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Abstract. Kronheimer and Mrowka used gauge theory to define a functor J] from a category of webs in

R3 to the category of finite-dimensional vector spaces over the field of two elements. They also suggested

a possible combinatorial replacement J[ for J], which Khovanov and Robert proved is well-defined on a
subcategory of planar webs. We exhibit a counterexample that shows the restriction of the functor J] to

the subcategory of planar webs is not the same as J[.

1. Introduction

Kronheimer and Mrowka have outlined a new approach that could potentially lead to the first non-
computer based proof of the four-color theorem [6]. Their approach relies on a functor J], which they define
using gauge theory, from a category of webs in R3 and foams in R4 to the category of finite-dimensional
vector spaces over the field of two elements F. A web is an unoriented trivalent graph and a foam is a kind
of singular cobordism between webs whose precise form is described in [6].

The four-color theorem can be reformulated as a statement about webs. An edge e of a web is said to be
a bridge if removing e increases the number of connected components of the web. A Tait coloring of a web
is a 3-coloring of the edges of the web such that no two edges incident on any given vertex share the same
coloring. Given a web K, the Tait number Tait(K) is the number of Tait colorings of K. The four-color
theorem is equivalent to the statement that every bridgeless planar web admits at least one Tait coloring.

The functor J] associates a vector space J](K) to a web K in R3. An edge e of a web K in R3 is said to
be an embedded bridge if there is a 2-sphere smoothly embedded in R3 that transversely intersects K in a
single point that lies on e. Kronheimer and Mrowka prove the following nonvanishing theorem:

Theorem 1.1. (Kronheimer–Mrowka [6, Theorem 1.1]) For a web K in R3, the vector space J](K) is zero
if and only if K has an embedded bridge.

Based on some simple examples and general properties of J], they make the following conjecture, which
by Theorem 1.1 implies the four-color theorem:

Conjecture 1.2. (Kronheimer–Mrowka [6, Conjecture 1.2]) For a web K that lies in the plane R2 ⊂ R3,
we have dim J](K) = Tait(K).

Kronheimer and Mrowka also suggested a possible combinatorial replacement J[ for J], which they defined
via a set of rules that they conjectured would yield a well-defined functor [6, Section 8.3]. Khovanov and
Robert later showed that J[ is not well-defined for arbitrary webs in R3 and foams in R4, but is well defined
provided we restrict to the subcategory of webs in R2 and foams in R3 [3]. We will call this subcategory the
category of planar webs. We note that planar webs are precisely those relevant to Conjecture 1.2. Based on
results due to Khovanov and Robert [3], and Kronheimer and Mrowka [5], for any planar web K we have

dim J[(K) ≤ Tait(K) ≤ dim J](K),(1)

and for a special class of reducible planar webs (also called simple webs in [6]), these three integers coincide:

dim J[(K) = Tait(K) = dim J](K).

A proof that the restriction of J] to the subcategory of planar webs is indeed the same functor as J[ would
therefore prove Conjecture 1.2 and hence the four-color theorem.

It is thus of interest to understand the relationship between the functors J[ and J]. Some insight into these
functors can be gained by considering related functors with different target categories. In [5], Kronheimer
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Figure 1. Given a planar web L0 and choice of edge e, we can construct a square of
planar webs L0, L1, K0, and K1 related by standard foam cobordisms in R3. The webs are
identical outside of the indicated 2-balls.

and Mrowka establish the second inequality in equation (1) by introducing a system of local coefficients and
defining a functor from the category of webs in R3 to the category of modules over the ring F[T±1

1 , T±1
2 , T±1

3 ].
In [3], Khovanov and Robert extend the ground field F to the graded ring R = F[E1, E2, E3], where

deg(E1) = 2, deg(E2) = 4, deg(E3) = 6,

and define a functor from the category of planar webs to the category of modules over R. One can obtain
additional functors by base-changing to a ring S via a ring homomorphism R→ S. As noted in [1] Corollary
3.1, the first inequality in equation (1) directly follows from [3] Proposition 4.18 by considering such base-
changes.

We consider here a base-change from R to the graded ring F[E], where deg(E) = 6, via the ring homo-
morphism R→ F[E] given by

E1, E2 7→ 0, E3 7→ E.

We thereby obtain a functor from the category of planar webs to the category of modules over F[E]. We
denote this functor by 〈−〉. Given a web K, we say that the corresponding F[E]-module 〈K〉 is the state
space of K. By [3] Proposition 4.18, the state space 〈K〉 is a free graded module of rank Tait(K).

As described in [3] Section 4.3, given a planar web L0 and a choice of edge e we can construct a square
of planar webs L0, L1, K0, and K1 that are related by standard foam cobordisms in R3 (see Figure 1). By
[3] Lemma 4.11, the image of this square under the functor 〈−〉 is a 4-periodic complex:

〈L0〉 〈L1〉

〈K1〉 〈K0〉.

1

11

2

(2)

The integers indicate the degrees of the linear maps. If we further base-change to the ground field F via the
ring homomorphism F[E]→ F, E 7→ 0, we obtain a 4-periodic complex for the combinatorial functor J[:

J[(L0) J[(L1)

J[(K1) J[(K0).

1

11

2

(3)
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Figure 2. Irreducible web W4. We consider the 4-periodic complex corresponding to the
indicated edge e.

As shown in [4] Lemma 10.2, we obtain an analogous 4-periodic complex by applying the gauge-theoretic
functor J] to the square shown in Figure 1:

J](L0) J](L1)

J](K1) J](K0).

(4)

We note that the vector spaces for J[ are graded, but the vector spaces for J] are ungraded. Kronheimer
and Mrowka prove the following result:

Theorem 1.3. (Kronheimer–Mrowka [4, Lemma 10.3]) In the 4-periodic complex (4) for J], the homology
groups at diametrically opposite corners are equal.

The proof of Theorem 1.3 relies on the fact that the 4-periodic complex (4) for J] can be extended to an
octahedral diagram involving two additional webs that are nonplanar. Since J[ is not defined for nonplanar
webs, it is natural to ask whether the analog to Theorem 1.3 holds for J[. We answer this question in the
negative by exhibiting a specific counterexample:

Theorem 1.4. For the (irreducible) web L0 = W4 shown in Figure 2 with the indicated choice of edge e,
the homology of the complex (3) for J[ is zero at K0 but nonzero at L0.

In particular, Theorems 1.3 and 1.4 show that the restriction of the functor J] to the subcategory of
planar webs is not the same as the functor J[. We emphasize that this result does not refute Conjecture 1.2,
and thus does not invalidate Kronheimer and Mrowka’s strategy for proving the four-color theorem.

2. Theoretical results

Consider the situation in which L0 is irreducible but L1, K0, and K1 are all reducible. Given bases for the
state spaces in the complex (2) for 〈−〉, we can express the linear maps in the complex as F[E]-valued matrices
relative to these bases. By performing Smith decompositions of these matrices, we can decompose each state
space in the complex into a kernel, denoted by subscript k, and a complement, denoted by subscript c:

〈L0〉k ⊕ 〈L0〉c 〈L1〉k ⊕ 〈L1〉c

〈K1〉k ⊕ 〈K1〉c 〈K0〉k ⊕ 〈K0〉c.

1

11

2

(5)

We have:

Theorem 2.1. In the 4-periodic complex (2), the homology groups are E-torsion.
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Proof. This follows directly from [3] Proposition 4.12 and comments after the statement of Proposition 4.17,
which show that the 4-periodic complex (2) becomes exact after localizing F[E]→ F[E,E−1]. �

By Theorem 2.1, the complement for each state space is mapped into a submodule of full rank of the
kernel for the subsequent state space.

As described in [1], we have an algorithm for constructing bases of the state spaces for reducible webs,
and we can use a computer to construct a submodule M of 〈L0〉 of full rank. The only possible difference
between the submodule M and the actual state space 〈L0〉 is that homogeneous generators of M may be
shifted upwards in degree by multiples of deg(E) = 6 relative to corresponding homogeneous generators of
〈L0〉. We thus obtain a periodic complex analogous to (5), but with 〈L0〉 replaced by M :

Mk ⊕Mc 〈L1〉k ⊕ 〈L1〉c

〈K1〉k ⊕ 〈K1〉c 〈K0〉k ⊕ 〈K0〉c.

1

11

2

(6)

In principle, it need not be the case that the image of 〈K1〉 → 〈L0〉 is contained in M , but if not we can simply
replace M with the module spanned by M and this image. By Theorem 2.1, the complex (6) determines the
ranks of the modules in the complex (5). In particular,

rank(〈L0〉k) = rank(Mk), rank(〈L0〉c) = rank(Mc).

By computing the quantum ranks of the modules in the complex (6), we can strongly constrain the possibil-
ities for the complex (5) for 〈−〉, which in turn strongly constrains the possibilities for the homology of the
complex (3) for J[.

The relationship between the functors 〈−〉 and J[ is discussed in [1, Section 3]. We briefly summarize
the results we will need. Given a planar web K, we define a half-foam H with boundary K to be a foam
cobordism in R3 from the empty web to K. A half-foam H with boundary K determines elements 〈H〉 ∈ 〈K〉
and J[(H) ∈ J[(K). If 〈H〉 is zero then J[(H) must be zero as well, but in principle it may happen that
J[(H) is zero and 〈H〉 is nonzero, in which case we say that H is a vanishing half-foam. The state space
〈K〉 is freely generated by Tait(K) half-foams with boundary K. Since some of the generating half-foams
may be vanishing, we have

dim J[(K) ≤ rank(〈K〉) = Tait(K), qdim J[(K) ≤ qrank(〈K〉),

with equality holding in the case that there are no vanishing generators. For K reducible, there are no
vanishing generators of 〈K〉. It is an open question as to whether there is a nonreducible web K for which
〈K〉 has vanishing generators. For every vanishing generator 〈H1〉 of degree d1, there must be a corresponding
vanishing generator 〈H2〉 of degree d2 such that d1 + d2 is a positive integer multiple of deg(E) = 6. If there
are no vanishing generators of 〈K〉, then for every generator of 〈K〉 in degree d there is a corresponding
generator in degree −d, so qrank(〈K〉) is symmetric under q → q−1.

Similar considerations apply to the linear maps corresponding to foam cobordisms. Consider a foam
cobordism between planar webs K and L and the corresponding linear maps 〈K〉 → 〈L〉 and J[(K)→ J[(L).
Suppose H is a half-foam with boundary K such that the image of 〈H〉 under 〈K〉 → 〈L〉 can be expressed
as Ex for x ∈ 〈L〉. Then J[(H) maps to zero under J[(K)→ J[(L).

3. Computer results

We take L0 to be the (irreducible) web W4 shown in Figure 2 with the indicated choice of edge e. The
resulting webs L1, K0, and K1 are all reducible. We use the computer program described in [1] and available
on the web [2] to calculate the ranks and quantum ranks of the modules in the complex (6), and we display
the results in Table 1. The expressions in parentheses indicate the degrees of vanishing generators that
map to zero when we base-change from F[E] to F by setting E = 0. In particular, there are two vanishing
generators for M , one of degree 1 and one of degree 5. Since Tait(L0) = rank(M) = 180, the fact that there
are two vanishing generators gives us a lower bound of 178 for dim J[(L0). There are three possible cases
for the state space 〈L0〉:



THE COMBINATORIAL AND GAUGE-THEORETIC FOAM EVALUATION FUNCTORS ARE NOT THE SAME 5

module rank qrank

M 180 q−6 + 11q−4 + 10q−3 + 29q−2 + 19q−1 + 38 + 19q + 29q2 + 10q3 + 11q4 + q6 + (q + q5)
Mk 72 2q−4 + q−3 + 11q−2 + 3q−1 + 19 + 3q + 18q2 + 3q3 + 9q4 + q6 + (q + q5)
Mc 108 q−6 + 9q−4 + 9q−3 + 18q−2 + 16q−1 + 19 + 16q + 11q2 + 7q3 + 2q4

〈L1〉 168 2q−5 + 8q−4 + 12q−3 + 24q−2 + 22q−1 + 32 + 22q + 24q2 + 12q3 + 8q4 + 2q5

〈L1〉k 108 q−5 + q−4 + 9q−3 + 9q−2 + 18q−1 + 16 + 19q + 15q2 + 11q3 + 7q4 + 2q5

〈L1〉c 60 q−5 + 7q−4 + 3q−3 + 15q−2 + 4q−1 + 16 + 3q + 9q2 + q3 + q4

〈K0〉 72 q−5 + q−4 + 10q−3 + 3q−2 + 19q−1 + 4 + 19q + 3q2 + 10q3 + q4 + q5

〈K0〉k 60 q−4 + 7q−3 + 3q−2 + 15q−1 + 4 + 16q + 3q2 + 9q3 + q4 + q5

〈K0〉c 12 q−5 + 3q−3 + 4q−1 + 3q + q3

〈K1〉 84 2q−5 + q−4 + 12q−3 + 3q−2 + 22q−1 + 4 + 22q + 3q2 + 12q3 + q4 + 2q5

〈K1〉k 12 q−3 + 3q−1 + 4q + 3q3 + q5

〈K1〉c 72 2q−5 + q−4 + 11q−3 + 3q−2 + 19q−1 + 4 + 18q + 3q2 + 9q3 + q4 + q5

Table 1. Ranks and quantum ranks of the modules in the complex (6). The expressions
in parentheses indicate the degrees of vanishing generators that map to zero when we base-
change from F[E] to F by setting E = 0.

(1) No generators are missing. In this case 〈L0〉 = M and dim J[(L0) = 178. Since dim J](L0) ≥
Tait(L0) = 180, we already know that this case is not consistent with J[ = J].

(2) A generator of degree −1 is missing. In this case M is a proper submodule of 〈L0〉, with the vanishing
generator of degree 5 in M shifted up relative to the missing generator of degree −1 in 〈L0〉, and
dim J[(L0) = 180.

(3) A generator of degree −5 is missing. In this case M is a proper submodule of 〈L0〉, with the vanishing
generator of degree 1 in M shifted up relative to the missing generator of degree −5 in 〈L0〉, and
dim J[(L0) = 180.

For each case, we show that the homology of the complex (3) for J[ is zero at K0 but nonzero at L0, thus
proving Theorem 1.4 from the introduction.

3.1. Case 1: no generators are missing. From Table 1, it follows that the quantum ranks of the modules
for L0 are

qrank(〈L0〉) = q−6 + 11q−4 + 10q−3 + 29q−2 + 19q−1 + 38 + 19q + 29q2 + 10q3 + 11q4 + q6 + (q + q5),

qrank(〈L0〉k) = 2q−4 + q−3 + 11q−2 + 3q−1 + 19 + 3q + 18q2 + 3q3 + 9q4 + q6 + (q + q5),

qrank(〈L0〉c) = q−6 + 9q−4 + 9q−3 + 18q−2 + 16q−1 + 19 + 16q + 11q2 + 7q3 + 2q4.

Thus

qrank(〈L0〉k)− q · qrank(〈K1〉c) = 0, qrank(〈L1〉k)− q · qrank(〈L0〉c) = q−4 − q2,

qrank(〈K1〉k)− q2 · qrank(〈K0〉c) = 0, qrank(〈K0〉k)− q · qrank(〈L1〉c) = 0.

It follows that the quantum dimensions of the homology groups for the complex (3) for J[ are

qdim(H(L0)) = q, qdim(H(L1)) = q−4,

qdim(H(K1)) = 1 + q4, qdim(H(K0)) = 0,

since we have generators of degrees 0 and 4 in 〈K1〉c that map to the vanishing generators of 〈L0〉k, and we
have a generator of degree 1 in 〈L0〉c that maps to E times a generator of degree −4 in 〈L1〉k. In particular,
the homology is zero at K0 and nonzero at L0.
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3.2. Case 2: a generator of degree −1 is missing. From Table 1, it follows that the ranks and quantum
ranks of the modules for L0 are

qrank(〈L0〉) = q−6 + 11q−4 + 10q−3 + 29q−2 + 20q−1 + 38 + 20q + 29q2 + 10q3 + 11q4 + q6,

qrank(〈L0〉k) = 2q−4 + q−3 + 11q−2 + 4q−1 + 19 + 4q + 18q2 + 3q3 + 9q4 + q6,

qrank(〈L0〉c) = q−6 + 9q−4 + 9q−3 + 18q−2 + 16q−1 + 19 + 16q + 11q2 + 7q3 + 2q4.

Thus

qrank(〈L0〉k)− q · qrank(〈K1〉c) = q−1 − q5, qrank(〈L1〉k)− q · qrank(〈L0〉c) = q−4 − q2,

qrank(〈K1〉k)− q2 · qrank(〈K0〉c) = 0, qrank(〈K0〉k)− q · qrank(〈L1〉c) = 0.

It follows that the quantum dimensions of the homology groups for the complex (3) for J[ are

qdim(H(L0)) = q−1 + q, qdim(H(L1)) = q−4,

qdim(H(K1)) = q4, qdim(H(K0)) = 0,

since we have a generator of degree 4 in 〈K1〉c that maps to E times a generator of degree −1 in 〈L0〉k and
we have a generator of degree 1 in 〈L0〉c that maps E times a generator of degree −4 in 〈L1〉k. In particular,
the homology is zero at K0 and nonzero at L0.

3.3. Case 3: a generator of degree −5 is missing. From Table 1, it follows that the ranks and quantum
ranks of the modules for L0 are

qrank(〈L0〉) = q−6 + q−5 + 11q−4 + 10q−3 + 29q−2 + 19q−1 + 38 + 19q + 29q2 + 10q3 + 11q4 + q5 + q6,

qrank(〈L0〉k) = q−5 + 2q−4 + q−3 + 11q−2 + 3q−1 + 19 + 3q + 18q2 + 3q3 + 9q4 + q5 + q6,

qrank(〈L0〉c) = q−6 + 9q−4 + 9q−3 + 18q−2 + 16q−1 + 19 + 16q + 11q2 + 7q3 + 2q4.

Thus

qrank(〈L0〉k)− q · qrank(〈K1〉c) = q−5 − q, qrank(〈L1〉k)− q · qrank(〈L0〉c) = q−4 − q2,

qrank(〈K1〉k)− q2 · qrank(〈K0〉c) = 0, qrank(〈K0〉k)− q · qrank(〈L1〉c) = 0.

It follows that the quantum dimensions of the homology groups for the complex (3) for J[ are

qdim(H(L0)) = q−5 + q, qdim(H(L1)) = q−4,

qdim(H(K1)) = 1, qdim(H(K0)) = 0,

since we have a generator of degree 0 in 〈K1〉c that maps to E times a generator of degree −5 in 〈L0〉k and
we have a generator of degree 1 in 〈L0〉c that maps E times a generator of degree −4 in 〈L1〉k. In particular,
the homology is zero at K0 and nonzero at L0.
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