified Bessel equation. As I just said this equation has two linearly independent solutions, one going to zero at infinity and one going to infinity at infinity. Since we want our solution to go to zero we can simply take it to be a scalar multiple of the K. For any gamma, gamma times K-0 is a solution to the linear equation. Of course we are not actually solving the linear equation, but for large values of xi this will be a good approximation of a solution also to the non-linear equation. For our purposes today this will be a sufficiently good approximation.


Computing @ - Rigorously

Qeo(§) = 7Ko(€) + Ko(E) (7, €) + ho(E) Ik (7, €)

» Initial bounds with contraction argument
» Improved bounds by bootstrapping

» More next lecture!


Again, we eventually have to answer the question of how to get a rigorous solution, and not only an approximate one. The way this will be done is by adding two remainder terms that capture error we get from the cubic term. But more about this in the next lecture!


Finding approximate numerical solution
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We now have everything we need to compute both Q-0 and Q-infinity approximately, that means that we can also compute G approximately! What remains is finding an approximate zero for G. In principle one can use any numerical tool for finding zeros for this, but let me give you some plots to get a feeling for what happens at least. We have two parameters to vary, mu and gamma. It turns out that the solution is very sensitive to the value of mu, and not as much to gamma. We can therefore start by finding a rough approximate solution by fixing gamma to be zero and varying mu. I have here plotted the norm of G-mu-0 for a range of values of mu. We can see that the value becomes close to zero near mu equal to 4.15. Zooming in a lot around this point we can plot the value of G as a function of both mu and gamma. We get this cone like shape, and the function seems to have a zero in the middle here. Note that the scales for mu and gamma are very different here. Of course one would normally not find the zero by plotting it like I have done here, but by using for example Newton's method or something like that.


Finding approximate numerical solution
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If we do use a Newton method to refine our zero we get that it is approximately given by this value here. And evaluating G on this point we get something that is very close to zero. We can then plot the solution of our ODE given by this initial value, which is the blue line here. The orange line is the approximate of Q-infinity, gamma times the modified Bessel function that we had. As we see they agree well for large values of xi, but for smaller values of xi the orange line is no longer a good approximation for our non-linear ODE.


Next lecture

» Computing Qp and Q. rigorously

» Rigorously verifying an approximate solution (interval Newton method)
» Handling the full equation

» Results for CGL


So what we have seen now is how to compute an approximate solution to our ODE. By computing Q-0 using a numerical solver and Q-infinity as a solution to the linear equation. What remains is rigorously proving that there is an exact solution near this approximate solution. This is what we'll do next lecture. We will look at how to compute Q-0 and Q-infinity rigorously and how to rigorously verify an approximate zero using the interval Newton method. I'll then talk a bit about how to go from this simplified equation to the full CGL equation. Finally I'll tell you about our results for the branches of the CGL equation. Thank you!


