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1 The Goldbach Conjecture

The Goldbach Conjecture, appears to be very simple at first glance. It
can be stated as thus: Every even number can be represented by the sum
of two prime numbers. Or in mathematical notation:

2n = p1 + p2 (1.1)

∀n ∈ N, and where p1 and p2 depend on n.
However, it has shown itself to be quite difficult to prove. This con-

jecture is sometimes called the “binary Goldbach problem because a similar
problem, sometimes called the “ternary Goldbach problem”

(2n + 1) = p1 + p2 + p3 (1.2)

for sufficiently large n ∈ N
or “every odd number can be represented as the sum of three primes” was
proven by I.M. Vinogradov in 1937.

We will approach the binary case by examining the methods employed
in the proof of the ternary problem. Let M be the odd number which we
are trying to represent as the sum of three primes. Consider the sum

FM (x) =
∑

p≤M

(log p)e(px) (1.3)

where e(α) = exp(2πiα) and p is prime.
Note: We will be using this notation throughout the remainder of this paper.

Now consider the integral

R3(M) =
∫ 1

0
F 3

M (x)e(−Mx)dx

=
∫ 1

0


 ∑

p≤M

(log p)e(px)




3

e(−Mx)dx

Observe that since our function e(αx) = exp(2πiαx)
∫ 1

0
e(αx)dx = 0

for any value of α ∈ Z such that α 6= 0. Note that the integral is 1 if α = 0.
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Since pi ∈ N and M ∈ N, (p1 + p2 + p3 −M) ∈ Z, so the only terms that
contribute to the integral R3(M) are the terms

(log p1 log p2 log p3)e ((p1 + p2 + p3 −M)x)

where p1 + p2 + p3 −M = 0.
Or

p1 + p2 + p3 = M

So continuing on, we see that

R3(M) =
∫ 1

0

∑

p1,p2,p3≤M

(log p1)(log p2)(log p3)e ((p1 + p2 + p3 −M)x) dx

=
∑

p1+p2+p3=M

log p1 log p2 log p3 (1.4)

This integral R3(M) is then a weighted sum of the number of representations
of our odd number M as the sum of three primes. Note that

C(M) =
∑

p1,p2,p3≤M
p1+p2+p3=M

1 (1.5)

is simply the count of different ways that each M can be represented as the
sum of three primes. It is also evident that when R3(M) > 0, by partial
summation we have that C(M) > 0 and hence we have a representation of
M .

Through similar calculations we can derive R2(N) where N is an even
number, and find it to be

R2(N) =
∫ 1

0
F 2

N (x)e(−Nx)

=
∑

p1+p2=N

log p1 log p2 (1.6)

where

FN (x) =
∑

p≤N

(log p)e(px) (1.7)

In general, Rs(N) determines the weighted count of the number of ways that
N is the sum of s number of primes.
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2 Decomposition into Major and Minor Arcs

Now let us return to the ternary problem. To evaluate the integral
R3(N), we can employ the circle method by decomposing the unit interval,
over which the intgral is evaluated, into major and minor arcs.

The major arcs are defined as the following:
Let B > 0 and

Q = [(log N)B] (2.8)

where [α] is the greatest integer less than α.
Consider all pairs (a, q) such that

0 ≤ a ≤ q,

1 ≤ q ≤ Q,

(a, q) = 1 (2.9)

Each major arc Ma,q is defined as the interval of x ∈ R such that
∣∣∣∣x−

a

q

∣∣∣∣ ≤
Q

N

and the set of major arcs M is

M =
Q⋃

q=1

q⋃

(a,q)=1

Mq,a (2.10)

Note that for N sufficiently large, the major arcs become disjoint.
The set of minor arcs is defined to be the complement of the set of all

major arcs in the unit interval. More clearly,

m = [0, 1]−M (2.11)

From this definition of the major arcs, we can find an elementary upper
bound for the measure of the set of major arcs, M.
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For N sufficiently large that the major arcs are disjoint, we have

|M| =

∣∣∣∣∣∣

Q⋃

q=1

q⋃

(a,q)=1

Ma,q

∣∣∣∣∣∣
=

Q∑

q=1

q∑

(a,q)=1

µ(Ma,q)

=
Q∑

q=1

q∑

(a,q)=1

2Q

N
≤

Q∑

q=1

2Qq

N

Since 2
N does not depend on q

=
2
N

∑

q≤Q

Qq =
Q2(Q + 1)

N
≈ Q3

N
(2.12)

as N grows large.
Observe also that as N →∞,

lim
N→∞

|M| = 0

So as N grows large, the mass of the major arcs decreases and we see that
the unit interval consists mostly of minor arcs. However, it has been shown
that despite this density of minor arcs, the contribution of

∫

m
F 3

M (x)e(−Mx)dx

is negligible and the main term of

∫ 1

0
F 3

M (x)e(−Mx) =
∫

M
F 3

M (x)e(−Mx)dx +
∫

m
F 3

M (x)e(−Mx)dx (2.13)

comes from the integral over the major arcs.
This is not apparent for the binary case. It becomes much more difficult

to show that
∫

m
F 2

N (x)e(−Nx)dx

is neglible compared to the term
∫

M
F 2

N (x)e(−Nx)dx
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The contribution of the integral over the minor arcs is precisely the moti-
vation for this investigation. We hope to see that the the contribution of
F 2

N (x) from the major arcs is large, while the contribution from the minor
arcs is small.

3 Properties of the Integral over the Major Arcs

The integral over the major arcs for the binary problem

RM(N) =
∫

M
F 2

N (x)e(−Nx)dx (3.14)

is not trivial to evaluate so we will first find a function similar to it which
is easy to evaluate and formulate RM(N) in terms of this function. This
section will be devoted to deriving a more accessible form of RM(N).
We begin by defining this function similar to FN (x) by

u(β) =
N∑

m=1

e(mβ) (3.15)

Now consider the function

J(N) =
∫ 1

0
u2(β)e(−Nβ)dβ (3.16)

Theorem 3.1. As N →∞, J(N) ≈ N

Proof:
Since, as before, when integrated from 0 to 1, our function e(α) =

exp(2πiα) gives a contribution of 0 for all α ∈ Z such that α 6= 0, and
a contribution of 1 when α = 0, we have that

J(N) =
∫ 1

0
u2(β)e(−Nβ)dβ

=
∫ 1

0

N∑

m1=1

N∑

m2=1

e ((m1 + m2 −N)β) dβ

since 1 ≤ m2 < N there are N − 1 values of m2, and for each value of m2

there is a value of 1 ≤ m1 ≤ N that satisfies

m1 + m2 −N = 0
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except when m2 = N . Therefore there are N − 1 pairs (m1,m2) that give a
non-zero contribution to J(N). Since each time m1 + m2 = N ,

e((m1 + m2 −N)β) = 1

we conclude that

J(N) = N − 1 = N + O(1)

and as N grows large

J(N) ≈ N (3.17)

and we are finished.
It is not immediately apparent why this result is significant but we shall

use this it later on as a lemma to a more important theorem approximating
the function FN (x)2.

Before continuing, let us first define a few useful functions.
1. Let φ(q) be the number of integers b < q such that (b, q) = 1
2. Let µ(q) be defined as such:

µ(q) =





1 if q=1
0 if q is divisible by the square of a prime
(−1)r if q is the product of r distinct primes

(3.18)

3. Let cq(N), the Ramanujan Sum, be defined by

cq(N) =
q∑

a=1
(a,q)=1

e

(
aN

q

)
(3.19)

4. Let λ(m) be defined by

λ(m) =

{
log p if m = p is prime
0 otherwise

(3.20)
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Theorem 3.2. (Siegel-Walfisz)
If 1 ≤ q ¿ (log n)C , (a, q) = 1, and n ≥ 2 then, for any C > B > 0,

φ(n; a, q) =
∑
p≤n

p≡a(q)

log p =
n

φ(q)
+ O

(
n

(log n)C

)
(3.21)

Theorem 3.3.
Let

Fn(x) =
∑

p≤n

(log p)e(px) (3.22)

Let B, C > 0 and B,C ∈ R.
Then for 1 ≤ n ≤ N , and q ≤ Q,

Fn

(
a

q

)
=

µ(q)
φ(q)

n + O

(
QN

(log N)C

)
(3.23)

Proof:

Fn

(
a

q

)
=

∑

p≤n

(log p)e(px) =
q∑

r=1

∑
p≤n

p≡r(q)

(log p)e(
pa

q
)

Let p ≡ r(modq) Then p divides q if and only if (r, q) > 1. To bound the
contribution of terms where p|q we have

∣∣∣∣∣∣∣

q∑
r=1

(r,q)>1

∑
p≤n

p≡r(q)

(log p)e(
pa

q
)

∣∣∣∣∣∣∣
=

∑
p≤n
p|q

(log p)
∣∣∣∣e(

pa

q
)
∣∣∣∣ ¿

∑

p|q
log p ≤ log q (3.24)

A weaker, but more intuitive bound can be found by considering that there
are less than q integers r ≤ q such that (r, q) > 1. Each one contributes a
term less than or equal to log q since |e(pa

q )| ≤ 1. So a very crude bound
would be

q∑
r=1

(r,q)>1

∑
p≤n

p≡r(q)

(log p)e(
pa

q
) ¿ q log q (3.25)
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We shall use the stronger bound but both are sufficient. Continuing on,

Fn

(
a

q

)
=

q∑
r=1

(r,q)=1

∑
p≤n

p≡r(q)

(log p)e
(

ra

q

)
+ O(log q)

=
q∑

r=1
(r,q)=1

e

(
ra

q

) ∑
p≤n

p≡r(q)

log p + O(log q)

By the Siegel-Walfisz Theorem:

=
q∑

r=1
(r,q)=1

e

(
ra

q

)
θ(n; q, r) + O(log q)

=
q∑

r=1
(r,q)=1

e

(
ra

q

)(
n

φ(q)
+ O

(
n

(log n)C

))
+ O(log q)

Since
∣∣∣∑q

r=1 e
(

ra
q

)∣∣∣ ≤ q,

cq(a)
φ(q)

n + O

(
qn

(log n)C

)
+ O(log Q)

Since cq(a) = µ(a) for (a, q) = 1, q ≤ Q, and n ≤ N ,

=
µ(q)
φ(q)

n + O

(
QN

(log N)C

)

and we are finished.

Theorem 3.4. Let B, C ∈ R such that B, C > 0 and C > 2B.
If x ∈Ma,q and β = x− a

q , then

FN (x) =
µ(q)
φ(q)

u(β) + O

(
Q2N

(log N)C

)
(3.26)

and

F 2
N (x) =

µ2(q)
φ2(q)

u2(β) + O

(
Q2N2

(log N)C

)
(3.27)
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Proof:
If x ∈M(a,q) then x = a

q + β where |β| ≤ Q
N

For 1 ≤ n ≤ N ,

FN (x)− µ(q)
φ(q)

u(β) =
∑

p≤N

(log p)e(px)− µ(q)
φ(q)

N∑

m=1

e(mβ)

=
N∑

m=1

λ(m)e(mx)− µ(q)
φ(q)

N∑

m=1

e(mβ)

=
N∑

m=1

λ(m)e
(

(
ma

q
+ mβ)

)
−

N∑

m=1

µ(q)
φ(q)

e(mβ)

=
N∑

m=1

(
λ(m)e(

ma

q
)− µ(q)

φ(q)

)
e(mβ) (3.28)

We apply Partial Summation to this last term. Let A(n) be defined by

A(n) =
∑

1≤m≤n

(
λ(m)e(

ma

q
)− µ(q)

φ(q)

)
(3.29)

Since µ(q)
φ(q) does not depend on n, and µ(q) ≤ 1,

A(n) =
∑

1≤m≤n

λ(m)e(
ma

q
)− µ(q)

φ(q)
n

From the definition of λ(m) we can see that the only terms which give a
non-zero contribution are when m = p where p is a prime. So we have

=
∑

p≤n

(log p)e(
pa

q
)− µ(q)

φ(q)
n = Fn

(
a

q

)
− µ(q)

φ(q)
n

By Theorem 3.3,

A(n) = O

(
QN

(log p)C

)
(3.30)
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By using A(n) and Partial Summation again, we can find an upper bound
for

FN (x)− µ(q)
φ(q)

u(β)

= A(N)e(Nβ)− 2πiβ

∫ N

1
A(n)e(nβ)dn

¿ |A(N)|+ |β|Nmax{A(n) : 1 ≤ n ≤ N}
¿ Q2N

(log N)C
(3.31)

It follows directly that

FN (x) =
µ(q)
φ(q)

u(β) + O

(
Q2N

(log N)C

)
(3.32)

Let us now derive

F 2
N (x) =

(
µ(q)
φ(q)

u(β) + O

(
Q2N

(log N)C

))2

=
µ2(q)
φ2(q)

u2(β) + 2
(

µ(q)
φ(q)

u(β)
)

O

(
Q2N

(log N)C

)
+ O

(
Q4N2

(log N)2C

)

As N →∞, we find that

Q2N

(log N)C
¿ Q4N2

(log N)2C

so the cross term

2
(

µ(q)
φ(q)

u(β)
)

O

(
Q2N

(log N)C

)

becomes negligible.
Since Q = (log N)B and C > 2B,

1
(log N)C

≤ 1
(log N)2B
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so

O

(
Q4N2

(log N)2C

)
= O

(
(log N)2BQ2N2

(log N)2B(log N)C

)
= O

(
Q2N2

(log N)C

)

and we conclude that

F 2
N (x) =

µ2(q)
φ2(q)

u2(β) + O

(
Q2N2

(log N)C

)

Note that the error term

O

(
Q2N2

(log N)C

)
= O

(
N2

(log N)C−2B

)
(3.33)

is much smaller than N2 for C > 2B.
We shall now investigate the contribution from the major arcs.

Theorem 3.5. Let B, C ∈ R such that B, C > 0 and C > 2B. Let ε > 0.
Then the weighted sum RM(N) over the major arcs M can be represented
as

∫

M
F 2

N (x)e(−Nx)dx = S(N)
N2

2
+O

(
N2

(log N)(1−ε)B

)
+O

(
N2

(log N)C−5B

)

(3.34)
where S(N) is defined below.

Proof:
First consider this integral:

∫

M

(
F 2

N (x)− µ2(q)
φ2(q)

u2

(
x− a

q

))
e(−Nx)dx

=
∑

q≤Q

q∑
a=0

(a,q)=1

∫

M(a,q)

(
F 2

N (x)− µ2(q)
φ2(q)

u2

(
x− a

q

))
e(−Nx)dx

simply from the definition of the major arcs M.
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Then, since the function e(αx) ≤ 1, and Theorem 3.4,

¿
∑

q≤Q

q∑
a=0

(a,q)=1

∫

M(a,q)

Q2N2

(log N)C
dx

Observe that when q = 1,
∣∣M(a,q)

∣∣ = Q
N , and when q ≥ 2,

∣∣M(a,q)

∣∣ = 2Q
N .

Then since C > 2B,

¿
∑

q≤Q

q∑
a=0

(a,q)=1

∫

M(a,q)

Q3N

(log N)C
dx

≤ Q5N

(log N)C

≤ N

(log N)C−5B
(3.35)

Since

∫

M

(
F 2

N (x)− µ2(q)
φ2(q)

u2

(
x− a

q

))
e(−Nx)dx ¿ N

(log NC−5B)

to determine

RM(N) =
∫

M
F 2

N (x)e(−Nx)dx

it is sufficient to study

∫

M

µ2(q)
φ2(q)

u2

(
x− a

q

)
e(−Nx)dx

=
∑

q≤Q

q∑
a=1

(a,q)=1

∫

M(a,q)

µ2(q)
φ2(q)

u2

(
x− a

q

)
e(−Nx)dx

=
∑

q≤Q

q∑
a=1

(a,q)=1

µ2(q)
φ2(q)

∫ a
q
+ Q

N

a
q
−Q

N

u2

(
x− a

q

)
e(−Nx)dx
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Since x = a
q + β, and the integrand is periodic,

=
∑

q≤Q

µ2(q)
φ2(q)

q∑
a=1

(a,q)=1

∫ Q
N

−Q
N

u2(β)e
(
−N(

a

q
+ β)

)

=
∑

q≤Q

µ2(q)
φ2(q)

q∑
a=1

(a,q)=1

e

(
−Na

q

) ∫ Q
N

−Q
N

u2(β)e(−Nβ)

Recalling the definition of cq(N), the above is

∑

q≤Q

µ2(q)cq(−N)
φ2(q)

∫ Q
N

−Q
N

u2(β)e(−Nβ)dβ

= S(N, Q)
∫ Q

N

−Q
N

u2(β)e(−Nβ)dβ (3.36)

where

S(N,Q) =
∑

q≤Q

µ2(q)cq(−N)
φ2(q)

(3.37)

Continuing with the proof, observe that if |β| ≤ 1
2 , then u(β) ¿ |β|−1.

Since e(αx) ≤ 1,

∫ 1
2

Q
N

u2(β)e(−Nβ)dβ

¿
∫ 1

2

Q
N

u2(β)dβ

¿
∫ 1

2

Q
N

β−2 =
N

Q
− 2 ≤ N

Q

Implementing the same calculation, we obtain that

∫ −Q
N

− 1
2

u2(β)e(−Nβ)dβ ¿ N

Q
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From these approximations, it is easy to see that

∫ Q
N

−Q
N

u2(β)e(−Nβ)dβ =
∫ 1

2

− 1
2

u2(β)e(−Nβ)dβ

up to a small error.
By Theorem 3.1, we have that

∫ 1
2

− 1
2

u2(β)e(−Nβ)dβ = N + O

(
N

Q

)
(3.38)

Now consider S(N, Q):
Let S(N) be defined by

S(N) =
∞∑

q=1

µ2(q)cq(N)
φ2(q)

(3.39)

This is the Singular Series for the Binary Goldbach Problem. We first will
show that it converges. Then we will show that for Q → ∞, S(N, Q)
converges to S(N)

We know that cq(N) ¿ φ(q) and that φ(q) > q1−ε for ε > 0 and suffi-
ciently large q. We know that cq(N) is multiplicative.

Let us, for the moment, use a clearer notation for this discussion. Since
N is fixed, we shall denote cq(N) by cN (q).
We see that since cN (q) is multiplicative in q, that if q = p1p2 . . . pr, that

cN (q) = cN (p1p2 . . . pr) = cN (p1)cN (p2) . . . cN (pr)

Note that each pi must be distinct since if q is divisible by pk
i where k ≥ 2,

then µ(q) = 0.
Also note that from the definition of

cq(N) = cN (q) =
q∑

a=1
(a,q)=1

e

(
aN

q

)

we have

cN (p) =

{
p− 1 if p divides N
−1 otherwise

(3.40)
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and since p ≤ N , it follows that

µ2(q)cN (q)
φ2(q)

¿ (N − 1)s

φ2(q)
+

(−1)r−s

φ2(q)
<

(N − 1)s

q2(1−ε)
+

(−1)r−s

q2(1−ε)
(3.41)

where s is the number of prime factors common to q and N .
Since the numerators do not depend on q, it is obvious that as q →∞, the
Singular Series

S(N) =
∞∑

q=1

µ2(q)cq(N)
φ2(q)

converges.
Convergence of the Singular Series is also apparent when we consider the
bound

cq(N) ≤ φ(N) ≤ N (3.42)

Then we have

µ2(q)cN (q)
φ2(q)

≤ N

φ2(q)
<

N

q2(1−ε)
(3.43)

which tends to 0 as q →∞.
Now, for fixed N , and q square-free, we have

S(N)−S(N, Q) =
∑

q>Q

µ2(q)cq(N)
φ2(q)

¿
∑

q>Q

N

φ2(q)
¿

∑

q>Q

N

q2−ε

¿ N

Q1−ε

therefore

S(N,Q) = S(N) + O

(
N

Q1−ε

)
(3.44)
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but this approximation is of no use since the error term is of the same order
as the main term. With theorem 3.5 as motivation, we have now discovered
a problem which has not yet been solved. It has not yet been shown that

S(N, Q)

can be approximated by

S(N)

with an error term smaller than the main term. We now digress into a
discussion on this problem.

We see that the problem arises in bounding cq(N) when the common
factors between q and N , (q,N) is very large. We will consider the special
case where N has few factors relative to its size. In particular, fix an integer
D > 0. We consider N → ∞ such that the number of factors of N is at
most logD(N). Let us represent q as the product of two functions, x(q)y(q),
where x(q) is the product of factors common to q and N , and y(q) is the
product of what remains.

Observe that for each y(q), there are at most τ(N) ¿ logD(N) (ref:
HW) choices of x(q) that have the same y(q).

Now let’s consider the sum

S =
∑

x(q),y(q)
x(q)y(q)>Q

CN (x(q)y(q))
φ2(x(q)y(q))

There are two cases to consider. The first is when x(q) > Q1/2 and the
second is when y(q) > Q1/2. We can split the sum into two sums with these
conditions as follows:

S =
∑

x(q),y(q)

x(q)>Q1/2

CN (x(q)y(q))
φ2(x(q)y(q))

+
∑

x(q),y(q)

y(q)>Q1/2

CN (x(q)y(q))
φ2(x(q)y(q))

Let us first examine the first sum, when x(q) > Q1/2. Call it L. Since CN

and φ are both multiplicative functions, we can separate the terms. We
have,
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L =
∑

x(q),y(q)

x(q)>Q1/2

CN (x(q)y(q))
φ2(x(q)y(q))

=
∑

x(q),y(q)

x(q)>Q1/2

CN (x(q))
φ2(x(q))

∗ CN (y(q))
φ2(y(q))

=
∑
x(q)

x(q)>Q1/2

CN (x(q))
φ2(x(q))

∗
∑

y(q)

CN (y(q))
φ2(y(q))

We observe that, by definition, and by the fact that x(q)|N ,

CN (x(q)) =
x(q)∑
a=1

(a,x(q))=1

e

(
aN

x(q)

)
=

x(q)∑
a=1

(a,q)=1

1 = φ(x(q))

And since y(q) 6 |N ,

CN (y(q)) =
y(q)∑
a=1

(a,y(q))=1

e

(
aN

y(q)

)
<

y(q)∑
a=1

(a,q)=1

1 = φ(y(q))

We then have that,

L <
∑
x(q)

x(q)>Q1/2

1
φ(x(q))

∗
∑

y(q)

1
φ(y(q))

<
∑
x(q)

x(q)>Q1/2

1
x(q)1−ε

∗
∑

y(q)

1
φ(y(q))

<
∑

x(q)

1
Q(1−ε)/2

∗
∑

y(q)

1
φ(y(q))

≤ τ(N)
Q(1−ε)/2

∗
∑

y(q)

1
φ(y(q))

¿ logD(N)
Q(1−ε)/2

∗
∑

y(q)

1
φ(y(q))

= O

(
logD(N)
Q(1−ε)/2

)

Let us now examine the second sum. We shall call it R.

R =
∑

x(q),y(q)

y(q)>Q1/2

CN (x(q)y(q))
φ2(x(q)y(q))

=
∑

x(q),y(q)

y(q)>Q1/2

CN (x(q))
φ2(x(q))

∗ CN (y(q))
φ2(y(q))

=
∑
y(q)

(q)>Q1/2

CN (x(q))
φ2(x(q))

∗
∑

x(q)

CN (y(q))
φ2(y(q))
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By similar reasoning as with L, we find that

R <
∑
y(q)

y(q)>Q1/2

1
φ(y(q))

∗
∑

x(q)

1
φ(x(q))

¿ 1
Q(1−ε)/2

∑

x(q)

1
φ(x(q))

¿ logd(N)
Q(1−ε)/2

Since D was arbitrary, we see that we can choose D so that for N such
that τ(N) ¿ logD(N), S(N, Q) is a good approximation to S. We end our
digression here.
Returning to the proof, we have

RM(N) =
∫

M
F 2

N (x)e(−Nx)dx

= S(N,Q)
∫ Q

N

−Q
N

u2(β)e(−Nβ)dβ + O

(
N

(log N)C−5B

)

=
(

S(N) + O

(
1

Q1−ε

))(
N + O

(
N

Q

))

+ O

(
N

(log N)C−5B

)

= NS(N) + O

(
N

Q1−ε

)
+ O

(
N

(log N)C−5B

)

= NS(N) + O

(
N

(log N)(1−ε)B

)
+ O

(
N

(log N)C−5B

)

and this is the desired result.
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4 The Singular Series

Earlier, we had defined the Singular Series for the Binary Goldbach Problem
to be

S(N) =
∞∑

q=1

µ2(q)cq(N)
φ2(q)

This function has many interesting properties. The first that we will discuss
is that it can be represented as an Euler Product.

Theorem 4.1. The Singular Series has the Euler Product

S(N) =
∏

p6|N

(
1− 1

(p− 1)2

) ∏

p|N

(
1 +

1
p− 1

)
(4.45)

Proof:
Recall the calculation done in Section 3 that showed that

µ2(q)cq(N)
φ2(q)

¿ (N − 1)r

q2(1−ε)

Hence the Singular Series converges. Since the functions cq(N), µ(q), and
φ(q) are multiplicative in q, and the product of multiplicative functions is
multiplicative, so is the Singular Series. Therefore it has the Euler Product

S(N) =
∏
p


1 +

∞∑

j=1

µ2(pj)cpj (N)
φ3(pj)




Returning to the definition of the function µ(q), we see that for j ≥ 2,
µ(q) = 0. So we can write the Singular Series as

S(N) =
∏
p


1 +

∞∑

j=1

µ2(p)cp(N)
φ3(p)




Recall that

cp(N) =

{
p− 1 if p divides N
−1 otherwise
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It follows that

∏
p


1 +

∞∑

j=1

µ2(p)cp(N)
φ3(p)


 =

∏
p

(
1 +

cp(N)
φ2(p)

)

=
∏

p6|N

(
1 +

cp(N)
φ2(p)

) ∏

p|N

(
1 +

cp(N)
φ2(p)

)

=
∏

p6|N

(
1− 1

(p− 1)2

) ∏

p|N

(
1 +

1
p− 1

)

The Singular Series is very significant to the Circle Method. It basi-
cally encodes all of the information that restricts us to the problem we are
investigating. For example:

If we try to prove that every odd number is the sum of two primes, we
observe that in order for this to happen, one of the primes has to be 2.
This is because 2 is the only even prime and the sum of two odd numbers
is even. Now, looking back at the Euler Product for our Singular Series for
two primes, since N is odd, our first prime 2 does not divide N , and so we
have

(
1− 1

(2− 1)2

) ∏
p6|N
p>2

(
1− 1

(p− 1)2

) ∏

p|N

(
1 +

1
p− 1

)

= 0 ∗
∏
p6|N
p>2

(
1− 1

(p− 1)2

) ∏

p|N

(
1 +

1
p− 1

)
= 0

and so the weighted sum of the number of ways our odd N can be represented
as the sum of two primes, R(N) is 0. This reflects that it is not true that
all odd numbers can be represented as the sum of two primes. We can find
a simple counterexample by considering the number 27.
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For the sake of interest, let us now turn to the Singular Series for the
ternary Goldbach Problem. It follows from similar analysis that

S(M) =
∞∑

q=1

µ(q)cq(M)
φ3(q)

=
∏

p6|M

(
1 +

1
(p− 1)3

) ∏

p|M

(
1− 1

(p− 1)2

)
(4.46)

If we violate the condition that M is odd and set M as even, we see im-
mediately that the Singular Series forces the weighted sum R3(M) to equal
zero since 2 divides M

∏

p6|M

(
1 +

1
(p− 1)3

) ∏

p|M

(
1− 1

(2− 1)2

)
=

∏

p6|M

(
1 +

1
(p− 1)3

)
∗ 0 = 0

This is very interesting since if the Singular Series allowed us to show that
every even number is the sum of three primes then we would be able to
prove the binary Goldbach problem from that result. Let us see why.
Let it be true that

2n = p1 + p2 + p3

∀n ∈ N where p1, p2, p3 depend on n.
Now, there are three primes (p1, p2, p3) and each can be even or odd. This
gives us eight different combinations. The four such that p1 +p2 +p3 is even
are
1. if all of them are even
or
2. if one is even while the other two are odd.

If all of them are even, they must all be 2 since 2 is the only even prime.
The sum is then 6 and we are limited to this specific case. If we consider
one of the primes, say p1, to be even, and hence 2, and the other two to be
odd, then we have

2n = 2 + p2 + p3

Furthermore, we have

2(n− 1) = p2 + p3

22



and for n ≥ 2 we have proven that every even number greater than 2 can
be represented as the sum of two primes.

This demonstrates the power of S(N) and why the rigidity of the Sin-
gular Series is so important. It is a very precise expression.

5 The Integral Over the Minor Arcs

Now that we have established the value of the integral over the Major
Arcs within a certain error term, we must investigate the contribution of
the integral over the Minor Arcs. Recall that our weighted sum, R2(N), of
the number of different ways the number N can be the sum of two primes
can be represented by

R(N) =
∫ 1

0
F 2

N (x)e(−Nx)dx

=
∫

M
F 2

N (x)e(−Nx)dx +
∫

m
F 2

N (x)e(−Nx)dx

Vinogradov showed that in the case of the ternary Goldbach problem, the
integral over the minor arcs is bounded by

∫

m
F 3

M (x)e(−Nx)dx ¿ M2

(log M)(B/2)−5
(5.47)

From this he showed that for A > 0

R(M) =
∫ 1

0
F 3

M (x)e(−Mx)dx = S(M)
M2

2
+ O

(
M2

(log M)A

)
(5.48)

which is bounded away from 0 since as M →∞, log M →∞ and so

M2

(log M)A
¿ S(M)

M2

2

Therefore the function R(M) > 0.
Note that the function

R(M) =
∑

p1,p2≤M
p1+p2=M

log pe(px)
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is greater than 0 if and only if the function

C(M) =
∑

p1,p2≤M
p1+p2=M

1

is greater than 0. Therefore, since R(M) > 0, the number of ways M can be
represented as the sum of three primes is greater than 0. Since the function
C(M) only takes integer values, C(M) ≥ 1, and the ternary problem is
proven.

Let us investigate some elementary bounds for the integral over the minor
arcs. For the ternary case, it was possible to determine bounds for the
integral over the minor arcs. If we simply take

∫

m
F 3

M (x)e(−Nx)dx ¿
∫

m
|FM (x)|3 dx

¿ max{|FM (x)| : x ∈ m}
∫

m
|FM (x)|2 (x)dx

then it is possible to find a bound for the maximum of the function FM on
the minor arcs and the integral

∫ 1

0
|FM (x)|2 =

∑

p≤M

(log p)2 ≤ log M
∑

p≤M

log p

and by Chebyshev’s Theorem,

¿ M log M

And Vinogradov gives us a bound for the function FM (x).

FM (x) ¿
(

N

q1/2
+ N4/5 + N1/2q1/2

)
(log N)4

¿ N

(log N)(B/2)−4
(5.49)
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From above, we have

max{|FM (x)| : x ∈ m}
∫

m
|FM (x)|2 (x)dx

¿ N

(log N)(B/2)−4

∫ 1

0
|FM (x)|2 dx

¿ N2

(log N)(B/2)−5

When we try to apply this method to the binary Goldbach problem, we
find that we cannot bound R(N) away from 0 since we cannot determine
the contribution from the minor arcs to be small enough that were it to be
negative, it still would not contribute enough to diminish the value of R(N)
to less than 0. We have

R(N) = NS(N) + O

(
N

(log N)(1−ε)B

)
+ O

(
N

(log N)C−5B

)

+
∫

m
F 2

N (x)e(−Nx)dx (5.50)

and we cannot yet show that

∣∣∣∣O
(

N

(log N)(1−ε)B

)∣∣∣∣+
∣∣∣∣O

(
N

(log N)C−5B

)∣∣∣∣+
∣∣∣∣
∫

m
F 2

N (x)e(−Nx)dx

∣∣∣∣ < NS(N)

If we try to bound the integral over the minor arcs in the same way that we
did for the ternary case we find that

∫

m
F 2

N (x)e(−Nx)dx ¿
∫

m
|FN (x)|2 dx

¿ max{|FN (x)|}
∫

m
|FN (x)| dx
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but it is not easy to bound
∫

m
|FN (x)| dx

enough. As we saw earlier,
∫ 1

0
|FN (x)| dx ¿ N log N

but looking back at the contribution from the major arcs we see that the
term from the minor arcs is of larger order.

NS(N) + O

(
N

(log N)(1−ε)B

)
+ O

(
N

(log N)C−5B

)
+ O (N log N)

is not necessarily larger than 0.
Let us try another method to bound the contribution from the minor

arcs. We employ the Cauchy-Schwartz inequality. Again, we have

max{|FN (x)|}
∫

m
|FN (x)| dx = max{|FN (x)|}

∫

m
|FN (x)| ∗ 1dx

≤ max{|FN (x)|}
(∫

m
|FN (x)|2

)1/2 (∫

m
|1|2

)1/2

¿ N

(log N)(B/2)−4
(N log N)1/2

=
N3/2

(log N)(B/2)−(7/2)
(5.51)

which is still larger than the term contributed by the major arcs.
We now turn to computational methods to determine the behavior of

the integral over the minor arcs for the binary problem.

6 Minor Arc Behavior

As we saw in the previous sections, it is not a simple task to theoretically
bound the contribution from the minor arcs. Consider the weighted function

FN (x) =
∑

log pe(2πipx) =
∑

(cos 2πpx + i sin 2πpx) (6.52)
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For the sake of simplicity we only investigate the behavior of the real part

∑
(cos 2πpx) (6.53)

of FN (x) in this paper. The main questions we have to ask in bounding the
contribution from the minor arcs are:
1: What is the maximum value attained by the function?
2: How often is this maximum value attained, and what is the measure of
the set that it attains this maximum value on?
3: How small is the function away from the peaks?

By observing the graphs, we can get a good sense for how the function
looks and the liklihood that Goldbach’s Conjecture is true.
Before examining the behavior of the function on the minor arcs, let us first
take a look at a plot of the major arcs themselves. Note that this is not a
plot of the function on the major arcs, but simply an illustration of where
the major arcs lie and their spacings.

This particular case is the major arc intervals for the first two hundred
primes.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
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For the first five hundred primes, we have

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

For the first thousand primes, we have

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

For the first ten thousand primes, we have
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0.4

0.6

0.8

1
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For the first one hundred thousand primes, we have

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

For the first million primes, we have

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Note how thin and sparse the major arcs become as the number of primes
increase. Now let us investigate the behavior of the function on the minor
arcs. Note also that we are only investigating the cases where Q = logB(N)
where B = 1. This is because for larger values of B, the major arcs are so
thick that they do not become distinct until N is sufficiently high. We have
shown behavior up to the first one hundred thousand primes, but for N to
take on any higher values would require an extremely long time to compute
with the software we have available.
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We begin by observing the graph of the real part of the function over
the minor arcs in the unit interval for the first five hundred primes.

0.2 0.4 0.6 0.8 1

-600

-400

-200

200

400

600

For the first five hundred primes, the major arcs are still apparent and
we can see them here as the intervals where the function over the minor arcs
vanishes. We now focus in on a smaller interval around one of the peaks to
observe its behavior in more detail.

The interval is (0.098, 0.102) where the peak appears to be the highest.
The constant plots are at −900 and 900, just as visual aid for determining
exactly where the maximums of the peaks lie.

0.098 0.099 0.101 0.102

-1000

-750

-500

-250

250

500

750

1000

We can see that the maximum of the function over the minor arcs is
slightly less than 900.
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For the first thousand primes, we have:

0.2 0.4 0.6 0.8 1

-1500

-1000

-500

500

1000

1500

And in the interval (0.689, 0.701), with the constants at magnitude 2000,

0.699 0.6995 0.7005 0.701

-2000

-1000

1000

2000

And we see that the maximum is approximately 2000.
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For the first ten thousand primes, we have:

0.2 0.4 0.6 0.8 1

-6000

-4000

-2000

2000

4000

6000

And in the interval (0.09515,0.09530), with the constants at magnitude 9000,

0.09516 0.09518 0.09522 0.09524 0.09526 0.09528 0.0953

-10000

-7500

-5000

-2500

2500

5000

7500

10000

And we see that the maximum is approximately 9000.
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For the first one hundred thousand primes, we have:

0.2 0.4 0.6 0.8 1

-10000

-7500

-5000

-2500

2500

5000

7500

10000

And in the interval (0.25488, 0.25492), with the constants at −10000 and
38000,

0.25488 0.25489 0.25491 0.25492

-10000

10000

20000

30000

40000

And we see that the maximum is approximately 40000.
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It is clear from the graphs that although the peaks are still relatively
high, they are extremely thin and rare. It is also promising to observe
that aside from the peaks, the function is otherwise extremely small on
the minor arcs. Vinogradov only gave a bound for the maximum of the
function, which we now see to be significantly larger than the rest of the
function. Vinogradov’s crude bound using the maximum of the function
was not sufficient to prove the binary case, but now that we see that the
maximum of the function most likely is far larger than the average of the
function over the minor arcs, the binary case could very well be true.
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7 Corrections that have yet to be incorporated

7.1 First

remember, y(q) is relatively prime with N – THIS is what allows you to
conclude that |cN (y(q))| = 1.

for the y(q) sum, there are two pieces:
Case 1: y(q) ¿ sqrt(Q): then clearly the sum over y(q) will be small
Case 2: x(q) ¿ sqrt(Q): in this case, you are correct and all one can say

is the y(q) sum is O(1); however, there will be enormous savings from the
x(q) sum.

Note case 1 and 2 are NOT mutually exclusive.

7.2 Second

the problem with your bound for L is that, by using the week bound, you
now have a y-sum of 1/phi(y(q)). This sum is NOT O(1). USING THE
BOUND THAT y(q) is À y(q)1−epsilon, you are now summing something
like 1/y(q)1−epsilon, and this DOES NOT CONVERGE!!!

This is why your L bound is now WRONG – you CANNOT use the weak
bound,you MUST use cN (y(q)) ¿ 1.

Your bound for the x(q)-part of L is okay: x(q) is large so you have some
cancellation, and you have at most τ(N) ¿ logDN terms. But your y(q)
sum is no longer O(1) – you’ve made it infinite!

then see my comments for the R bound.

7.3 Third

page 17: it is S ¡= L + R, not S = L + R. Remember, you are double¿ ¿
counting the terms where both x(q) and y(q) ¿ sqrt(Q). This is minor.

on page 18, your bound for L is wrong. The problem is you are us-
ing CN (y(q)) < phi(y(q)) You should instead use |CN (y(q))| = 1, so it
is bounded by 1. Remember, since x(q) ¿ sqrt(Q), it is possible for y(q)
to be small – y(q) can start at 1. If you use a bound of phi(y(q)),then
you do NOT get a summable series for y – you’ll have 1/y1−epsilon and
this blows up. Putting in the correct bound for CN (y(q)), the sum over
y is bounded by a constant depending on epsilon (since we have some-
thing that is ¿ sumy1/y2−2epsilon Then, for the x-sum, note that there
are at most τ(N) À> logDN choices for x; as each is at least sqrt(Q), then
1/phi(x(q)) ¿ 1/Q(1−epsilon)/2.
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7.4 Fourth

Bottom of 18 / top of 19: Again, you have completely destroyed the savings
on CN (y(q)). You were so concerned before about using ”=” instead of ”¡=”
or ”¡¡”, that I find this surprising. We know |CN (y(q)| = 1 – why aren’t
you using this bound? To finish the proof, all you need remark is that for
each y, there are at most τ(N) À logDN choices of x(q). Each gives a
¿ contribution of 1/phi(x(q)). Trivially saying this is ¡= 1 suffices for the
proof. Thus, in this case, the sum over x(q) gives at most logDN . The sum
over y(q) is bounded by

∑

y≥√Q

1/phi(y(q))2 ¿
∑

y≥√Q

1/y2−2epsilon À Q(1−2epsilon)/2
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