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VALUES FOR GAMES WITHOUT SIDEPAYMENTS:
SOME DIFFICULTIES WITH CURRENT CONCEPTS'

By ALviN E. RoTH

Two solution concepts for games without sidepayments are considered: the stable
bargaining solution proposed by Harsanyi [6, 7], and the A-transfer value first proposed by
Shapley [19]. Some examples of games are considered for which both solution concepts
yield results which are highly counter-intuitive, and which seem to be inconsistent with the
hypothesis that the games are played by rational players.

1. INTRODUCTION

THE GAME THEORY LITERATURE currently contains two well-developed solution
concepts which can be applied to a cooperative game without side-payments to
select an outcome of the game as its ‘‘value.’”” The first of these is due to Harsanyi
[6,7], and is developed as a generalization of Nash’s [12] solution of the
two-person bargaining problem. Harsanyi’s procedure selects a ‘“‘stable bargain-
ing solution” which is interpreted to be the outcome which would be selected by
rational (utility-maximizing) players who are aware of all of the possibilities in the
game.

The second solution concept, called the ‘“A-transfer value,” was first proposed
by Shapley [19] as an extension of the Shapley value [18] for games with
sidepayments. Shapley [19, p. 260] writes that the idea was first motivated as an
attempt to approximate Harsanyi’s bargaining solution in the context of market
games with many players, and was then perceived to have virtues of its own. The
A-transfer value has subsequently been studied and developed, primarily in the
context of market games, by Aumann [1] and others (e.g., Aumann and Kurz [2,
3]; Champsaur [5]; Hart [8]; Mas-Colell [9, 10, 11]; Neymann [13]). However,
like Harsanyi’s stable bargaining solution, the A-transfer value is defined for
essentially all cooperative games, and it is customarily justified and interpreted
without reference to markets. Since the Shapley value for games with sidepay-
ments can be interpreted either as a stable outcome of bargaining (e.g., Harsanyi
[7, Chapter 11]) or as an expected outcome or expected utility of playing a game
(e.g., Shapley [18]; Roth [15, 16]), it can be argued that the A-transfer value
should be interpreted in either way.

Regardless of which interpretation is used, however, both the A-transfer value
and the stable bargaining solution can yield predictions which are highly counter-
intuitive. In particular, Section 2 exhibits some games for which it seems that
neither solution concept yields a result which is consistent with the hypothesis that

! This research was supported by National Science Foundation Grant SOC75-21820 to the
Institute for Mathematical Studies in the Social Sciences, Stanford University and by National Science
Foundation Grant SOC78-09928 to the University of Illinois. It is also a pleasure to acknowledge
stimulating conversations on this topic with R. Aumann, T. Groves, J. Harsanyi, S. Hart, M. Kurz, A.
Neymann, M. Osborne, L. Shapley, and R. Wilson.
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458 ALVIN E. ROTH

the players of the game are rational utility-maximizers who are aware of all of the
possible outcomes of the game.?

Section 2 contains the examples and an analysis of them; Section 3 contains a
brief description of the stable bargaining solution, and applies it to the examples;
Section 4 briefly describes the A-transfer value and applies it to the examples.
Section 5 contains a discussion of these results. Readers who are not interested in
how the stable bargaining solution and A-transfer value are computed may wish to
read Section 2 and then skip directly to Section 5.

2. THE EXAMPLES

Consider a class of 3-player games defined by a single parameter p which varies
between 0 and 1/2. For a given p €[0, 1/2], let G(p) be the game in which the
players acting alone can assure themselves of achieving a utility of 0, players 1 and
2 acting together can achieve the outcome (1/2, 1/2, 0), players 1 and 3 acting
together can achieve the outcome (p, 0, 1 —p), and players 2 and 3 together can
achieve (0, p, 1—p). All three players acting together can achieve any convex
combination of the vectors (1/2, 1/2, 0), (p, 0, 1—p), and (0, D,.1—p). Assume
that no sidepayments of any sort are feasible between players.

This is essentially a game in characteristic function form,” so it can be represen-
ted by the set N ={1, 2, 3} of players, the set of feasible outcomes H ( p) equal to
the convex hull of the points {(1/2, 1/2, 0), (p, 0, 1 — p), (0, p, 1—p), (0, 0, 0)}, and
the characteristic function® V, such that

Vo (i) ={(u1, uz, us)|u; <0} forieN,

Vo({12]) = {1, ua, us)l(us, u2) <(1/2,1/2)},
Vo({13}) = {(u1, ua, us)|(u1, us)<(p, 1-p)},
Vo(23}) ={(u1, uz, us)l(uz, u3)<(p,1-p)},  and

Vo (N)={u = (u1, us, us)lu <y for some y in the convex hull of

{(1/2’ 1/27 O)a (pa 0’ I_P), (O’ D l_p)}}'

I claim that, for p < 1/2, the payoff vector (1/2, 1/2, 0) is the unique outcome of
the game consistent with the hypothesis that the players are rational utility

? Since I wish to show that these solution concepts can yield counter-intuitive results, the discussion
will depend, to some extent, on informal, intuitive reasoning about the appropriate interpretation of
mathematical ideas. Although I have tried to make the arguments as compelling as possible, I
recognize that this sort of discussion may leave room for disagreement.

3 That is, the payofis available to a coalition are independent of the actions of the complementary
coalition.

*In writing the characteristic function I have adopted the usual convention (cf. Aumann and
Peleg [4]) that if x is in V(S) and y <x, then y is also in V(S). In general, however, y need not be a
feasible outcome of the game, and in the game G(p), only outcomes in the set H(p) are feasible. Thus
the game G(p) is formally described by the triple (N, V,, H(p)). This description is included only to
insure that there is no ambiguity in the definition of the game G(p), and readers who are unfamiliar
with the characteristic function can safely ignore it.
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maximizers. This is because, when p <1/2, the outcome (1/2, 1/2, 0) is strictly
preferred by both players 1 and 2 to every other feasible outcome, and because the
rules of the game permit players 1 and 2 to achieve this outcome without the
cooperation of player 3. So in the game G(p), for p <1/2, there is really no
conflict between players 1 and 2: their interests coincide in the choice of the
outcome (1/2,1/2, 0), and the rules permit them to achieve this outcome.

This is perhaps clearest when p = 0, since in the game G(0) players 1 and 2 have
identical interests over the entire set of feasible outcomes. There is no pair of
outcomes such that player 1 would choose one over the other, and player 2 would
make the opposite choice. Furthermore, as far as players 1 and 2 are concerned,
player 3 has nothing to offer in the game G (0)—his cooperation never offers either
of them an increased reward. So, from the point of view of players 1 and 2, this
game offers no prospect of reward different from the two-player game in which
players 1 and 2 can achieve (1/2, 1/2) if they agree, and (0, 0) otherwise. The only
rational outcome of this game, and consequently of the original game, is that
players 1 and 2 should each receive a utility of 1/2.

For p <1/2, the outcome (1/2, 1/2, 0) is not only the unique point in the core of
the game G(p), but is also the unique von Neumann-Morgenstern solution of the
game.’ It should be emphasized, however, that it is not this observation which
prompts the conclusion that (1/2, 1/2, 0) is the unique rational outcome of the
game; the conclusion is due to the fact that players 1 and 2 agree on that outcome
as preferable to all others.® (Note that this can never occur in a game with
sidepayments, or in any game in which it is possible to freely redistribute wealth
between players.)

Finally, note that the conclusions reached in this section apply only when
p<1/2.When p =1/2 the game G(p) is completely symmetric with respect to the
players, so it is no longer the case that cooperation with player 3 offers strictly less
to players 1 or 2 than cooperation with one another.

3. HARSANYI'S STABLE BARGAINING SOLUTION

Let G be a game with aset N={1, ..., n} of players and a set H of feasible,
individually rational payoffs. Harsanyi’s model can be divided into two parts. The

> By the core and solution of the game G(p), I mean the core and solution of the feasible set H(p)
under the domination relation induced by the characteristic function V,, (cf. Aumann and Peleg [4]).

© Games without sidepayments are often described just by a set N of players and a characteristic
function V. The set of feasible outcomes is then assumed to be equal to the set V(N). Given the
construction of the characteristic function (cf. footnote 4) this amounts to making the somewhat
restrictive assumption that it is feasible to freely dispose of utility. Nevertheless, such an assumption
would make no consequential difference in the analysis of the games G(p) for p <1/2. The principal
effect of replacing the feasible set H(p) by the set V,,(N) would be that player 1, say, could achieve his
maximum utility not only at the outcome (1/2, 1/2, 0), but also at outcomes of the form (1/2, g, 0)
where q < 1/2, obtained by having player 2 dispose of some of the utility he could have obtained at the
outcome (1/2, 1/2, 0). Of course player 2 would prefer not to dispose of utility, and player 1 has no
incentive to seek such a disposal of utility. (The hypothesis that the players are utility maximizers
means player 1 doesn’t want player 2 to dispose of utility in this way, since player 1 can’t want anything
which isn’t captured by his utility function, and his utility remains constant at 1/2.) Since each of
players 1 and 2 can achieve his maximum utility only with the cooperation of the other, it is now
straightforward to argue, as before, that (1/2, 1/2, 0) must be the outcome of the game.
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first part identifies one or more bargaining solutions of the game. In the event that
more than one such bargaining solution is identified, the second part identifies a
unique stable bargaining solution.”

A bargaining solution defined by the first part of the model consists of a feasible
outcome u associated with a non-negative vector A such that A - u=A - x for any
feasible outcome x. (That is, A is the vector of coefficients of a hyperplane tangent
to H at the point u.) To qualify as a bargaining solution, the payoff u; to each
player i must be the sum of dividends w,S which he receives from each coalition S
of which he is a member, according to the rule that each coalition pays the
maximum dividends that it can afford subject to the restriction that A; w, = we F
for all i, j € S. (The dividends w? may be either positive or negative.)®

Let B be the (non-empty) set of bargaining solutions identified above. If B
contains a unique element, then that is defined to be the unique stable bargaining
solution of the game. Otherwise the unique stable bargaining solution is defined to
be Nash’s [12] solution of the pure bargaining game with outcome set H and
disagreement point d such that d; = min,cp u;. Thus the unique stable bargaining
solution® is defined to be the outcome u € H such that u =d and [L;cny (4; —d;) =
M;cn (x; —d;) for all x € H such that x =d.

To see how this model applies to the games G(p), first note that the plane
x1+x2+x3=1is tangent to the set H(p). When A =(1, 1, 1), the d1v1dends which
each coalition pays to determine a bargaining solution are w, =0 for i e N,

wll2h 020 g0 0 03t sk B3 3 g N g = e =
—4p/ 3. (Note that the grand coalition N must give a negative dividend, to
preserve feasibility.) Summing these dividends, we find the bargaining solution for
the game G(p) corresponding to the weights A =(1, 1, 1) is the outcome u =
(1/2-p/3,1/2-p/3,2p/3).

It is easy to verify, however, that this is not the only bargaining solution of the
game G(p). In fact, each of the three extreme points of the set of Pareto optimal
outcomes is the bargaining solution corresponding to some set of weights, for any
game G(p) with p=1/4.

If a and ¢ are positive numbers such that pa = (1—p)c, then the vector of
weights A = (a, 0, ¢) yields the outcome (p, 0, 1—p)asa bargammg solution of the
game G(p), since for these welghts the dividends wi'® =p, w§* =1—p, and all
other dividends equal zero.'® Similarly, if » and ¢ are positive numbers such that
pb =(1—p)c, then the bargaining solution corresponding to the weights A =

7 Only a brief description of the model will be given in this section. For a complete description, see
Harsanyi [7, Chapter 12].

81 A; =0 then w? is not uniquely determined, and may be taken to be any quantity which yields a
feasible solution (cf. Harsanyi [7, p. 258]). Of course, not every vector of weights yields dividends which
produce a bargaining solution, but Harsanyi has shown that at least one such solution always exists for
a wide class of games.

9 Note that the stable bargaining solution need not be a bargaining solution.

10The requirement that p=1/4 is needed in order that the plane defined by the equation
axy+ cx3 = ap +c(1—p), which passes through the point (p, 0, 1 — p), be tangent to the set of feasible
outcomes H(p).
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(0, b, c) is the outcome (0, p, 1 —p), and the bargaining solution corresponding to
A =(1, 1, 0) is the outcome (1/2, 1/2, 0). Thus, for each player in the game, there
is a bargaining solution at which he receives his minimum individually rational
payoft.

Because there are multiple bargaining solutions, the second part of the model
identifies a unique stable bargaining solution as follows.

PROPOSITION 3.1: The stable bargaining solution for the game G(p) with
pell/4,1/2] is the outcome u=(1/3,1/3,1/3).

PrROOF: Since there is some bargaining solution at which each player receives 0,
his minimum individually rational payoff, the disagreement point used to deter-
mine the stable bargaining solution is d = (0, 0, 0). Thus the stable bargaining
solution is the Nash solution of the three-person bargaining game with feasible set
H (p) and disagreement point d.

But the point u =(1/3, 1/3, 1/3), which maximizes the product IT;cy x; Over
the simplex {x = 0|= x; = 1} is always feasible in the game G(p) for pe[1/4, 1/2];
ie.,(1/3,1/3,1/3)e H(p) for all pe[1/4, 1/2]. Consequently u is also the Nash
solution to the bargaining game with feasible set H(p), so u is the unique stable
bargaining solution of the game G(p).

4. THE A-TRANSFER VALUE FOR THE GAMES G(p)

Let A =(a, b, ¢) be a non-negative vector of weights, at least one of which is not
zero. Define the weighted game G, (p) to be the game in which each coalition S
can achieve the payofts (aui, bus, cus), where (uy, u,, us) is a payoff which that
coalition could achieve in the game G(p). Define the weighted game with
sidepayments g, (p) to be the game in which a coalition can achieve any dis-
tribution of utility whose sum over members of the coalition does not exceed the
sum of the utilities available to that coalition at some outcome in the game G, (p).
Since the games G, (p) are in characteristic function form, so are the games g, (p),
which can be represented by the characteristic function v,, given by

() =0 fori=1,2,3;
at+b

5
Uap(13)=pa +(1-p)c;
0rp(23)=pb +(1-p)c;

U,\p(lz) =

+
0xp(123) = max {aTb’ pa+(1—p)c,pb+(1 _P)C}-

Consequently, the Shapley value ¢(v,,) is always well defined for the game
g, (p). In general, the Shapley value for the game g, (p) need not be feasible for the
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game G, (p). However if no utility transfers are required to achieve the Shapley
value for the game g, (p), then it is a feasible outcome of the game G, (p), and in
this case it is called a A-transfer value for the game G(p). Formally, a A-transfer
value for the game G(p) is a feasible outcome u = (u1, u2, us) of the game G(p)
such that (auy, bu,, cus) = ¢ (v,,) for some vector of weights A = (a, b, c).

Although there are a number of ways to motivate this definition, the argument
which has been most influential is made in two parts.'" The first part considers the
original game (i.e., the game G (p) = G\ (p) for A =(1, 1, 1)) and the correspond-
ing game with sidepayments. If the Shapley value of the sidepayment game is
feasible in the original game, then it is justified as the value for the original game
by invoking Nash’s [12] principle of “independence of irrelevant alternatives.”
Aumann [1, Section 6]'* puts the argument in a picturesque way by supposing that
the players first negotiate under the assumption that utility is transferable, and
only find that this is not the case after reaching an agreement. If the agreement
requires no utility transfers to be made, however, then it could still be imple-
mented. )

Since this procedure may not yield a feasible outcome, the second part of the
argument notes that, for any strictly positive vector of weights A, the game G, (p) is
equivalent to G(p) in the sense that the utility functions of the players are unique
only up to positive linear transformations. So if some such A can be found which
yields a feasible outcome, the argument of the previous paragraph should still
apply.13

In order to prove an existence theorem for a broad class of games (Shapley [19])
itis necessary to extend the definition to include vectors of weights A which may be
zero in some components. However the equivalence argument breaks down in this
case, and this extension is customarily viewed as simply a technical expedient. In
many cases of interest, existence can be obtained without resorting to weights of
zZero.

We are now in a position to study the A-transfer value for the game G(p).

PROPOSITION 4.1: For any game G(p) with pe[0,1/2], the outcome u =
(1/3,1/3, 1/3) is a A-transfer value for A =(1, 1, 1).

PrOOF: Observe that when A =(a, b, ¢) =(1, 1, 1), then v,, is independent of p
and is the completely symmetric characteristic function representing 3-person
majority-rule. Consequently, ¢ (v,,) = u =(1/3, 1/3, 1/3) for all p. Furthermore,
the outcome u = (1/3, 1/3, 1/3) is feasible in the game G(p) for all p €[0, 1/2],
since it lies on the line joining the outcomes (1/2, 1/2,0) and (p/2, p/2,1—p).
Consequently u is the A-transfer value for the game G(p).

11 Gee Shapley [19] and Aumann [1] for a more complete account.
12 Aumann is actually considering a modified version of the value described here.

13 R
The vector A can be interpreted as a vector of exchange rates according to which utility can be
transferred in the sidepayment game—hence the name ‘‘A-transfer value.”
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Of course, another vector A of weights could yield another A-transfer value. For
instance, it is not difficult to verify that the weights A = (a, b, ¢) = (1, 1, 0) yield the
A-transfer value u = (1/2, 1/2, 0) for the game G(0). In view of the analysis of the
game G(p) given in Section 2, we wish to know in exactly what circumstances
weights A can be found such that the A-transfer value gives player 3 a payoff of
zero in games G(p) for p<1/2.

PROPOSITION 4.2: If u = (u1, uz, us) is a A-transfer value for a game G(p) with
p€(0,1/2], then us;>0.

PROPOSITION 4.3: If u = (u1, us, us) is a A-transfer value for the game G(p),
and if A =(a, b, ¢) with ¢ >0, then us>0 for all p €[0, 1/2].

PrROOF: When p >0 at least one of v,,(13) or v,,(23) must be positive, since
not all of the components of A may be equal to zero. When ¢ >0, both of these
quantities must be positive. Consequently, under the conditions of both pro-
positions, the Shapley value for the game with sidepayments gives player 3 a
positive payoff for any A. Since a A-transfer value corresponds to the Shapley value
of some sidepayment game, the result follows.

Thus the outcome (1/2, 1/2, 0) can be achieved as a A-transfer value only in the
game G(0), and even then only by first multiplying the utility function of player 3
by zero.

5. DISCUSSION

In order to simplify the discussion, consider a unique A-transfer value for the
games G(p) by taking A =(1, 1, 1). (By Propositions 4.2 and 4.3, most of the
discusson will apply as well to any other choice of weights A.)

Both the stable bargaining solution and the A-transfer value select the outcome
u=(1/3,1/3,1/3) for any game G(p) with p €[1/4, 1/2]. (In fact the A-transfer
value selects the outcome u for any p €[0, 1/2].) In view of the analysis presented
in Section 2 of the games G(p) for p <1/2, it no longer seems tenable to interpret
either solution concept as yielding a “stable”” outcome of the game.'* Perhaps
something more needs to be said, however, about the idea that the outcome
(1/3,1/3,1/3) might represent some sort of expected outcome or expected
utility. These are two distinct ideas, and must be addressed separately.

To interpret u = (1/3, 1/3, 1/3) as an expected outcome, it must be maintained
either that u is the only outcome likely, in some sense, to occur, or else that there is
a set of likely outcomes distributed in such a way as to make u their expectation.
For the three-person majority game with sidepayments (or for the game G(p)
with p = 1/2), the complete symmetry of the game makes both of these positions
defensible, since u is the only efficient outcome which is symmetric. For instance,

¥ 1n private correspondence, John Harsanyi has informed me that he is currently developing a
solution concept which does yield the outcome (1/2, 1/2, 0) as the solution to the games G(p) with
p<1/2.
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any theory which depends only on the structure of the game and which finds the
outcome (1/2, 1/2, 0) to be stable must also find the outcomes (1/2, 0, 1/2) and
(0,1/2,1/2) to be stable, and u is the mean of these three outcomes.

But when p>1/2, the game G(p) is not symmetric (and in particular the
outcomes (1/2, 0, 1/2) and (0, 1/2, 1/2) are not feasible). If u is to be interpreted
as an expected outcome, then one must be prepared to argue that there are some
“likely”” outcomes which can be balanced against (1/2, 1/2, 0) to yield u as an
expected outcome. In view of the analysis presented in Section 2, this would seem
to be a difficult positon to defend. Note that I am essentially suggesting that the
principle of ‘“independence of irrelevant alternatives’ is inappropriate under this
interpretation—the notion of an ‘‘expected outcome” seems to require consi-
deration of feasible outcomes other than the one chosen for the solution.

Finally, consider whether the vector u=(1/3,1/3,1/3) might reasonably
represent the expected utility of playing one of the positions in a game G(p). Of
course, any function which assigns numerical values to the positions in a game can
be used as a utility function in the limited sense that it induces binary choices
which are transitive and complete (since the ordering of the real numbers has this
property). To decide whether a function is a reasonable utility function, it is
necessary to consider what kind of preferences it reflects. The Shapley value for
games with sidepayments was studied in this context in Roth [15, 16].

In order for the A-transfer value (with A = (1, 1, 1)) to represent an individual’s
utility for playing in the games G(p), it must be that he is indifferent between
playing in any position of any game G (p) for p € [0, 1/2]. In particular, he must be
indifferent between playing position 1 or position 3 in any game G(p) forp <1/2,
and indifferent between playing position 3 in the game G(p) or in the game
G (1/2), since all of these prospects have a A-transfer value of 1/3. In view of the
preceding discussion, these preferences are inconsistent with the notion that a
rational player’s preferences over games should be influenced by the payoff he
might reasonably expect to achieve in those games.

Thus, for a simple family of superadditive games without sidepayments, both
the stable bargaining solution and the A-transfer value yield results which are
difficult to justify. Unfortunately, the analysis of these games does not itself
suggest any alternative theory for general cooperative games, since the arguments
depend critically on the extreme simplicity of the games G (p), which permitted us
to analyze the games as in Section 2, essentially from first principles.

What this analysis does suggest is that, at the very least, some modifications are
required in the existing theory."

University of Illinois

Manuscript received May, 1978 final revision received August, 1978.

!5 For other suggestive examples, see Owen [14, Example 2] or Shafter [17].
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