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Nota Bene: Conjecture 5.2 of the numerical results at the end of this
paper was not correctly derived from the Mathematica code written for this
investigation. Thus, if you wish to check the validity of the numerical con-
jectures please run your own Mathematica code.

1 Introduction

This paper presents numerical testings concerning the following conjecture
exhibited by Chowla and Chowla in [1]. For any positive integer k there
exist infinitely many primes P with the continued fraction expansion of

√
P

having period k . The conjecture improves the similar already proved results
for positive integers and, as a special case, for square free numbers.
The validation of this conjecture would prove in the case k = 1 , for example,
that there are infinitely many primes of the form m2 + 1 , m ∈ Z .

2 Basic Definitions and Notations

Definition 2.1 An expression of the form

1 + 1
a2+ 1

a3+ 1
a4+...

is called a simple continued fraction.We shall denote it more convenien-
tely by the symbol [a1, a2, a3, ..., an, ...]. The terms a1, a2, a3, ... are called the
partial quotients of the continued fraction. We will discuss only the cases
when the partial quotients are positive integers.
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Definition 2.2 We denote by pn

qn
= [a1, a2, ..., an] the n th convergent of the

simple continued fraction from (1) . Thus, pn and qn are the positive integer
numerator and denominator of the n th convergent.

Definition 2.3 A continued fraction which is periodic from the first partial
quotient is called purely periodic. If the period starts with the second
partial quotient, the continued fraction is called simply periodic . We
shall denote a simply periodic continued fraction by [a0, a1, a2, · · · , an]

Definition 2.4 A quadratic irrational α is said to be reduced if α > 1 is
the root of a quadratic equation with integral coefficients whose conjugate root
α̃ lies between -1 and 0. A reduced quadratic irrational associated to D can

be written as P+
√

D
Q

, where P, D, Q are integers, D, Q > 0.

Definition 2.5 For a given k ∈ Z+ and a set of positive integers {an}n=0,1,···,k−1

we define
P−1 = 1, Q−1 = 0
P0 = a0, Q0 = 1
Pn = anPn−1 + Pn−2, Qn = anQn−1 + Qn−2 for n = 1, 2, · · · , k − 1

3 A Few General Results

This section provides the necessary background for working with the contin-
ued fractions of

√
N , where N∈ Z+. For more similar results, see [4]. Most

of the results presented here are encountered there.

Theorem 3.1 If α is a reduced quadratic irrational,then the continued frac-
tion for α is purely periodic.

In order to prove the theorem we need a preliminary lemma:

Lemma 3.2 For any given D there is only a finite number of reduced quadratic
irrational associated to it.

Proof of Lemma 3.2 :If α is a reduced quadratic irrational, α̃ is its conjugate

and α = P+
√

D
Q

, then

α = P+
√

D
Q

> 1, and− 1 < α̃ = P−
√

D
Q

< 0
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(1)

The conditions α > 1 and α̃ > −1 imply that α+ α̃ > 0, or 2P
Q

> 0, and since
Q > 0 we conclude that P > 0. Also from α̃ < 0 and Q > 0 it follows that
0 < P <

√
D. The inequality α > 1 implies that P +

√
D > Q and, thus

Q < 2
√

D. Once D is fixed there is only a finite number of positive integers
P and Q such that P <

√
D and Q < 2

√
D, which proves the assumption.

Proof of Theorem 3.1:
As α is a reduced quadratic irrational it can be uniquely expressed as P+

√
D

Q
,

where P, D, Q are positive integers. We can express α in the form α = a1+
1

α1
,

where a1 is the largest integer less than α, and where

α1 = 1
α−a1

= P1+
√

D
Q1

> 1

is again a reduced quadratic irrational associated with D. Repeating step by
step the process we convert α into a continued fraction such that for every
n,

αn−1 = an + 1
αn

(2)

where α = α0, α1, ... are all the quadratic irrationals associated with D and
where a1, a2, .. are the partial quotients of the continued fraction expansion.
From the above lemma we have that we must arrive to a reduced quadratic
irrational which has occured before, so that αk = αl, for 0 ≤ k < l. As

αk = ak+1 + 1
αk+1

= αl = al+1 + 1
αl+1

,

and since ak+1 and al+1 are the greatest integers less than αk = αl, we
conclude that ak+1 = al+1. It then follows that αk+1 = αl+1. Thus we have
that from lth partial quotient, the continued fraction for α is periodic.
We show next that αk = αl for 0 < k < l implies αk−1 = αl−1, αk−2 =
αl−2, . . . , α0 = αl−k. Let α̃k = α̃l be the conjugates of the equal complete
quotients αk and αl. Then, it follows that

βk = − 1
α̃k

= − 1
α̃l

= βl
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If k 6= 0, then by taking conjugates in (2), we obtain

α̃k−1 = ak + 1
α̃k

and α̃l−1 = al + 1
α̃l

(3)

and thus

βk = ak + 1
βk−1

and βl = al + 1
βl−1

(4)

Since αk−1, αl−1 are reduced, we have that

0 < −α̃k−1 = 1
βk−1

< 1 and 0 < −α̃l−1 = 1
βl−1

< 1

Thus, ak and al in (4) are the largest integers less than βk, βl, respec-
tively;from βk = βl we get that ak = al. Thus, from equation (3) we get that
αk−1 = αl−1. Continuing this process we get that αk−2 = αl−2, · · · , α0 = αl−k.
As for each αn, an is the greatest integer less than αn, we get that a0 = ak−l,
a1 = ak−l+1, · · ·. Thus the continued fraction of α is purely periodic and we
can write α = [a0, a1, · · · , al−k−1]. This completes the proof of the theorem.

Corollary 3.3 For any N , positive integer which is not a perfect square, the
continued fraction of

√
N is simply periodic, more precisely

√
N = [a1, a2, a3, · · · , an, 2a1], for some n

Proof:
Let a1 be the greatest integer less than

√
N . Then

√
N + a1 > 1 and its

conjugate, −
√

N + a1 lies between −1 and 0. Thus,
√

N + a1 is a reduced
quadratic irrational with the greatest integer less than it equal to 2a1. We
can apply Theorem 3.1:

√
N + a1 = [2a1, a2, · · · , an] for some n

which is equivalent to
√

N + a1 = [2a1, a2, a3, · · · an, 2a1]
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consequently
√

N = [a1, a2, a3, · · · , an, 2a1] where a1 > 0

Theorem 3.4 If for a reduced quadratic integer α = [a1, a2, · · · , an] we de-
note by β = [an, an−1, · · · , a1] the continued fraction for α with period re-
versed, then − 1

β
= α̃ is the conjugate root of the equation satisfied by α .

Proof:
We know that if pn

qn
= [a1, a2, · · · , an] then pn = anpn−1 + pn−2, thus pn

pn−1
=

an + 1
pn−1
pn−2

, for any n. Thus, we get recursively that p2

p1
= [a2, a1],...,

pn

pn−1
=

[an, an−1, · · · , a1] = p̃n

q̃n
. Similarly, we get that qn

qn−1
= [an, an−1, · · · , a2] = p̃n−1

q̃n−1
,

where by p̃n

q̃n
and p̃n−1

q̃n−1
we understand the nth and the (n− 1)th convergents

of the continued fraction [an, an−1, · · · , a1]. Since the fractions are already
reduced we get that

p̃n = pn, p̃n−1 = qn, q̃n = pn−1 and q̃n−1 = qn−1

(5)

We also have the recurrences

α = αpn+pn−1

αqn+qn−1
and β = βp̃n+p̃n−1

βq̃n+q̃n−1

(6)

According to (5) we notice that

β = βpn+qn

βpn−1+qn−1

And, thus from (6) we get that α and − 1
β

satisfy the same quadratic equa-

tion. We conclude that − 1
β

= α̃ where β = [an, an−1, · · · , a1] .

Lemma 3.5 Except for the term 2a1 the periodic part of the continued frac-
tion of

√
N is symmetrical.

5



Proof:
From the continued fraction of

√
N we get that

√
N−a1 = [0, a2, a3, · · · , an, 2a1].

We can easily get now that

1√
N−a1

= [a2, a3, · · · , an, 2a1]

(7)

From Theorem 3.4 we get that

1√
N−a1

= [an, an−1, · · · , 2a1]

(8)

where a1−
√

N is the conjugate of the reduced quadratic a1 +
√

N . However,
we know that the continued fraction expansions are unique. Comparing (7)
and (8) we conclude that

an = a2, an−1 = a3, · · ·, a3 = an−1, a2 = an

Thus, except for the term 2a1 the periodic part of the continued fraction of√
N is symmetrical.

We must acknowledge that the set of numbers that have simply periodic,
almost symmetrical continued fractions is much larger than the one men-
tioned above.We have the more general result presented in [7] that states
that the square roots of the rational numbers greater than the unity have
the above property. Thus, we must be careful when we analyse simply period
continued fractions. We will show however that , except for one observation,
Lemma 3.5 is the best description one can get for continued fractions of
square roots of positive integers.

4 Main Theoretical Results

This section presents a theoretical result obtained in [5].The proof, in its
majority, is reproduced ad-literam from [5].The purpose is to introduce the
reader to a theoretical result that will be tested numerically in the last part
of this report.
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Theorem 4.1 Let N be a square free positive integer. By [
√

N ] we denote
the greatest integer less than

√
N . Then the equation

√
N = [[

√
N ], a1, a2, · · · , ak−2 = a2, ak−1 = a1, ak = 2[

√
N ]]

has for any symmetric set of positive integers a1, a2, · · · , ak−1, infinitely many
solutions whenever either Qk−2 or (Q2

k−2 − (−1)k)/Qk−1 is even. If both
quantities are odd then there are no solutions N even if the square free con-
dition is dropped.

We first need a technical lemma:

Lemma 4.2 With Pn and Qn as in Definition 2.5 we have the equations

xPk−1+Pk−2

xQk−1+Qk−2
= [a0, a1, · · · , ak−1, x] where x ∈ R+

(9)

and also

PnQn−1 − Pn−1Qn = (−1)n+1 for n = 0, 1, · · · , k − 1
(10)

Proof of Lemma:
The first equation is easily obtained by induction while for the second one
refer to Chapter 5, Introduction to Continued Fractions from the lecture
notes.
Proof of the Theorem:
Replacing x with

√
N+a0 in equation (9) and for the equation in the theorem

to hold we get that

(
√

N+a0)Pk−1+Pk−2

(
√

N+a0)Qk−1+Qk−2
= [a0, a1, · · · , ak−1,

√
N + a0] =

√
N

(11)

Where in writing this formula we have used the equivalence of expressions
for the simply periodic continued fraction of a real number x :
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x = [a0, a1, · · · , ak−1, 2a0] = [a0, a1, · · · , ak−1, x + a0]

Equation (11) gives us:

Pk−1 = a0Qk−1 + Qk−2 and NQk−1 = a0Pk−1 + Pk−2

(12)

Equation (10) , for n = k − 1 gives us

Pk−2 = (Pk−1Qk−2 − (−1)k)/Qk−1

These three equations give the sufficient condition for n to be an integer with
the desired continued fraction expansion:

(N − a2
0)Qk−1 − (2a0)Qk−2 = (Q2

k−2 − (−1)k)/Qk−1

(13)

From equation (10) we get that Qk−2 and Qk−1 are coprime.To find the ex-
pressions for N and a0 we need the following lemma:

Lemma 4.3 If a and b are positive coprime integers then the integer solu-
tions x and y of:

xa− yb = z, with z an integer

are those of the form:

x = zd + mb and y = zc + ma

where m is any integer and as a and b are coprime d and c are the integers
such that da− bc = 1 .

Proof of Lemma: It is obvious that such x and y are integer solutions of
the equation. For x and y solutions of the equation let x1 = x − zd and
y1 = y − zc. We have thus that x1a − y1b = 0. As a and b are coprime we
get that there exists m an integer such that x1 = mb and y1 = ma. This
proves our assumption. We conclude from the lemma and equation (12) that
for N − a2

0 and 2a0 to satisfy equation (13) we must have that:
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N − a2
0 = (−1)k+1(Q2

k−2 − (−1)k)2/Q2
k−1 + mQk−2 and

2a0 = (−1)k+1Qk−2(Q
2
k−2 − (−1)k)/Qk−1 + mQk−1

Where m ≥ m0, m0 is the smallest positive integer such that N − a2
0 and

2a0 are positive quantities. As m is chosen such that N − a2
0 and 2a0 are

positive quantities, then the only condition that has to be satisfied such that√
N to have the desired continued fraction is to make 2a0 a positive integer.

We have four possible cases:

Case 1: Qk−2 ≡ 0(mod 2). In this case (Qk−2, Qk−1) = 1 ⇒ Q − k − 1 ≡
1(mod 2) and the even m are the only solutions that will force 2a0 ≡ 0(mod
2).
Case 2: Qk−1 ≡ Qk−1 ≡ 1(mod 2). This time only even m are solutions.
Case 3:Qk−2 ≡ 1(mod 2), Qk−1 ≡ (Q2

k−2 − (−1)k)/Qk−1 ≡ 0(mod 2). Here
all m satisfy.
Case 4: Qk−2 ≡ (Q2

k−2 − (−1)k)/Qk−1 ≡ 1(mod 2). We have, thus that
Qk−1 ≡ 0(mod 2) and there are no m ∈ Z such that a0 ∈ Z . This case
proves the second part of the theorem. For case 1 and 2 we see that N has
the desired continued fraction expansion exactly when:

N = {(−1)k+1Qk−2(Q
2
k−2 − (−1)k)/2Qk−1 + bQ2

k−1 + 2bQk−2+

(−1)k+1(Q2
k−2 − (−1)k)2/Q2

k−1 = αb2 + βb + γ = N(b) for b ∈ Z and
b0 = m0/2

α = Q2
k−1,

β = 2Qk−2 − (−1)kQ− k − 2(Q2
k−2 − (−1)k),

γ = (Q2
k−2/4− (−1)k)(Q2

k−2 − (−1)k)2/Q2
k−1

And the discriminant δ = β2 − 4γ = 4(−1)k.
For case 3 we obtain again that

N = N(b) = αb2 + βb + γ

where this time the integral coefficients are

α = Q2
k−1/4
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β = Qk−2 − (−1)kQ− k − 2(Q2
k−2 − (−1)k)/2

γ = (Q2
k−2/4− (−1)k)(Q2

k−2 − (−1)k)2/Q2
k−1

Here δ = β2 − 4αγ = (−1)k, thus, δ = 1 and k is even. We are stating now
the last two lemmas that are going to give us the final result:

Lemma 4.4 With the above notation we have that for any prime p, N(n) ≡
0(mod p2) for at most two n in any residue system modulo p.

Proof:For p = 2 as n goes through a complete residue system modulo4, N(n)
takes on values γ, α + β + γ, 2β + γ, and α − β + γ . If Qk−1 ≡ 1(mod 2)
we have α ≡ 1(mod 2) and if Qk−1 ≡ 0(mod 2) then δ = (−1)k implies that
β ≡ 1(mod 2). Thus, we can see that at most two of the four values can be
congruent to 0 mod 4.
For p an odd prime, assume that p|N(b), say N(b) ≡ lp(mod p2). Then
N(b + np) ≡ 2αbnp + βnp + lp(mod p2). We have N(b + np) ≡ 0(mod
p2)⇔ l + (2αb + β)n ≡ 0(mod p). But N(b) ≡ 0(mod p) and as p does not
divide δ implies that p does not divide 2αb + β and so (2αb + β) is invetible
modulo p. Thus, l + (2αb + β)n ≡ 0(mod p) for exactly one choice of n
modulo p. Still, p | N(b) is possible for at most two choices of b(mod p) as
p 6 |δ ⇒ αx2 + βx + γ is not identically congruent to 0 mod p. Thus, there
are at most two n in any residue system modulo p2 such that N(n) ≡ 0(mod
p2).
The last lemma finishes off the proof of the main theorem:

Lemma 4.5 Define the density D= limn→∞(number of square free N(b) with
b ≤ n)/n. Then D > 0.

Proof of lemma:Using the previous lemma we get that

D ≥
∏

p prime

(1− 2

p2
) ≥

∞∏
n=2

(1− 2

n2
) = exp

{ ∞∑
n=2

ln(1− 2

n2

}

≥ exp

{ ∞∑
n=2

−4

n2

}
as ln(1− 2/n2) > −4/n2 for n ≥ 2,
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≥ exp
{
−4π2/6

}
> 0.

It has been suggested in [3] that we can improve the approximation of D.If
we consider that 1 − 2

p2 < 1 − 1
p2 , then we can approximate D by 1/ζ2(2),

where ζ is the Riemann- zeta function. We get a correction factor C where

∏
p prime

(1 +
2

p4
) ≥ C ≥

∏
p prime

(1 +
1

p4
)

. This leaves us with a theoretical approximation for D.

Corollary 4.6 For any positive integer k there exist infinitely many integers
N with a continued fraction expansion of period k.

Proof of the corollary: We must find a symmetric set {an}n=1,2,···,k−1 such
that the conditions of Theorem 4.1 that give us an integer N are fulfilled.
For k = 1 then N(b) = b2 + 1 gives us infinitely many square free N (as
Q−1 = 0 and Q0 = 1 by definition). For k > 1 a good example of such set are
the Fibonacci numbers. Thus, for k ≡ 0(mod 3) set ai = 1 for i = 1, . . . , k−1.
For k 6≡ 0(mod 3), let a1 = ak−1 = 2 and ai = 1 for i = 2, . . . , k − 2. In
both cases we have the recursion formula for Qn giving us copies of the Fi-
bonacci sequence( F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 3 define the
sequence). For k ≡ 0(mod 3) we have that Qn = Fn+2 for i = 1, . . . , k − 2
and Qk−1 = 2Qk−2 +Qk−3 = 2Fk +Fk−1 +Fk+2. If k 6≡ 0(mod 3), Qn = Fn+2

for n = 1, . . . , k − 1, hence Qk−1 = Fk. As F3 = 2 is even, we can prove
inductively that Fk is even only when k ≡ 0(mod 3). If k ≡ 0(mod 3), then
by the induction hypotesis Fk−1 and Fk−2 are odd. From the recurrence rela-
tion for the Fibonacci numbers we get that Fk is even. Similarly we get now
that Fk+1 and Fk+2 are odd. This property proves also that Qk−1 is odd for
any k. Therefore, either Qk−2 or (Q2

k−2 − (−1)k)/Qk−1 is even and we have
satisfied the conditions of the Theorem 4.1, which proves the Corollary.

5 Computations and Conjectures

Lemma 4.5 presents a loose approximation of the density of square free num-
bers among positive integers whose square roots satisfy Theorem 4.1. We
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present here a few numerical testings that compare the theoretical results
obtained for square free numbers with the behaviour of the prime numbers.
We have thus the conjecture formulated by Chowla in [1] that will be numer-
ically tested:

Conjecture 5.1 For any positive integer k there are infinitely many primes
p with the continued fraction expansion of

√
p having length k.

A first step would be a better evaluation of the behaviour of the square free
numbers. The lower limit obtained in Lemma 4.5 gives us a density greater

than exp{−4π2/6} ≈ 0.00138822. We have first tested the behaviour for the
case k = 1 and moreover, for N(b) = b2 + 1.If we denote by D(n) =(number
of square free N(b) with b ≤ n)/n, then the differenceD(n + 1)−D(n) goes
very quickly to 0. We have the table with a few relevant data:

n D(n+1)- D(n)
55 0.00547963
10000 -0.0000657896
20000 -0.0000456785
34994 -0.0000266564

As we know that there is a lower boundary for D and D(n + 1) − D(n) is
always negative and constantly going to 0, we can conjecture that D goes
assymptotically to a positive constant. To support this idea, we have a
result that characterizes assymptotically the behaviour of Q(n) = number
of square free numbers less than n. Gegenbauer determined in [2] that
Q(n) = (6/π2)n + O(

√
n). This result gives us an upper limit for D,

D < 6/π2 ≈ 0.6079271, upper limit that does not depend on k. How-
ever, D(n) does not seem to have the same error term, O(

√
n)/n, as Q(n)/n

does. Numerical results show that D(n) converges much faster, which is to
be expected as N(b), b = 0, , n cannot cover all the square free numbers less
than n.
The same test applied to the density function for prime numbers gives totally
different results.We have, thus, a few relevant values for D(n + 1) − D(n)
which exhibits a decreasing pattern:

n D(n+1)-D(n)
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50 -0.012859
500 -0.012859
1050 -0.000920261

Still, we cannot find a lower limit for D in this case.If D were greater than 0
this would prove the conjecture. The condition is not necessary, as it might
be too strong for the statement we want to prove. If D > 0 this asserts that
not only are there infinitely many prime numbers with continued fraction
of a given length but that there are infinitely many which satisfy Theorem
4.1. We can, thus, focus on the lengths of the periods of continued frac-
tions for prime numbers, no matter the partial quotients of the continued
fraction. Numerical testings exhibit very interesting results that I could ver-
ify for very large numbers, up to 30,000,000. We can, thus, state a conjecture:

Conjecture 5.2 Let p be a prime number. If we define m = min x,where x
integer and the length of the period of the continued fraction of

√
x is equal

to p, then m is also a prime number.

I was able to verify a similar result, for p square free, but only up to
x = 100, 000.
A similar statement for any p positive integer is false and the counterexample
is p = 8 and m = 44 where

√
44 = [6, 1, 1, 1, 2, 1, 1, 1, 12]. Conjecture 5.2,

if true, proves that at least for p square free there are prime numbers with
continued fraction expansion with period of length p. Still, the experiments
have been carried only up to x = 30, 000, 000, thus analyzing less than 2000
possible prime periods.For a better assement, we define for p prime:

F (p0) = p0

CFL(p0)
,

(14)

where CFL(p0) is the number of different lengths of periods of the continued
fraction of p, for p prime, p < p0. For p0 square free define F1(p0) in a similar
way, but this time CFL1(p0) is the number of different lengths of periods of
the continued fraction of p, for p square free, p < p0
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Interestingly enough, although π(n) ≈ n
ln n

(where π(n) is the number of
primes less than n) 1 and Q(n) ≈ (6/π2)n , the functions defined in equa-
tion(14) are similar for prime and square free numbers. We have the data:

p0, F (p0), F1(p0)
17989, 74.334 , 71.669
50021, 121.6 , 118.8
100003, 176.3 , 171.5

This similarity is exhibited for all square free numbers tested up to 200,000.
This numerical result completes Conjecture 5.2 which accounted for such a
property only for prime lengths of continued fraction expansions.

6 For those who come after

Although there is not much that we know about the summing and product
rules for continued fraction, the properties tested above could mean that the
continued fraction expansion of the square root of a positive integer x depends
on its factorization into prime numbers.An experiment to test this hypotesis
could prove to be very important in verifying the validity of Conjecture 5.2.
In order to generalize the results obtained for square free numbers (Theorem
4.1) to the set of prime numbers we must first find a theoretical approach
to D(n) defined for prime numbers.The results obtained in this paper were
purely empirical and a further pace would be the theoretical approach.I have
performed tests in Mathematica for very large numbers but taking in account
that the density of the prime numbers is going to 0 when we increase the
number of integers tested, shows us that we have only characterized a very
small number of continued fractions of prime numbers.As my approach was
qualitative and not quantitative I definitely believe that the stated conjec-
tures are hardly approachable by empirical means.

1for the Prime Number Theorem refer to Chapter 3, Introduction to Number Theory,
from the lecture notes

14



Bibliograpy

[1] P.Chowla and S.Chowla, Problems on periodic continued fractions, Proc.
Nat. Acad. ci. U.S.A., 69(1972), 37-45

[2]result mentioned in Greger, Karl, Mathematics Magazine, Volume 51, Is-
sue 4(Sep. 1978), 211-219

[3] Notes for Princeton Junior Seminar, Fall 2002: Diophantine Analysis
and Roth’s Theorem, R. Takloo-Bighash, S. J. Miller, H. Helfgott, F. Spinu,
Princeton University, 2002, also includes suggestions from the professors

[4]C.D.Olds, Continued Fractions, Yale University, 1963

[5]Friesen, Christian, On continued fractions of given period, Proceedings
of the American Mathematical Society, Volume 103, Number 1, May 1988

[6]G.H.Hardy and E.M. Wright, An Introduction to the Theory of Num-
bers, Oxford at the Clarendon Press, 1938
[7]O.Perron, Die Lehre von den Kettenbruchen, Volume I, Stuttgart, 1954

15


