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The idea leading to this study originated some time ago when I talked at a gathering
of high school graduates at a summer science camp. I spoke about the theme of “the
evolution of cooperation” (in Nature) and about how that topic was amenable to studies
involving Game Theory (which, more frequently, has been used in research in economics).

After that event I was stimulated to think of the possibility of modeling cooperation
in games through actions of acceptance in which one player could simply accept the
“agency” of another player or of an existing coalition of players.

The action of acceptance would have the form of being entirely cooperative, as
if “altruistic”, and not at all competitive, but there was also the idea that the game
would be studied under circumstances of repetition and that every player would have
the possibility of reacting in a non-cooperative fashion to any undesirable pattern of
behavior of any another player. Thus the game studied would be analogous to the
repeated games of “Prisoner’s Dilemma” variety that have been studied in theoretical
biology.

These studies of “PD” (or “Prisoner’s Dilemma”) games have revealed the para-
doxical possibility of the natural evolution of cooperative behavior when the interacting
organisms or species are presumed only to be endowed with self-interested motivations,
thus motivations of a non-cooperative type.

Games in Theory and Games Played by Humans

I feel, personally, that the study of experimental games is the proper route of travel
for finding “the ultimate truth” in relation to games as played by human players.
But in practical game theory the players can be corporations or states; so the
problem of usefully analyzing a game does not, in a practical sense, reduce to a
problem only of the analysis of human behavior.

It is apparent that actual human behavior is guided by complex human instincts
promoting cooperation among individuals and that moreover there are also the
various cultural influences acting to modify individual human behavior and at least
often to influence the behavior of humans toward enhanced cooperativeness.

Our study has the character of an experiment, but rather than working directly
with human subjects we computationally discover the evolutionarily stable behavior
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of a triad of bargaining or negotiative players. And these players are, as far as the
experimental science is concerned, equivalent to a set of three robots. So whether
or not the experiment can be carried out successfully becomes simply a matter of
the mathematics.

These computations are found to be “heavy” so that our research could not
have been done in the earlier days of game theory, like in the 50’s, because of the
inadequacy of the computing resources then. (And for the future we envision the
feasibility of the study of much more complicated models for 4, 5, or more players,
with many more distinct strategy parameters being involved.)

Demands and Acceptance Probabilities in the Case of
Two Players

We first worked out the function of players’ “demands” controlling their “prob-
abilities of acceptance” (in a repeated game context) for the case of games of
a simple bargaining type of two players. We present an explanation of this to
prepare for and facilitate explaining the modeling structure for three (or more)
players.

Originally, in our first trials of the new ideas, we studied a model bargaining
problem where the set of accessible possibilities was enclosed by a parametrically
described algebraic curve (forming the Pareto boundary). This was arranged so as
to have a natural bargaining solution point at (ul = 1/2,u2 = 1/2) (referring to
the players’ utility functions). The total bargaining problem was asymmetric, but
modulo the theory of localized determination of the solution point, it was such that
(ul,u2) = (1/2,1/2) should be the compromise bargain.

(We were surprised, however, when we found that if we used (as described below)
different “epsilon numbers” (see below) for the players that that difference would
unbalance the model’s selection of a bargaining solution (!). Later, thinking about it,
we realized that the use of appropriately matching epsilon numbers for the players
could be naturally justified. In a game problem with transferable utility (like with
our studies for 3 players) this amounts to using THE SAME epsilon number for all
players.)

For Player 1 we let d1 stand for his demand (number) and el for his epsilon-
number. The “epsilons” make the “reactive” behavior of a player depend smoothly
on the numbers that the players choose as parameters of strategy so that we can
obtain the system of equations to be solved for the equilibria by differentiating a
player’s expected payoff function with respect to each of the strategy parameters
that that player controls. Then his “acceptance rate” al is defined in terms of
these numbers plus also the data number ©1562 which is “the amount of utility that
Player 1 is given by the Player 2 when Player 2 has become the agent for both of
the players (and has selected a point on the Pareto boundary)” (and this data is
observable by Player 1 simply through the known history of Player 2’s behavior in
the repeated game).
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We need a specific rule of relationship between dl and al and this is (was)
specified by the relations:

Al = Exp[(ulb2 — dl)/el], and al = A1/(1+ Al).

(Which formulae have the effect that Al is positive and that al is like a positive
probability, between 0 and 1.)
In a completely dual fashion, for Player 2:

A2 = Exp|[(u2b1 — d2)/e2], and a2 = A2/(1+ A2).

As we remarked already, we discovered from the calculations that we needed
to use el = e2 if we wanted desirable results! (But it seems that this can be
justified as “impartial” if we consider another means for introducing probabilistic
uncertainty affecting the consequences of demands; in particular, if the uncertainty
resulted from “fuzziness” about the knowledge of the precise location of the Pareto
boundary then that version of ignorance would affect the players in an impartial
fashion.)

In the case of two players the players would simultaneously vote, with each
player voting either to accept the other as the general agent or voting, in effect, for
himself/herself instead. Then our first idea was to apply an “election rule” declaring
that an election was void if both of the players voted for accepting (the other player)
and only effective if only one player made a voting choice of acceptance. So then
we specified that the election should be repeated with a certain probability (say
probability (1 —e4)) whenever both players had voted acceptance votes (and if that
retrying process ultimately failed then the players finally were given the null reward
{0,0} (in utilities) for failure to cooperate!).

This complicated the “payoff formula” somewhat but the VECTOR of pay-
offs, {PP1, PP2}, was ultimately calculable as functionally dependent on al, a2,
ulb2, and u2b1. (In this listing the utility amounts were regarded as resulting from
STRATEGY CHOICES by the players where P1 would actually choose {ulbl,
u2bl} as a point chosen BY P1 (!) on the Pareto boundary curve. So, from the
curve, ulbl could be interpreted as a function of w2bl, with P1 interpreted as
simply choosing u2b1 strategically.)

The vector {PP1, PP2} becomes a function of al,a2,ulb2,u2b1,ulbl, and
u2b2. And this reduces to the 4 quantities first listed because of ulbl and u2b2
being determined by the Pareto curve.

And al is a function of d1 and ©1b2 with a2 similarly controlled by d2 and u2b1.

So, ultimately, we arrive at 4 equations in four variables for the conditions of
equilibrium. These derive from the partial derivatives of the payoff function for a
player taken with respect to the parameters describing his strategic
options.

Thus there are the partial derivatives of PP1 with respect to d1 and with respect
to u2b1 and these are both to vanish. Then there are two dual equations derived
from PP2.
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(Later we learned that differentiating PP1 with respect to al directly, rather
than viewing al as a function of d1, would give a simplified (but equivalent) version
of the dl-associated equation.)

Graphics and Illustrative Data

We interrupt the explanation, in the main text, of the mathematics of the model
design to give descriptions relating to the six “Figures” which are placed later
just before the references. These “Figures” illustrate the results achieved by the
“experimental mathematics” work, that is, by our calculations developed in the
project work.

Figure 1 shows how the “Pareto efficiency” of equilibrium solutions varies as
the parameter e3 (which modulates the smoothness of the variation of an “accep-
tance probability”, like al f23, as a function of the associated “demand parameter”,
like d1f23. The calculations to find the points for the graph were carried through
by A. K. (Alexander Kontorovich) for the case where e3 varies. e4 and €5 are
fixed at 1/4, and the game is entirely symmetric, with each two-person coalition
assigned the value of 1/5 (by the “characteristic function” defining this simple CF
game). The curve is quite smooth and when e3 decreases to 1/20 or smaller we see
that the total payoff increases to 0.9 or more, or the Pareto efficiency is 90% or
better.

e3 vals vs. total payoff (Nash & Kontorovich,
8/02) bl=b2=b3=.2, e4=.25, e5=.25
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Fig. 1.
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Sum of payoffs as a function of e,
Parameter values: by =b; =0, b; = 2/3, e, = e5 = 1/100
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Fig. 2.

Figure 2 is similar or parallel to Fig. 1 but was worked out later, by S. L. (Sebas-
tian Ludmer). This graph is derived from a game with only a symmetry between
P1 and P2, and these are the “favored” players since, regarding the coalitions,
v(1,2) = 2/3, while the other two-player coalitions have no value. And e3 varies
while e4 and €5 are both set arbitrarily at 1/100. The same pattern (of improving
efficiency) appears on this graph it is easy to see that the ASYMPTOTIC level of
the payoff-obtaining efficiency of the players at equilibrium is 100%.

Figure 3 shows three graphs relating to three versions of “payoff prediction”
according to three different sources. First there is the classical “Shapley value”,
which becomes simply a line in this Figure, graphed in blue, second is the “pre-
diction” derivable from the nucleolus, graphed in green, and third is the result of
equilibria based on our model, graphed in pink.

For each individual graph, of the three, the quantity plotted in relation to the
vertical axis is an “imbalance” measure that evaluates the extent to which the two
more favored players, P1 and P2, get more payoff than P3. This is calculated as
Imbalance = pl + p2 — 2 x p3 with the notation being that pk is the payoff received
by player Pk, for k = 1,2,3. Players P1 and P2 are favored and symmetrically
situated in this game where v(1,2) = b3 and the other two coalitions of two players
are without any payoff value. The “imbalance” is charted as the function with values
according to the vertical scale while the value of b3 = v(1, 2) relates to the horizontal
axis and scale. Figure 3 was derived from calculations and graphics work of S. L.

You will notice on Fig. 3 that the data presentation ends for b3 > 0.7 (roughly).
What happened, actually, was that as we continued the finding of a family of
solutions to that level of b3 = v(1,2) we found that player P3 began to use values
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Imbalance Via Model, Shapley and Nucleolus as Functions
of b3 (Nash and Ludmer, April 2004)
(0<b3<0.7,bz=0, e;=5x10", e,=25x 10", e;=112x10%)
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Fig. 3.

of a3f1 = a3f2 that were NEGATIVE (in the mathematical solutions of the system
of 21 equations). But this is impossible (!) in the interpretation, since a3f1 = a3 /2
is a probability. So it is natural to start, at that level of b3, to consider a modified
system of equations corresponding to a game model where P3 simply lacks the
options corresponding to a3f1 and a3f2.

We did that, but then, almost immediately, further complications seemed to
arise, from other parameters that might go negative.

So we did not find what seemed like a properly acceptable modeling for the
cases of b3 having really large values. But, in relation to the concept of “pro-
cooperative games” that we discuss as a major topic below, it seems natural that
these games with only b3 = v(1,2) being large should have the characteristics (not
yet scientifically defined) of “pro-cooperative” games while if all of b1, b2, and b3 are,
say, larger than 4/5 then the game situation is really one where “Two’s company,
three’s a crowd.”

Figure 4 shows a dual perspective, again for symmetric games. Here bz is the
quantity linked to the horizontal axis. And this is bz = b1l = b2 = v(1,3) = v(2,3)
and b3 = v(1,2) = 0 here. The “epsilon” parameters are set at the fixed values of
e3=5x107% e4d =25x10719 and e5 = 1/12 x 1078, And for these circumstances
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Imbalance Via Model, Shapley, and Nucleolus as Functions

of bz (Nash & Pokharel, 3/04)
(0 <= bz <=0.685, b3=0, e3=5x10", e4=25x10""",e5=1/12x10")
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Fig. 4.

P3 is the favored player. So we measure the extent of the advantage of P3 through
an “imbalance” measure defined as 2 x p3 — pl — p2 where pl, p2, and p3 the payoffs
gained by P1, P2, and P3.

We should remark that the Imbalance curve might rise more rapidly with
increasing bz if we had a game of fully transferable utility (properly modeled).
In effect, in coalition with either P1 or P2 the stronger player, P3, might be able
to demand a “Lion’s share” of the payoff received from a two-player coalition (if the
“grand coalition” of all three players failed to form). The game rules in our studied
modeling led to a payoff function where the payoff to any two-player coalition was
always split evenly between the two members.

So, comparatively, in case of the graphs of Fig. 3, since P1 and P2 are sym-
metrically situated in the game, it is natural for them to divide their payoff equally
when their payoff comes only from the resources of v(1,2). And v(1,2) = b3, which
is the horizontal axis variable in the charts of Fig. 3.

Again, like with Fig. 3, the blue graph derives from the Shapley value, the green
from the nucleolus, and the pink from the results from our model (with the specific
choices of €3, e4, and €5). It seems plausible that if the modeling allowed the agent
representing a final coalition of only two players to executively choose the splitting
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of that payoff among the two members that then P3 would likely achieve a more
favored status. Thus the result should be that the graph of the model results would
turn upwards more, with increasing bz. (The graphs of Fig. 4, and the calculations of
equilibrium solutions needed for the points, were prepared by A.P. (Atul Pokharel).)

(In relation to both Figs. 3 and 4 we should remark that the limited extent
of the horizontal range, with b3 or bz increasing only to the level of about 0.7
derived from mathematical difficulties. With, for example, b3 increasing beyond
about 0.7, a phenomenon found was that the solutions found came to have a3 f12
and a3 f21 becoming negative. But these are probabilities so that negative values
are forbidden. The situation is perfectly natural, game-theoretically; it seems to
become unprofitable for P3 to make any use of his/her option to ACCEPT the
leader of a coalition of P1 and P2 (so that P3 would join in a grand coalition
led by that agent). (We made some attempts to continue a pathway of solutions
onward to further increasing values of b3 on the basis of modified equations based
on a3f12 = a3f21 = 0, but this effort quickly failed because of other parameters
moving to become zero and the general situation becoming too complex.)

Later we began to realize that there are games which could be called “pro-
cooperative” and which are similar to bargaining problems of two parties. And, on
the other hand, for three players, there are games where the old folk saying (in
English) of “Two’s company, three’s a crowd.” becomes fitting. In those Cases a
single central equilibrium corresponding to sometimes the formation any one of all
of the two-player coalitions and sometimes either of the others would be actually an
UNSTABLE equilibrium concept. And really, for whatever reasons might be found,
a final coalition of only two players could be the big winner.

Figure 5 shows some of the numerical results for a solution where 63 = 1/3
and b1 and b2 are zero. This is a symmetric game (with P1 and P2 situated the
same). The values found for all of the parameters are listed but as 21 numbers since
for each variable, like al f3 there is a dual like a2 f3. The coincidence of a “market
clearing” phenomenon that we found observationally can be observed in noting that
the numbers 41b2r13 = u2b1r2 = y10 and «1023r1 = u2b13r2 = y14 are the same
(and this is confirmed by calculations out to ~50 decimal places).

At the level of b3 = 1/3 the nucleolus has not yet begun its pattern of having an
imbalance in favor of players P1 and P2 (who are favored by the CF values in this
example). We actually calculated the values for the listed parameters to a much
higher level of accuracy but the figure is prepared for a lecture presentation.

Figure 6 is very much like Fig. 5 and also concerns an example where only b3
is non-zero. Again the coincidence of the values of u1b2r13, u2b1r23,u1623r1 and
u2b13r2 can be noted.

Details of the Modeling for Three Players

When there are three players instead of two we need to arrange to have two suc-
cessive stages for “acceptance votes” where any one player could vote to accept the
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Parameters:
bz=0  B3=1 8= = 5ol
3 200616 235464 1182264

Values of the Solution Variables:

alf2=a2f1=0.05735701 u2b1r23 = u1b2r13 = 0.34082523

u1b23r1 = u2b13r2 = 0.34082523
alf3=a2f3=0.0608687

u3b2r31=u3b1r32 = 0.31834698
a3f1=a3f2=0.06634303

u1b3r12 = u2b3r21=0.34082543
al2 =a21=0.07704447 u3b12r3 =u3b21r3 =0.31834728

u2b31r2 = u1b32r1 = 0.34082512
al3=a23=0.10034813

u2b12r3 = u1b21r3 = 0.34082208
a31=a32=0.10340788

u3b23r1 = u3b13r2 = 0.31834426
af 12 = af 21=0.05574581 u3b1r23 = u3b2r13 = 0.31834426

u1b31r2 = u2b32r1 = 0.34082261
af 23=af13=0.10034813

u1b3r21=u2b3r12 = 0.34082214

af 32 = af 31 =0.10034004 u2b1r32 = ulb2r31 = 0.34082262

7 7 2
N lized Pavoffs: Shapley Value: {—,—,—
ormalized Payoffs pley {18 18 9}

u1=0.34082615~ i
267

1711
u2:0.34082615:ﬂ Nucleolus: {—,—,—
267 333

u3 =0.31834768 ~ 8
267

Fig. 5.

(unconstrained!) agency function of any other player. This principle continues to
apply to players who had already themselves become agents. So two steps of coa-
lescence of this sort result necessarily in the achievement of the “grand coalition”
in the form that all three of the players are represented by one of them who, as the
agent acting for the other two, can access all the resources of the grand coalition
(which are simply v(1,2,3) since we simplify by considering a “CF game” that is
DEFINED by the characteristic function given for it).
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Parameters:

b3=2 !
3

3=
bz=0 7= 100000

Values of the Solution Variables:

alf2=a2f1=005079737
alf3=a2f3= 006756534
a3f1=a3f2=0.09153050
a12 = a21=0.23178182
a13 = a23 = 0.37583832
31 = a32 = 040645201
af 12 = af 21=0.05717150
af 23 = af 13 = 0.37583832

af 32 = af 31 = 0.37454125

Normalized Payoffs:
4

ul=0.36376691 = 7

u2 =0.36376691 =~ %

u3=0.27244197 = %

Fig. 6.

For the specific modeling we simplify further by having v(1,2,3) = 1 and v(1) =
v(2) = v(3) = 0 and we call (for convenience with Mathematica, etc.) the values of
the two-player coalitions by the names b3 = v(1,2), b2 = v(1,3), and bl = v(2, 3).
These three numbers, b1, 52, and b3 define the games of the family we studied. We
finally obtained graphs illustrating how the calculated payoffs (to the players, based
on our model) would vary, as b3 (or bl and b2) would vary, compared with similar
graphs for the Shapley value and the nucleolus (which are calculable for any CF

game).

ed= 1 eb = 1
100000 100000
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At the first stage of elections (in which every player is both a candidate to
become an agent and also a voter capable of electing some other player to become
his authorized representative agent) there are six possible votes of acceptance
and we described the probabilities for each of these by the parameter symbols
alf2,alf3,a2f1,a2f3,a3f1, and a3f2. (a3f2, for example, is the probability of
the action of P3 (Player 3) to vote for P2 (which is to vote to accept P2 as his
elected agent).)

These probabilities, like all of the voting probabilities in the model, need to be
related to demands, as we will explain.

After the first stage of elections is complete and one agency has been elected
(Note that this requires some precision of the election rules that we need to specify.)
then there remains one “solo player” and one coalition of two players of which one
of the two (like a strong committee chairman) has been elected to be the empowered
agent acting for both of them.

Then for the second stage of elections there are 12 numbers that describe the
probabilities of “acceptance votes” (but only two of these numbers are truly relevant
corresponding to each of the six possible ways in which an agency had been elected
as the first stage of agency elections). These numbers are a12f3 and a3f12, al3f2
and a2f13,a21f3 and a3f21,a23f1 and alf23,a31f2 and a2f31, and a32f1 and
alf32.

Thus a12f3 is the probability of a vote by P1 representing the coalition, led by
P1, of P1 and P2, voting for his (and his coalition’s) acceptance of P3 as the final
agent (and thus as effective leader, finally, of the grand coalition). Alternatively
a3f12 is the probability of a vote by P3, as a solo player, to accept the leadership
of the (1, 2) coalition (as led by P1) to become also effective as his enabled agency
and thus to access the resources of the grand coalition.

With the election process we need rules that specify simple outcomes (eliminat-
ing tie vote complications, etc.) so what we used was that if in any election there
was more than one vote of acceptance that then a random event would select just
one of those (two or three) acceptances to become the effective vote. This conven-
tion suggested the naturalness of allowing an election to be repeated when none of
the voting players had voted for an acceptance.

The convention of repeating failed elections seemed to be a very favorable idea.
(It also seems to favor some of our projected refinements or extensions of the mod-
eling, as we explain later.) So, as variable parameters affecting the model structure,
we introduced “epsilons” called e4 and eb where the probability of repeating a failed
election AT THE FIRST STAGE OF AGENCY ELECTIONS would be (1 — e4)
(this is expected to be a “high probability”) and the similar probability applying
in the event of election failures at the second stage would be (1 — €5).

(We will say more below about the benefits of having elections that are typically
repeated when no party votes.)

Besides the set (presented above) of 18 numbers describing the probabilities
for votes of acceptance there is a set of 24 numbers that describe how the players
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choose (this is a strategy choice!) to allocate utility among themselves and these
numbers are linked with the 12 differentiable possibilities for how some individ-
ual player happened to be elected to become the final agent. These numbers are
{u201723,u3b1r23}, {u201r32,u3blr32}, {u2b12r3,u3b12r3}, {u2b13r2, u3b13r2},
{u1b2r13,u3b2r13}, {ulb2r31,u3b2r31}, {ulb21r3, udb21r3}, {ulb23rl, u3b23rl},
{ulb3r12, u2b3r12}, {ulb3r21, u2b3r21}, {ulb31r2, u2b31r2}, and {ulb32rl,
u2b32r1}.

The notational pattern is that, e.g., ulb2r31 represents “the quota of utility
allocated to Player 1 by Player 2 in situations where Player 2 was elected as final
agent by the coalition of Players 3 and 1 when this coalition was led by Player 3”.
The “hidden allocations” are like 4202131 and these must be non-negative. u2b2r31
would be the amount that Player 2 would allocate to himself in this situation. Of
course u2b2r31 = 1 — ulb2r31 — u3b2r31 because the resources, v(1,2,3), of the
grand coalition are simply +1.

Another generic case is like u3013r2 where the final agent (Player 1 here) was
previously the agent in control of a coalition (coalition (1, 3) here) and he allocates
u3b1372 to Player 3 and u2b1372 to Player 2.

So these uxbrrze and uaxbzxrez numbers must all lie between zero and +1.

Relations of Demands and Acceptance Probabilities

For most of the cases, in the modeling of the games of three players, the rela-
tions between the acceptance probabilities and the controlling “demands” (which
demands are parameters that are strategy choices of the players) are natural exten-
sions of the comparable relations for two player games (and this is simply because
MOST of these numbers actually relate to “second stage” elections where the field
is reduced to just two voters and two candidates!).

Thus we specify that a12f3 is to be controlled by a “demand” d12f3 which is
made by Player 1, who is the competent voter in the situation (which is that (1,
2) is led by Player 1 and that P3 is “solo”). The formulae controlling the relation
mathematically are

al2f3 = A12£3/(1 + A12£3)
(with)
Al12f3 = Exp[(ulb3rl2 — d12f3)/e3].

This is actually EXACTLY LIKE the relation used for a bargaining game of two
players. (u1b3r12 corresponds to ulb2 there.) But here the perspective is thus:
“Player 1 is leading (1, 2) and considering whether or not to accept P3 as the final
agent, so in relation to this he looks at the utility payoff, u163712, that he WOULD
BE ALLOCATED by Player 3 in the event of that (effective) acceptance and he
compares that number with his demand d12f3 and this comparison (modulated by
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e3) controls Player 1’s probability of voting to accept Player 3 in the situation”.
(Note incidentally that Player 1 here appears as acting entirely in his selfish interest
and disregarding any concerns of the (represented) Player 2 (!).)

Similarly we specify, for a2f13 as typical, that

a2f13 = A2f13/(1+ A2f13)

(with)
A2f13 = Exp[(u2b13r2 — d2f13)/e3)].

So for the 12 acceptance probabilities relating to the possibilities for votes at the
second stage of elections there are linked 12 demand numbers, as described above.

But for the first stage of elections the version of modeling (perhaps not optimal)
that we happened to use had three demands that controlled the six a-numbers al f2,
alf3, etc. that applied to that stage of the process of elections. This was because
we only allowed that a player should choose a single demand number so that d1,
d2, and d3 were these choices. Then each player’s choice of his “demand” controlled
BOTH of his probabilities for voting for acceptance (of one or another of the two
other players).

Thus a relationship between d1 and the pair of alf2 and alf3 was created so
that Player 1’s (strategy) choice of d1 modulated his BEHAVIOR (as described by
alf2 and alf3. In this relationship we used calculated utility expectation measures
that we called ¢12 and ¢13. Here, to illustrate, ¢12 is “the expectation” of the
average receipt of utility, by P1, conditional on the assumption that P1 has achieved
acceptance of P2 (at the first stage of elections) so that the coalition (2, 1), led
by Player 2 is formed to (enter into) play at the second stage of elections”. This
quantity ¢12 happens to be calculable entirely from e3, 5, and the quantities that
describe the behavior of players P2 and P3.

The governing formulae relating d1 to alf2 and alf3 are then these:

alf2 = A1f2/(1+ A1f2+ A1f3) and alf3 = A1f3/(1+ A1f2+ A1f3)

(with)
Alf2 = Exp|(q12 —d1)/e3] and Alf3 = Exp[(ql3 —dl)/e3].

The structure is that Al1f2 is a non-negative number which is large or small
depending on how the rewards to be expected by P1 when P1 would manage to
accept the agency offered by P2 compare with d1 while A1f3 similarly depends
on the prospects if P1 becomes an acceptor of P3. Then the formulae (on the first
of the lines of equations just above) give the definitions or constructions of alf2
and alf3 such that these can be the probabilities of exclusive events (since either
P1 can vote for accepting P2, or P1 can vote for P3 (similarly), or P1 can simply
decline to make any vote for an acceptance).



552 J. F. Nash

(The expressions derivable for ¢12 and ¢13 are not very long and they are dual
under symmetry of P2 and P3, so for illustration,

q12 = ((1 — a21f3) x (1 — a3f21) x b3 x €5 + 2 x a21 3 x ulb3r2l
+a3f21 x (2 — a21f3) x ulb21r3 — a21f3 x ulb3r21))/
(2 x (1= (1—a21f3) x (1 —a3f21) x (1 — ¢5)))

and ¢13 is dual to this.)

We can also remark that a technical point of detail enters into the actual calcu-
lation of the formula above: If it happens (which has probability e5 at each trial)
that a second stage election failed after Player 1 had accepted Player 2 then in that
case our rule was that the players P1 and P2 were to be each given a payoff of b3/2
while P3 is to be given zero (and this instance of the playing of the repeated game
is then complete). (Thus technically our example game is an NTU game but we
can still use Shapley value and the nucleolus because of generalizations of those.)
(It would have made the players’ strategies more complex to allow the agent for a
two-player coalition to allocate at his discretion the limited resources of that coali-
tion and it would presumably be irrelevant for a game symmetric between P1 and
P2 with only the (1, 2) coalition having resources.)

The Equations for the Equilibrium Solutions

From the quantities above, not including the demand numbers, the patterns of the
actual (steady) behavior of the three players is fully described. These numbers,
18 a-numbers and 24 u-numbers, or 42 parameters in all, therefore describe the
directly observed behavior of the players.

So we can compute the (moderately lengthy) terms of a vector payoff function,
say {PP1, PP2, PP3} describing the payoff consequences to the players of their
behavior with the terms being rational fractional expressions in these 42 quantities
plus also a dependence on e4 and e5 (because of the effects of the chances of
repeating failed elections).

It is, however, the d-numbers and the u-numbers (but not the a-numbers) that
are officially the strategic choices of the players. For the proper set of equilibrium
equations we need to work with these. This involves, in principle, the substitution
for all of the a-numbers of the expressions derivable for them as functions of the
d-numbers and the u-numbers. So suppose that the completion of these substitu-
tions would give us an expanded vector payoff function {PP1du, PP2du, PP3du}
in which all appearances of a-numbers have been replaced by the expressions that
describe their reactive varying (as the players vary their behaviors in reaction to
the observed actions of the other players). Then the set of 24 + 15 = 39 equilibrium
equations for the strategic u-numbers and d-numbers are derivable by taking, for
each of the strategic parameters, the partial derivative, with respect to it, of the
payoff function of the player who is the controller of that strategy parameter.
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Actually, however, we found, starting with the study of two-player cases, that
we could take a modified route of derivation and arrive at simplified, yet equivalent
equations. But, skipping all the details, the PI worked with the project assistant
Alexander Kontorovich in a program where the two workers independently derived
the equations so that the results could provide good confirmations. Methods were
also developed, working within Mathematica, that could exploit the symmetries
of the game (with b1,52 and b3 as symmetric symbols) and these gave both cross-
checking benefits and also made it possible to derive multiple variant equations from
one good calculation. In particular, the 24 equations associated with u-numbers,
because of the 3-factorial (3!) symmetry, became 4 groups of six and only one of
each group really needed direct calculation.

In the end, with the chosen simplifications, we transformed into equations NOT
INCLUDING any of the d-numbers but including all the a-numbers. This needed
the additional inclusion of three equations of the sort of an equation linking alf2
and alf3, which both depend on d1, which is being eliminated from the simplified
equations. Thus there are 42 equations, involving as variables the a-numbers and
the u-numbers, for a general game.

When the game has symmetries the equation set can be much reduced. If
b1 = b2 = b3 then all of the two player coalitions have the same strength and then
we can look for solutions involving the same behavior for all players. Then the
equations reduced to merely 7 in number (and this was a good basis for finding the
first solutions!). If merely b1 = b2 then the coalitions (1, 3) and (2, 3) have the same
strength and we can look for solutions with P1 and P2 in symmetrically patterned
behavior. This leads to a reduction to 21 equations, and we did most of our work
on calculations with these 21 equations since that level of symmetry was enough to
yield differentiation among the various value concepts that could be compared.

The Methods for Finding Solutions and Calculating Data Points

This work has in two ways an experimental character. First, the actual design of
a model is like a matter of artistic discretion, and it is simply an ATTEMPT to
provide for the possibility of naturally reactive behavior so that the phenomenon of
“the evolution of cooperation” may occur and may be revealed through the actual
calculation of equilibrium solutions.

Whatever choices we make at first, with regard to how the players are to reac-
tively behave, there is, a priori, the possibility that some other design might have
each player (or an individual player) behaving more effectively in terms of effec-
tively inducing desirably cooperative behavior on the part of the other players.
Our present work, in its nature, does not attempt to find the ultimately ideal form
of reactive behavior (of an individual player) so that, with that behavior, that
the resulting equilibrium in the context of a repeated game of interactive behavior
would be optimized as far as the interests of that player are concerned. In principle,
we feel, the issue of the optimization of the form of the reactive behavior pattern
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of an individual player is what would be done in Nature by selective evolution. In
game-theoretical studies the parallel achievement might be realized by comparison
of alternative models. (It is certainly rather straightforward to compare various
programs, say for playing chess or Go by simply letting the programs compete in
playing the game.)

Initially the variable quantities that describe the behavior of the 3 players in the
repeated game were (or are) specified by descriptive names, such as d2,al f3,d12f3,
a31f2,a2f31,ulb2r13, etc. And there were 42 of these variables, although there
are only 39 dimensions given by the “strategy parameters”. (This is related to the
circumstance that we used the a-quantities and the u-quantities for the 42 equations,
and for this eliminated the d-quantities.) (Thus, for example, both alf2 and alf3
relate to and depend functionally on d1 so that when d1 is replaced by them in the
equations, with d2 and d3 similarly replaced, we then have 3 more variables in the
equations than would be in equations with d-quantities rather than a-quantities.)
(The a-variables refer to acceptance probabilities, describing behavior, while the
b-variables describe strategic choices of a type called “demands”.)

We ultimately substituted a shortened notation for the variables that we men-
tioned above which describe the strategic choices and the resulting behavior of the
players. We put z1 for alf2, then z7 for al2 (which is short for a12f3) x13 for
af12 (which is short for a3f12), then x19 for ©1b3r12, and finally x42 for u2b1r32.
(Note that there are fully 24 of the uzbzrrzx and uxbzarz variety of variables, which
describe utility allocation choices made by individual players and which apply to
the circumstances when that player becomes the “final agent” or “general agent”
and is enabled to allocate, from the resources (which are +1 in transferable utility)
of the “grand coalition”, to the other players (with the remainder retained by the
allocating player).)

In our computational studies there were only a very few examples, without
any symmetry of the players, that were solved for the equilibrium (a presumably
appropriate “central” equilibrium with all variables of the aif7j, aijfk, and aifjk
varieties being non-zero).

Most of the QUANTITY of our work on the calculation of solutions in this
project of research was done on finding solutions for games which had players P1
and P2 situated symmetrically. Also, in these cases, we studied particularly either
games with bl = v(2,3) = 0 and b2 = v(1,3) = 0 or games with bl = b2 = bz (bz
is just a notation for bl and b2 here) and b3 = v(1,2) = 0. And from these two
sub-categories of these three person games we ultimately derived enough data so
that we could plot smooth graphs describing how the equilibrium solutions varied
as the data of b1, b2, and b3 would vary in these two particular fashions.

And for the work which was specifically concerned with games having P1 and
P2 situated symmetrically it was very natural to simplify further the notation so
that we introduced y-variables ranging y1,42,...,y21 which represented all the
data of the variables x1,...,242 when P1 and P2 are in a bilaterally symmetric
situation.
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Methods Used for Improving Approximations to Solutions

Working either with 42 equations for z1,x2,...,x42 or with 21 equations for
yl,y2,...,y21, we used Mathematica (on Linux) as the general framework for cal-
culations. After initially obtaining one or a few good numerical solutions then others
could be obtained by the use of what are called, mathematically, “homotopy meth-
ods”, and this was essentially a matter of always simply finding a new solution that
would be numerically in close approximation to a known solution that had been
previously found.

So the chart of Fig. 1 illustrates the use of data that was obtained in this fashion
when, of the defining parameters in the equations, only e3 was varying and the solu-
tions were being obtained for fully symmetric games with b1 = b2 = b3 = 1/5. And
we can remark that FULL symmetry reduces the number of descriptive variables
needed down to 7 (from 42 in general or 21 with two players being symmetrically
situated in the game).

The similar chart of Fig. 2 illustrates the use of data describing solutions for
games with only a symmetry of the situations of Players P1 and P2. (This chart
was prepared by S. L. (Sebastian Ludmer).)

Actually, the first numerical solution found was found by A. K. (Alexander
Kontorovich) who used a computer “amoeba” method of automatic searching to
get close to it. This was a matter of searching in 7 dimensions. And after a few
initial solutions were known all the others that were obtained were found using the
“homotopy” procedure and moving gradually from one solution to another along a
trail of neighboring points, in 7 or 21 or 42 dimensions.

We developed a series of Mathematica programs for improving the quality of an
initially given approximate solution of a system of simultaneous equations. (Versions
of these programs and of associated computational data developed in the work on
this research project will be made available in a reference web site that we are
preparing to be available to readers of this publication.) These programs work by
modifying the variables (e.g.: y1,...,y21) of an approximate solution so that the
values of the equations, after the substitution of the array of numerical values of the
descriptive variables will be smaller. And for this purpose of improvement we used
the measure of quality formed simply by the sum of the squares of the numerical
values of all the equations of the system (as they would be calculated from the
substitution into them of the 7, 21, or 42 numerical values for the variables).

In connection with this paper, an Internet access connection will be provided
(at least for a time) to files accessible on my “home page” at the URL locati-
on of: “http://www.math.princeton.edu/jfnj/texts_and_graphics/AGENCIES _and_
COOPERATIVE_GAMES /pubfiles ”

Observed Market Clearing Phenomena

Relatively late in the period of the work on the calculation of numerical solutions we
found, empirically (by observation), that some of the parameter values in calculated
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solutions were coming out the same. This was first noticed, but not understood,
when we initially solved for solutions of entirely symmetric games (where bl =
b2 = b3). We found that of 4 distinct quantities describing a player’s choice for the
allocation of utility (if the player would become the “final agent”) that two of these
quantities were very nearly the same (according to the numerical calculations done
with many decimal places of accuracy using Mathematica).

It turns out that IF the game is generally non-symmetric (like with b1 =
1/7,62 = 1/6,b3 = 1/5 (for a case for which we computed the solution very pre-
cisely)) then that there are no coincident values of any of the 42 unknown quantities
that are solved for to find the equilibrium. But on the other hand, if there is a sym-
metry of Player 1 and Player 2 then it always works out (for cases where we can
find solutions with all parameters having non-extreme values) that there are at
least two coincident parameter values. Specifically, y10 = y14 always. These sym-
bols were defined to represent, for y10, either ©u1b2713 or u2b1r23, and for y14 either
ul1b23r1 or u2b13r2 (where these alternative meanings involve simply the permuta-
tion of the symmetrically situated players 1 and 2 (who are symmetrically situated
if b1 = 02)).

Then an inferable consequence of y10 = y14 is that 42b1r23 = ©2b1372 so that
the BEHAVIOR of Player 1 is such that the amount of utility that he will allocate
to Player 2 becomes INDEPENDENT of whether P1 was elected by P2 after P2
was elected by P3 or whether P1 was elected by P3 first and then by P2. (So if P1
is the final agent and if it was P2 that supplied the final vote electing him/her to
this position then he gives the same payoff amount to P2 in each of these cases.)

This suggests the economic concept of a “market price” which is associated with
the “market clearing” concept.

Further discovered coincidences are found if there is symmetry of players 1 and
2 with b3 = 0 and b1 = b2. Then we find that y5, corresponding to both al3
and a23, comes out to be numerically the same as y8, corresponding to both af13
and af23. (This is an equality of acceptance probabilities rather than of amounts
of utility allocated.) And also in these cases we find y17 = y19 which has the
effect, in particular, that u3b13r2 = u3b27r13, which can be said in words as “If
the 2-coalition ‘13’ led by Player 1 has formed at the first step of elections then
the amount finally allocated to Player 3 will be independent of which agency is
elected at the second stage of elections”.

But it should be noted that the equalities of y5 and y8 and of y17 and y19 are
found when b3 = 0 but not when b3 > 0 (with b1 = b2).

Reluctant Acceptance Behavior

It was only as a consequence of actually working on the details of the research
project that we discovered the apparent desirability of allowing the players to find
the sort of an equilibrium in which they would only rarely, comparatively, vote to
accept the agency function of another player.
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The players MUST be sometimes accepting, in a global sense, or they would
never be gaining any of the benefits specified for the coalitions by the characteristic
function.

It is obvious enough that the acceptance action is quasi-altruistic, since the
agent accepted is not at all constrained to consider properly the interests of a player
accepting him/her EXCEPT through the structure of the repeated game context
AND through the reactive behavior of the players built into the model structure.
A sometimes accepting player will also be “DEMANDING” to be rewarded by his
chosen standard (of benefits) in relation to the average utility consequences, for
him /her of any particular type of acceptance vote.

So we found that simply providing a rule for the probable repetition of failed
acceptance elections caused the calculable equilibria to shift, in line with the high-
ness of the probability of election repetitions, so that the same sort of efficiency
of getting close to the Pareto boundary would be attained with lower probabilities
for accepting behavior, in the voting, whenever the probability of repeating a failed
election would be improved.

Thus the players could become as if wise negotiators waiting patiently for the
other sides to make concessions!

There was another advantage found with arranging for “asymptotically perfectly
reluctant accepting” and this was that this idea seemed to remove what otherwise
would appear as an arbitrary rule for the elections, the rule that if more than one
voter voted, then a single voting action, chosen at random, would be certified and
made effective.

Pro-Cooperative Games and Evaluations of Games

The forthcoming book of E. Maskin, which expands on his Presidential Address
to the Econometric Society, has a theme that connects with our idea of “Pro-
Cooperative Games”. This is the theme of “externalities” as realistic considerations
that are not included in the formal description of a game (say as a “CF game”
in particular) and which COULD act, for example, to (effectively) prevent the
formation of the grand coalition.

We began to see that in our games studied by our modeling method (with
agencies) that if the strengths of all of the 2-player coalitions were quite large (and
comparable to v = (1,2,3) = 41) then that it would be quite reasonable, in a
repeated game context, for there to be various stable equilibria. Thus any two of
the players could be seen as being able to “learn” that they are natural allies and
then, through an alliance, gain the lion’s share of all the possible benefits from the
game.

The concept of a “pro-cooperative game” would be that of games where such an
alliance of two players would not be able to thus benefit them. Then these games
would be more properly suitable for being assigned a “value” (by whatever means
of evaluation would ultimately be found and accepted).
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As we remarked above in the text commentary on Fig. 3 we found complications
when we pursued the calculations of a type of main equilibrium solution from
when b3 was small (or zero) out through a continuation path until b3 became
approximately 0.7 in value. Then a3f12 = a3 f21 become vanishing. (Or y7, among
the 21 variables describing a game with symmetry between P1 and P2, becomes
vanishing.) (In our actually used notation for Mathematica we shortened a3f12
to af12 and to z13 while a3f21 was af21 or x15. And under the presumption of
symmetry between P1 and P2 then both x13 and x15 became y7 as 42 variables
became only 21 variables, modulo the symmetry.)

If there were only the vanishing of y7 the path of solutions might have been
reasonably continued through higher values of b3.

It seems reasonable that with only b3 = v(1, 2) being non-zero that the game
should continue to be “pro-cooperative”, so that some sort of a cooperative evalua-
tion theory could be reasonable. And we could set up and study a modified system
of equations with y7 (which is a3f12 and a3f21) set equal to zero and with a
condition simply to the effect that P3 should not find it profitable to restore an
abandoned pattern of sometimes accepting an elected coalition of the two other
players.

We tried this, but what was found was that VERY SOON, as b3 was increased,
there appeared to be other parameters, besides y7, moving to take exceptional
values (like zero). So this made the effort to continue the pathway of solutions
begin to seem questionable. So here further study seems needed or appropriate and
also if there are refined or varied forms of modeling the game of evolutionarily stable
reactive cooperation (deriving from non-cooperative foundations) then there could
be different results found in the case of moving to values of b3 close to +1 (with b1
and b2 at least comparatively small).

An Attempt to Study Variants of Modeling with Attorney-Agents

I (or we) spent more than a year trying to find a good variant modeling which
would have the game parties (the players) moving into modes of cooperation with
the assistance of some species of supportive agents that would guide the process
for the originally concerned players. This seemed like a natural idea because of the
observable parallels of the cooperative behavior of humans in their societies. But in
the end this effort seemed to fail (at least as attempted). Part of the problem was
that it seemed unnatural for a player to be “reluctant” to accept the inter-mediation
of an attorney agent if that agent would be at all well suited for its function.

(We thought of the attorney-agents as being robotic in function. And in the
special case of two-player games we had indeed earlier found that the same type
of a cooperative game outcome COULD be realized with a model in which the
two primary players would need to BOTH accept the agency of a specified robotic
attorney-agent to achieve cooperation (and to gain access to the utility available
under the condition of cooperation).)
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We failed to find what seemed like a good modeling involving robotically func-
tioning attorney agents for the case of three-player games. There was the compli-
cation of the STAGES of the coalescence of the players and ultimately it became
apparently TOO BENEFICIAL for two of the original players to achieve represen-
tation by an attorney-agent. So the players could not, in an equilibrium of their
playing, behave as if “reluctant” to accept an agency.

And of course, retrospectively, it seems pretty clear that our scheme for “robotic”
attorney agents, designed so as to work to benefit the interests of the original
players, did not correspond to “real life”, in human societies, where it is their
competition AMONG THEMSELVES that drives attorneys (or lawyers) to work
on behalf of the true interests of their clients!

Prospective Model Improvements or Refinements

Because the whole concept of our idea of modeling the attainment of cooperation by
the players in a 3-party game situation in terms of a process involving a sequence of
elections of agencies was inspired by thinking of the analogy to evolution in Nature,
it is logical to consider that when evolution has already arrived at SOME DEGREE
of success in improving the cooperativeness of the behavior of players (that initially
were entirely independent in their interests, and with regard to their utility func-
tions); because of this, we should consequently realize that a found modeling that
favors effectively cooperative behavior by the players in a form that derives from
their independently motivated actions (like actions in a non-cooperative game) may
not PERFECTLY model the NATURAL possibilities for the attainment of coop-
erative behavior by the route of a form of evolution. This is because evolution in
Nature is generally viewed as an ONGOING process and thus it cannot be expected,
presumably, at any particular time, to have arrived at final perfection.

So, in effect, deriving from this consideration, if we found a first model, for a
game of three players defined as a CF game by a specified characteristic function,
in which stable effective cooperation was realized with the players playing in a non-
cooperative game of procedures for actually achieving cooperation; then, from the
general viewpoint of evolutionary theory, we DO NOT KNOW, from the apparent
success of the model, that we have found an ultimately PERFECT form of modeling
for the natural process of cooperation.

Therefore, in a logical or philosophical sense, we should think that we don’t know
that a specific model (which allows for a natural mode of cooperative behavior in
a repeated game context) is perfect and gives the final answer until we have made
some further explorations.

In Nature an example is given by lichen species. In a complex case there will be
combined (1) a fungus, (2) a green alga species, and (3) a cyanobacterial species,
with all of the three contributing distinct and essential functions.

Over a period of time, like, say, 100 million years, a complex lichen variety
existing today might naturally evolve into a form exhibiting changes in the two
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or three component species and changes in how the components would effectively
cooperate.

The analogy to this is that a found formula (as it were) for the cooperation
of three payers in a three-player game context might not be perfect (and a final
answer) if a better formula might appear as a natural evolution of a search for
reasonable models (that naturally enable cooperation in repeated game contexts).

Thus, in principle, game theorists working with this sort of modeling, where
cooperation results from a repeated game equilibrium, need to consider to what
extent they can justifiably think that perfection has been achieved with regard to
how each player’s behavior can be considered to optimize in relation to his/her
interaction with the others.

Because the project research has already exhibited results that compare very
interestingly with the analogous results (in terms of predicting game payoffs) that
are derivable from the Shapley value, from the nucleolus, from models of the random
proposers type, or also with the results of an experimental study, we can wonder if
variations in detail of our modeling would affect these comparisons in one direction
or another.

Possible or Likely Model Variations for Improvement

One quite simple idea is that if by election a coalition of two players has been
formed, with one of them elected as the agent authorized to act for both, then
that it is not apparently in the interests of those two players to give information
unnecessarily to the third player, so that the identity of the agent-leader who was
elected in the formation of that coalition of two players may as well or better be
kept secret. Then we find that very nice reductions of the quantity of the strategic
data necessary for the players are a consequence. For example, the a-numbers of the
types illustrated by al f23 and alf32 would need to become coincident, with the
same applying to the related strategically chosen d-numbers and d1f23 and d1f32,
simply because P1 WOULD NOT KNOW which of P2 and P3 had been elected
to be (as it were) the chairman of the committee formed by the two of them.

Furthermore, ©2b1723 and u2b1r32 would likewise need to be the same number
(if we assume that P1 does not become informed in relation to which of P2 and P3
had been the chairman (or leader-agent) of the earlier formed committee/coalition
of P2 and P3).

Thus with secret coalitions, where the fact that the first stage of agency elections
has succeeded would be known to all but where the remaining solo player would
not be advised of WHO had elected WHOM in the formation of the coalition
of the others; this change would reduce the total number of strategic parameters
needed from 39 to 30. (And this with probably no loss of good representation of
the interactions of the players’ interdependent interests.)

And there are two other areas where it seems that the modeling can be refined.
First, we have actually studied a model game AS IF it were a CF game DEFINED
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by a characteristic function (as in Von Neumann and Morgenstern) and with the
privilege of transferable utility being provided for the players. But actually the pay-
off function was calculated on the basis that if the grand coalition is not formed but
a coalition of two players did form then that that two-player coalition is awarded the
value, b1, b2, or b3, appropriate for it, BUT that this amount is divided EQUALLY
between the two players in that coalition. (So if, for example, the coalition {1, 3}
associated with b2 = v(1, 3) formed but {1, 2,3} did not form then our applied rule
is simply that each of P1 and P3 receives the payoff of 2/2.)

And another area where our modeling had an arguably arbitrary simplification
concerns the demand strategies of players voting in the first stage of the elections.
Player P1, for example, chooses strategically the demand number d1 and from this
his behavior actions in voting, alf2 and alf3, are determined.

Instead of having only dl, d2, and d3 we could rather have d1f2,d1f3,
d2f1,d2f3,d3f1, and d3f2. And then each action (voting) probability aifj would
be associated with its own demand strategy, so that d3f2 would control a3 f2, etc.

This model change, by itself, would add three variables. And the change with
having secret leader-agents (like secret committee chairmanships) would take away 9
variables. With both of these changes there would be 36 variables and
equations.

Additionally, particularly for the relatively simpler 3-person games we could
generalize from CF games (games defined by a characteristic function) to games
of the more general type defined by a partition function, such as were studied,
originally by Lucas and Thrall, and by Myerson in 1977. This generalization would
seem to involve adding very little extra length to the formulae describing the payoff
vector function or the derived formulae for the equilibrium equations (for games of
3 players).

Study Possibilities for Games of Four Players

There are types of CF games of 4 players that are essentially different from games of
three or two players, yet which, because of symmetries of the game, would involve
a much smaller number of strategy parameters to be determined than would be
needed for a plausible model for a general sort of 4-person CF game.

The players could have two types and then have complete symmetry in relation
to the game structure except for the difference of types. Thus, if A and B were
the types then the characteristic function data would be determined by v(A) =
v(B) = 0,v(A, A),v(A, B),v(B,B),v(A, A, B),v(A, B, B), and v(A,A,B,B) = 1.
(This varies in five dimensions.)

Or another variety of very simple 4-person game for computational study would
be, instead, a 4-person game where one player is different and three are isomorphic
in form. Then, as a CF game it would be described, in terms of players of types R (for
regular) and X (for exceptional), by v(R) = v(X) = 0,v(R, R),v(R, X),v(R, R, R),
v(R,R,X), and v(R, R, R, X) = 1. (And this varies in only 4 dimensions.)
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Comparisons with Random Proposers Modeling

Several references in the Bibliography can be viewed as works that relate to the
“Nash program” (which was the suggestion that the study of cooperative games
should, somehow, be reduced to that of non-cooperative games).

We also have references to studies of games of more than two parties that are
based on a method of modeling with “random proposers”. These studies have them-
selves cited the influence of earlier studies, by Rubinstein et al., of “alternating
offers” models that have been somewhat successful for studies bargaining games of
two parties.

With the “random proposers” models the mathematical calculations necessary
to find equilibria are not so difficult as to limit the results available to numerical
approximations (as they were found to be with our modeling based on elected agen-
cies) and some really nice results have been obtained in the sense that relatively sim-
ple relations to the nucleolus and the Shapley value have appeared in the outcomes.

But what is the truth (if there is any truth!!)?

We suspect, actually, (and this can be viewed as a private opinion) that the
“random proposers” modeling simplifies the bargaining and negotiating context by
removing an element of the “free enterprise” type. So while nice results are deduced,
in terms of mathematical simplicity, they may be only approximate results, in some
sense.

With our modeling scheme, with “agencies”, it is if all players are always pro-
posers but only occasionally does a player become an ACCEPTOR (of the proposal
of another player). So the element of “free enterprise” possibly enters as the players,
on their own initiatives, select and decide upon which proposals to accept.

Researchers studying the “random proposals” models have observed that when a
player becomes a “proposer” that this seems to give a differential advantage to him.
Of course using random assignments, among the players, evens out the advantages,
but that is not the same as a “free enterprise” process in its basic nature.

We feel that a truly ideal concept, in relation to the study of games, is to
achieve the capacity to give valuable appraisals of a game situation to the players
or prospective players of the game.

An “arbitration scheme” (in the words of Luce and Raiffa) could be developed
on the basis of a theory that seemed helpful toward game appraisals. But we wish to
remark that, in principle, there is some risk of building an “arbitration formula” into
a modeling procedure used in studying games. So the arbitration formula cannot
be validly DERIVED if it is already inserted as an assumption in the modeling!

Connections with Experimental Games Research

There has been a little of experimental games investigation that has some relations
with our studies (of cooperative three-person games) in which we have used a
specific model structure (with “demands” and “acceptance probabilities”). The
experiments were carried out in the lab of Prof. Axel Ockenfels in Cologne with him
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being assisted, in one way or another, by Prof. R. Selten, Prof. R. Nagel, and myself.
It is expected that a report on these experiments will be published separately.

In the design for the experiments the human game-players being observed were
free to think however they wished, about their strategies of action, but coalitions,
or “agencies” were formed like in our model. And the payoff rules, in relation to
the final coalition or set of coalitions and players, were the same. (So the players
did not have any need to think about choosing numbers to be their “demands”.)

The basic design of the experimental routine, as a “flow chart” was made by
Prof. Selten and he also chose a set of 10 example games to be studied.

It was difficult to compare directly with the computable results from our specific
model for computations because for most of the games the model solution could
not be easily calculated (since the two-player coalitions had too much strength) (or
they were not enough like “pro-cooperative games”).

However the experimental results DID seem to confirm, in a general way, the pat-
tern of experiments leading to “more egalitarian” outcomes than would be suggested
by notable mathematical indicator concepts like the Shapley value or the nucleolus.

Relevant Existing Literature

The recent work of Abreu and Pearce notably involves, like our modeling scheme,
the study of the repeated games context. In this context they are able to deal with
both the cooperative and the competitive aspects of a situation of bargaining that
is not of the simplest variety.

Harsanyi was an early pioneer explorer in the search for theoretical understand-
ing of cooperative games including, particularly, games of the NTU category.

Rubinstein’s 1982 paper in Econometrica influenced various later papers con-
necting bargaining and offers and acceptances.

Others, for example Gul (1989), Osborne and Rubinstein (1990), Montero-
Garcia (1998), Seidmann and Winter (1998), Ferreira (1999), and Ray and Vohra
(1999), in a general sense, look at coalitions from a “dynamical” viewpoint, under-
standing that the participants in a game-like situation must act appropriately for
coalitions to actually form.

The papers of Baron and Ferejohn, of Okada, and of Gomes have made use of
the “random proposers modeling” and are good sources in relation to that idea
(which has antecedents going back to Rubinstein and Stahl).

Project Assistants and Support
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be solved for the equilibrium solutions. And this work was mostly done within
the framework of Mathematica and programs running within “sessions” of
Mathematica.

On some of the graphic charts there are references indicating which one of the
three project assistants happened to have prepared that chart.

In addition I want to mention that I was very substantially assisted, in preparing
the proposal (for the research project) (which was submitted to the Economics
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