Quantum variance for Hecke eigenforms !

Wenzhi Luo Peter Sarnak
Ohio State University =~ Courant Institute and
Princeton University

Contents:

1. Introduction.

2. Poincaré series.

3. Symmetry properties of B,,.

4. Extensions of B, and diagonalization.
5. Eigenvalues of B,.

6. Appendices.

(I) Classical variance.

(IT) Evaluation of S.(7).

(

IIT) Self-adjointness of Hecke operators for B,,.

1 Introduction.

This is the third paper of the series ([LS1], [LS2]) dealing with the equidistribution
of mass of automorphic forms on X = I'\H with I' = SL(2,Z) and H the upper
half plane. We realize H as SL(2,R)/SO(2,R) with its hyperbolic metric and ¥ =

!Both authors are partially supported by NSF grants.



I'\SL(2,R) as the unit cotangent space to X. Functions on X can be thought of as
SO(2,R) invariant functions on Y and we will often do so. In this way the Casimir
element w in the universal enveloping algebra of si(2,R) restricts to the Laplace-
Beltrami operator A when acting on functions on X.

There are two types of automorphic forms which we study. The first are the

Maass-Hecke cusp forms ¢ on X (see [Sar]). They satisfy
Ap+Ap=0

where for n > 1, T;, is the normalized Hecke operator (see [I1]). We normalize these

cusp forms so that

ded
;yzl

813 = [ lo(=)P

If we order the ¢’s by their eigenvalues A\; < Ay < - -+, and correspondingly ¢+, ¢o, - - -,
we obtain an orthonormal basis for the cuspidal subspace L2, (X) of L*(X). It is

cusp

known (after Selberg) that these eigenvalues satisfy a Weyl law

N = 31 e A

e 12
as A — 00.

The other automorphic forms which we consider are the holomorphic cusp forms
in Sk(T') of even integral weight & for ' (See [Ser]). Si(') is a vector space with the
Petersson inner product. Let H; be the orthonormal basis of Hecke eigenforms for

Sk(T). According to the Riemann-Roch theorem we have

dimSi(T) = #Hy ~ 1k—2 ;

as k — oo.

Our interest is in the distribution of the probability measures on X, iy = |¢(2) |Z%

2



for ¢ in (1) and py = yk|f(z)|2d2# for f € Hy, as well as their behavior as A or k
goes to infinity (that is, in the semi-classic limit).

To explain what to expect, we recall some conjectures (or suggestions) from the
physics literature. The motion by geodesics on X gives rise to a Hamiltonian flow G;
on Y given by

et 0
Pg — Fg O €_t/2 3 4 S R

This flow preserves normalized Haar measure dg on Y and is ergodic. It has positive
entropy as well as all other characteristics of a chaotic Hamiltonian. Let C§(Y)
denote the space of smooth functions on Y which decay rapidly in the cusp and
similarly we define the space Cg°(X). Thus if ¢ € C§°(X) and for any A > 0 there
is a constant C = C(A, ) such that |¢(z)| < C(A, ¥)y= for y = I(2) > V3/2
and similarly for the derivatives of . Let C§%(X) (respectively Cg5(Y)) be the
subspace of C§°(X) consisting of functions with mean zero (i.e. [y w(z)%“i =0) and
whose zeroth Fourier coefficient fol Y (2)dx is zero for y large enough (depending on
). Thus C§%(X) contains the space Cgg(X) of smooth functions on X with compact
support and mean zero, as well as Cgfsp(X ), the space of smooth rapidly decaying
functions on X which are cuspidal. The last is spanned by the Hecke-Maass cusp
forms. It is known ([Ral]) that if ¢ € C§5(Y'), then its fluctuations along a generic
orbit of the geodesic flow obey a central limit theorem. Precisely ﬁ I 4(Gi(g))dt

become Gaussian with mean 0 and variance V' (¢) given by the following non-negative

Hermitian form on Cg4(Y):

00 et’2 —
V(41,12) = /_oo /F\SL(z,R) (0 (9( 0 o 1/2 )) o (g)dgdt. (2)

The t-integral in (2) converges absolutely in view of the exponential decay of the
correlations for the flow G, ([Ra2]). We call the variance V() of the ‘classical ob-

servable’ v, the classical variance. Since w commutes with the regular representation,
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it follows from (2) and integration by parts that

V(Wﬁlﬂ/&) = V(wlnwa)a and V(Ra1¢1,Ra2¢2) = V(wlﬂﬁz), (3)

where R is the regular representation given by

Rg,9(Tg) = ¢(Tggn),

_ 631 0 . (65) 0
ay = 0 al—l y G2 = 0 042_1 .

In particular V is diagonalized by the invariant subspaces for the regular action of

and

SL(2,R) on L§(Y). Restricting V to C§y(X) we see from (3) that

V(T/fla A%) = V(A¢1,¢2)-

Thus on CgH(X), V is diagonalized by the Maass cusp forms ¢; (and corresponding
unitary Eisenstein series). In Appendix I we compute the eigenvalue of V' on ¢,, it is

given by

" oG- )P “
where \; = ; + 2.

The eigenvalue problem (1) gives the eigenstates for the quantization of the Hamil-
ton flow G;. Quantization also provides a self-adjoint operator Op(v) on L*(X),
for any real valued v in C§°(Y). In this case a ‘canonical’ quantization is given
by Zelditch [Ze]. Op(¢) is the quantum observable corresponding to the classi-
cal observable ¢ and < Op(v)¢;,; > gives the value of this observable in state
¢;. Note that if ¢ € C§°(X), then Op(z) is simply the multiplication operator
(Op(¥)h)(z) = ¥(2)h(z) and < Op(¥)e;, ¢; >= g, (¥) -

As mentioned before our interest is in the relation between the classical observable



¥ (Gi(g)) as t — oo and the quantum observables < Op(¥);, ¢; > as A; — oco. It is
known [Ze] that their means agree. For ¢ € C§°(Y),

lim ——— 3 < Op(¥) gy, b5 >= ¥(g)dg. (5)

A—00 N () N I'\SL(2,R)

In studying the fluctuations we will asume that ¢ € Cgy(Y). In [FP] and
[EFKAMM] it is proposed that for such classically chaotic Hamiltonians, the variance
of the quantum observables < Op(v)¢;, ¢; > corresponds to the classical variance
V(%) and that the distribution of these numbers becomes Gaussian after normal-
ization by the square root of the variance. More precisely the proposed quantum

variance is

Sp(A) == > | < Op(w)j, 65 > |> ~ V()N(N)'?, (6)

A <A

as A — oo.

Zelditch [Ze] introduced these quantum variance sums in his treatment of the
quantum ergodicity for this surface. He established the non-trivial bound Sy (\) =
Oy(A/logA). In [LS1] we showed that for ¢ € C§4(X) and any € > 0, Sy()\) =
Oy(A/2€), and Jakobson [Ja] extended this bound to all ¢ € C§(Y). The anal-
ysis leading to these O(AY2*€) bounds involves off-diagonal terms coming from an
application of Kuznetsov’s trace formula (see the outline below). These were handled
using the large sieve inequalities of Deshouillers and Iwaniec [DI]. In order to get rid
of the e and obtain an asymptotic for Sy (), one cannot afford to just estimate these
off-diagonal terms. In fact as shown below, these terms contribute to the main term
in the asymptotics.

As is clear from the later sections of this paper, the analysis of these quantum
variance sums is rather delicate. We will follow our strategy in [LS2], to examine first

the quantum variance for the very similar problem with ¢; replaced by f € Hy. That



is, for ¢ € CFH(X), set

dxdy
y:

< Op()f, f = s(w) = [ HIF (I P0(2)

The corresponding quantum variance sums are
X 2 @)

k<K2|k f€Hj
Note that & plays the role of v/X. The only diference between our treatment of (7)
and Sy(A) of (6) is that for the holomorphic case one uses the Petersson formula (see
[I2]) in place of the Kuznetsov formula ([Ku]). This simplifies the analysis especially
as far as the special functions involved. We leave the details of the analysis of the
asymptotics of Sy () to a later paper, though we will record below the leading term
in that case for the purpose of comparison.

We can now state the main result of this paper. In view of the Petersson formula
it is convenient to consider a weighted version of the quantum variance sums. The
weights are mildly varying arithmetic weights given by special values at s = 1 of L-
functions. With a little more effort (see [ILS]) these weights can be removed, and they
have no effect on the final asymptotics. For f € Hj or ¢ a Maass-Hecke cusp form, let
L(s, f) and L(s, ¢) be the corresponding standard L-functions (finite part), see [IS1],
for example, for a description of the L-functions that we need. The completed L-
functions A(s, f) and A(s, ¢) are entire and satisfy functional equations. Let sym?(f)
and sym?(¢) be the symmetric square lifts of f and ¢ respectively to cusp forms
on GL3(Ag) (see [GJ]). The corresponding L-functions, which are Euler products
of degree 3, are denoted by L(s,sym?(f)) and L(s,sym?(¢)). Their completed L-
functions A(s,sym?(f)) and A(s,sym?(¢)) are entire and satisfy a functional equation
relating the values at s and 1 — s. We will also have the occasion to use the Rankin-

Selberg L-functions L(s,sym?(f)®¢) of degree 6 and their completion A(s, sym?(f)®
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®). The weights in question are L(1,sym?(f)). Being special values at s = 1, they
satisfy the bounds (see [HL])

k¢ < L(1, sme(f)) < kS,

for any € > 0.
Theorem 1. Fix u € C§°(0, 00).
(A). There is a non-negative Hermitian form B, defined on Cg%(X) such that for

Y € Cfy(X) and € > 0,

>u (7) > L1, sym® () g ()

2|k fEH]

( / ) K + Oy (K2+), 8)

as K — oo.

(B) B, satisfies the symmetries

Bw(Awla 7/)2) = Bw(wla AwZ)a

and for n > 1,
Bw(TTLwla ¢2) = Bw(wla an2)

(C). Restricting B,, to LZ,,,(X), B, is diagonalized by the orthonormal basis {1;} of

Maass-Hecke cusp forms and the eigenvalues of B,, at ¢; is TL(1/2, ¢;).

Remarks:
(1). A simple approximation argument in (A) allows us to take u to be the charac-
teristic function of an interval. Hence as K — oo,

o 3 L@, sym?(f)| ()P ~ Bu(v)K.

k<K 2|k f€Hy,



Also

S X L) ~ Sk

k<K,2|k f€Hy, 48
Thus we obtain the analogue for the p;’s of the asymptotics of Sy(\). As mentioned

earlier the methods of the proof of Theorem 1 apply to Sy(\) and yield
Su(N) ~ BB)VA

as A — co. The Hermitian form B on Cg5(X) satisfies the same symmetry relation
(B) of Theorem 1. The only difference is that the eigenvalue of B at ¢; is given by
B(¢;) = £L(1/2,¢;)V (¢;). Hence both the forms B and V are diagonlized by the ¢;’s
and the proposed quantum variance (6) is correct if one inserts the subtle arithmetic
factor L(1/2, ¢;) to the eigenvalues of V.

(2). The numbers L(1/2, ¢;), which are essentially the eigenvalues of the non-negative
Hermitian form B,, must satisfy L(1/2,¢;) > 0. This non-obvious fact is quite
deep and useful (see [IS1]). It was first established in [KaS|. The present eigenvalue
proof is interesting from various points of view. There is a lot of evidence that
the zeros of an L-function are spectral in their nature (see [KS]). Here we have the
numbers L(1/2,$,), as ¢; varies over the family of Maass-Hecke eigenforms, being
the eigenvalues of a non-negative operator.

(3). It is known [IS2] that at least 50% of the even ¢,’s, i.e. those satisfying ¢,(—z) =
$;(2), have L(1/2, ;) # 0. For the odd ¢;, L(1/2, ¢;) = 0 in view of the sign of the

functional equation of A(1/2,¢;), and also ps(¢;) = 0 since any f in Hj is real on

y =0 and so f(—Z) = f(z). One can show that (see [Lu])

2(1 som2( £)) 0 SBICR) 1
k<§,2|kaZHkL (o)~ s ¢(6) e

Combining this with Theorem 1 and Cauchy’s inequality, we see that for ¢ with
L(1/2,¢) # 0,
pi(9) = Q')
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as k — oo. This shows that the rate of equidistribution for the pf(¢)’s in the QUE

problem, i.e. for any € > 0,

pr() = Ocy (k1/2%9),

as predicted by Watson’s formula (see below) and the GRH, is essentially sharp.

We end the introduction with an outline of the paper. As in [LS1] and [LS2], we
establish (A) using the Poincaré series P, (see §2). These form a dense subspace
of C§%(X), and they allow us to analyze the quantity yf(Py ) in terms of sums over
Fourier coefficients of f. This in turn allows us to exploit the multiplicativity of
these coefficients, which comes from the fact that f is a Hecke eigenform (a crucial
ingredient). We then average over Hj, using Petersson’s formula (see §2). This
introduces diagonal and non-diagonal terms. The off-diagonal terms involve standard
Kloosterman sums. Next we excute the smooth sum over £ using Poisson summation.
An application of Lemma 5 and 6 from [LS2] introduces an arithmetic twisting of the
Kloosterman sums which become Salié sums. In this way the main term (as K — 00)
is identified and it contains an infinite series of exponential sums S.(y) discussed
in Appendix II. These non-diagonal terms appear as part of the rather complicated
main term that is given in Theorem 2 in §2. In this form the Hermitian form B, is
given in terms of its values at Poincaré series. In §3 we analyze B,. Using the series
expression as obtained in Theorem 2, we verify directly the symmetry properties (B)
of Theorem 1 when 1,1, are Poincaré series. In §4 the symmetry is extended to
C’é’j)(X ). With this and the fact that ¢; is uniquely determined by the eigenvalues
Aj and Aj(n),n > 1, we infer easily that B, is diagonalized by the ¢;’s. In §5 we
compute the eigenvalues of B, at ¢;. To do so we go back to the original asymptotics

in Theorem 1 with ¢ = ¢, an even Maass-Hecke eigenform. For such a ¢ we use



Watson’s identity [Wa]

O = | [ rerot
AL/2, 5y () © )A(L/2,)

= AL sym(7))PA (L sym¥(9) ©)

Thus the quantum variance sum over f boils down, after an analysis of the archimedean
factors on the r.h.s. of (9), to averaging L(1/2,sym?(f) ® ¢) over f . Using Rankin-
Selberg theory for GL(3) x GL(2), we can express these values in a suitable series
(see §5), after which the averaging over f € Hy and over even k can be carried out.
Unlike the case of the general ¥ in Theorem 1, in this analysis for ¢ only the diagonal
terms contribute to the main term in the variance sum. This leads to the eigenvalue,
i.e. B,(¢), taking the simple form as stated in part (C) of Theorem 1.

To conclude the introduction we comment on the proposed Gaussian behavior of
either y17(@) as f varies, or g, (¢) as j varies, with ¢ a fixed even Maass-Hecke form.
According to (9) and an analysis of the archimedean factors in (9), this amounts to
the distribution of the numbers L(1/2,sym?(f) ® ¢) as f varies. This family of L-
functions, L(s,sym?(f) ® ¢) with f € Hy, k — oo, is an SO(even) family according
to [KS]. This is shown in [DM] which examines the distribution of the low-lying zeros
for this family (note the signs of the functional equations for this self-dual family are
all 1, yet the family has an orthogonal rather than symplectic symmetry). Hence
according to the conjectures of Keating and Snaith [KeS, (77)] the moments of these
special values should satisfy

XX IM/25m (1) @ 8) ~ (10 K™ a(m) fsoeuen (m)
K2 B o ) 50(even) (),

where
2m
T2y -1

fSO(e'uen) (m) =
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and a(m) is a product over primes specific to this family, which can be computed for
any given m, but for which we don’t have a simple closed formula.

Thus if these conjectures are true, then the distribution of the numbers L(1/2, sym?(f)®
¢) and hence |pf(¢)|* is clearly not Gaussian.

To conclude we point the reader to the recent preprint [KR] where a similar
anomaly for the quantum variance is found for the cat map.
Acknowledgements. The authors would like to thank Zeev Rudnick for interesting
discussions, and in particular for drawing our attention to the references [FP] and

[EFKAMM].

2 Poincaré series.

We use the same notations as in [L.S2]. For h(z) € C§°(0, 00), the incomplete Poincaré

series (m € Z,m # 0) is defined as

Pum(2) = > h(y(vz))e(mz(yz)),

YET\T

= {( 1) el

f has a Fourier expansion

where

r>1
and we define

as(r)rkH1/2

A(r) = =
! ar(1)
Denote by L(s,sym?(f)) the symmetric square L-function associated to f:
o0 A TL2
L(s,sym?()) = ¢(29) 3 ML)

n=1 n
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and recall that, for any € > 0, the following bounds hold:
k¢ < L(1,sym?(f)) < k°. (10)

Since < f, f >=1 we have the relation

(4m)kt 272
P'(k) L(1,sym?(f))

Let my,me € Z, mimg # 0 and hy, hy € C§°(0,00). Recall if m; > 0, we have

lap(1)[* = (11)

(see Proposition 3 in [LS2])

<:uf’ Phi;mi(z)>

B 272 k-1 e
R Z)\f A+ my)h <—47r(r+m,/2)> + O(k~179).

7‘>1

Without loss of generality we may assume m; > 0,mq > 0, since (uy, Phn(2)) =

(g, Pn—m(2)). Thus, by (3) and the multiplicativity of Hecke eigenvalues,

(1ss Prins (2)) (g, Pryyns (2))
_ 2’ T(k—1)
(k= 1)L(1,sym2(f)) (4m)k-1 Z Z

d1 \ml,d2|m2 T1,72

ap(ri(r1 +my/dy))as(ra(re + me/ds))
(7'1 (7’1 + ml/dl))(k_l)/Q(’f'z(T'z + mz/dz))(k_l)/Q

Xy (47rd1 (7“1]:—_m11 /(2d1))> b (47rd2(r2k+_mlg /(2d2))> +O(k).

Fix u € C§°(0,00). From the above formula and by Petersson formula (see [I1]),

S u (M) S L (00 Gurs Prs ) i, P21

k>1,2|k feH,

- = &5e(%) = >

k>1,2|k di|mi,d2|me  ri(ri+mai/di)=r2(ra+msa/ds2)

k—1 — E—1
u <47rd1(7"1 ey /(2d1))> h (47rd2(r2 ey /(2@)))
- ¥ D S(ri(ri +mi/di), ra(re + ma/ds); c)

Cc

di|lmi,da|ma  T1,r2>1c¢>1
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E—1\ 272
_1)\k/2, [ 2
x Y 2m(-1) u(K)k—l

k>1,2[k

E—-1 — kE—1
I (47rd1(r1 ey /(2d1))> ha (47rd2(r2 ey /(2@)))
i (47T nran o ) m2/d2)) + O(KV2e),

c
We evaluate the diagonal terms by means of Poisson summation formula as

Kn

e Ooo u(§)d€ Z ﬁ /Ooo hy (d277)h_2(d177)§l7—2 + O(1), (12)

di|m1,d2|ma; m1/di=ms2/da
since 71(ry +my/dy) = ro(re + mao/dy) has at most finitely many solutions if m, /d; #
me/ds.

Applying Lemma 5 and Lemma 6 from [LS2], we deduce that the non-diagonal

terms are equal to

_9.5/2 S(ri(r1 +my/di), ra(re +ma/da);c)

> Yy :

d1|m1,d2|m2 r1,r2>1c¢>1
VAc 1ty 7 VAc 1y
2 47Td2(

o (/Acly K
X/o u( K y) VAc Ty i (47rd1(T1 +my/(2dy)) Ty +my/(2dy))

: . d
X sin (Ac [2+y— 7T/4) 7% +0(1)

_ Z Z Z 7‘1 r1+m1/d1) r2(7‘2+m2/d2) )JT . C-I—O(l),

d1|m1,dz\m2 r1,r22>1¢c>1

say, where

A =8m 7'17‘2(7“1 +m1/d1)(7“2 =+ mg/dg).

The terms with ¢ > K¢ contribute O(1), by partial integration. Making the change

~ @H

of variable ¢t = we see Jp, 1, ¢ 18

42 YV = / n (A /2 + (tK)?e/A —/4)

Xk (47rd1(r1 f—ffnl /(le))> ha (47rd2(r2 iKmQ /(2@))) d.
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Note

JAV} 47y
_— = 7 r1r2(r1+m1/d1)(7’2+m2/d2)

2c
2m moT1 miToy 1m1 mo 1 (m1>27‘2 1 (m2)27“1
= — (2 - _{— [ — -
C ( Tire + dg + d1 + 2 d1 d2 4 d1 T1 4 d2 T2 +

We first assume the test functions u, hq, hy are all real-valued and write for simplicity

maTy miTe

Jrl,m,c =g {ec (2T1T2 + d2 + dl ) fc(rl’TZ)} )

say, where e.(r) = exp(2miz/c).

Reducing the summation over ry, 75 into congruence classes mod c, we have,

> S(ri(ri 4+ ma/dy), ra(rs + me/ds); )e. (27"17'2 + mar + m1r2) fe(ri,m2)

r1,r2>1 dQ dl
b
= Y S(ala+mi/dy),b(b+my/dy); c)e, [ 2ab+ 22 + 12
a, b( mod c) do dy

X > fe(r1,m2)

r1=a( mod ¢),r2=b( mod ¢)

-y ¥ ( Y. Sla(a+ma/d),b(b+ms/ds);c)

¢ u( mod ¢) v( mod ¢) \a, b( mod c)

X e, <2ab + (ZL—; + u) a+ (73—11 + v) b)) <Z fe(ri,ma)ec(—ury — vrz)) )

71,72

Next we apply Poisson summation formula for the sum in 7, 75 and obtain

> felr, ra)ec(—ury —vre) =D B(ly, 1),

T1,T2 l1,l2

where

Bl k) = //m fe(risra)ec(—ury —vra)e(liry + lor)dridry
= //R2 fC(T'l, T2)€((ll - U/C)Tl -+ (12 — U/C)TQ)dT‘ld’l‘Q.

We can assume |u| < ¢/2, |v| < ¢/2, and by partial integration sufficiently many

times, we see that

Y B(li, ) = B(0,0) + O(K ™),

l1,l2
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for any A > 1. Thus,

> fe(ri, ro)ec(—ury — vrg) = //R2 fo(r1,r0)ec(—ury — vry)dridry + O(K~4).

1,72

For (u,v) # (0,0), by partial integration sufficiently many times, we infer that (recall
c K K°)
// fe(r1, ro)ec(—ury — vre)dridry K K4,
R2

for any A > 0. Thus only (u,v) = (0,0) contributes. Moreover we can allow ¢ > K¢

in the c-summation since

//R2 fe(ri,ro)dridry < K2,

for any A > 0.
For fixed d;, m; (i = 1,2) and integer -y, denote
mo my
Se(y) = Z S(a(ya + my/dy),b(vb + ma/ds); c)e. (nyab + (—) a+ (—) b) ,
a, b( mod c) dy dy
and S, = S;(1). We also write Sc m, /4, ms/d, for Se if we need to indicate the depen-
dence on other parameters. Obviously Se, m, /d;, ma/ds = Sec, ma/do, m1 /ds -
Thus, the non-diagonal contribution is

Z Z%//m fe(r1, ro)dridre + O(1)

di|mi,d2lma c21

= —4r% 3 Z%{Cf/z@/()m@//m

d1|m1,d2\m2 c>1

w L (Lrmme 1 (ﬁ) rp 1 (2) "1\ ittk)Pe/a
\/A 2 d1 d2 4 d1 1 4 d2 T2
tK tK
xh h dridrodt 3 + O(1
1<4wd1(r1+m1/(2d1))> 2<47rd2(7"2+m2/(2d2))> rars } (1)

. —27? N Sc e u(t)
- \/§ d1|m§2|m2§\${05/2<8/0 T//112

" 1 I1mime 1 (m1)2 ro 1 (m2>2 1 i(tK)? /A
el =———— — | — — — = | — —
\/T1T2 2 dl d2 4 dl T1 4 d2 T2
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tK
h h
i (47Td17"1> 2

(
_ ;—g(/omu(t)dt) > Z%{Ci@e(%%%)//f{z

) dhdrgdt} +o(1)

_ —Kr o0 1 . Sc — 1 my mg)
N 2\/5 (/0 U(t)dt) L Z d1d2 \9{05/2&;6 (20 d1 d2 //R2

2 2
o () k() 2 aren)
hl(dzf) hy (dm) dgdﬂ}
TVE 1 @ +0o0)

By the multiplicativity of S.(7):

Sc102,m1/d1,m2/d2(7) = SC1,ml/dl,mz/d2(702)502,ml/dl,m2/d2(7cl)7 for (017 62) = 17

and using the fact 2¢5/c; + 1/ (2¢2) = 1/(2¢1¢2) (mod 1) for (e1,2¢5) = 1 as well as

the result in §6, one can check that

1 my mg)
c . 1 1 Ra
56(26 d1 dg <

and hence we obtain, under the assumption that the test functions u, hy, hy are all
real-valued, the following Theorem. Before stating it we need a little extra notation.
For A a non-negative integer define | - |4 on C°(0, 00) by

h(z) (13)

|hla= = max
0<i<A, [j|<A, 2€(0,00)

Theorem 2. For my,my € Z, mimy # 0, u,hy,hy € C°(0,00) and € > 0, we have

Z u <E) Z L(l,Sme(f)) <:uf7 Phl,ml (Z)> <uf7 PhQ,m2 (Z)>

k>1,2|k K fEH,

= Bu(Pomss Poos) K ( /0 > u(t)dt) L O(KY2e), (14)
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where

™

1 0o — d
Bw(Phl,WM, th,mz) = - @/0 hl(d27))h’2(d177)77_727

di|mi, d2|ma; |m1|/d1 = |ma|/d2

K 5 1 3 Se, [mal/ds, [mol/d> 1 [ma| |my //
2\/§ da |1y s dids 1 c5/2 2c di dy R2
i T o (m\2& <m2)2 n 2
=) 2 (=) L aon(did
><s1n< 4 2c<d1) n  2c \dy £+7r(12)§nc
 1n(d2€) ha(dim) dédn (15)

vE v &
Moreover there is an absolute constant A and C' (= C(e)) such that the implicit

constant in (14) is at most
C((Jmu| +1)(Ime| + 1)l - [h2]a, (16)
and the series defining the B,, converges absolutely and satisfies
| Bu(Paymss Pragna)| < C((Imal + 1) (Jmaf + 1)kl - [h2]a. (17)

(16) is proven by keeping track of the dependence on h; and hy in the derivation
of (14). (17) follows from integrating by parts in the double integral in (15), and then
directly estimating the terms.

A closer inspection of the proof actually shows that if any incomplete Poincaré
series Py, ., in the Theorem 2 is replaced by incomplete Eisenstein series (i.e. m; = 0)
with zero mean [y Py, ;.7 = 0 (i.e. [5°hi(y)y~2dy = 0), then the Theorem 2 is still
valid except for the case m; = my = 0. For the case m; = me = 0, (14) and (15) of
the Theorem 2 continue to hold as long as the term
T > ﬁ /Ooo hy (dzn)h_z(dﬂ?)%

di|my,da|ma; my/di=ma/d>

L oo () () 42)

17

is replaced by




where H;(€) = h; (£)€” + 2h; ()€ = (R;(€)€%); hi(€) =0 for 0 <& < 1/A, i=1,2;
2by(z) = By(x — [2]), and By(x) = 22 — 2 +1/6 is the Bernoulli polynomial of degree
2. This follows by Euler-MacLaurin summation formula from

k-1 k—1\d
2 b (47rd-r> :_/o b2(E)H (4 fr) §_§’ for r =1,

d;>1

which vanishes if r > A’Z—;l

It is in turn equal to

L oon (u ()
AL Lo ()50 () )

3 Symmetry properties of B,

Let L,, = L% be the differential operator on C§°(0,00) given by

Lnh(z) = (2° % — 4n’m?2®)h(z). (18)

If we define the inner product on C§°(0, 00) by
(s, ) = [ m(@)ha(@) (19)
then L,, is symmetric with respect to ( , ), i.e.
(Liyhi, ho) = (hy, Lyhs).

We have
A(h(y)e(mz)) = (Lnh)(y)e(mz), (20)

and hence

APy = P hm, (21)

18



where A is the hyperbolic Laplacian. Moreover, we have (see the proof of Theorem
6.9 in [12])
d2 1/2
TnPh, m(Z) = Z <—> Ph(ﬂ), mn (Z), (22)

2 a2
di(m,n) \ I

where T, is the n-th Hecke operator (see §8.5 in [I2]). It turns out that the bilinear
form B, (-, -), defined on the space P spanned by all P, ,,’s, is self-adjoint with respect

to the Laplacian A and the Hecke operators 7,,, n > 1:
BUJ(APhl,mU Ph2,m2) = B, (Phl,mu APh2,m2)> (23)
Bw (TnPhl,mla th,mg) = Bw (Ph1,m1a Tnth,mz)' (24)

The verification of (23) is straightforward by (21), by change of variables (when

mimsg # 0, to symmetrize the integral kernel)

mo mi
—_ — — —
6 d2 65 77 dl 777

and in view of the fact

2

d? d
<£2 - 47T2m§m§§2) Kml,mz,dl,dz (5; 77) = ( 2 - 47T2m%m§772> Kml,mz,dl,dz (f; n)a

dg? "
ie.
d2
(§2d—{__2 — 47r2mfm§§2> Koy modr o (€, m) 18 a symmetric function in &, n,
where

) T T mime € T mimen o 1N
Koy ms dy ds (&, = e Z - — — 4+ 27(dyd .
Lmasdinds (E5 1) \/5775111( 17 2% didy _ 2¢ didy §+ m(dids) didy 5770>

If mymy = 0, we then desymmetrize the integral kernel and use the continuity argu-

ment.
In order to prove (24), it suffices to check it for each T, (p is a prime), which
can be verified by a tedious computation, using (22) and the explicit evaluation of

Se, m1 Jd1, ms/d» (77) 10 §6. For the details, see the Appendix (III) in §6.
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4 Extension of B, and diagonalization.

Let P : H — X be the usual projection map, and {Dy; }o<i<s U{Dk1 U Dya}r>1 be
a system of open sets with compact closures in H whose projections to X form a
locally finite open covering of X (see [He]), such that the restriction P|p,; is injective
except for Dy or Dyy; Dy (res. Dyy) is a neighborhood of i (res. p = €™/3) and the
restriction P|p,, (res. P|p,,) is two to one (res. three to one) map except at i (res.

except at p). We choose (k > 1)

Dox ={z S(2) <2, [R(2)| < 1/2, || > 1},

Dys = {z, S(2) <2, —1/2<R(2) <0, |z| > 1}
U{z, S(z) <2, -1 <R(z) <-1/2, |2+ 1| > 1},
Dy ={z, 3"/2<3(2) <2-3F, -1 < R(2) <0},
Do ={z, 3¥/2 <3(2) <2-3F, —1/2 < R(2) < 1/2}.

Let {fk;}x>0 is the partition of unity subordinate to the above covering of X
(see [He]). Each fi; can be regarded as an automorphic function with respect to I
The restriction fi;]| p,; has compct support in Dy; and we extend it to a smooth I'y,
periodic function fk]— on H. There exists y, > 0 so that fkj are all supported in the
half-plane y > 1, on which fkj (2) = frj(2), except when k =0 and j =2 or 3.

Let ¢ be a fixed element in C§%(X). We have

¥(2) = kakj(Z)w(Z),

fi@(e) = — Y Futv(r2),

Tkj yeToo\T

where
2, ifk=0,57=0;

Ngj = 3, lfk:(),_]zl,
1, if otherwise.
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Expanding fi;(2)1(2) into its Fourier series in = gives

fk] Z hkjm )

meZ

Pijm(y) are smooth with compact support, and since ¢ € C§5(X) the h’s satisty
higm(y) <a y~H(Im| +1)74 (25)

for any A > 0. Hence

U(z) = ZZ— i (2)

k,j meZ ki
1 2
= Z Z Phk;m,m ) + ZPhijyO(z) - §Phooo,0(z) - gPhow,O(Z)
k,j m#0 ’w k,j
1 2
Z > Phk]m,m 2) + Pro(2) = = Phoo,0(2) = 5 Phoso0(2),
kyj m#0 Vkj 2 3

say, where H(y) € C2(0, co) (recall that for y large enough the zeroth coefficient of

1 is zero) is defined as
y) = Z hijo(y)
k,j

This follows from the fact that >, ; fi;(2) = 1, and fkj are all supported in the

half-plane y > yg, on which we have

;hkjo(y) — /01 (kz fm(z)) Y(2)dx
/ (Z Fri(2) + (for (2) — fo2(2)) + (fos(2) — f03(Z))) ¥(z)dx
— /0 ((foz(z) — fo2(2)) + (f()3(2) — f03(z))) ¥(z)dz.

Moreover we have

Write



with
1 2
h=H — §h000 — ghom-
We then have

Z Z Phkjm,m ) + Ph,O(Z), (26)

k.j m#0 "'kj

/X Pao(2)7 =0

It follows from Theorem 2 and the comments following it, together with (25) and

with

(26), that for ¢ and ¢ in C§H(X) we have

Z u (k—;(l> Z L(l,symZ(f)) <:U'f’ V) <:U'f’ ®)

k>1,2|k feH,

= Bu K ([ u(t)dt) + Oy K124, 27)

where

B, (¢, ¢)
1

= > ——B,(Pyw) . Pw

k1,j1,m17£03k2,52,m27#0 Tok1j1 k2 Phrgyms kaizm2

+ ) B, (P, w) » Pr) o)

k1,j1,m17£0 nkljl kl]lml ml

1
+ > —B w (P 00 Byo) )

k2,j2,m27£0 nk2j2 kajamag,mg

+ B, (Ph(w),oa Ph(d)),())- (28)

1m2)

In view of (25) for ¢ and ¢ respectively and (17), we see that the series (28) converges
absolutely. From (23), (24), (26) and (28) it follows that the bilinear form B, (1, 12)
now defined on C§H(X) x C55(X) satisfies

Bw(A,lpl; ¢2) = Bw(d)lv A¢2)7 (29)
and for n > 1,

Bw(Tnd}la ¢2) = Bw(wla Tn¢2) (30)
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This completes the proof of part (A) and (B) of Theorem 1.

Now restrict B,, to the subspace

Coop(X) = C5H(X) N L2, (X).

cusp cusp

If ¢y, ¢ are distinct Hecke-Maass eigenforms in C°, (X), then for n > 1

cusp
Bw(Tn¢1a ¢2) = Bw(¢1a Tn¢2)

implies
)\n(qﬁl)Bw(ﬁbla ¢2) = )‘n(¢2)Bw(¢1; ¢2)

According to the theory of Hecke operators and Fourier coefficients there is an n such
that A,(d1) # An(¢p2). It follows that if ¢; and ¢, are distinct Hecke-Maass cusp

forms then

Bw(¢la ¢2) =0. (31)

Thus we have shown that B,, is diagonalized by the orthonormal basis of Hecke-Maass

2

ousp(X). In the next section we compute the value of B, on such a ¢.

cusp forms in L

5 Eigenvalues of B,.

Let ¢(z) be an even Maass-Hecke cuspidal eigenform for the modular group I', with
the Laplacian eigenvalue \y = I + ity, and L(s, ¢) is the associated standard L-
function, which is well known to admit analytic continuation to the whole complex

plane and satisfies the functional equation:
Ay(s) = Ap(1 = s),

where

Ag(s) = 7T (8 +2it¢) r (5 _;tq’) L(s, ¢).
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We assume ¢(z) is normalized so that its first Fourier coefficient a,s(1) = 1. From
the works of Watson [Wal, we have

(g, 8)° = QCO;(W) |F(IZ4;)§191T(/$¢)| L1, sym?(f))]ar(D)PL(1/2, ¢ ® f ® f)

L(k—1) 72

- (4m)k 2 cosh(wtd,)Lil(l’ sym?(f))|as(1)PL(1/2, 6 ® f @ f)(1+ Ok ™)),

in view of the fact that for any vertical strip 0 < a < R(s) < b, we have that

L(s+k—1) . 9, 1
-1 (k=1)"(1+ Oq,6((Is| +1)%77)), (32)
by the Stirling’s formula.
Thus,
k—1 9 9
= o(YF) 3 ram el o
7 _nL(1/2, ¢) k-1
- g(l +OkE™)) cosh(mt,) k£|ku (T)
PEZD S 0 PL/2 60 symi(f)) (33)
(4m) fed,
Define

_3s 8+k—1+’it¢ S+k—1—it¢ S+I€+Zt¢ S+l€—it¢
= rf —-—+
Ags(s) = r( 5 r 5 r 5 5

«T (S“%W’) r (5“%%) L(s, ¢®sym?(f)),

then Ay r(s) admits analytic continuation to C as an entire function and satisfies the

functional equation
Agp(s) = Ag s (1 = 5).
Let F be the cuspidal automorphic form on GL(3) which is the Gelbart-Jacquet

lift of the cusp form f, with the Fourier coefficients ar(mq,ms), where

ap(ml,mg) = Z )\F(ml/d,l))\p(mg/d, 1)/,L(d),

d|(m1,mz2)
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and

Ar(r 1) = 3 A().

s2t=r

The Rankin-Selberg convolution L(s, ¢ ® sym?(f)) is represented by the Dirichlet
series (see [Bul], [Bu2]),

L(s, ¢@sym*(f)) = > Ag(ma)ap(my,my)(mym3) >, (34)

m17m221
where A\y(r) is the r-th Hecke eigenvalue of ¢.
We have

2 ds
Ny (1/2) = 57 /(2) Agp(s+ 1/2)?-

Hence,

L(1/2, p@sym*(f)) =2 > Ag(mi)ar(my, me)(mim3) ™" *Gy(r*mim3), (35)

mi1,m2>1
where
) [ (L2 k=it \ r ((s+1/2)bhtity | [ (((s+1/2)Hh=1ity | 1 ((sH1/2)+h—ity
Gi(€) = %/ ( 1/2fk—1+it¢) (1/2+k+2it¢ ) ( 1/2fk—1—it¢) (1/2+k—2it¢ )
L S L G e B G D G )
T ((s+1/2)2+1+it¢) r ((s+1/2)2+1—it¢) _.ds
T (1/2+21+it¢) T <1/2+21—it¢) 3 5
[ (/2 41ty \ [ ((s41/2)+1ity 1 ~s g
= /(2)(1+Tk(s>> (F (”22+§+“¢§FE”“§2““’) )<(k—€1)2> =,
where
-y el o (U
Ty (s) 1§:§6 (k1) + (k—1)

is an anlytic function in Rs > —2, in view of the Stirling’s formula. Here p,(s) is

an polynomial of degree at most r + 1. Denote

I (s+1/2)+1+ity I (s+1/2)+1—ity
Ui(s) = (1 + Ti(s)) G L S——,

r (1/2—|—21+it¢) T (1/2-I—21—z't¢)
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We have

PEZD) S~ 0, )PLA/2, 6@ sym?(£)
(47T) feHy

_ I(k—-1) 2

= e g

JEH,
x2 > Ag(ma)ap(me,mo)(mim3) Gy (P mim3)

ml,m2>1

:22

d3 2 S Ap(dny)Gi(m3dPnyn3) (nyn3) ~*/*

d>1 nl,n2>1

[k —
Xi lay(1 |)\F(n1, 1)Ap(ng,1)
(47r)k 1 erHk

ST Np(dsit)Gr(nddPs?t syts) (st sata) 12

51,52 t1,t22>1

471' (An)k 1 Z lar(L)PAf(E1) A s (£3)-

JE€H],

:22

d>1

d32

By Petersson formula, we deduce that

k—1\ (k-
Z “( K > (47)F—1 Z las(1)[PL(1/2, ¢ @ sym®(f))

£>1,2lk fEH,
=2 u ( ) Z L 2) Yo Aoldstty)Ge(n®d®sisit?) (stsyt})/?
k>1,2|k s P
tQatQ,
+ 2 Z d3 2 Z /\¢(d8%t1) 2t1$4t2 -1/2 Z 12 )
d>1 81,82,t1,t2>1 c>1
k—1 4t
x > 2m(— k2 <—> Gr(m*d®s3t,s5t2) Jy_1 ( . 2) :
k>1,2/k K ¢

The diagonal term is (writing r = dt;)

> ¥ ot )27‘3/22u )Y 57 S s el Galr i)

k>1,2/k r>1 s9>1 s1>1
=2 ¥ () X5t X e,
k>1,2/k s2>1  s1>1

Now

> 51 A(51) Gr(msis3)

s12>1
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= 5l 2% 2s+1 Ui( <(:7r_514)>% (36)

s>1

We have

Moving the line of integration in (18) to $(s) = —1/4 + ¢, we obtain

> s A(81) (st ss)

s1>1

1 2
— @L(l, sym*(¢))Ux(0)
1

5 4m3sy \ " ds
e 24 a5) L1255 sym(8))U(s) <(k - 1)2) n
1

_ svm?2 g —1/24€)
gy L1 sym ()0 (0) + O(KH2+)

Thus, the diagonal terms contribute

2K 2 o 1/24€
ot @) [ w(©)dg + 0,

Since

6O = 5 [, 00 (o) 2

we can write

a0 =1 (255) + £, (o) o (@)

Applying Lemma 5 and Lemma 6 from [LS2], we deduce that the non-diagonal

terms are equal to

_or 1/22 Z Ao(d 24 ) 24 t2) 1/22 S(t%,t%;c)
d3 2 p0S111)(51118, .
d>1 81,82,t1,t2>1 c>1
y /00 V8t toc T H 4m3d3 52t sat?
u S — e ———
0 K 8mtitacly

X sin (87rt1tgc’1/2 +y— 7T/4) % +0(1)

S(t ,t2, )
I/QZ dsz Yo Apldsity)(sTtisyts) 1/22 L2 Jedsnsatt +O0(1),

d>1 81,82,t1,t2>1 c>1
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say.
We can assume d3s2t;s5t2 < K2¢ since H(£) has exponential decay as £ — oo.

The terms with ¢ > K?¢ as well as the terms with ¢, < K?~¢ contribute O(1), b

partial integration. So we can assume ¢ < K?¢ and tit, > K?7¢. Moreover from

tt2 < K?*€ and tit, > K?7¢ we deduce that t, < K?*. Making the change of

. \/ 87titac—ly .
variable t = Y————, we see J.as; 50,1, 15

) sin 87Tt1t20 12+ (tK)?c/(87tits) — 7r/4)

Am3d3 sty sit?
| Z=—~1r72m2 ) g
§ ( (1K)?

From the Hecke’s bound ([I2], Theorem 8.1)

\/ 87Tt1t2 /

Z )\¢ 1/2 <, Re

r<R

where a € R; the Hecke relation

¢(r172) Z p(d)Ag(r1/d) Ay (r2/d);
d|(r1,m2)

and partial summation, we infer that the contribution from the non-diagonal terms

is O(K*). We conclude that

> o) T B ) s

k>1,.2k feHy
_ K o L2 ) Jore
= T e L I s + OGP (s)

This completes the proof of Theorem 1, in view of the fact
L(1, sym®(¢)) = 2 < ¢, ¢ > cosh(mty).
6 Appendices

Appendix (I). Classical variance.

We evaluate the classical variance given by (4). This evaluation is general and
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applies to any Y = I'\SL(2, R), where I is a lattice (not necessarily arithmetic).
Assume that Cp(Y) consists of functions on Y of mean zero. The classical variance

V is given by the symmetric bilinear form

Vi = [ [t (s( 5 Lon ) dac (33)

From this it is clear that V' is diagonalized by the irreducible subspaces in the
decomposition of the right regular representation of SL(2, R) on L§,(Y). If ¥(g) is
an element in L§ ((Y) which is SO(2) invariant on the right, then ¢ is a Maass form
on H = SL(2, R)/SO(2) with eigenvalue A = 1 +¢* > 0. We evaluate the matrix
coefficient

F(g) :== Y(91)¥(919)dg:- (39)

/r\SL(z, R)
As a function on SL(2, R), F satisfies
(i). F(kigke) = F(g), for ki, ky € SO(2);
(ii). wF = \F;
(iii). F(e) = 1. (We are normalizing 1 so that [, [¢(g)|*dg =1. )
According to the theory of spherical functions these determine F' uniquely. Specif-

ically F'is given explicitly (see [Te|, p143) by

r/2 0
e
F (( 0 e—r/2 )) = P—%—Fit(COShT)a

where P; is the associated Legendre function. Hence

V(, ¢¥) = /_o:o P_1_ y(coshr)dr. (40)

This integral may be computed ([GR], p810) and yields

_rG+9)l
e e i)

29



Appendix (II). Evaluation of the sum S.(v).

For 2 / ¢, we have
2 2
o () (w(5) () ) ()
SC(’Y) ce€ (C < U dl ’ 7 dg P C) Ce 7 d1d2 ’

_ |1 ifc=1(mod4);
=i if c = —1(mod4),

where

is the sign of the Gauss sum, and
d d d
T(m,n;c) = > (—) e (L n > (41)
d ( mod c) ¢ ¢
is the Salié sum ([Sa]).
If (¢,2n) = 1, we know (see [I1], lemma 4.9)
n 1/2 2y
T(m,n;c) = | — ) €c > el—].
¢ y2=mn ( mod c)
Hence if (p,2n) =1, 2 ¢, then T'(pm, n;p*c) = 0.
If c = pFand k > 2t > 2, we write d = | + rp*~t, [ (mod p*7t), (p, 1) =
1, r (mod p'), then d =1 — i pht (mod p*), and hence

T(m,mp*) = Y )(i)e(m””l)r(z )(M) (42)

k k t
! ( mod pk—1 p p mod pt p

For ¢ = 2! and m, /d; % my/ds (mod 2), we have

0, 1 >2;
50(7):{4 I=1

since for 2 fAB,
2 _ 0: l 2 2a
Y elda +Ba)—{ 9o I-1.

a( mod c)

On the other hand, for ¢ = 2! and m,/d; = my/dy (mod 2), we have

s0) = 3 X% G(%r)(—7((7;—>x+(72—>5>>(_772?>

z( mod 4c), (2,z)=1
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where

ntQ 07 [ = 13
Gn,2)= Y e (—) =< (14272, 2|
2(l+1)/267rin/4’ 9 /{/l > 1.

e ()" G2 )

2
and we assume without loss of generality that 2° < ¢, and 2°|| (Tg—;) . We distinguish

Let

two cases (note 27%(msy/ds)? = 1 (mod8)):

(a). 2|l

MMy 25 3/2 9 (m1m2>2 4c c <m1m2>2 4c
e - 1, ) +s5(=-L 1, )L,
C2e (7 dyd )50(7) P\ G b)) T e T G B

(b). 2 fi>1.

 myms 25¢3/2 c L (m1m2 )2 4c
[T - . 1; =9,
€2c (’V d1ds ) 56(7) 2\/5 S 9s+1 +7 didy2s) 7 2

Here S(m, n; c) is the usual Kloosterman sum.
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Appendix (III). Self-adjointness of Hecke operators for B,,.

We write

BUJ(Phl,Wll? Ph2,m2) = BOO(Phl,mU th,’mz) + Bf(Phl,mn Ph2,m2):

where
7 o0 — dn
Beo (Pryymys Phoms) = > Td / ha(dan)ho(din) —;
di|ma, da|moa; |mi|/di = |ma|/dy @102 70 n
and
B (Ph, Ph ) - _ ™ Z 1 Z Sca ‘m1|/d17 |m2|/d2€ <l |m1| |m2|> //
f 1,15 2,ma2 2\/5 s s o dids >l c5/2 2¢c di ds R2

(T @2§_1(@>22 2
><s1n( 1 2c(d1> 0 2 \d, §+27r(d1d2) &nc

" hi(dx€) ho(din) dédn
V€ v &n

We first consider the special case p [mimsy in details. The general cases, as we

see later, can be treated similarly by induction. We have, by (22), that
TpPom(2) = p_l/QPh(p-),pm(z)-

Thus, since the conditions d;|pm,, da|me; |mi|p/dy = |ms|/ds implies p|d;, we infer

that

BOO(TpPhl,mu th,mz) = p_l/zBoo (Phl(P'),pmu th,mz)

_ T 1 /°° 7 (od. )
= P > i Jy T @daha(pdin)

d1|m1, d2‘m2; |m1\/d1 = \mz\/d2

= p_l/QBOO(Phl,mU Ph2(p'),Pm2)

= BOO(Phl,mU Tpth,mz)'
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On the other hand,

Bf(TpPIn,mn th,mz) = p_l/zBf(Phl(p-),pmu PhQ,mz)

_ T 1 Se, fmupl/ar, mslfa (1 [map| |mol //
2\/§p Z dldQZ /2 e(?c d1 d2 R?

di|pm1,da|m2 c21

% sin <_Z _T (@)2 £ (@)2 T, 27T(d1d2)2§nc)

4 2c dy n 2¢ \ dy 5
" hi (dop€) ho(din) dédn
vE v &

T 1 Se, jmapl/ds, lmsl/ds (1 [mup||ma| //
2\/§p z dldzz 65/2 e<26 d1 d2 R?2

d1|m1,d2|me2 c>1

X sin (—z T (mlp)Q ¢ (@)2 i 27T(d1d2)2§7)c)

4 2\ d; n 2c\dy/ &
o h1(dop€) he(din) d€dn
VE v &

T i 1 Se, ma|/dy, [mal/dy (1 || [me] //
2\/§p Z pdldzg c5/2 € 2c d1 dg R?

di|my,da|mo
2 2
(55 (2 - (2] D)
| In(d2p) B (pdy) déc
vE v &
= Zl+221

say, where Y"1, > 5 correspond to the conditions p /d; and p|d; respectively in the

initial sum. Making the change of variables £ — &/p, n — pn in >1, we see that

T 1 Se, fmupl/di, Imal/dz [ 1 |map| |me] //
Zl 2\/§p Z dldQZ /2 6(20 dq do R?

di|my,da|mo c>1

X sin (—E - (m1>2 E_rm (w)Q 0y 27r(d1d2)2§770>

4 2c\d n  2c \ dy &
y by (d2€) ho(dipn) dédn
V& v &n

Similarly,

Bf(Ph1,m1> Tpthmz) = pil/zBf(Phl,ml’ Ph2(P');Pm2)
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= i+

where

oo T i 1 Se, jmu)/dy, imapljaz (1 |ma] [map) //
Zl 2\/§p Z dids Z c5/? ¢ (20 dq do R?

di|m1,da|mo c>1

. T om (mi\%2& 7r(m2p)277 9
T T (M S T (MePATTE o (dyd
><sm< 1 20<d1) n 2\ d, §+ m(dydy)"Enc

y hi(d2€) ho(d1pn) dédn
vE Vv

However, in view of the Appendix (II) in §6, we have

Se, [mapl/dr, [mal/ds = S, jma|/du, lmap| da- (43)

To see this, recall the multiplicativity of S.(7):

SC1Cz,m1/d1,M2/d2(7) = Scl,m1/d1,m2/d2(702) : SC2,m1/d1,m2/d2(761)7 for (017 62) =1

We write ¢ = cicocs if p > 2, where ¢1|p™, ¢]2%°, and (c3,2p) = 1; ¢ = ci1cp if p = 2,

where ¢;[p*, (c2,2) = 1. Then

Seicacs, lpmil/di, |mal/de = Sey, [pma|/dy, Ima)/ds (€2€3)*Ses, |pma|/dy, mal/ds (€1€3)*Ses, |pmi|/dy, Imal/ds (C1€2),
if p>2;

SC162,Pm1/d1,m2/d2 = Scl, lpma1l|/dy, Im2|/d2 (02) : Scz, lpma1l/dy, ma2|/d2 (cl)

if p = 2. We also decompose S¢, m,|/d;, imsp|/d, D the same way. From the evaluation
in the Appendix (II) in §6 (for Sg,, \pm,|/di, jms|/dz(C1C2), making change of variable
d — p?d inside the sum T'(-, -; c3)), (43) follows.

Thus we see that 31 = ¥;, and consequently

Bf(TpPhl,m17 Ph2,m2) = Bf(Phl,m17 TpPh2,m2)'
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Let’s consider the general case by induction on a with p®|(my, my). Since

Ty Prn(2) = D" Py om(2) + " Pa(. oy myn (2),

where if p f m, we understand that Py(./p),m/p(2) = 0, we have

Bf(TpPh1,m17 Ph2,m2) = p71/2Bf(Ph1(p-),pm1a th,m2) + pl/QBf(Pfu( -/p)ym1/ps th,Mz)
_ __T p /2 ¥ 1 ¥ Se, |mup|/dy, [mal/ds 1 [myp| |m2| //
2v/2 didy cb/2 2¢ dy R?

di|pm1, da2|ms c>1
(-7 @2§_1<@)22 2
X s1n< 1 ( 0 ) n 2 \a,) ¢ + 27 (dydo)“Ene
o hi(dop€) h (d177) d&dn
vE v &
T2 1 Se, [mi|/pdy, |ma|/d2 l|m1\ [mo| //
2\/§p Z dyds Z c5/2 € (20 pd1 ds R2

di|m1/p, da|ma c>1

2
. T w(m\ & m me\%n 2
X sin <_Z - — (pd1> 5— _C (d_Q) g+2’ﬂ'(d1d2) f’l’]C)

h1 (d2€ /p) ha(din) dédn
VE NI
== -[A + IB;
say.
Similarly

Bf(Phl,ml’ Tpth,mz) = p_l/zBf(Phl,mn Ph2(:0')’;0m2) + pl/QBf(Phl,mu Ph2('/P)7m2/;D)

_ T 12 1 SC, |mil/d1, |map|/d2 1 ‘ml‘ \m2p| //
2\/§p Z d1d2 Z 05/2 € <20 dl R2

di|m1, d2|pms c>1
: _z_z m §_£(@)2ﬂ 2

X SIn ( 1 (dl ) 0 2(} d2 f -+ 27T(d1d2) 67’]0)

hy(d2€) h (dlpﬂ) dédn
X

VE NEERY]

_ T i L G Se,mul/dy, Imalfpdy (1 |ma] [me]

2\/§p Z dids Z c5/2 ¢ (20 dq pdg //R2

d1|m1,d2|m2/p c>1
2
: _3_1 mi\*E o (ma)\Tn 2
X sin ( 1 <d1> 0 2 (pd2> ¢ + 27 (dyds) fnc)
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[ (dof) ha(din/p) dédn
Ve Vi &n
= IIA + IIB?

say.
According to whether or not p[(c, *, %) in S, . ., we decompose further the sums

Iy, I, I1s, ITg into
Ia=1g1+1ao, Ip =11+ Ipo, 114 = 1141+ Ilyo, Il = Ipy + Ipo.

Note if p|(c, *, *), Se, « « = 0 unless p?| c. Write ¢ = p*c;, we have

8(p, Cl)) ’

p

Sc, |m1p|/dy, |me|/de = 501, |ma1|/d1, |m2|/pd2 p2 (1 -

where

_ |0, ifple,
5(p7 Cl) — { 1, lfp Xcl,

and write correspondingly 141 = Iy, — I;;

_ 2
Sc, |ma1|/pdi, [mal/d2 — 561, im1|/p2dy, |ma|/pd2 P (1 -

"

and I, = I, — Ipy;

SC, |m1l|/d1, map|/d2 = 501, |m1|/pdi, |m2|/d2 p2 (1 -

and 114 = IT,, — II,;;

— 2
SC, |m1l/d1, |m2|/pd2 = 501, im1|/pdy, |ma|/p2d2 P (1 -

and 1Ty, = [Ty, — IIg,.
We see, by induction hypothesis on (mi/p, ma/p), that Iy, + I, = I1,, + IIg,.

Moreover note that if p / bc, we have Sep ap b6 = P2Sc, 0,6 and Syp2 4p » = 0. Using

36



this, together with the evaluation of S.. . in appendix II one can readily verify that

(where I45(p|d;), for example, denotes the partial sum of I45 in which p|d;)
Taa(pldi) = Iaa(pld2); Taz(p fdi, p fday p f©) = I1as(p fdo, p [di, P [C);

Lio(p [ di, p| dao, p f ) =1az(p [ da, p| di, p [ 0);
Lis(p [ dv, p|da, p J €) = Iy (p [ v, pPlma/dy);
Lis(p [ dv, ple) = Ly (p [ di, plma/ds);
I, (p fda, p’|ma/dy) = I1aa(p [ do, p*lds, p [ ©);
Iy (p [ da, plma/di) = Ilas(p [ da, p [ ©);

Lyy (pldy) = ITy; (pldo); Ina(plda) = IIna(pldy);
Ipa(p fdo, p [di, p fe)=Ipa(p [di, p fdo, p [ );
Inz(p [ da, pldi, p [¢) = 1Ip2(p [ di, plde, p fc);
Ips(p [ da, P’ldy, p [ ¢) = Ipi(p [ da, PPl /dy);
Ips(p [ ds, ple) = Ip,(p [ da, p*[ma/dy);

T, (pldh) = I, (pldo);

Ips(p [ v, p°lda, p f ) = Iy (p [ dy, p°|ma/dy);
Hps(p [ dy, ple) = g, (p [ dv, p*|ms/dy).

We deduce from the above that

Bf(TPPhl,m17 PhQ,mz) = Bf(Phl,m17 Tpth,mz)'
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On the otherhand, we have

BOO (TPPhl,mla th,mz) = pil/QBoo (Phl(P')7Pm1a Ph2,m2) + p1/2B00 (Ph'l('/p)aml/p’ th,mz)
m

1 o — d
= Zp—1/2 3y o / hi (pdg’l’])hz(dﬂ'])—g
d1|mip, da|ma; [mi|p/di = |ma|/dy 172 0 U
+ %pl/ 2 > !

[ mtdan /et

di/m1/p, d2|ma; |m1|/pd1 = |m2|/d2 d1d
= A+ B,

say. Similarly

BOO(Phl,ml’ TpPh2,m2) = pil/QBOO(Phhml’ th(P-),pm2) + p1/2BOO(Ph1,m1’ th('/p),mz/p)
m

1 00 — dn
_ T 12
410 E didy /0 h1(dan)ha(pdin) e

di|ma, da|mep; |m1|/d1 = |m2|p/d2

™ 1 OO ho d

i me 3 N / ha (den)ha(din/p) =
d1|my, dz|ma/p; Im1|/dy = |ma|/pdz 172 0 7

= A+B,

say. One can check easily that

A(pldi) = A'(pldo); A(p fdi) =B'(p [dr); B(p [ do) = A'(p [ ds); B(plds) = B (p|dy).

Thus,

Boo (TpPhl,mla th,mz) = Boo (Phl,mp Tpth,mz)-

This completes the proof that

Bw(TpPhl,WM? Ph2,m2) = Bw(Phl,ml’ Tpth,m2)'
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